1
|
Grønbæk-Thygesen M, Hartmann-Petersen R. Cellular and molecular mechanisms of aspartoacylase and its role in Canavan disease. Cell Biosci 2024; 14:45. [PMID: 38582917 PMCID: PMC10998430 DOI: 10.1186/s13578-024-01224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/24/2024] [Indexed: 04/08/2024] Open
Abstract
Canavan disease is an autosomal recessive and lethal neurological disorder, characterized by the spongy degeneration of the white matter in the brain. The disease is caused by a deficiency of the cytosolic aspartoacylase (ASPA) enzyme, which catalyzes the hydrolysis of N-acetyl-aspartate (NAA), an abundant brain metabolite, into aspartate and acetate. On the physiological level, the mechanism of pathogenicity remains somewhat obscure, with multiple, not mutually exclusive, suggested hypotheses. At the molecular level, recent studies have shown that most disease linked ASPA gene variants lead to a structural destabilization and subsequent proteasomal degradation of the ASPA protein variants, and accordingly Canavan disease should in general be considered a protein misfolding disorder. Here, we comprehensively summarize the molecular and cell biology of ASPA, with a particular focus on disease-linked gene variants and the pathophysiology of Canavan disease. We highlight the importance of high-throughput technologies and computational prediction tools for making genotype-phenotype predictions as we await the results of ongoing trials with gene therapy for Canavan disease.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| |
Collapse
|
2
|
de Ruiter Swain J, Michalopoulou E, Noch EK, Lukey MJ, Van Aelst L. Metabolic partitioning in the brain and its hijacking by glioblastoma. Genes Dev 2023; 37:681-702. [PMID: 37648371 PMCID: PMC10546978 DOI: 10.1101/gad.350693.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The different cell types in the brain have highly specialized roles with unique metabolic requirements. Normal brain function requires the coordinated partitioning of metabolic pathways between these cells, such as in the neuron-astrocyte glutamate-glutamine cycle. An emerging theme in glioblastoma (GBM) biology is that malignant cells integrate into or "hijack" brain metabolism, co-opting neurons and glia for the supply of nutrients and recycling of waste products. Moreover, GBM cells communicate via signaling metabolites in the tumor microenvironment to promote tumor growth and induce immune suppression. Recent findings in this field point toward new therapeutic strategies to target the metabolic exchange processes that fuel tumorigenesis and suppress the anticancer immune response in GBM. Here, we provide an overview of the intercellular division of metabolic labor that occurs in both the normal brain and the GBM tumor microenvironment and then discuss the implications of these interactions for GBM therapy.
Collapse
Affiliation(s)
- Jed de Ruiter Swain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | | | - Evan K Noch
- Department of Neurology, Division of Neuro-oncology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Michael J Lukey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| |
Collapse
|
3
|
Haque SS. Biomarkers in the diagnosis of neurodegenerative diseases. RUDN JOURNAL OF MEDICINE 2022. [DOI: 10.22363/2313-0245-2022-26-4-431-440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Biomarkers are molecules that behave as of biological states. Ideally, they should have high sensitivity, specificity, and accuracy in reflecting the total disease burden. The review discusses the current status of biomarkers used in neurological disorders. Neurodegenerative diseases are a heterogeneous group disorders characterized by progressive loss of structure and function of the central nervous system or peripheral nervous system. The review discusses the main biomarkers that have predictive value for describing clinical etiology, pathophysiology, and intervention strategies. Preciseness and reliability are one of important requirement for good biomarker. As a result of the analysis of literature data, it was revealed that beta-amyloid, total tau protein and its phosphorylated forms are the first biochemical biomarkers of neurodegenerative diseases measured in cerebrospinal fluid, but these markers are dependent upon invasive lumbar puncture and therefore it’s a cumbersome process for patients. Among the various biomarkers of neurodegenerative diseases, special attention is paid to miRNAs. MicroRNAs, important biomarkers in many disease states, including neurodegenerative disorders, make them promising candidates that may lead to identify new therapeutic targets. Conclusions. Biomarkers of neurological disease are present optimal amount in the cerebrospinal fluid but they are also present in blood at low levels. The data obtained reveal the predictive value of molecular diagnostics of neurodegenerative disorders and the need for its wider use.
Collapse
|
4
|
Wei H, Moffett JR, Amanat M, Fatemi A, Tsukamoto T, Namboodiri AM, Slusher BS. The pathogenesis of, and pharmacological treatment for, Canavan disease. Drug Discov Today 2022; 27:2467-2483. [PMID: 35636725 PMCID: PMC11806932 DOI: 10.1016/j.drudis.2022.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
Abstract
Canavan disease (CD) is an inherited leukodystrophy resulting from mutations in the gene encoding aspartoacylase (ASPA). ASPA is highly expressed in oligodendrocytes and catalyzes the cleavage of N-acetylaspartate (NAA) to produce aspartate and acetate. In this review, we examine the pathologies and clinical presentation in CD, the metabolism and transportation of NAA in the brain, and the hypothetical mechanisms whereby ASPA deficiency results in dysmyelination and a failure of normal brain development. We also discuss therapeutic options that could be used for the treatment of CD.
Collapse
Affiliation(s)
- Huijun Wei
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - John R Moffett
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | - Man Amanat
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ali Fatemi
- Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Behavioral Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Aryan M Namboodiri
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Smesny S, Gussew A, Schack S, Langbein K, Wagner G, Reichenbach JR. Neurometabolic patterns of an "at risk for mental disorders" syndrome involve abnormalities in the thalamus and anterior midcingulate cortex. Schizophr Res 2022; 243:285-295. [PMID: 32444202 DOI: 10.1016/j.schres.2020.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/03/2020] [Accepted: 04/19/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The ultra-high risk (UHR) paradigm allows the investigation of individuals at increased risk of developing psychotic or other mental disorders with the aim of making prevention and early intervention as specific as possible in terms of the individual outcome. METHODS Single-session 1H-/31P-Chemical Shift Imaging of thalamus, prefrontal (DLPFC) and anterior midcingulate (aMCC) cortices was applied to 69 UHR patients for psychosis and 61 matched healthy controls. N-acetylaspartate (NAA), glutamate/glutamine complex (Glx), energy (PCr, ATP) and phospholipid metabolites were assessed, analysed by ANOVA (or ANCOVA [with covariates]) and correlated with symptomatology (SCL-90R). RESULTS The thalamus showed decreased NAA, inversely correlated with self-rated aggressiveness, as well as increased PCr, and altered phospholipid breakdown. While the aMCC showed a pattern of NAA decrease and PCr increase, the DLPFC showed PCr increase only in the close-to-psychosis patient subgroup. There were no specific findings in transition patients. CONCLUSION The results do not support the notion of a specific pre-psychotic neurometabolic pattern, but likely reflect correlates of an "at risk for mental disorders syndrome". This includes disturbed neuronal (mitochondrial) metabolism in the thalamus and aMCC, with emphasis on left-sided structures, and altered PL remodeling across structures.
Collapse
Affiliation(s)
- Stefan Smesny
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany.
| | - Alexander Gussew
- Department of Radiology, Halle University Hospital, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Stephan Schack
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Kerstin Langbein
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Gerd Wagner
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Philosophenweg 3, D-07740 Jena, Germany
| |
Collapse
|
6
|
Yao K, Cao L, Ding H, Gao Y, Li T, Wang G, Zhang J. Increasing Aspartoacylase in the Central Amygdala: The Common Mechanism of Gastroprotective Effects of Monoamine-Based Antidepressants Against Stress. Front Pharmacol 2022; 13:823291. [PMID: 35281914 PMCID: PMC8914169 DOI: 10.3389/fphar.2022.823291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Monoamine-based antidepressants can prophylactically protect against stress-induced gastric ulcers. Although the central nucleus of amygdala (CeA) has been shown to modulate the severity of stress ulcers, little is known about the molecular mechanisms underlying the gastroprotective effect of this kind of drugs. Here, we first used proton magnetic resonance spectroscopy, a non-invasive tool, to explore the change of neurometabolites of the CeA of rats pretreated with the duloxetine of selective serotonin-norepinephrine reuptake inhibitors during 6 h of water-immersion restraint stress (WIRS). Duloxetine decreased N-acetyl-aspartate/creatine ratio (NAA/creatine) in CeA after WIRS, which was paralleled by the amelioration of gastric lesions. Meanwhile, the gastric ulcer index was negatively correlated with reduced NAA/creatine. Furthermore, the intra-CeA infusion of NAA aggravated WIRS-induced gastric mucosa damage, which suggested the crucial role of reduced NAA. Western blotting was performed to identify the specific enzymes responsible for the change of the contents of NAA at 0.5 h/3 h/6 h after WIRS, considering the preventative gastric protection of duloxetine. The NAA-catabolizing enzyme aspartoacylase (ASPA) was the only enzyme downregulated by 0.5 h WIRS and upregulated by duloxetine. Moreover, overexpressing ASPA in CeA alleviated stress ulcers. Additionally, all of the other three monoamine-based antidepressants, the fluoxetine of selective serotonin reuptake inhibitors, the amitriptyline of tricyclic agents, and the moclobemide of MAOs, increased ASPA expression in CeA. Together, these results indicate that increasing ASPA to hydrolyze NAA in CeA is a common mechanism of gastroprotective effects against stress exerted by monoamine-based antidepressants, and ASPA is a shared target more than monoamine regulation for this kind of drugs.
Collapse
Affiliation(s)
- Kaiyun Yao
- Department of Pharmacology, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linyu Cao
- Department of Pharmacology, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongwan Ding
- Department of Pharmacology, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinge Gao
- Department of Pharmacology, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiegang Li
- Department of Pharmacology, Beijing, China
| | - Guibin Wang
- Department of Pharmacology, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibin Wang, ; Jianjun Zhang,
| | - Jianjun Zhang
- Department of Pharmacology, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibin Wang, ; Jianjun Zhang,
| |
Collapse
|
7
|
Wong D, Atiya S, Fogarty J, Montero-Odasso M, Pasternak SH, Brymer C, Borrie MJ, Bartha R. Reduced Hippocampal Glutamate and Posterior Cingulate N-Acetyl Aspartate in Mild Cognitive Impairment and Alzheimer's Disease Is Associated with Episodic Memory Performance and White Matter Integrity in the Cingulum: A Pilot Study. J Alzheimers Dis 2021; 73:1385-1405. [PMID: 31958093 DOI: 10.3233/jad-190773] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Identification of biological changes underlying the early symptoms of Alzheimer's disease (AD) will help to identify and stage individuals prior to symptom onset. The limbic system, which supports episodic memory and is impaired early in AD, is a primary target. In this study, brain metabolism and microstructure evaluated by high field (7 Tesla) proton magnetic resonance spectroscopy (1H-MRS) and diffusion tensor imaging (DTI) were evaluated in the limbic system of eight individuals with mild cognitive impairment (MCI), nine with AD, and sixteen normal elderly controls (NEC). Left hippocampal glutamate and posterior cingulate N-acetyl aspartate concentrations were reduced in MCI and AD compared to NEC. Differences in DTI metrics indicated volume and white matter loss along the cingulum in AD compared to NEC. Metabolic and microstructural changes were associated with episodic memory performance assessed using Craft Story 21 Recall and Benson Complex Figure Copy. The current study suggests that metabolite concentrations measured using 1H-MRS may provide insight into the underlying metabolic and microstructural processes of episodic memory impairment.
Collapse
Affiliation(s)
- Dickson Wong
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Samir Atiya
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jennifer Fogarty
- Parkwood Institute Research Program, Lawson Health Research Institute, London, ON, Canada
| | - Manuel Montero-Odasso
- Parkwood Institute Research Program, Lawson Health Research Institute, London, ON, Canada.,Geriatric Medicine, University of Western Ontario, London, ON, Canada.,Gait and Brain Lab, Parkwood Institute, Lawson Health Research Institute, London, ON, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Stephen H Pasternak
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Parkwood Institute Research Program, Lawson Health Research Institute, London, ON, Canada
| | - Chris Brymer
- Geriatric Medicine, University of Western Ontario, London, ON, Canada
| | - Michael J Borrie
- Parkwood Institute Research Program, Lawson Health Research Institute, London, ON, Canada.,Geriatric Medicine, University of Western Ontario, London, ON, Canada
| | - Robert Bartha
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
8
|
Gersing SK, Wang Y, Grønbæk-Thygesen M, Kampmeyer C, Clausen L, Willemoës M, Andréasson C, Stein A, Lindorff-Larsen K, Hartmann-Petersen R. Mapping the degradation pathway of a disease-linked aspartoacylase variant. PLoS Genet 2021; 17:e1009539. [PMID: 33914734 PMCID: PMC8084241 DOI: 10.1371/journal.pgen.1009539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Canavan disease is a severe progressive neurodegenerative disorder that is characterized by swelling and spongy degeneration of brain white matter. The disease is genetically linked to polymorphisms in the aspartoacylase (ASPA) gene, including the substitution C152W. ASPA C152W is associated with greatly reduced protein levels in cells, yet biophysical experiments suggest a wild-type like thermal stability. Here, we use ASPA C152W as a model to investigate the degradation pathway of a disease-causing protein variant. When we expressed ASPA C152W in Saccharomyces cerevisiae, we found a decreased steady state compared to wild-type ASPA as a result of increased proteasomal degradation. However, molecular dynamics simulations of ASPA C152W did not substantially deviate from wild-type ASPA, indicating that the native state is structurally preserved. Instead, we suggest that the C152W substitution interferes with the de novo folding pathway resulting in increased proteasomal degradation before reaching its stable conformation. Systematic mapping of the protein quality control components acting on misfolded and aggregation-prone species of C152W, revealed that the degradation is highly dependent on the molecular chaperone Hsp70, its co-chaperone Hsp110 as well as several quality control E3 ubiquitin-protein ligases, including Ubr1. In addition, the disaggregase Hsp104 facilitated refolding of aggregated ASPA C152W, while Cdc48 mediated degradation of insoluble ASPA protein. In human cells, ASPA C152W displayed increased proteasomal turnover that was similarly dependent on Hsp70 and Hsp110. Our findings underscore the use of yeast to determine the protein quality control components involved in the degradation of human pathogenic variants in order to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Sarah K. Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yong Wang
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Kampmeyer
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lene Clausen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Willemoës
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Goryunova AV, Shevchenko YS, Goryunov AV. Cogitum in children's neurology and psychiatry (experience in the practical use). Zh Nevrol Psikhiatr Im S S Korsakova 2019. [DOI: 10.17116/jnevro201911907258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Sivaraman S, Kraguljac NV, White DM, Morgan CJ, Gonzales SS, Lahti AC. Neurometabolic abnormalities in the associative striatum in antipsychotic-naïve first episode psychosis patients. Psychiatry Res Neuroimaging 2018; 281:101-106. [PMID: 30286325 PMCID: PMC7874514 DOI: 10.1016/j.pscychresns.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 12/23/2022]
Abstract
Schizophrenia is a chronic, often progressive, disorder. Understanding the underlying neurobiology present in the early stages of the illness is as a pivotal step in designing targeted interventions aimed at arresting disease progression. The aim of our study was to examine neurometabolic changes in the dopamine rich associative striatum in medication-naïve first episode psychosis (FEP). We quantified neurometabolites in 14 FEP and 18 healthy controls (HC) matched on key demographic characteristics. Spectra from the voxel in the left associative striatum were acquired using a PRESS sequence (TR/TE = 2000/80 ms; 512 averages). MRS data were quantified in the time domain with AMARES in jMRUI. Choline was significantly elevated in FEP compared to HC. No significant alterations in other metabolites were observed. We did not observe correlations between metabolite levels and clinical characteristics in FEP. Here, we demonstrated elevated choline and a disruption of the relationship between N-acetyl-aspartate and Glx (glutamate + glutamine) in medication-naïve FEP patients in the left striatum indicating possible mitochondrial, membrane and glial dysfunction as an underlying pathological phenomenon. In addition, striatal choline shows promise as a biomarker for FEP that may have utility in clinical trials investigating target engagement in experimental regimens.
Collapse
Affiliation(s)
- Soumya Sivaraman
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David M White
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Charity J Morgan
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara S Gonzales
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
11
|
Gonzalez-Riano C, Sanz-Rodríguez M, Escudero-Ramirez J, Lorenzo MP, Barbas C, Cubelos B, Garcia A. Target and untargeted GC–MS based metabolomic study of mouse optic nerve and its potential in the study of neurological visual diseases. J Pharm Biomed Anal 2018; 153:44-56. [DOI: 10.1016/j.jpba.2018.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 11/29/2022]
|
12
|
Baslow MH. Rescuing Canavan disease: engineering the wrong cell at the right time. J Inherit Metab Dis 2017; 40:627-628. [PMID: 28374337 DOI: 10.1007/s10545-017-0038-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Morris H Baslow
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
| |
Collapse
|
13
|
Mendes MI, Smith DE, Pop A, Lennertz P, Fernandez Ojeda MR, Kanhai WA, van Dooren SJ, Anikster Y, Barić I, Boelen C, Campistol J, de Boer L, Kariminejad A, Kayserili H, Roubertie A, Verbruggen KT, Vianey-Saban C, Williams M, Salomons GS. Clinically Distinct Phenotypes of Canavan Disease Correlate with Residual Aspartoacylase Enzyme Activity. Hum Mutat 2017; 38:524-531. [PMID: 28101991 PMCID: PMC5412892 DOI: 10.1002/humu.23181] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/16/2017] [Indexed: 11/29/2022]
Abstract
We describe 14 patients with 12 novel missense mutations in ASPA, the gene causing Canavan disease (CD). We developed a method to study the effect of these 12 variants on the function of aspartoacylase—the hydrolysis of N‐acetyl‐l‐aspartic acid (NAA) to aspartate and acetate. The wild‐type ASPA open reading frame (ORF) and the ORFs containing each of the variants were transfected into HEK293 cells. Enzyme activity was determined by incubating cell lysates with NAA and measuring the released aspartic acid by LC–MS/MS. Clinical data were obtained for 11 patients by means of questionnaires. Four patients presented with a non‐typical clinical picture or with the milder form of CD, whereas seven presented with severe CD. The mutations found in the mild patients corresponded to the variants with the highest residual enzyme activities, suggesting that this assay can help evaluate unknown variants found in patients with atypical presentation. We have detected a correlation between clinical presentation, enzyme activity, and genotype for CD.
Collapse
Affiliation(s)
- Marisa I Mendes
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Desirée Ec Smith
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Ana Pop
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Pascal Lennertz
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Matilde R Fernandez Ojeda
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Warsha A Kanhai
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Silvy Jm van Dooren
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Yair Anikster
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| | - Ivo Barić
- Department of Pediatrics, University Hospital Center Zagreb & University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Caroline Boelen
- Department of Pediatrics, Admiraal De Ruyter Ziekenhuis, Goes, Zeeland, The Netherlands
| | - Jaime Campistol
- Neurology Department, CIBERER ISCIII, Hospital Sant Joan de Deu, University of Barcelona, Barcelona, Spain
| | - Lonneke de Boer
- Department of pediatrics, metabolic diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Hulya Kayserili
- Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey
| | - Agathe Roubertie
- Département de Neuropédiatrie, Hopital Gui de Chauliac, Montpellier, Languedoc-Roussillon, France.,INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Krijn T Verbruggen
- Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christine Vianey-Saban
- Centre de Biologie et de Pathologie Est CHU de Lyon, Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Lyon, France
| | - Monique Williams
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Gajja S Salomons
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Gessler DJ, Li D, Xu H, Su Q, Sanmiguel J, Tuncer S, Moore C, King J, Matalon R, Gao G. Redirecting N-acetylaspartate metabolism in the central nervous system normalizes myelination and rescues Canavan disease. JCI Insight 2017; 2:e90807. [PMID: 28194442 PMCID: PMC5291725 DOI: 10.1172/jci.insight.90807] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/21/2016] [Indexed: 02/05/2023] Open
Abstract
Canavan disease (CD) is a debilitating and lethal leukodystrophy caused by mutations in the aspartoacylase (ASPA) gene and the resulting defect in N-acetylaspartate (NAA) metabolism in the CNS and peripheral tissues. Recombinant adeno-associated virus (rAAV) has the ability to cross the blood-brain barrier and widely transduce the CNS. We developed a rAAV-based and optimized gene replacement therapy, which achieves early, complete, and sustained rescue of the lethal disease phenotype in CD mice. Our treatment results in a super-mouse phenotype, increasing motor performance of treated CD mice beyond that of WT control mice. We demonstrate that this rescue is oligodendrocyte independent, and that gene correction in astrocytes is sufficient, suggesting that the establishment of an astrocyte-based alternative metabolic sink for NAA is a key mechanism for efficacious disease rescue and the super-mouse phenotype. Importantly, the use of clinically translatable high-field imaging tools enables the noninvasive monitoring and prediction of therapeutic outcomes for CD and might enable further investigation of NAA-related cognitive function.
Collapse
Affiliation(s)
- Dominic J. Gessler
- Department of Microbiology and Physiological Systems
- Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
- University Hospital Heidelberg, Centre for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine
- Ruprecht-Karls University, Medical School, Heidelberg, Germany
| | - Danning Li
- Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Hongxia Xu
- Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
- University of Science and Technology of Kunming, China
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Julio Sanmiguel
- Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | | | - Constance Moore
- Center for Comparative Neuroimaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jean King
- Center for Comparative Neuroimaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Guangping Gao
- Department of Microbiology and Physiological Systems
- Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Francis JS, Wojtas I, Markov V, Gray SJ, McCown TJ, Samulski RJ, Bilaniuk LT, Wang DJ, De Vivo DC, Janson CG, Leone P. N-acetylaspartate supports the energetic demands of developmental myelination via oligodendroglial aspartoacylase. Neurobiol Dis 2016; 96:323-334. [PMID: 27717881 DOI: 10.1016/j.nbd.2016.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/27/2016] [Accepted: 10/01/2016] [Indexed: 12/13/2022] Open
Abstract
Breakdown of neuro-glial N-acetyl-aspartate (NAA) metabolism results in the failure of developmental myelination, manifest in the congenital pediatric leukodystrophy Canavan disease caused by mutations to the sole NAA catabolizing enzyme aspartoacylase. Canavan disease is a major point of focus for efforts to define NAA function, with available evidence suggesting NAA serves as an acetyl donor for fatty acid synthesis during myelination. Elevated NAA is a diagnostic hallmark of Canavan disease, which contrasts with a broad spectrum of alternative neurodegenerative contexts in which levels of NAA are inversely proportional to pathological progression. Recently generated data in the nur7 mouse model of Canavan disease suggests loss of aspartoacylase function results in compromised energetic integrity prior to oligodendrocyte death, abnormalities in myelin content, spongiform degeneration, and motor deficit. The present study utilized a next-generation "oligotropic" adeno-associated virus vector (AAV-Olig001) to quantitatively assess the impact of aspartoacylase reconstitution on developmental myelination. AAV-Olig001-aspartoacylase promoted normalization of NAA, increased bioavailable acetyl-CoA, and restored energetic balance within a window of postnatal development preceding gross histopathology and deteriorating motor function. Long-term effects included increased oligodendrocyte numbers, a global increase in myelination, reversal of vacuolation, and rescue of motor function. Effects on brain energy observed following AAV-Olig001-aspartoacylase gene therapy are shown to be consistent with a metabolic profile observed in mild cases of Canavan disease, implicating NAA in the maintenance of energetic integrity during myelination via oligodendroglial aspartoacylase.
Collapse
Affiliation(s)
- Jeremy S Francis
- Department of Cell Biology, Cell & Gene Therapy Center, Rowan School of Osteopathic Medicine, Stratford, NJ, USA
| | - Ireneusz Wojtas
- Department of Cell Biology, Cell & Gene Therapy Center, Rowan School of Osteopathic Medicine, Stratford, NJ, USA
| | - Vladimir Markov
- Department of Cell Biology, Cell & Gene Therapy Center, Rowan School of Osteopathic Medicine, Stratford, NJ, USA
| | - Steven J Gray
- Department of Ophthalmology, UNC, Chapel Hill, NC, USA
| | | | - R Jude Samulski
- Department of Pharmacology and Gene Therapy Center, UNC, Chapel Hill, NC, USA
| | - Larissa T Bilaniuk
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dah-Jyuu Wang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Christopher G Janson
- Department of Neurology & Rehabilitation, University of Illinois at Chicago, Chicago, USA
| | - Paola Leone
- Department of Cell Biology, Cell & Gene Therapy Center, Rowan School of Osteopathic Medicine, Stratford, NJ, USA.
| |
Collapse
|
16
|
Roscoe RB, Elliott C, Zarros A, Baillie GS. Non-genetic therapeutic approaches to Canavan disease. J Neurol Sci 2016; 366:116-124. [DOI: 10.1016/j.jns.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 01/30/2023]
|
17
|
Abstract
The autosomal recessive Canavan disease (CD) is a neurological disorder that begins in infancy. CD is caused by mutations in the gene encoding the ASPA enzyme. It has been reported with high frequency in patients with Jewish ancestry, and with low frequency in non-Jewish patients. This review will shed light on some updates regarding CD prevalence and causative mutations across the Arab World. CD was reported in several Arab countries such as Saudi Arabia, Egypt, Jordan, Yemen, Kuwait, and Tunisia. The population with the highest risk is in Saudi Arabia due the prevalent consanguineous marriage culture. In several studies, four novel mutations were found among Arabian CD patients, including two missense mutations (p.C152R, p.C152W), a 3346bp deletion leading to the removal of exon 3 of the ASPA gene, and an insertion mutation (698insC). Other previously reported mutations, which led to damage in the ASPA enzyme activities found among CD Arab patients are c.530 T>C (p.I177T), c.79G>A (p.G27R), IVS4+1G>T, and a 92kb deletion, which is 7.16kb upstream from the ASPA start site. This review will help in developing customized molecular diagnostic approaches and promoting CD carrier screening in the Arab world in areas where consanguineous marriage is common particularly within Saudi Arabia.
Collapse
|
18
|
Hoshino H, Kubota M. Canavan disease: clinical features and recent advances in research. Pediatr Int 2014; 56:477-83. [PMID: 24977939 DOI: 10.1111/ped.12422] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/30/2014] [Accepted: 05/20/2014] [Indexed: 12/19/2022]
Abstract
Canavan disease (CD) is a genetic neurodegenerative leukodystrophy that results in the spongy degeneration of white matter in the brain. CD is characterized by mutations in the gene encoding aspartoacylase (ASPA), the substrate enzyme that hydrolyzes N-acetylaspartic acid (NAA) to acetate and aspartate. Elevated NAA and subsequent deficiency in acetate associated with this disease cause progressive neurological symptoms, such as macrocephaly, visuocognitive dysfunction, and psychomotor delay. The prevalence of CD is higher among Ashkenazi Jewish people, and several types of mutations have been reported in the gene coding ASPA. Highly elevated NAA is more specific to CD than other leukodystrophies, and an examination of urinary NAA concentration is useful for diagnosing CD. Many researchers are now examining the mechanisms responsible for white matter degeneration or dysmyelination in CD using mouse models, and several persuasive hypotheses have been suggested for the pathophysiology of CD. One is that NAA serves as a water pump; consequently, a disorder in NAA catabolism leads to astrocytic edema. Another hypothesis is that the hydrolyzation of NAA in oligodendrocytes is essential for myelin synthesis through the supply of acetate. Although there is currently no curative therapy for CD, dietary supplements are candidates that may retard the progression of the symptoms associated with CD. Furthermore, gene therapies using viral vectors have been investigated using rat models. These therapies have been found to be tolerable with no severe long-term adverse effects, reduce the elevated NAA in the brain, and may be applied to humans in the future.
Collapse
Affiliation(s)
- Hideki Hoshino
- Department of Pediatrics, University of Tokyo, Tokyo, Japan; Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | | |
Collapse
|
19
|
|
20
|
Rat strain differences in brain structure and neurochemistry in response to binge alcohol. Psychopharmacology (Berl) 2014; 231:429-45. [PMID: 24030467 PMCID: PMC3904647 DOI: 10.1007/s00213-013-3253-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/13/2013] [Indexed: 12/11/2022]
Abstract
RATIONALE Ventricular enlargement is a robust phenotype of the chronically dependent alcoholic human brain, yet the mechanism of ventriculomegaly is unestablished. Heterogeneous stock Wistar rats administered binge EtOH (3 g/kg intragastrically every 8 h for 4 days to average blood alcohol levels (BALs) of 250 mg/dL) demonstrate profound but reversible ventricular enlargement and changes in brain metabolites (e.g., N-acetylaspartate (NAA) and choline-containing compounds (Cho)). OBJECTIVES Here, alcohol-preferring (P) and alcohol-nonpreferring (NP) rats systematically bred from heterogeneous stock Wistar rats for differential alcohol drinking behavior were compared with Wistar rats to determine whether genetic divergence and consequent morphological and neurochemical variation affect the brain's response to binge EtOH treatment. METHODS The three rat lines were dosed equivalently and approached similar BALs. Magnetic resonance imaging and spectroscopy evaluated the effects of binge EtOH on brain. RESULTS As observed in Wistar rats, P and NP rats showed decreases in NAA. Neither P nor NP rats, however, responded to EtOH intoxication with ventricular expansion or increases in Cho levels as previously noted in Wistar rats. Increases in ventricular volume correlated with increases in Cho in Wistar rats. CONCLUSIONS The latter finding suggests that ventricular volume expansion is related to adaptive changes in brain cell membranes in response to binge EtOH. That P and NP rats responded differently to EtOH argues for intrinsic differences in their brain cell membrane composition. Further, differential metabolite responses to EtOH administration by rat strain implicate selective genetic variation as underlying heterogeneous effects of chronic alcoholism in the human condition.
Collapse
|
21
|
Moffett JR, Arun P, Ariyannur PS, Namboodiri AMA. N-Acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. FRONTIERS IN NEUROENERGETICS 2013; 5:11. [PMID: 24421768 PMCID: PMC3872778 DOI: 10.3389/fnene.2013.00011] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/09/2013] [Indexed: 12/22/2022]
Abstract
N-Acetylaspartate (NAA) is employed as a non-invasive marker for neuronal health using proton magnetic resonance spectroscopy (MRS). This utility is afforded by the fact that NAA is one of the most concentrated brain metabolites and that it produces the largest peak in MRS scans of the healthy human brain. NAA levels in the brain are reduced proportionately to the degree of tissue damage after traumatic brain injury (TBI) and the reductions parallel the reductions in ATP levels. Because NAA is the most concentrated acetylated metabolite in the brain, we have hypothesized that NAA acts in part as an extensive reservoir of acetate for acetyl coenzyme A synthesis. Therefore, the loss of NAA after TBI impairs acetyl coenzyme A dependent functions including energy derivation, lipid synthesis, and protein acetylation reactions in distinct ways in different cell populations. The enzymes involved in synthesizing and metabolizing NAA are predominantly expressed in neurons and oligodendrocytes, respectively, and therefore some proportion of NAA must be transferred between cell types before the acetate can be liberated, converted to acetyl coenzyme A and utilized. Studies have indicated that glucose metabolism in neurons is reduced, but that acetate metabolism in astrocytes is increased following TBI, possibly reflecting an increased role for non-glucose energy sources in response to injury. NAA can provide additional acetate for intercellular metabolite trafficking to maintain acetyl CoA levels after injury. Here we explore changes in NAA, acetate, and acetyl coenzyme A metabolism in response to brain injury.
Collapse
Affiliation(s)
- John R. Moffett
- Neuroscience Program, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | | | | | | |
Collapse
|
22
|
Clarner T, Wieczorek N, Krauspe B, Jansen K, Beyer C, Kipp M. Astroglial redistribution of aquaporin 4 during spongy degeneration in a Canavan disease mouse model. J Mol Neurosci 2013; 53:22-30. [PMID: 24272958 DOI: 10.1007/s12031-013-0184-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/13/2013] [Indexed: 02/06/2023]
Abstract
Canavan disease is a spongiform leukodystrophy caused by an autosomal recessive mutation in the aspartoacylase gene. Deficiency of oligodendroglial aspartoacylase activity and a subsequent increase of its substrate N-acetylaspartate are the etiologic factors for the disease. N-acetylaspartate acts as a molecular water pump. Therefore, an osmotic-hydrostatic mechanism is thought to be involved in the development of the Canavan disease phenotype. Astrocytes express water transporters and are critically involved in regulating and maintaining water homeostasis in the brain. We used the ASPA(Nur7/Nur7) mouse model of Canavan disease to investigate whether a disturbance of water homeostasis might be involved in the disease's progression. Animals showed an age-dependent impairment of motor performance and spongy degeneration in various brain regions, among the basal ganglia, brain stem, and cerebellar white matter. Astrocyte activation was prominent in regions which displayed less tissue damage, such as the corpus callosum, cortex, mesencephalon, and stratum Purkinje of cerebellar lobe IV. Immunohistochemistry revealed alterations in the cellular distribution of the water channel aquaporin 4 in astrocytes of ASPA(Nur7/Nur7) mice. In control animals, aquaporin 4 was located exclusively in the astrocytic end feet. In contrast, in ASPA(Nur7/Nur7) mice, aquaporin 4 was located throughout the cytoplasm. These results indicate that astroglial regulation of water homeostasis might be involved in the partial prevention of spongy degeneration. These observations highlight aquaporin 4 as a potential therapeutic target for Canavan disease.
Collapse
Affiliation(s)
- Tim Clarner
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany,
| | | | | | | | | | | |
Collapse
|
23
|
Leone P, Shera D, McPhee SWJ, Francis JS, Kolodny EH, Bilaniuk LT, Wang DJ, Assadi M, Goldfarb O, Goldman HW, Freese A, Young D, During MJ, Samulski RJ, Janson CG. Long-term follow-up after gene therapy for canavan disease. Sci Transl Med 2013; 4:165ra163. [PMID: 23253610 DOI: 10.1126/scitranslmed.3003454] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Canavan disease is a hereditary leukodystrophy caused by mutations in the aspartoacylase gene (ASPA), leading to loss of enzyme activity and increased concentrations of the substrate N-acetyl-aspartate (NAA) in the brain. Accumulation of NAA results in spongiform degeneration of white matter and severe impairment of psychomotor development. The goal of this prospective cohort study was to assess long-term safety and preliminary efficacy measures after gene therapy with an adeno-associated viral vector carrying the ASPA gene (AAV2-ASPA). Using noninvasive magnetic resonance imaging and standardized clinical rating scales, we observed Canavan disease in 28 patients, with a subset of 13 patients being treated with AAV2-ASPA. Each patient received 9 × 10(11) vector genomes via intraparenchymal delivery at six brain infusion sites. Safety data collected over a minimum 5-year follow-up period showed a lack of long-term adverse events related to the AAV2 vector. Posttreatment effects were analyzed using a generalized linear mixed model, which showed changes in predefined surrogate markers of disease progression and clinical assessment subscores. AAV2-ASPA gene therapy resulted in a decrease in elevated NAA in the brain and slowed progression of brain atrophy, with some improvement in seizure frequency and with stabilization of overall clinical status.
Collapse
Affiliation(s)
- Paola Leone
- Department of Cell Biology, Cell & Gene Therapy Center, University of Medicine & Dentistry of New Jersey, Stratford, NJ 08034, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
A mechanism of rapidly reversible cerebral ventricular enlargement independent of tissue atrophy. Neuropsychopharmacology 2013; 38:1121-9. [PMID: 23306181 PMCID: PMC3629396 DOI: 10.1038/npp.2013.11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ventricular enlargement, a common in vivo marker of aging, disease, and insult, is presumed to reflect atrophy of surrounding brain regions. Pathological mechanisms underlying ventricular enlargement, however, are likely specific to the condition under investigation. Here, multimodal imaging, incorporating structural magnetic resonance imaging (MRI), MR spectroscopy (MRS), and diffusion weighted imaging (DWI), was used in rats exposed to binge ethanol (EtOH) to provide insight into a mechanism of reversible ventricular enlargement. During intoxication, MRI revealed expansion of ventricles, but volume changes in dorsal or ventral hippocampi, caudate-putamen, or thalamus were not detectible. MRS of whole-brain parenchyma showed decreases in N-acetylasparate (NAA) and tissue water T2, and increases in choline-containing compounds (Cho). DWI showed decreased diffusivity selective to the thalamus. All MR parameters returned to baseline with 7 days of recovery. Rapid recovery of ventricular volume and the absence of detectable tissue volume reductions in brain regions adjacent to ventricles argue against atrophy as a mechanism of ventricular expansion. Decreased tissue water T2 and decreased thalamic diffusivity suggest lower tissue water content and a role for both NAA and Cho, as osmolytes is proposed. Together, these data support a model of fluid redistribution during acute EtOH intoxication and recovery to account for rapid ventricular volume changes.
Collapse
|
25
|
Sommer A, Sass JO. Expression of aspartoacylase (ASPA) and Canavan disease. Gene 2012; 505:206-10. [PMID: 22750302 DOI: 10.1016/j.gene.2012.06.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 01/07/2023]
Abstract
Canavan disease (CD) is a neurodegenerative disorder usually presenting in the first six months of life. CD patients can be identified via elevated levels of N-acetyl-l-aspartate in the pattern of urinary organic acids assessed by gas chromatography-mass spectrometry. They are characterized by deficiency of aspartoacylase (aminoacylase 2; ASPA) due to mutations in the ASPA gene. Information on the molecular basis of CD is rather sparse. A lack of expression studies of ASPA mutant proteins in appropriate expression systems has prompted this investigation. Studies with overexpressed ASPA mutant proteins were carried out in the HEK293 cell line, which provides the authentic human machinery for posttranslational modifications. All ASPA mutants tested (ASPA Arg168His, ASPA Pro181Thr, ASPA Tyr288Cys, ASPA Phe295Ser, and ASPA Ala305Glu) showed loss of ASPA activity, which can be explained by the intramolecular effects of the mutations in the enzyme. The mutation p.Phe295Ser even leads to absent ASPA mRNA expression, as revealed by quantitative real-time PCR. Using this approach, ASPA gene expression analysis yielded high levels of human ASPA gene expression not only in brain and kidney, but also in lung and liver. More information of ASPA localization in human organs and detailed characterization of mutations leading to a deficiency of ASPA can contribute to a better understanding of this inborn error of metabolism.
Collapse
Affiliation(s)
- Anke Sommer
- Labor für Klinische Biochemie & Stoffwechsel, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany
| | | |
Collapse
|
26
|
Benesh AE, Fleming JT, Chiang C, Carter BD, Tyska MJ. Expression and localization of myosin-1d in the developing nervous system. Brain Res 2012; 1440:9-22. [PMID: 22284616 DOI: 10.1016/j.brainres.2011.12.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/14/2011] [Accepted: 12/26/2011] [Indexed: 01/15/2023]
Abstract
Myosin-1d is a monomeric actin-based motor found in a wide range of tissues, but highly expressed in the nervous system. Previous microarray studies suggest that myosin-1d is found in oligodendrocytes where transcripts are upregulated during the maturation of these cells. Myosin-1d was also identified as a component of myelin-containing subcellular fractions in proteomic studies and mutations in MYO1D have been linked to autism. Despite the potential implications of these previous studies, there is little information on the expression and localization of myosin-1d in the developing nervous system. Therefore, we analyzed myosin-1d expression patterns in the peripheral and central nervous systems during postnatal development. In mouse sciatic nerve, myosin-1d is expressed along the axon and in the ensheathing myelin compartment. Analysis of mouse cerebellum prior to myelination at day 3 reveals that myosin-1d is present in the Purkinje cell layer, granule cell layer, and region of the cerebellar nuclei. Upon the onset of myelination, myosin-1d enrichment expands along axonal tracts, while still present in the Purkinje and granule cell layers. However, myosin-1d was undetectable in oligodendrocyte progenitor cells at early and late time points. We also show that myosin-1d interacts and is co-expressed with aspartoacylase, an enzyme that plays a key role in fatty acid synthesis throughout the nervous system. Together, these studies provide a foundation for understanding the role of myosin-1d in neurodevelopment and neurological disorders.
Collapse
Affiliation(s)
- Andrew E Benesh
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Moffett JR, Arun P, Ariyannur PS, Garbern JY, Jacobowitz DM, Namboodiri AMA. Extensive aspartoacylase expression in the rat central nervous system. Glia 2011; 59:1414-34. [PMID: 21598311 PMCID: PMC3143213 DOI: 10.1002/glia.21186] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 04/14/2011] [Indexed: 11/08/2022]
Abstract
Aspartoacylase (ASPA) catalyzes deacetylation of N-acetylaspartate (NAA) to generate acetate and aspartate. Mutations in the gene for ASPA lead to reduced acetate availability in the CNS during development resulting in the fatal leukodystrophy Canavan disease. Highly specific polyclonal antibodies to ASPA were used to examine CNS expression in adult rats. In white matter, ASPA expression was associated with oligodendrocyte cell bodies, nuclei, and some processes, but showed a dissimilar distribution pattern to myelin basic protein and oligodendrocyte specific protein. Microglia expressed ASPA in all CNS regions examined, as did epiplexus cells of the choroid plexus. Pial and ependymal cells and some endothelial cells were ASPA positive, as were unidentified cellular nuclei throughout the CNS. Astrocytes did not express ASPA in their cytoplasm. In some fiber pathways and nerves, particularly in the brainstem and spinal cord, the axoplasm of many neuronal fibers expressed ASPA, as did some neurons. Acetyl coenzyme A synthase immunoreactivity was also observed in the axoplasm of many of the same fiber pathways and nerves. All ASPA-immunoreactive elements were unstained in brain sections from tremor rats, an ASPA-null mutant. The strong expression of ASPA in oligodendrocyte cell bodies is consistent with a lipogenic role in myelination. Strong ASPA expression in cell nuclei is consistent with a role for NAA-derived acetate in nuclear acetylation reactions, including histone acetylation. Expression of ASPA in microglia may indicate a role in lipid synthesis in these cells, whereas expression in axons suggests that some neurons can both synthesize and catabolize NAA.
Collapse
Affiliation(s)
- John R Moffett
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Francis JS, Strande L, Pu A, Leone P. Endogenous aspartoacylase expression is responsive to glutamatergic activity in vitro and in vivo. Glia 2011; 59:1435-46. [DOI: 10.1002/glia.21187] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 04/20/2011] [Indexed: 11/10/2022]
|
30
|
Rinholm JE, Hamilton NB, Kessaris N, Richardson WD, Bergersen LH, Attwell D. Regulation of oligodendrocyte development and myelination by glucose and lactate. J Neurosci 2011; 31:538-48. [PMID: 21228163 PMCID: PMC3044866 DOI: 10.1523/jneurosci.3516-10.2011] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/17/2010] [Accepted: 10/27/2010] [Indexed: 11/21/2022] Open
Abstract
In the gray matter of the brain, astrocytes have been suggested to export lactate (derived from glucose or glycogen) to neurons to power their mitochondria. In the white matter, lactate can support axon function in conditions of energy deprivation, but it is not known whether lactate acts by preserving energy levels in axons or in oligodendrocytes, the myelinating processes of which are damaged rapidly in low energy conditions. Studies of cultured cells suggest that oligodendrocytes are the cell type in the brain that consumes lactate at the highest rate, in part to produce membrane lipids presumably for myelin. Here, we use pH imaging to show that oligodendrocytes in the white matter of the rat cerebellum and corpus callosum take up lactate via monocarboxylate transporters (MCTs), which we identify as MCT1 by confocal immunofluorescence and electron microscopy. Using cultured slices of developing cerebral cortex from mice in which oligodendrocyte lineage cells express GFP (green fluorescent protein) under the control of the Sox10 promoter, we show that a low glucose concentration reduces the number of oligodendrocyte lineage cells and myelination. Myelination is rescued when exogenous l-lactate is supplied. Thus, lactate can support oligodendrocyte development and myelination. In CNS diseases involving energy deprivation at times of myelination or remyelination, such as periventricular leukomalacia leading to cerebral palsy, stroke, and secondary ischemia after spinal cord injury, lactate transporters in oligodendrocytes may play an important role in minimizing the inhibition of myelination that occurs.
Collapse
Affiliation(s)
- Johanne E. Rinholm
- Department of Neuroscience, Physiology, and Pharmacology, and
- The Brain and Muscle Energy Group, Department of Anatomy and Centre for Molecular Biology and Neuroscience, University of Oslo, N-0317 Oslo, Norway
| | | | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research, Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom, and
| | - William D. Richardson
- Wolfson Institute for Biomedical Research, Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom, and
| | - Linda H. Bergersen
- The Brain and Muscle Energy Group, Department of Anatomy and Centre for Molecular Biology and Neuroscience, University of Oslo, N-0317 Oslo, Norway
| | - David Attwell
- Department of Neuroscience, Physiology, and Pharmacology, and
| |
Collapse
|
31
|
Kumar S, Biancotti JC, Matalon R, de Vellis J. Lack of aspartoacylase activity disrupts survival and differentiation of neural progenitors and oligodendrocytes in a mouse model of Canavan disease. J Neurosci Res 2009; 87:3415-27. [DOI: 10.1002/jnr.22233] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Baslow MH, Guilfoyle DN. Are Astrocytes the Missing Link Between Lack of Brain Aspartoacylase Activity and the Spongiform Leukodystrophy in Canavan Disease? Neurochem Res 2009; 34:1523-34. [DOI: 10.1007/s11064-009-9958-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 03/09/2009] [Indexed: 10/21/2022]
|
33
|
A novel key–lock mechanism for inactivating amino acid neurotransmitters during transit across extracellular space. Amino Acids 2009; 38:51-5. [DOI: 10.1007/s00726-009-0232-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 01/05/2009] [Indexed: 10/21/2022]
|
34
|
Traka M, Wollmann RL, Cerda SR, Dugas J, Barres BA, Popko B. Nur7 is a nonsense mutation in the mouse aspartoacylase gene that causes spongy degeneration of the CNS. J Neurosci 2008; 28:11537-49. [PMID: 18987190 PMCID: PMC2613291 DOI: 10.1523/jneurosci.1490-08.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 11/21/2022] Open
Abstract
Aspartoacylase (ASPA) is an oligodendrocyte-restricted enzyme that catalyzes the hydrolysis of neuronally derived N-acetylaspartate (NAA) to acetate and aspartic acid. ASPA deficiency leads to the fatal childhood autosomal recessive leukodystrophy Canavan disease (CD). Here we demonstrate that the previously described ENU-induced nur7 mouse mutant is caused by a nonsense mutation, Q193X, in the Aspa gene (Aspa(nur7)). Homozygous Aspa(nur7nur7) mice do not express detectable Aspa protein and display an early-onset spongy degeneration of CNS myelin with increased NAA levels similar to that observed in CD patients. In addition, CNS regions rich in neuronal cell bodies also display vacuolization. Interestingly, distinct myelin rich areas, such as the corpus callosum, optic nerve, and spinal cord white matter appear normal in Aspa(nur7/nur7) mice. Reduced cerebroside synthesis has been demonstrated in CD patients and animal models. To determine the potential relevance of this observation in disease pathogenesis, we generated Aspa(nur7/nur7) mice that were heterozygous for a null allele of the gene that encodes the enzyme UDP-galactose:ceramide galactosyltransferase (Cgt), which is responsible for catalyzing the synthesis of the abundant myelin galactolipids. Despite reduced amounts of cerebrosides, the Aspa(nur7/nur7);Cgt(+/-) mice were not more severely affected than the Aspa(nur7) mutants, suggesting that diminished cerebroside synthesis is not a major contributing factor in disease pathogenesis. Furthermore, we found that myelin degeneration leads to significant axonal loss in the cerebellum of older Aspa(nur7) mutants. This finding suggests that axonal pathology caused by CNS myelin defects may underlie the neurological disabilities that CD patients develop at late stages of the disease.
Collapse
Affiliation(s)
- Maria Traka
- Jack Miller Center for Peripheral Neuropathy, Department of Neurology, and
| | | | - Sonia R. Cerda
- Medicine, Division of Gastroenterology, The University of Chicago, Chicago, Illinois 60637, and
| | - Jason Dugas
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305-5125
| | - Ben A. Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305-5125
| | - Brian Popko
- Jack Miller Center for Peripheral Neuropathy, Department of Neurology, and
| |
Collapse
|
35
|
Xu S, Yang J, Shen J. Measuring N-acetylaspartate synthesis in vivo using proton magnetic resonance spectroscopy. J Neurosci Methods 2008; 172:8-12. [PMID: 18486230 PMCID: PMC2587405 DOI: 10.1016/j.jneumeth.2008.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/31/2008] [Accepted: 04/01/2008] [Indexed: 11/28/2022]
Abstract
N-Acetylaspartate (NAA) is an important marker of neuronal function and viability that can be measured using magnetic resonance spectroscopy (MRS). In this paper, we proposed a method to measure NAA synthesis using proton MRS with infusion of uniformly (13)C-labeled glucose, and demonstrated its feasibility in an in vivo study of the rat brain. The rate of (13)C-label incorporation into the acetyl group of NAA was measured using a localized, long echo-time proton MRS method. Signals from the (13)C satellites of the main NAA methyl protons at 2.02 ppm were continuously monitored for 10h. Quantification of the data based on a linear kinetic model showed that NAA synthesis rate in isoflurane-anesthetized rats was 0.19+/-0.02 micromol/g/h (mean+/-standard deviation, n=12).
Collapse
Affiliation(s)
- Su Xu
- Molecular Imaging Branch, National Institute of Mental Health, 9000 Rockville Pike, Bethesda, MD 20892-1527, USA.
| | | | | |
Collapse
|
36
|
Ariyannur PS, Madhavarao CN, Namboodiri AMA. N-acetylaspartate synthesis in the brain: mitochondria vs. microsomes. Brain Res 2008; 1227:34-41. [PMID: 18621030 DOI: 10.1016/j.brainres.2008.06.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 06/09/2008] [Accepted: 06/14/2008] [Indexed: 10/21/2022]
Abstract
Several reports during the last three decades have indicated that biosynthesis of N-acetylaspartate (NAA) occurs primarily in the mitochondria. But a recent report by Lu et al. in this journal [2004; 122: 71-78] and subsequent two reports that cited those data suggested a predominant microsomal localization of the NAA biosynthetic enzyme, which is surprising in view of what is known about the biological functions of NAA. Therefore we reinvestigated this issue in rat brain homogenates using a similar fractionation procedure used by Lu et al. but without the loss of enzyme activity that they have encountered. We found that about 70% of the total Asp-NAT activity in the crude supernatant was present in the mitochondrial fraction which is about 5 times more than that in the microsomes. We found similar results in the case of the enzyme from bovine brain. In subsequent studies, we also have found that Asp-NAT activity in the bovine brain is very similar to that in the rat brain in substrate specificity and chromatographic characteristics including the high molecular weight pattern (approx. 670 kD) on size-exclusion HPLC.
Collapse
Affiliation(s)
- Prasanth S Ariyannur
- Rm. C 2069, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
37
|
Wang J, Leone P, Wu G, Francis JS, Li H, Jain MR, Serikawa T, Ledeen RW. Myelin lipid abnormalities in the aspartoacylase-deficient tremor rat. Neurochem Res 2008; 34:138-48. [PMID: 18478328 DOI: 10.1007/s11064-008-9726-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 04/21/2008] [Indexed: 11/25/2022]
Abstract
The high concentration of N-acetylaspartate (NAA) in neurons of the central nervous system and its growing clinical use as an indicator of neuronal viability has intensified interest in the biological function of this amino acid derivative. The biomedical relevance of such inquiries is highlighted by the myelin-associated pathology of Canavan disease, an inherited childhood disorder resulting from mutation of aspartoacylase (ASPA), the NAA-hydrolyzing enzyme. This enzyme is known to be localized in oligodendrocytes with bimodal distribution in cytosol and the myelin sheath, and to produce acetyl groups utilized in myelin lipid synthesis. Loss of this acetyl source in Canavan disease and rodent models such as the tremor rat are thought to account for the observed myelin deficit. This study was undertaken to further define and quantify the specific lipid abnormalities that occur as a result of ASPA deficit in the tremor rat. Employing mass spectrometry together with high performance thin-layer chromatography, we found that myelin from 28-day-old animals showed major reduction in cerebrosides (CB) and sulfatides (Sulf) with unsubstituted fatty acids, and equal if not greater changes in myelin from 7-month-old tremors. Cerebrosides with 2-hydroxyfatty acids showed little if any change at either age; Sulf with 2-hydroxyfatty acids showed no significant change at 28 days, but surprisingly a major increase at 7 months. Two species of phosphatidylcholine, 32:0 and 34:1, also showed significant increase, but only at 28 days. One form of phosphatidylethanolamine, PE36:1, was reduced a modest amount at both ages, whereas the plasmalogen form did not change. The dysmyelination that results from inactivation of ASPA is thus characterized by selective decreases as well as some increases in specific lipids.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Neurology and Neurosciences, New Jersey Medical School, UMDNJ, 185 So. Orange Ave., MSB-H506, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kölker S, Sauer SW, Hoffmann GF, Müller I, Morath MA, Okun JG. Pathogenesis of CNS involvement in disorders of amino and organic acid metabolism. J Inherit Metab Dis 2008; 31:194-204. [PMID: 18392748 DOI: 10.1007/s10545-008-0823-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 02/12/2008] [Accepted: 02/14/2008] [Indexed: 12/21/2022]
Abstract
Inherited disorders of amino and organic acid metabolism have a high cumulative frequency, and despite heterogeneous aetiology and varying clinical presentation, the manifestation of neurological disease is common. It has been demonstrated for some of these diseases that accumulating pathological metabolites are directly involved in the manifestation of neurological disease. Various pathomechanisms have been suggested in different in vitro and in vivo models including an impairment of brain energy metabolism, an imbalance of excitatory and inhibitory neurotransmission, altered transport across the blood-brain barrier and between glial cells and neurons, impairment of myelination and disturbed neuronal efflux of metabolic water. This review summarizes recent knowledge on pathomechanisms involved in phenylketonuria, glutaric aciduria type I, succinic semialdehyde dehydrogenase deficiency and aspartoacylase deficiency with examples, highlighting general as well as disease-specific concepts and their putative impact on treatment.
Collapse
Affiliation(s)
- S Kölker
- Department of General Pediatrics, Division of Inherited Metabolic Disease, University Children’s Hospital Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Wang J, Matalon R, Bhatia G, Wu G, Li H, Liu T, Lu ZH, Ledeen RW. Bimodal occurrence of aspartoacylase in myelin and cytosol of brain. J Neurochem 2007; 101:448-57. [PMID: 17254025 DOI: 10.1111/j.1471-4159.2006.04380.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The growing use of N-acetylaspartate as an indicator of neuronal viability has fostered interest in the biological function(s) of this unusual amino acid derivative. In considering the various physiological roles that have been proposed for this relatively abundant molecule one is obliged to take into account its unusual metabolic compartmentalization, according to which synthesis and storage occur in the neuron and hydrolytic cleavage in the oligodendrocyte. The latter reaction, catalyzed by aspartoacylase (ASPA), produces acetyl groups plus aspartate and has been proposed to occur in both soluble and membranous subfractions of white matter. Our study supports such bimodal occurrence and we now present immunoblot, proteomic, and biochemical evidence that the membrane-bound form of ASPA is intrinsic to purified myelin membranes. This was supported by a novel TLC-based method for the assay of ASPA. That observation, together with previous demonstrations of numerous lipid-synthesizing enzymes in myelin, suggests utilization of acetyl groups liberated by myelin-localized ASPA for lipid synthesis within the myelin sheath. Such synthesis might be selective and could explain the deficit of myelin lipids in animals lacking ASPA.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Neurology and Neurosciences, New Jersey Medical School, UMDNJ, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AMA. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 2007; 81:89-131. [PMID: 17275978 PMCID: PMC1919520 DOI: 10.1016/j.pneurobio.2006.12.003] [Citation(s) in RCA: 1039] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 12/07/2006] [Accepted: 12/11/2006] [Indexed: 01/02/2023]
Abstract
The brain is unique among organs in many respects, including its mechanisms of lipid synthesis and energy production. The nervous system-specific metabolite N-acetylaspartate (NAA), which is synthesized from aspartate and acetyl-coenzyme A in neurons, appears to be a key link in these distinct biochemical features of CNS metabolism. During early postnatal central nervous system (CNS) development, the expression of lipogenic enzymes in oligodendrocytes, including the NAA-degrading enzyme aspartoacylase (ASPA), is increased along with increased NAA production in neurons. NAA is transported from neurons to the cytoplasm of oligodendrocytes, where ASPA cleaves the acetate moiety for use in fatty acid and steroid synthesis. The fatty acids and steroids produced then go on to be used as building blocks for myelin lipid synthesis. Mutations in the gene for ASPA result in the fatal leukodystrophy Canavan disease, for which there is currently no effective treatment. Once postnatal myelination is completed, NAA may continue to be involved in myelin lipid turnover in adults, but it also appears to adopt other roles, including a bioenergetic role in neuronal mitochondria. NAA and ATP metabolism appear to be linked indirectly, whereby acetylation of aspartate may facilitate its removal from neuronal mitochondria, thus favoring conversion of glutamate to alpha ketoglutarate which can enter the tricarboxylic acid cycle for energy production. In its role as a mechanism for enhancing mitochondrial energy production from glutamate, NAA is in a key position to act as a magnetic resonance spectroscopy marker for neuronal health, viability and number. Evidence suggests that NAA is a direct precursor for the enzymatic synthesis of the neuron specific dipeptide N-acetylaspartylglutamate, the most concentrated neuropeptide in the human brain. Other proposed roles for NAA include neuronal osmoregulation and axon-glial signaling. We propose that NAA may also be involved in brain nitrogen balance. Further research will be required to more fully understand the biochemical functions served by NAA in CNS development and activity, and additional functions are likely to be discovered.
Collapse
Affiliation(s)
- John R Moffett
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Building C, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | | | | | | | | |
Collapse
|
41
|
Francis JS, Olariu A, McPhee SW, Leone P. Novel role for aspartoacylase in regulation of BDNF and timing of postnatal oligodendrogenesis. J Neurosci Res 2006; 84:151-69. [PMID: 16634055 DOI: 10.1002/jnr.20866] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuronal growth factors are thought to exert a significant degree of control over postnatal oligodendrogenesis, but mechanisms by which these factors coordinateoligodendrocyte development with the maturation of neural networks are poorly characterized. We present here a developmental analysis of aspartoacylase (Aspa)-null tremor rats and show a potential role for this hydrolytic enzyme in the regulation of a postnatal neurotrophic stimulus that impacts on early stages of oligodendrocyte differentiation. Abnormally high levels of brain-derived neurotrophic factor (BDNF) expression in the Aspa-null Tremor brain are associated with dysregulated oligodendrogenesis at a stage in development normally characterized by high levels of Aspa expression. BDNF promotes the survival of proliferating cells during the early stages of oligodendrocyte maturation in vitro, but seems to compromise the ability of these cells to populate the cortex in vivo. Aspartoacylase activity in oligodendrocytes is shown to provide for the negative regulation of BDNF in neurons, thereby determining the availability of a developmental stimulus via a mechanism that links oligodendroglial differentiation with neuronal maturation.
Collapse
Affiliation(s)
- Jeremy S Francis
- Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey,Camden, NJ, USA
| | | | | | | |
Collapse
|
42
|
Hershfield JR, Madhavarao CN, Moffett JR, Benjamins JA, Garbern JY, Namboodiri A. Aspartoacylase is a regulated nuclear‐cytoplasmic enzyme. FASEB J 2006; 20:2139-41. [PMID: 16935940 DOI: 10.1096/fj.05-5358fje] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations in the gene for aspartoacylase (ASPA), which catalyzes deacetylation of N-acetyl-L-aspartate in the central nervous system (CNS), result in Canavan Disease, a fatal dysmyelinating disease. Consistent with its role in supplying acetate for myelin lipid synthesis, ASPA is thought to be cytoplasmic. Here we describe the occurrence of ASPA within nuclei of rat brain and kidney, and in cultured rodent oligodendrocytes. Immunohistochemistry showed cytoplasmic and nuclear ASPA staining, the specificity of which was demonstrated by its absence from tissues of the Tremor rat, an ASPA-null mutant. Subcellular fractionation analysis revealed low enzyme activity against NAA in nuclear fractions from normal rats. Whereas two recent reports have indicated that ASPA exists as a dimer, size-exclusion chromatography of subcellular fractions showed ASPA is an active monomer in both subcellular fractions. Western blotting detected ASPA as a single 38 kD band. Because ASPA is small enough to passively diffuse into the nucleus, we constructed, expressed, and detected in COS-7 cells a green fluorescent protein-human ASPA (GFP-hASPA) fusion protein larger than the permissible size for the nuclear pore complex. GFP-hASPA was enzymatically active and showed mixed nuclear-cytoplasmic distribution. We conclude that ASPA is a regulated nuclear-cytoplasmic protein that may have distinct functional roles in the two cellular compartments.
Collapse
Affiliation(s)
- Jeremy R Hershfield
- Dept. of Anatomy, Physiology, and Genetics, USUHS, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| | | | | | | | | | | |
Collapse
|
43
|
Matalon R, Michals-Matalon K, Surendran S, Tyring SK. Canavan disease: studies on the knockout mouse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 576:77-93; discussion 361-3. [PMID: 16802706 DOI: 10.1007/0-387-30172-0_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Canavan disease (CD) is an autosomal recessive disorder, characterized by spongy degeneration of the brain. Patients with CD have aspartoacylase (ASPA) deficiency, which results accumulation of N-acetylaspartic acid (NAA) in the brain and elevated excretion of urinary NAA. Clinically, patients with CD have macrocephaly, mental retardation and hypotonia. A knockout mouse for CD which was engineered, also has ASPA deficiency and elevated NAA. Molecular studies of the mouse brain showed abnormal expression of multiple genes in addition to ASPA deficiency. Adenoassociated virus mediated gene transfer and stem cell therapy in the knockout mouse are the latest attempts to alter pathophysiology in the CD mouse.
Collapse
Affiliation(s)
- Reuben Matalon
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | |
Collapse
|
44
|
Kumar S, Sowmyalakshmi R, Daniels SL, Chang R, Surendran S, Matalon R, de Vellis J. Does ASPA gene mutation in Canavan disease alter oligodendrocyte development? A tissue culture study of ASPA KO mice brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 576:175-82; discussion 361-3. [PMID: 16802712 DOI: 10.1007/0-387-30172-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Shalini Kumar
- Mental Retardation Research Center, Department of Neurobiology and Psychiatry, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Clark JF, Doepke A, Filosa JA, Wardle RL, Lu A, Meeker TJ, Pyne-Geithman GJ. N-Acetylaspartate as a reservoir for glutamate. Med Hypotheses 2006; 67:506-12. [PMID: 16730130 DOI: 10.1016/j.mehy.2006.02.047] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 02/27/2006] [Accepted: 02/28/2006] [Indexed: 11/23/2022]
Abstract
N-acetylaspartate (NAA) is an intermediary metabolite that is found in relatively high concentrations in the human brain. More specifically, NAA is so concentrated in the neurons that it generates one of the most visible peaks in nuclear magnetic resonance (NMR) spectra, thus allowing NAA to serve as "a neuronal marker". However, to date there is no generally accepted physiological (primary) role for NAA. Another molecule that is found at similar concentrations in the brain is glutamate. Glutamate is an amino acid and neurotransmitter with numerous functions in the brain. We propose that NAA, a six-carbon amino acid derivative, is converted to glutamate (five carbons) in an energetically favorable set of reactions. This set of reactions starts when aspartoacylase converts the six carbons of NAA to aspartate and acetate, which are subsequently converted to oxaloacetate and acetyl CoA, respectively. Aspartylacylase is found in astrocytes and oligodendrocytes. In the mitochondria, oxaloacetate and acetyl CoA are combined to form citrate. Requiring two steps, the citrate is oxidized in the Kreb's cycle to alpha-ketoglutarate, producing NADH. Finally, alpha-ketoglutarate is readily converted to glutamate by transaminating the alpha-keto to an amine. The resulting glutamate can be used by multiple cells types to provide optimal brain functional and structural needs. Thus, the abundant NAA in neuronal tissue can serve as a large reservoir for replenishing glutamate in times of rapid or dynamic signaling demands and stress. This is beneficial in that proper levels of glutamate serve critical functions for neurons, astrocytes, and oligodendrocytes including their survival. In conclusion, we hypothesize that NAA conversion to glutamate is a logical and favorable use of this highly concentrated metabolite. It is important for normal brain function because of the brain's relatively unique metabolic demands and metabolite fluxes. Knowing that NAA is converted to glutamate will be important for better understanding myriad neurodegenerative diseases such as Canavan's Disease and Multiple Sclerosis, to name a few. Future studies to demonstrate the chemical, metabolic and pathological links between NAA and glutamate will support this hypothesis.
Collapse
Affiliation(s)
- Joseph F Clark
- Department of Neurology, University of Cincinnati, Cincinnati, OH 45267-0536, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Ledeen RW, Wang J, Wu G, Lu ZH, Chakraborty G, Meyenhofer M, Tyring SK, Matalon R. Physiological role of N-acetylaspartate: contribution to myelinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 576:131-43; discussion 361-3. [PMID: 16802709 DOI: 10.1007/0-387-30172-0_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Robert W Ledeen
- Dept. Neurology & Neurosciences, New Jersey Medical School, UMDNJ, 185 So. Orange Ave., Newark, NJ 07103, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Janson CG, Assadi M, Francis J, Bilaniuk L, Shera D, Leone P. Lithium citrate for Canavan disease. Pediatr Neurol 2005; 33:235-43. [PMID: 16194720 DOI: 10.1016/j.pediatrneurol.2005.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/03/2005] [Accepted: 04/04/2005] [Indexed: 11/15/2022]
Abstract
Current evidence suggests that the effects of lithium on metabolic and signaling pathways in the brain may vary depending on the specific clinical condition or disease model. For example, lithium increases levels of cerebral N-acetyl aspartate in patients with bipolar disorder but does not appear to affect N-acetyl aspartate levels in normal human subjects. Conversely, lithium significantly decreases whole-brain levels of N-acetyl aspartate in a rat genetic model of Canavan disease in which cerebral N-acetyl aspartate is chronically elevated. While N-acetyl aspartate is a commonly used surrogate marker for neuronal density and correlates with neuronal viability, grossly elevated whole-brain levels of N-acetyl aspartate in Canavan disease are associated with dysmyelination and mental retardation. This report describes the first clinical application of lithium in a human subject with Canavan disease. Spectroscopic and clinical changes were observed over the time period in which lithium was administered, which reversed during a 2-week wash-out period after withdrawal of lithium. This investigation reports decreased N-acetyl aspartate levels in the brain regions tested and magnetic resonance spectroscopic values that are more characteristic of normal development and myelination, suggesting that a larger, controlled trial of lithium may be warranted as supportive therapy for Canavan disease by decreasing abnormally elevated N-acetyl aspartate.
Collapse
Affiliation(s)
- Christopher G Janson
- Department of Neurosurgery and Molecular Genetics, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Camden, USA
| | | | | | | | | | | |
Collapse
|
48
|
Tranberg M, Stridh MH, Jilderos B, Weber SG, Sandberg M. Reversed-phase HPLC with UV detection for the determination of N-acetylaspartate and creatine. Anal Biochem 2005; 343:179-82. [PMID: 16018872 PMCID: PMC1482469 DOI: 10.1016/j.ab.2005.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 02/23/2005] [Accepted: 03/02/2005] [Indexed: 11/30/2022]
Affiliation(s)
- Mattias Tranberg
- Department of Medical Biophysics, Göteborg University, 405 30 Göteborg, Sweden
| | - Malin H. Stridh
- Department of Medical Biophysics, Göteborg University, 405 30 Göteborg, Sweden
| | - Barbro Jilderos
- Department of Medical Biophysics, Göteborg University, 405 30 Göteborg, Sweden
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mats Sandberg
- Department of Medical Biophysics, Göteborg University, 405 30 Göteborg, Sweden
- * Corresponding author. Fax: +46 31 773 38 40. E-mail address: (M. Sandberg)
| |
Collapse
|
49
|
Surendran S, Ezell EL, Quast MJ, Wei J, Tyring SK, Michals-Matalon K, Matalon R. Aspartoacylase deficiency does not affect N-acetylaspartylglutamate level or glutamate carboxypeptidase II activity in the knockout mouse brain. Brain Res 2004; 1016:268-71. [PMID: 15246864 DOI: 10.1016/j.brainres.2004.05.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2004] [Indexed: 10/26/2022]
Abstract
Aspartoacylase (ASPA)-deficient patients [Canavan disease (CD)] reportedly have increased urinary excretion of N-acetylaspartylglutamate (NAAG), a neuropeptide abundant in the brain. Whether elevated excretion of urinary NAAG is due to ASPA deficiency, resulting in an abnormal level of brain NAAG, is examined using ASPA-deficient mouse brain. The level of NAAG in the knockout mouse brain was similar to that in the wild type. The NAAG hydrolyzing enzyme, glutamate carboxypeptidase II (GCP II), activity was normal in the knockout mouse brain. These data suggest that ASPA deficiency does not affect the NAAG or GCP II level in the knockout mouse brain, if documented also in patients with CD.
Collapse
Affiliation(s)
- Sankar Surendran
- Department of Pediatrics, Childrens Hospital, The University of Texas Medical Branch, Rm# 3.350, Galveston, TX 77555-0359, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Madhavarao CN, Moffett JR, Moore RA, Viola RE, Namboodiri MAA, Jacobowitz DM. Immunohistochemical localization of aspartoacylase in the rat central nervous system. J Comp Neurol 2004; 472:318-29. [PMID: 15065127 DOI: 10.1002/cne.20080] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aspartoacylase (ASPA; EC 3.5.1.15) catalyzes deacetylation of N-acetylaspartate (NAA) to generate free acetate in the central nervous system (CNS). Mutations in the gene coding ASPA cause Canavan disease (CD), an autosomal recessive neurodegenerative disease that results in death before 10 years of age. The pathogenesis of CD remains unclear. Our working hypothesis is that deficiency in the supply of the NAA-derived acetate leads to inadequate lipid/myelin synthesis during development, resulting in CD. To explore the localization of ASPA in the CNS, we used double-label immunohistochemistry for ASPA and several cell-specific markers. A polyclonal antibody was generated in rabbit against mouse recombinant ASPA, which reacted with a single band (approximately 37 kD) on Western blots of rat brain homogenate. ASPA colocalized throughout the brain with CC1, a marker for oligodendrocytes, with 92-98% of CC1-positive cells also reactive with the ASPA antibody. Many cells were labeled with ASPA antibodies in white matter, including cells in the corpus callosum and cerebellar white matter. Relatively fewer cells were labeled in gray matter, including cerebral cortex. No astrocytes were labeled for ASPA. Neurons were unstained in the forebrain, although small numbers of large reticular and motor neurons were faintly to moderately stained in the brainstem and spinal cord. Many ascending and descending neuronal fibers were moderately stained for ASPA in the medulla and spinal cord. Microglial-like cells showed faint to moderate staining with the ASPA antibodies throughout the brain by the avidin/biotin-peroxidase detection method, and colocalization studies with labeled lectins confirmed their identity as microglia. The predominant immunoreactivity in oligodendrocytes is consistent with the proposed role of ASPA in myelination, supporting the case for acetate supplementation as an immediate and inexpensive therapy for infants diagnosed with CD.
Collapse
Affiliation(s)
- Chikkathur N Madhavarao
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | | | |
Collapse
|