1
|
Poplawsky AJ, Cover C, Reddy S, Chishti HB, Vazquez A, Fukuda M. Odor-evoked layer-specific fMRI activities in the awake mouse olfactory bulb. Neuroimage 2023; 274:120121. [PMID: 37080347 PMCID: PMC10240534 DOI: 10.1016/j.neuroimage.2023.120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
Awake rodent fMRI is increasingly common over the use of anesthesia since it permits behavioral paradigms and does not confound normal brain function or neurovascular coupling. It is well established that adequate acclimation to the loud fMRI environment and head fixation reduces stress in the rodents and allows for whole brain imaging with little contamination from motion. However, it is unknown whether high-resolution fMRI with increased susceptibility to motion and lower sensitivity can measure small, but spatially discrete, activations in awake mice. To examine this, we used contrast-enhanced cerebral blood volume-weighted (CBVw) fMRI in the mouse olfactory bulb for its enhanced sensitivity and neural specificity. We determined that activation patterns in the glomerular layer to four different odors were spatially distinct and were consistent with previously established histological patterns. In addition, odor-evoked laminar activations were greatest in superficial layers that decreased with laminar depth, similar to previous observations. Interestingly, the fMRI response strengths in the granule cell layer were greater in awake mice than our previous anesthetized rat studies, suggesting that feedback neural activities were intact with wakefulness. We finally determined that fMRI signal changes to repeated odor exposure (i.e., olfactory adaptation) attenuated relatively more in the feedback granule cell layer compared to the input glomerular layer, which is consistent with prior observations. We, therefore, conclude that high-resolution CBVw fMRI can measure odor-specific activation patterns and distinguish changes in laminar activity of head and body restrained awake mice.
Collapse
Affiliation(s)
- Alexander John Poplawsky
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States.
| | - Christopher Cover
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sujatha Reddy
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States
| | - Harris B Chishti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alberto Vazquez
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States
| |
Collapse
|
2
|
Gupta A, Singh SS, Mittal AM, Singh P, Goyal S, Kannan KR, Gupta AK, Gupta N. Mosquito Olfactory Response Ensemble enables pattern discovery by curating a behavioral and electrophysiological response database. iScience 2022; 25:103938. [PMID: 35265812 PMCID: PMC8899409 DOI: 10.1016/j.isci.2022.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/21/2021] [Accepted: 02/14/2022] [Indexed: 11/12/2022] Open
Abstract
Many experimental studies have examined behavioral and electrophysiological responses of mosquitoes to odors. However, the differences across studies in data collection, processing, and reporting make it difficult to perform large-scale analyses combining data from multiple studies. Here we extract and standardize data for 12 mosquito species, along with Drosophila melanogaster for comparison, from over 170 studies and curate the Mosquito Olfactory Response Ensemble (MORE), publicly available at https://neuralsystems.github.io/MORE. We demonstrate the ability of MORE in generating biological insights by finding patterns across studies. Our analyses reveal that ORs are tuned to specific ranges of several physicochemical properties of odorants; the empty-neuron recording technique for measuring OR responses is more sensitive than the Xenopus oocyte technique; there are systematic differences in the behavioral preferences reported by different types of assays; and odorants tend to become less attractive or more aversive at higher concentrations. MORE is a database of behavioral and electrophysiological responses to odors MORE includes data from 170 studies covering 12 species of mosquitoes along with flies MORE shows differences in odor preferences measured with different assays Empty-neuron technique measures responses more sensitively than the oocyte technique
Collapse
|
3
|
Sanganahalli BG, Baker KL, Thompson GJ, Herman P, Shepherd GM, Verhagen JV, Hyder F. Orthonasal versus retronasal glomerular activity in rat olfactory bulb by fMRI. Neuroimage 2020; 212:116664. [PMID: 32087375 DOI: 10.1016/j.neuroimage.2020.116664] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/22/2020] [Accepted: 02/16/2020] [Indexed: 02/05/2023] Open
Abstract
Odorants can reach olfactory receptor neurons (ORNs) by two routes: orthonasally, when volatiles enter the nasal cavity during inhalation/sniffing, and retronasally, when food volatiles released in the mouth pass into the nasal cavity during exhalation/eating. Previous work in humans has shown that both delivery routes of the same odorant can evoke distinct perceptions and patterns of neural responses in the brain. Each delivery route is known to influence specific responses across the dorsal region of the glomerular sheet in the olfactory bulb (OB), but spatial distributions across the entire glomerular sheet throughout the whole OB remain largely unexplored. We used functional MRI (fMRI) to measure and compare activations across the entire glomerular sheet in rat OB resulting from both orthonasal and retronasal stimulations of the same odors. We observed reproducible fMRI activation maps of the whole OB during both orthonasal and retronasal stimuli. However, retronasal stimuli required double the orthonasal odor concentration for similar response amplitudes. Regardless, both the magnitude and spatial extent of activity were larger during orthonasal versus retronasal stimuli for the same odor. Orthonasal and retronasal response patterns show overlap as well as some route-specific dominance. Orthonasal maps were dominant in dorsal-medial regions, whereas retronasal maps were dominant in caudal and lateral regions. These different whole OB encodings likely underlie differences in odor perception between these biologically important routes for odorants among mammals. These results establish the relationships between orthonasal and retronasal odor representations in the rat OB.
Collapse
Affiliation(s)
- Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
| | - Keeley L Baker
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT, USA
| | - Garth J Thompson
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - Justus V Verhagen
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Thompson GJ, Sanganahalli BG, Baker KL, Herman P, Shepherd GM, Verhagen JV, Hyder F. Spontaneous activity forms a foundation for odor-evoked activation maps in the rat olfactory bulb. Neuroimage 2018; 172:586-596. [PMID: 29374582 DOI: 10.1016/j.neuroimage.2018.01.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/16/2018] [Accepted: 01/20/2018] [Indexed: 12/12/2022] Open
Abstract
Fluctuations in spontaneous activity have been observed by many neuroimaging techniques, but because these resting-state changes are not evoked by stimuli, it is difficult to determine how they relate to task-evoked activations. We conducted multi-modal neuroimaging scans of the rat olfactory bulb, both with and without odor, to examine interaction between spontaneous and evoked activities. Independent component analysis of spontaneous fluctuations revealed resting-state networks, and odor-evoked changes revealed activation maps. We constructed simulated activation maps using resting-state networks that were highly correlated to evoked activation maps. Simulated activation maps derived by intrinsic optical signal (IOS), which covers the dorsal portion of the glomerular sheet, significantly differentiated one odor's evoked activation map from the other two. To test the hypothesis that spontaneous activity of the entire glomerular sheet is relevant for representing odor-evoked activations, we used functional magnetic resonance imaging (fMRI) to map the entire glomerular sheet. In contrast to the IOS results, the fMRI-derived simulated activation maps significantly differentiated all three odors' evoked activation maps. Importantly, no evoked activation maps could be significantly differentiated using simulated activation maps produced using phase-randomized resting-state networks. Given that some highly organized resting-state networks did not correlate with any odors' evoked activation maps, we posit that these resting-state networks may characterize evoked activation maps associated with odors not studied. These results emphasize that fluctuations in spontaneous activity form a foundation for active processing, signifying the relevance of resting-state mapping to functional neuroimaging.
Collapse
Affiliation(s)
- Garth J Thompson
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA
| | - Keeley L Baker
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT USA
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA
| | | | - Justus V Verhagen
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Zhao F, Wang X, Zariwala HA, Uslaner JM, Houghton AK, Evelhoch JL, Hostetler E, Winkelmann CT, Hines CD. fMRI study of the role of glutamate NMDA receptor in the olfactory adaptation in rats: Insights into cellular and molecular mechanisms of olfactory adaptation. Neuroimage 2017; 149:348-360. [DOI: 10.1016/j.neuroimage.2017.01.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/23/2016] [Accepted: 01/28/2017] [Indexed: 11/16/2022] Open
|
6
|
Marenco L, Wang R, McDougal R, Olender T, Twik M, Bruford E, Liu X, Zhang J, Lancet D, Shepherd G, Crasto C. ORDB, HORDE, ODORactor and other on-line knowledge resources of olfactory receptor-odorant interactions. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw132. [PMID: 27694208 PMCID: PMC5045865 DOI: 10.1093/database/baw132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/28/2016] [Indexed: 01/15/2023]
Abstract
We present here an exploration of the evolution of three well-established, web-based resources dedicated to the dissemination of information related to olfactory receptors (ORs) and their functional ligands, odorants. These resources are: the Olfactory Receptor Database (ORDB), the Human Olfactory Data Explorer (HORDE) and ODORactor. ORDB is a repository of genomic and proteomic information related to ORs and other chemosensory receptors, such as taste and pheromone receptors. Three companion databases closely integrated with ORDB are OdorDB, ORModelDB and OdorMapDB; these resources are part of the SenseLab suite of databases (http://senselab.med.yale.edu). HORDE (http://genome.weizmann.ac.il/horde/) is a semi-automatically populated database of the OR repertoires of human and several mammals. ODORactor (http://mdl.shsmu.edu.cn/ODORactor/) provides information related to OR-odorant interactions from the perspective of the odorant. All three resources are connected to each other via web-links. Database URL: http://senselab.med.yale.edu; http://genome.weizmann.ac.il/horde/; http://mdl.shsmu.edu.cn/ODORactor/
Collapse
Affiliation(s)
| | - Rixin Wang
- Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Michal Twik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Elspeth Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Xinyi Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | - Chiquito Crasto
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
7
|
Poplawsky AJ, Kim SG. Layer-dependent BOLD and CBV-weighted fMRI responses in the rat olfactory bulb. Neuroimage 2014; 91:237-51. [PMID: 24418506 DOI: 10.1016/j.neuroimage.2013.12.067] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/10/2013] [Accepted: 12/29/2013] [Indexed: 10/25/2022] Open
Abstract
The olfactory bulb is a laminarized brain structure involved in odor sensation that has important implications to basic neuroscience research, like mechanisms for neurovascular coupling and early disease diagnosis. To investigate laminar-dependent responses to odor exposure, blood oxygenation level-dependent (BOLD) and cerebral blood volume weighted (CBVw) fMRI with iron oxide nanoparticle contrast agent were obtained with 110×110×500μm(3) resolution in urethane-anesthetized rats at 9.4T. The baseline total CBV is the largest at the olfactory bulb surface and midline, and decreases in the deeper layers, while a band of increased microvasculature density is observed at the glomerular, external plexiform and mitral cell layers. With odor exposure, CBVw fMRI is more sensitive and reproducible than BOLD. BOLD fMRI had the greatest activation on the bulb surface, midline, olfactory nerve and glomerular layers, while CBVw activation peaked in glomerular and external plexiform layers, but was still significant in mitral cell layer. Negative BOLD responses were observed in the bulb midline and near large blood vessels. CBVw laminar profiles are similar to the layer-dependent metabolic changes to the same odor exposure reported by previous glucose metabolism studies. Unique activation patterns for two different odor conditions were also differentiated with CBVw fMRI. Our study suggests that CBVw activation better represents the spatial location of metabolic activity in the olfactory bulb than BOLD.
Collapse
Affiliation(s)
- Alexander John Poplawsky
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Seong-Gi Kim
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience Imaging Research, Institute of Basic Science (IBS), Sungkyunkwan University, Suwon 440-746, Republic of Korea; Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
8
|
Kim DH, Phillips ME, Chang AY, Patel HK, Nguyen KT, Willhite DC. Lateral Connectivity in the Olfactory Bulb is Sparse and Segregated. Front Neural Circuits 2011; 5:5. [PMID: 21559072 PMCID: PMC3084525 DOI: 10.3389/fncir.2011.00005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/09/2011] [Indexed: 11/27/2022] Open
Abstract
Lateral connections in the olfactory bulb were previously thought to be organized for center–surround inhibition. However, recent anatomical and physiological studies showed sparse and distributed interactions of inhibitory granule cells (GCs) which tended to be organized in columnar clusters. Little is known about how these distributed clusters are interconnected. In this study, we use transsynaptic tracing viruses bearing green or red fluorescent proteins to further elucidate mitral- and tufted-to-GC connectivity. Separate sites in the glomerular layer were injected with each virus. Columns with labeling from both viruses after transsynaptic spread show sparse red or green GCs which tended to be segregated. However, there was a higher incidence of co-labeled cells than chance would predict. Similar segregation of labeling is observed from dual injections into olfactory cortex. Collectively, these results suggest that neighboring mitral and tufted cells receive inhibitory inputs from segregated subsets of GCs, enabling inhibition of a center by specific and discontinuous lateral elements.
Collapse
Affiliation(s)
- David H Kim
- Department of Neurobiology, Yale University School of Medicine New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
9
|
SynapticDB, effective web-based management and sharing of data from serial section electron microscopy. Neuroinformatics 2010; 9:39-57. [PMID: 21181305 PMCID: PMC3063557 DOI: 10.1007/s12021-010-9088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serial section electron microscopy (ssEM) is rapidly expanding as a primary tool to investigate synaptic circuitry and plasticity. The ultrastructural images collected through ssEM are content rich and their comprehensive analysis is beyond the capacity of an individual laboratory. Hence, sharing ultrastructural data is becoming crucial to visualize, analyze, and discover the structural basis of synaptic circuitry and function in the brain. We devised a web-based management system called SynapticDB (http://synapses.clm.utexas.edu/synapticdb/) that catalogues, extracts, analyzes, and shares experimental data from ssEM. The management strategy involves a library with check-in, checkout and experimental tracking mechanisms. We developed a series of spreadsheet templates (MS Excel, Open Office spreadsheet, etc) that guide users in methods of data collection, structural identification, and quantitative analysis through ssEM. SynapticDB provides flexible access to complete templates, or to individual columns with instructional headers that can be selected to create user-defined templates. New templates can also be generated and uploaded. Research progress is tracked via experimental note management and dynamic PDF forms that allow new investigators to follow standard protocols and experienced researchers to expand the range of data collected and shared. The combined use of templates and tracking notes ensures that the supporting experimental information is populated into the database and associated with the appropriate ssEM images and analyses. We anticipate that SynapticDB will serve future meta-analyses towards new discoveries about the composition and circuitry of neurons and glia, and new understanding about structural plasticity during development, behavior, learning, memory, and neuropathology.
Collapse
|
10
|
Sanganahalli BG, Bailey CJ, Herman P, Hyder F. Tactile and non-tactile sensory paradigms for fMRI and neurophysiologic studies in rodents. Methods Mol Biol 2009; 489:213-42. [PMID: 18839094 PMCID: PMC3703391 DOI: 10.1007/978-1-59745-543-5_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has become a popular functional imaging tool for human studies. Future diagnostic use of fMRI depends, however, on a suitable neurophysiologic interpretation of the blood oxygenation level dependent (BOLD) signal change. This particular goal is best achieved in animal models primarily due to the invasive nature of other methods used and/or pharmacological agents applied to probe different nuances of neuronal (and glial) activity coupled to the BOLD signal change. In the last decade, we have directed our efforts towards the development of stimulation protocols for a variety of modalities in rodents with fMRI. Cortical perception of the natural world relies on the formation of multi-dimensional representation of stimuli impinging on the different sensory systems, leading to the hypothesis that a sensory stimulus may have very different neurophysiologic outcome(s) when paired with a near simultaneous event in another modality. Before approaching this level of complexity, reliable measures must be obtained of the relatively small changes in the BOLD signal and other neurophysiologic markers (electrical activity, blood flow) induced by different peripheral stimuli. Here we describe different tactile (i.e., forepaw, whisker) and non-tactile (i.e., olfactory, visual) sensory paradigms applied to the anesthetized rat. The main focus is on development and validation of methods for reproducible stimulation of each sensory modality applied independently or in conjunction with one another, both inside and outside the magnet. We discuss similarities and/or differences across the sensory systems as well as advantages they may have for studying essential neuroscientific questions. We envisage that the different sensory paradigms described here may be applied directly to studies of multi-sensory interactions in anesthetized rats, en route to a rudimentary understanding of the awake functioning brain where various sensory cues presumably interrelate.
Collapse
Affiliation(s)
- Basavaraju G. Sanganahalli
- Department of Diagnostic Radiology Yale University, New Haven, Connecticut, USA,Department of Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, Connecticut, USA,Department of Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Christopher J. Bailey
- Department of Diagnostic Radiology Yale University, New Haven, Connecticut, USA,Department of Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA,Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Peter Herman
- Department of Diagnostic Radiology Yale University, New Haven, Connecticut, USA,Department of Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, Connecticut, USA,Department of Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA,Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Fahmeed Hyder
- Department of Diagnostic Radiology Yale University, New Haven, Connecticut, USA,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA,Department of Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, Connecticut, USA,Department of Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Chuang KH, Lee JH, Silva AC, Belluscio L, Koretsky AP. Manganese enhanced MRI reveals functional circuitry in response to odorant stimuli. Neuroimage 2008; 44:363-72. [PMID: 18848997 DOI: 10.1016/j.neuroimage.2008.08.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 08/23/2008] [Accepted: 08/31/2008] [Indexed: 01/09/2023] Open
Abstract
To investigate the circuitry involved in detecting odorants in the rodent brain, we developed a method using manganese-enhanced MRI (MEMRI) to map the flow of neural information from the olfactory sensory neurons (OSNs) to the central layers of the olfactory bulb. Studies have shown that Mn(2+) enters active neurons and is transported anterogradely to axon terminals where it can cross synapses to functionally trace neural networks. Thus, by delivering MnCl(2) directly into the nasal cavity of mice and then exposing them to defined odorants, Mn(2+) is preferentially taken up by activated OSNs. Using the time course of the MRI signal, we generated maps of Mn(2+) accumulation in the olfactory bulb for both glomerular and mitral cell layers. Results demonstrated that overlapping yet distinct enhancement patterns were produced by exposure to either octanal, acetophenone, or carvone. Notably, areas of Mn(2+) accumulation in the mitral cell layer were similar to those in the glomerular layer consistent with neural information that passes from specific OSNs to specific mitral cells. Finally, by correlating specific Mn(2+) signal peaks to genetically labeled glomeruli that are known to be activated by the odorant octanal, we show that MEMRI maps can be resolved at the level of individual glomeruli.
Collapse
Affiliation(s)
- Kai-Hsiang Chuang
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
12
|
Abstract
Neuroinformatics seeks to create and maintain web-accessible databases of experimental and computational data, together with innovative software tools, essential for understanding the nervous system in its normal function and in neurological disorders. Neuroinformatics includes traditional bioinformatics of gene and protein sequences in the brain; atlases of brain anatomy and localization of genes and proteins; imaging of brain cells; brain imaging by positron emission tomography (PET), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), magnetoencephalography (MEG) and other methods; many electrophysiological recording methods; and clinical neurological data, among others. Building neuroinformatics databases and tools presents difficult challenges because they span a wide range of spatial scales and types of data stored and analyzed. Traditional bioinformatics, by comparison, focuses primarily on genomic and proteomic data (which of course also presents difficult challenges). Much of bioinformatics analysis focus on sequences (DNA, RNA, and protein molecules), as the type of data that are stored, compared, and sometimes modeled. Bioinformatics is undergoing explosive growth with the addition, for example, of databases that catalog interactions between proteins, of databases that track the evolution of genes, and of systems biology databases which contain models of all aspects of organisms. This commentary briefly reviews neuroinformatics with clarification of its relationship to traditional and modern bioinformatics.
Collapse
Affiliation(s)
- Thomas M Morse
- Department of Neurobiology, Yale University School of Medicine, 336 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
13
|
Van der Linden A, Van Camp N, Ramos-Cabrer P, Hoehn M. Current status of functional MRI on small animals: application to physiology, pathophysiology, and cognition. NMR IN BIOMEDICINE 2007; 20:522-45. [PMID: 17315146 DOI: 10.1002/nbm.1131] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This review aims to make the reader aware of the potential of functional MRI (fMRI) in brain activation studies in small animal models. As small animals generally require anaesthesia for immobilization during MRI protocols, this is believed to be a serious limitation to the type of question that can be addressed with fMRI. We intend to introduce a fresh view with an in-depth overview of the surprising number of fMRI applications in a wide range of important research domains in neuroscience. These include the pathophysiology of brain functioning, the basic science of activity, and functional connectivity of different sensory circuits, including sensory brain mapping, the challenges when studying the hypothalamus as the major control centre in the central nervous system, and the limbic system as neural substrate for emotions and reward. Finally the contribution of small animal fMRI research to cognitive neuroscience is outlined. This review avoids focusing exclusively on traditional small laboratory animals such as rodents, but rather aims to broaden the scope by introducing alternative lissencephalic animal models such as songbirds and fish, as these are not yet well recognized as neuroimaging study subjects. These models are well established in many other neuroscience disciplines, and this review will show that their investigation with in vivo imaging tools will open new doors to cognitive neuroscience and the study of the autonomous nervous system in experimental animals.
Collapse
Affiliation(s)
- Annemie Van der Linden
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | | | | | |
Collapse
|
14
|
Liu N, Crasto CJ, Ma M. Integrated olfactory receptor and microarray gene expression databases. BMC Bioinformatics 2007; 8:231. [PMID: 17603910 PMCID: PMC1955752 DOI: 10.1186/1471-2105-8-231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 06/30/2007] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gene expression patterns of olfactory receptors (ORs) are an important component of the signal encoding mechanism in the olfactory system since they determine the interactions between odorant ligands and sensory neurons. We have developed the Olfactory Receptor Microarray Database (ORMD) to house OR gene expression data. ORMD is integrated with the Olfactory Receptor Database (ORDB), which is a key repository of OR gene information. Both databases aim to aid experimental research related to olfaction. DESCRIPTION ORMD is a Web-accessible database that provides a secure data repository for OR microarray experiments. It contains both publicly available and private data; accessing the latter requires authenticated login. The ORMD is designed to allow users to not only deposit gene expression data but also manage their projects/experiments. For example, contributors can choose whether to make their datasets public. For each experiment, users can download the raw data files and view and export the gene expression data. For each OR gene being probed in a microarray experiment, a hyperlink to that gene in ORDB provides access to genomic and proteomic information related to the corresponding olfactory receptor. Individual ORs archived in ORDB are also linked to ORMD, allowing users access to the related microarray gene expression data. CONCLUSION ORMD serves as a data repository and project management system. It facilitates the study of microarray experiments of gene expression in the olfactory system. In conjunction with ORDB, ORMD integrates gene expression data with the genomic and functional data of ORs, and is thus a useful resource for both olfactory researchers and the public.
Collapse
Affiliation(s)
- Nian Liu
- Center for Medical Informatics, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chiquito J Crasto
- Center for Medical Informatics, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Crasto CJ, Marenco LN, Liu N, Morse TM, Cheung KH, Lai PC, Bahl G, Masiar P, Lam HYK, Lim E, Chen H, Nadkarni P, Migliore M, Miller PL, Shepherd GM. SenseLab: new developments in disseminating neuroscience information. Brief Bioinform 2007; 8:150-62. [PMID: 17510162 PMCID: PMC2756159 DOI: 10.1093/bib/bbm018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This article presents the latest developments in neuroscience information dissemination through the SenseLab suite of databases: NeuronDB, CellPropDB, ORDB, OdorDB, OdorMapDB, ModelDB and BrainPharm. These databases include information related to: (i) neuronal membrane properties and neuronal models, and (ii) genetics, genomics, proteomics and imaging studies of the olfactory system. We describe here: the new features for each database, the evolution of SenseLab's unifying database architecture and instances of SenseLab database interoperation with other neuroscience online resources.
Collapse
Affiliation(s)
- Chiquito J Crasto
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu N, Xu F, Miller PL, Shepherd GM. OdorMapComparer: An Application for Quantitative Analyses and Comparisons of fMRI Brain Odor Maps. Neuroinformatics 2007; 5:105-14. [PMID: 17873372 DOI: 10.1007/s12021-007-0002-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/28/2022]
Abstract
Brain odor maps are reconstructed flat images that describe the spatial activity patterns in the glomerular layer of the olfactory bulbs in animals exposed to different odor stimuli. We have developed a software application, OdorMapComparer, to carry out quantitative analyses and comparisons of the fMRI odor maps. This application is an open-source window program that first loads two odor map images being compared. It allows image transformations including scaling, flipping, rotating, and warping so that the two images can be appropriately aligned to each other. It performs simple subtraction, addition, and average of signals in the two images. It also provides comparative statistics including the normalized correlation (NC) and spatial correlation coefficient. Experimental studies showed that the rodent fMRI odor maps for aliphatic aldehydes displayed spatial activity patterns that are similar in gross outlines but somewhat different in specific subregions. Analyses with OdorMapComparer indicate that the similarity between odor maps decreases with increasing difference in the length of carbon chains. For example, the map of butanal is more closely related to that of pentanal (with a NC = 0.617) than to that of octanal (NC = 0.082), which is consistent with animal behavioral studies. The study also indicates that fMRI odor maps are statistically odor-specific and repeatable across both the intra- and intersubject trials. OdorMapComparer thus provides a tool for quantitative, statistical analyses and comparisons of fMRI odor maps in a fashion that is integrated with the overall odor mapping techniques.
Collapse
Affiliation(s)
- Nian Liu
- Center for Medical Informatics, Yale University School of Medicine, New Haven, CT 06520-8009, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
This chapter describes the use of high-resolution functional magnetic resonance imaging (fMRI) technology in brain odor mapping and a suite of informatics tools for building, databasing, and analyzing fMRI odor maps. OdorMapBuilder is a software program that extracts the olfactory signals that occurred in a particular layer of the olfactory bulb (OB), that is, the glomerular layer, from the 3D imaging data and generates 2D flat odor maps. Odor maps describe the odor-induced spatial activity patterns in the entire glomerular layer in the OB. OdorMapDB is a Web-based database system that serves as a centralized repository for the fMRI odor maps. OdorMapComparer is a software program that allows users to visually evaluate and statistically determine the similarity or difference between two fMRI odor maps being compared. Taken together, the fMRI technique and the related informatics tools play an important role in the study of the signal-encoding mechanisms in the olfactory system, which is essential to our understanding of the perception of smell.
Collapse
Affiliation(s)
- Nian Liu
- Center for Medical Informatics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
18
|
Schafer JR, Kida I, Xu F, Rothman DL, Hyder F. Reproducibility of odor maps by fMRI in rodents. Neuroimage 2006; 31:1238-46. [PMID: 16632382 DOI: 10.1016/j.neuroimage.2005.12.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/26/2005] [Accepted: 12/29/2005] [Indexed: 10/24/2022] Open
Abstract
The interactions of volatile odorants with the approximately 1000 types of olfactory receptor neurons in the olfactory mucosa are represented in the olfactory bulb by glomerular spatial activity maps. If these spatial maps underlie the perceptual identification of odorants then, for a given organism, they must be both specific and reproducible. However, this intra-organism reproducibility need not be present between organisms because genetic and developmental studies of olfactory bulb wiring suggest that there is substantial variation between the glomerular arrangements of closely related organisms and even between the two bulbs in a given animal. The ability of functional MRI (fMRI) to record responses of the entire rodent olfactory bulb repeatedly within the same subject has made it possible to assess the reproducibility of odor-induced spatial activity maps both within and between subjects exposed to equivalent stimuli. For a range of odorants, representing multiple chemical classes, a level of fMRI reproducibility (at 7.0 T and 9.4 T) comparable or superior to other cortical regions was demonstrated. While the responses of different bulbs to the same odorant could be localized within the same broad regions of the glomerular sheet, the precise magnitude and topology of the response within those regions were both often highly variable. These results demonstrate the robustness of high-field fMRI as a tool for assaying olfactory bulb function and provide evidence that equivalent perceptual outcomes may arise from divergent neural substrates.
Collapse
Affiliation(s)
- James R Schafer
- Department of Neurobiology, Magnetic Resonance Research Center, Yale University, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
19
|
Schafer JR, Kida I, Rothman DL, Hyder F, Xu F. Adaptation in the rodent olfactory bulb measured by fMRI. Magn Reson Med 2005; 54:443-8. [PMID: 16032685 DOI: 10.1002/mrm.20588] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Effective evaluation of the odor environment necessitates the ability to attenuate responses to potent background odors in favor of novel and less robust stimuli. Olfactory receptor neuron studies suggest that some of this adaptation takes place in the primary sensory neurons, but the more extensive adaptation seen in higher cortical areas implies the involvement of additional neural mechanisms. At 7.0 T, high-resolution fMRI was used to assess the response of the rodent olfactory bulb, the most peripheral cortical structure involved in olfactory processing, to a variety of odor stimuli. The results suggest that there are additional regulatory mechanisms in the olfactory bulb that result in greater adaptation in deeper areas than that seen in sensory receptors alone and that the resultant adaptation is positively affected by increasing stimulus duration and concentration and decreasing recovery time. The implications of these findings for the integration of peripheral input with perception are discussed.
Collapse
Affiliation(s)
- James R Schafer
- Department of Neurobiology, Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
20
|
Xu F, Schaefer M, Kida I, Schafer J, Liu N, Rothman DL, Hyder F, Restrepo D, Shepherd GM. Simultaneous activation of mouse main and accessory olfactory bulbs by odors or pheromones. J Comp Neurol 2005; 489:491-500. [PMID: 16025460 DOI: 10.1002/cne.20652] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is generally believed that the main olfactory system processes common odors and the accessory olfactory system is specifically for pheromones. The potential for these two systems to respond simultaneously to the same stimuli has not been fully explored due to methodological limitations. Here we examine this phenomenon using high-resolution functional magnetic resonance imaging (fMRI) to reveal simultaneously the responses in the main (MOB) and accessory olfactory bulbs (AOB) to odors and pheromones. Common odorants elicited strong signals in the MOB and weak signals in the AOB. 2-Heptanone, a known mouse pheromone, elicited strong signals in both the MOB and AOB. Urine odor, a complicated mixture of pheromones and odorants, elicited significant signals in limited regions of the MOB and large regions of the AOB. The fMRI results demonstrate that both the main and the accessory olfactory systems may respond to volatile compounds but with different selectivity, suggesting a greater integration of the two olfactory pathways than traditionally believed.
Collapse
Affiliation(s)
- Fuqiang Xu
- Department of Diagnostic Radiology, Yale Medical School, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Salcedo E, Zhang C, Kronberg E, Restrepo D. Analysis of training-induced changes in ethyl acetate odor maps using a new computational tool to map the glomerular layer of the olfactory bulb. Chem Senses 2005; 30:615-26. [PMID: 16141292 DOI: 10.1093/chemse/bji055] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Odor quality is thought to be encoded by the activation of partially overlapping subsets of glomeruli in the olfactory bulb (odor maps). Mouse genetic studies have demonstrated that olfactory sensory neurons (OSNs) expressing a particular olfactory receptor target their axons to a few individual glomeruli in the bulb. While the specific targeting of OSN axons provides a molecular underpinning for the odor maps, much remains to be understood about the relationship between the functional and molecular maps. In this article, we ask the question whether intensive training of mice in a go/no-go operant conditioning odor discrimination task affects odor maps measured by determining c-fos up-regulation in periglomerular cells. Data analysis is performed using a newly developed suite of computational tools designed to systematically map functional and molecular features of glomeruli in the adult mouse olfactory bulb. This suite provides the necessary tools to process high-resolution digital images, map labeled glomeruli, visualize odor maps, and facilitate statistical analysis of patterns of identified glomeruli in the olfactory bulb. The software generates odor maps (density plots) based on glomerular activity, density, or area. We find that training up-regulates the number of glomeruli that become c-fos positive after stimulation with ethyl acetate.
Collapse
Affiliation(s)
- Ernesto Salcedo
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Mail Stop 8108 PO Box 6511, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|