1
|
Togni A, Piermartiri T, Tasca CI, Nedel CB. The intricate relationship between SUMOylation and gliomas: a review with a perspective on natural compounds. Nat Prod Res 2025:1-12. [PMID: 39849680 DOI: 10.1080/14786419.2025.2456093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Gliomas are tumours that affect the nervous system, with glioblastoma, also known as grade IV astrocytoma, being the most aggressive type, associated with poor prognosis. Glioblastoma is characterised by its highly invasive nature, rapid growth, and resistance to conventional chemotherapy and radiation treatments, resulting in a median survival of about 14 months. To improve patient outcomes, novel therapeutic approaches are needed. Targeting SUMOylation, a post-translational modification involving the attachment of Small Ubiquitin-like Modifier (SUMO) proteins to lysine residues in target proteins, is emerging as a promising strategy. SUMOylation regulates various biological processes, including the cell cycle, apoptosis, and senescence. Dysregulation of this pathway has been linked to glioblastoma tumorigenesis, as well as the invasion and proliferation of glioblastoma cells. Therefore, focusing on the SUMOylation pathway offers the potential for developing innovative therapeutic strategies, including the use of natural compounds as adjuvant therapies, to address glioblastoma more effectively.
Collapse
Affiliation(s)
- Anderson Togni
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tetsade Piermartiri
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Carla Inês Tasca
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Cláudia Beatriz Nedel
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
2
|
Wang Y, Zhuang Z, He G, Zalán Z, Shi H, Du M, Kan J, Cai T, Chen K. A preliminary study of combined toxicity and underlying mechanisms of imidacloprid and cadmium coexposure using a multiomics integration approach. Toxicology 2025; 511:154063. [PMID: 39842396 DOI: 10.1016/j.tox.2025.154063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Imidacloprid (IMI) and cadmium (Cd) have been shown to be harmful to mammals separately, but their combined toxicity to mammals remains largely unknown. In this study, biochemical analysis (oxidative stress and serum indicators of liver and kidney function), pathological sections and multiomics (metabolomics and transcriptomics) methods were used to investigate the changes and mechanisms of liver and kidney in mice coexposed to IMI and Cd. Biochemical analysis and pathological section results showed that oxidative stress, organ function, and cell damage were aggravated after the combination of the two methods. Omics results revealed the following mechanism: When mouse liver and kidney cells were threatened by the external environment, mitochondrial DNA was inhibited, which leads to changes in energy metabolism. In this process, lipid metabolism and amino acid metabolism were disordered, resulting in the inhibition of substances related to lipid metabolism and amino acid metabolism that protect the body from oxidative damage, and then showed more serious liver and kidney oxidative stress and liver and kidney function and cell damage. This research offers novel insights for the assessment of the safety profile associated with the concurrent exposure of the two chemicals in mammalian species.
Collapse
Affiliation(s)
- Yuankai Wang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Ziyue Zhuang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Guangyun He
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Zsolt Zalán
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Buda Campus, Villányi str. 29-43, Budapest 1118, Hungary
| | - Hui Shi
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Muying Du
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Tian Cai
- School of Chemistry and Chemical Engineering, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China.
| | - Kewei Chen
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Komorizono R, Yoshizumi S, Tomonaga K. Development of an RNA virus-based episomal vector with artificial aptazyme for gene silencing. Appl Microbiol Biotechnol 2024; 108:491. [PMID: 39422780 PMCID: PMC11489216 DOI: 10.1007/s00253-024-13327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
RNA virus-based episomal vector (REVec), engineered from Borna disease virus, is an innovative gene delivery tool that enables sustained gene expression in transduced cells. However, the difficulty in controlling gene expression and eliminating vectors has limited the practical use of REVec. In this study, we overcome these shortcomings by inserting artificial aptazymes into the untranslated regions of foreign genes carried in vectors or downstream of the viral phosphoprotein gene, which is essential for vector replication. Non-transmissive REVec carrying GuaM8HDV or the P1-F5 aptazyme showed immediate suppression of gene expression in a guanine or theophylline concentration-dependent manner. Continuous compound administration also markedly reduced the percentage of vector-transduced cells and eventually led to the complete elimination of the vectors from the transduced cells. This new REVec is a safe gene delivery technology that allows fine-tuning of gene expression and could be a useful platform for gene therapy and gene-cell therapy, potentially contributing to the cure of many genetic disorders. KEY POINTS: • We developed a bornavirus vector capable of silencing transgene expression by insertion of aptazyme • Transgene expression was markedly suppressed in a compound concentration-dependent manner • Artificial aptazyme systems allowed complete elimination of the vector from transduced cells.
Collapse
Affiliation(s)
- Ryo Komorizono
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan
| | - Shima Yoshizumi
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan.
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan.
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan.
| |
Collapse
|
4
|
Peng T, Li X, Tong X. Insights into the methods for separation and chromatographic determination of nucleotides/nucleosides in Cordyceps spp. J Chromatogr A 2024; 1734:465279. [PMID: 39197362 DOI: 10.1016/j.chroma.2024.465279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024]
Abstract
Cordyceps genus is entomopathogenic mushrooms that have traditionally been used in ethnomedicine in Asian countries. Nucleosides (Ns), nucleotide(Nt), Nucleobases (Nb) and their analogues play a critically physiological role and have a great potential in drug development, such as pentostatin and cordycepin (COR). Due to their significance bioactivity, several Nt/Ns were used as markers for quality evaluation for medicinal Cordyceps, including adenosine, inosine, guanosine, uridine and COR. Among them, COR is the most considerable adenosine analogue, exhibiting significant therapeutic potential and has many intracellular targets. Nt/Ns contains polar compounds and the phosphate groups of Nt deprotonate and carry negative charges with a broad range of pH values. Recent years, various advanced methods of extraction and separation, and nanomaterials have been developed to extract, isolate and determine these molecules, such as ultrasound-assisted extraction (UAE), Supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE) for the extraction, the solid phase extraction (SPE) methods (microextraction SPE (SPME), magnetic SPE (MSPE), and unique SPE materials based on the boronate affinity for the separation, and chromatography methods employing ultraviolet (UV), fluorescence, MS detection and electrospray ionization (ESI), along with matrix-assisted laser desorption/ ionization (MALDI) for the determination. COR derived from adenosine and its structure is very similar to that of 2'-deoxyadenosine (2'-dA) and adenosine, resulting in an incorrect identification, which will influence its therapeutic effects. Therefore, this review primarily focused on the characteristics of Nt/Ns, the advanced methods, strategies, nanomaterials for extracting and determining Nt/Ns (COR in particular) in Cordyceps spp, as well as the methods for distinguishing COR from its structure analogs.
Collapse
Affiliation(s)
- Ting Peng
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Xiaoxing Li
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Xinxin Tong
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China.
| |
Collapse
|
5
|
Chen Y, Mi X, Cao Z, Guo A, Li C, Yao H, Yuan P. Mechanisms of surface groups regulating developmental toxicity of graphene-based nanomaterials via glycerophospholipid metabolic pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173576. [PMID: 38810761 DOI: 10.1016/j.scitotenv.2024.173576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/07/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Surface modification of graphene-based nanomaterials (GBNs) may occur in aquatic environment and during intentional preparation. However, the influence of the surface groups on the developmental toxicity of GBNs has not been determined. In this study, we evaluated the developmental toxicity of three GBNs including GO (graphene oxide), RGO (reduced GO) and RGO-N (aminated RGO) by employing zebrafish embryos at environmentally relevant concentrations (1-100 μg/L), and the underlying metabolic mechanisms were explored. The results showed that both GO and RGO-N disturbed the development of zebrafish embryos, and the adverse effect of GO was greater than that of RGO-N. Furthermore, the oxygen-containing groups of GBNs play a more important role in inducing developmental toxicity compared to size, defects and nitrogen-containing groups. Specifically, the epoxide and hydroxyl groups of GBNs increased their intrinsic oxidative potential, promoted the generation of ROS, and caused lipid peroxidation. Moreover, a significant decrease in guanosine and abnormal metabolism of multiple glycerophospholipids were observed in all three GBN-treated groups. Nevertheless, GO exposure triggered more metabolic activities related to lipid peroxidation than RGO or RGO-N exposure, and the disturbance intensity of the same metabolite was greater than that of the other two agents. These findings reveal underlying metabolic mechanisms of GBN-induced developmental toxicity.
Collapse
Affiliation(s)
- Yuming Chen
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; Henan Key Laboratory of Neurorestoratology, First Hospital Affiliated to Xinxiang Medical University, Weihui 453100, China.
| | - Xingjie Mi
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhenzhen Cao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Ao Guo
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Chunjie Li
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Haojing Yao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Peng Yuan
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
6
|
Zanella CA, Marques N, Junqueira S, Prediger RD, Tasca CI, Cimarosti HI. Guanosine increases global SUMO1-ylation in the hippocampus of young and aged mice and improves the short-term memory of young mice. J Neurochem 2024; 168:1503-1513. [PMID: 37491912 DOI: 10.1111/jnc.15920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
The nucleoside guanosine is an endogenous neuromodulator associated with neuroprotection. The roles of guanosine during aging are still not fully elucidated. Guanosine modulates SUMOylation in neurons and astrocytes in vitro, but it is not known whether guanosine can modulate SUMOylation in vivo and improve cognitive functions during aging. SUMOylation is a post-translational protein modification with potential neuroprotective roles. In this follow-up study, we investigated whether guanosine could modulate SUMOylation in vivo and behavior in young and aged mice. Young (3-month-old) and aged (24-month-old) C57BL/6 mice were treated with guanosine (8 mg/kg intraperitoneal) daily for 14 days. Starting on day 8 of treatment, the following behavioral tests were performed: open field, novel object location, Y-maze, sucrose splash test, and tail suspension test. Treatment with guanosine did not change the locomotor activity of young or aged mice in the open-field test. Treatment with guanosine improved short-term memory only for young mice but did not change the working memory of either young or aged mice, as evaluated using object recognition and the Y-maze tests, respectively. Depressive-like behaviors, such as impaired grooming evaluated through the splash test, did not change in either young or aged mice. However, young mice treated with guanosine increased their immobility time in the tail suspension test, suggesting an effect on behavioral coping strategies. Global SUMO1-ylation was significantly increased in the hippocampus of young and aged mice after 14 days of treatment with guanosine, whereas no changes were detected in the cerebral cortex of either young or aged mice. Our findings demonstrate that guanosine also targets hippocampal SUMOylation in vivo, thereby contributing to a deeper understanding of its mechanisms of action. This highlights the involvement of SUMOylation in guanosine's modulatory and neuroprotective effects.
Collapse
Affiliation(s)
- Camila A Zanella
- Pharmacology Department, Pharmacology Postgraduate Program, Biological Sciences Center (CCB), Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Naiani Marques
- Biochemistry Department, Biochemistry Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| | - Stella Junqueira
- Neuroscience Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| | - Rui D Prediger
- Pharmacology Department, Pharmacology Postgraduate Program, Biological Sciences Center (CCB), Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
- Neuroscience Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| | - Carla I Tasca
- Biochemistry Department, Biochemistry Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
- Neuroscience Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| | - Helena I Cimarosti
- Pharmacology Department, Pharmacology Postgraduate Program, Biological Sciences Center (CCB), Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
- Neuroscience Postgraduate Program, CCB, UFSC, Florianópolis, Brazil
| |
Collapse
|
7
|
Todhanakasem T, Van Tai N, Pornpukdeewattana S, Charoenrat T, Young BM, Wattanachaisaereekul S. The Relationship between Microbial Communities in Coffee Fermentation and Aroma with Metabolite Attributes of Finished Products. Foods 2024; 13:2332. [PMID: 39123524 PMCID: PMC11312110 DOI: 10.3390/foods13152332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Coffee is a critical agricultural commodity and is used to produce premium beverages enjoyed by people worldwide. The microbiome of coffee beans has proven to be an essential tool that improves the flavor profile of coffee by creating aromatic flavor compounds through natural fermentation. This study investigated the natural microbial consortium during the wet process fermentation of coffee onsite in Thailand in order to identify the correlation between microbial diversity and biochemical characteristics including flavor, aroma, and metabolic attributes. Our study found 64 genera of bacteria and 59 genera of yeast/fungi present during the fermentation process. Group of microbes, mainly yeast and lactic acid bacteria, that predominated in the process were significantly correlated with preferable flavor and aroma compounds, including linalyl formate, linalool, cis-isoeugenol, trans-geraniol, and (-)-isopulegol. Some of the detected metabolites were found to be active compounds which could play a role in health.
Collapse
Affiliation(s)
- Tatsaporn Todhanakasem
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (N.V.T.); (S.P.); (S.W.)
| | - Ngo Van Tai
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (N.V.T.); (S.P.); (S.W.)
| | - Soisuda Pornpukdeewattana
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (N.V.T.); (S.P.); (S.W.)
| | - Theppanya Charoenrat
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Centre), Bangkok 10200, Thailand;
| | - Briana M. Young
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA 95616, USA;
| | - Songsak Wattanachaisaereekul
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (N.V.T.); (S.P.); (S.W.)
| |
Collapse
|
8
|
Shiomi N, Furuta M, Sasaki Y, Matsui-Yuasa I, Kiriyama K, Fujita M, Sutoh K, Kojima-Yuasa A. Suppression of Ehrlich ascites tumor cell proliferation via G1 arrest induced by dietary nucleic acid-derived nucleosides. PLoS One 2024; 19:e0305775. [PMID: 39024316 PMCID: PMC11257241 DOI: 10.1371/journal.pone.0305775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
The nucleic acids found in food play a crucial role in maintaining various bodily functions. This study investigated the potential anticancer effects of dietary nucleic acids, an area that is still not fully understood. By utilizing an in vivo mouse model and an in vitro cell model, we discovered an anti-proliferative impact of RNA in both systems. DNA exhibited anti-proliferative effects in the mouse model, while this phenomenon wasn't observed in the in vitro cell model using Ehrlich ascites tumor (EAT) cells. Conversely, DNA hydrolysate demonstrated distinct anti-proliferative effects in EAT cells, suggesting that nucleotides or nucleosides generated during nucleic acid digestion act as active constituents. Furthermore, we examined various nucleosides and two sodium-independent equilibrative nucleoside transporter inhibitors (ENTs), identifying guanosine and 2'-deoxyguanosine as pivotal in the anti-proliferative effect. We also found that the anti-proliferation activity with both nucleosides was suppressed by the treatment of dipyridamole, a non-selective inhibitor for ENT1 and ENT2, but not nitrobenzylthioinosine, a low inhibitor for ENT2. The uptake of these compounds into cells is likely facilitated by ENT2. These nucleotides impeded the progression of cancer cells from the G1 phase to the S phase in the cell cycle. Another significant finding is the increased expression of CCAAT/enhancer-binding protein (C/EBPβ) induced by guanosine and 2'-deoxyguanosine. Furthermore, immunostaining revealed that C/EBPβ diffuses into the nucleus, indicating its presence. This suggests that guanosine or 2-deoxyguanosine induces G1 arrest in cancer cells via the activation of C/EBPβ. Encouraged by these promising results, guanosine and 2'-deoxyguanosine show potential applications in cancer prevention.
Collapse
Affiliation(s)
- Nahoko Shiomi
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Mamia Furuta
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Yutaro Sasaki
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka, Japan
| | - Isao Matsui-Yuasa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka, Japan
| | - Keisuke Kiriyama
- Fordays Co., Ltd., Tokyo, Japan
- Fordays Nutritional Research Center, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mica Fujita
- Fordays Co., Ltd., Tokyo, Japan
- Fordays Nutritional Research Center, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Keita Sutoh
- Fordays Co., Ltd., Tokyo, Japan
- Fordays Nutritional Research Center, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akiko Kojima-Yuasa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
9
|
Tasca CI, Zuccarini M, Di Iorio P, Ciruela F. Lessons from the physiological role of guanosine in neurodegeneration and cancer: Toward a multimodal mechanism of action? Purinergic Signal 2024:10.1007/s11302-024-10033-y. [PMID: 39004650 DOI: 10.1007/s11302-024-10033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Neurodegenerative diseases and brain tumours represent important health challenges due to their severe nature and debilitating consequences that require substantial medical care. Interestingly, these conditions share common physiological characteristics, namely increased glutamate, and adenosine transmission, which are often associated with cellular dysregulation and damage. Guanosine, an endogenous nucleoside, is safe and exerts neuroprotective effects in preclinical models of excitotoxicity, along with cytotoxic effects on tumour cells. However, the lack of well-defined mechanisms of action for guanosine hinders a comprehensive understanding of its physiological effects. In fact, the absence of specific receptors for guanosine impedes the development of structure-activity research programs to develop guanosine derivatives for therapeutic purposes. Alternatively, given its apparent interaction with the adenosinergic system, it is plausible that guanosine exerts its neuroprotective and anti-tumorigenic effects by modulating adenosine transmission through undisclosed mechanisms involving adenosine receptors, transporters, and purinergic metabolism. Here, several potential molecular mechanisms behind the protective actions of guanosine will be discussed. First, we explore its potential interaction with adenosine receptors (A1R and A2AR), including the A1R-A2AR heteromer. In addition, we consider the impact of guanosine on extracellular adenosine levels and the role of guanine-based purine-converting enzymes. Collectively, the diverse cellular functions of guanosine as neuroprotective and antiproliferative agent suggest a multimodal and complementary mechanism of action.
Collapse
Affiliation(s)
- Carla Inês Tasca
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
- Laboratory of Neurochemistry-4, Neuroscience Program/Biochemistry Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100, Chieti, Italy
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907L'Hospitalet de Llobregat, Bellvitge, Spain
| |
Collapse
|
10
|
Zhang K, Qin M, Hou Y, Zhang W, Wang Z, Wang H. Efficient production of guanosine in Escherichia coli by combinatorial metabolic engineering. Microb Cell Fact 2024; 23:182. [PMID: 38898430 PMCID: PMC11186194 DOI: 10.1186/s12934-024-02452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Guanosine is a purine nucleoside that is widely used as a raw material for food additives and pharmaceutical products. Microbial fermentation is the main production method of guanosine. However, the guanosine-producing strains possess multiple metabolic pathway interactions and complex regulatory mechanisms. The lack of strains with efficiently producing-guanosine greatly limited industrial application. RESULTS We attempted to efficiently produce guanosine in Escherichia coli using systematic metabolic engineering. First, we overexpressed the purine synthesis pathway from Bacillus subtilis and the prs gene, and deleted three genes involved in guanosine catabolism to increase guanosine accumulation. Subsequently, we attenuated purA expression and eliminated feedback and transcription dual inhibition. Then, we modified the metabolic flux of the glycolysis and Entner-Doudoroff (ED) pathways and performed redox cofactors rebalancing. Finally, transporter engineering and enhancing the guanosine synthesis pathway further increased the guanosine titre to 134.9 mg/L. After 72 h of the fed-batch fermentation in shake-flask, the guanosine titre achieved 289.8 mg/L. CONCLUSIONS Our results reveal that the guanosine synthesis pathway was successfully optimized by combinatorial metabolic engineering, which could be applicable to the efficient synthesis of other nucleoside products.
Collapse
Affiliation(s)
- Kun Zhang
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Mengxing Qin
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yu Hou
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wenwen Zhang
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Zhenyu Wang
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Hailei Wang
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
11
|
Sha H, Li S, Li J, Zhao J, Su D. Widely Targeted Metabolomics and Network Pharmacology Reveal the Nutritional Potential of Yellowhorn ( Xanthoceras sorbifolium Bunge) Leaves and Flowers. Foods 2024; 13:1274. [PMID: 38672945 PMCID: PMC11049039 DOI: 10.3390/foods13081274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Yellowhorn (Xanthoceras sorbifolium Bunge) is a unique oilseed tree in China with high edible and medicinal value. However, the application potential of yellowhorn has not been adequately explored. In this study, widely targeted metabolomics (HPLC-MS/MS and GC-MS) and network pharmacology were applied to investigate the nutritional potential of yellowhorn leaves and flowers. The widely targeted metabolomics results suggested that the yellowhorn leaf contains 948 non-volatile metabolites and 638 volatile metabolites, while the yellowhorn flower contains 976 and 636, respectively. A non-volatile metabolite analysis revealed that yellowhorn leaves and flowers contain a variety of functional components beneficial to the human body, such as terpenoids, flavonoids, alkaloids, lignans and coumarins, phenolic acids, amino acids, and nucleotides. An analysis of volatile metabolites indicated that the combined action of various volatile compounds, such as 2-furanmethanol, β-icon, and 2-methyl-3-furanthiol, provides the special flavor of yellowhorn leaves and flowers. A network pharmacology analysis showed that various components in the flowers and leaves of yellowhorn have a wide range of biological activities. This study deepens our understanding of the non-volatile and volatile metabolites in yellowhorn and provides a theoretical basis and data support for the whole resource application of yellowhorn.
Collapse
Affiliation(s)
- Haojie Sha
- Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China; (H.S.); (J.L.); (J.Z.)
| | - Shouke Li
- Shandong Woqi Agricultural Development Co., Ltd., Weifang 262100, China;
| | - Jiaxing Li
- Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China; (H.S.); (J.L.); (J.Z.)
| | - Junying Zhao
- Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China; (H.S.); (J.L.); (J.Z.)
| | - Dingding Su
- Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China; (H.S.); (J.L.); (J.Z.)
| |
Collapse
|
12
|
Ma G, Kang J, Yu T. Bayesian functional analysis for untargeted metabolomics data with matching uncertainty and small sample sizes. Brief Bioinform 2024; 25:bbae141. [PMID: 38581417 PMCID: PMC10998539 DOI: 10.1093/bib/bbae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024] Open
Abstract
Untargeted metabolomics based on liquid chromatography-mass spectrometry technology is quickly gaining widespread application, given its ability to depict the global metabolic pattern in biological samples. However, the data are noisy and plagued by the lack of clear identity of data features measured from samples. Multiple potential matchings exist between data features and known metabolites, while the truth can only be one-to-one matches. Some existing methods attempt to reduce the matching uncertainty, but are far from being able to remove the uncertainty for most features. The existence of the uncertainty causes major difficulty in downstream functional analysis. To address these issues, we develop a novel approach for Bayesian Analysis of Untargeted Metabolomics data (BAUM) to integrate previously separate tasks into a single framework, including matching uncertainty inference, metabolite selection and functional analysis. By incorporating the knowledge graph between variables and using relatively simple assumptions, BAUM can analyze datasets with small sample sizes. By allowing different confidence levels of feature-metabolite matching, the method is applicable to datasets in which feature identities are partially known. Simulation studies demonstrate that, compared with other existing methods, BAUM achieves better accuracy in selecting important metabolites that tend to be functionally consistent and assigning confidence scores to feature-metabolite matches. We analyze a COVID-19 metabolomics dataset and a mouse brain metabolomics dataset using BAUM. Even with a very small sample size of 16 mice per group, BAUM is robust and stable. It finds pathways that conform to existing knowledge, as well as novel pathways that are biologically plausible.
Collapse
Affiliation(s)
- Guoxuan Ma
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jian Kang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tianwei Yu
- Shenzhen Research Institute of Big Data, School of Data Science, The Chinese University of Hong Kong - Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| |
Collapse
|
13
|
Dos Santos B, Piermartiri T, Tasca CI. The impact of purine nucleosides on neuroplasticity in the adult brain. Purinergic Signal 2024:10.1007/s11302-024-09988-9. [PMID: 38367178 DOI: 10.1007/s11302-024-09988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/19/2024] Open
Abstract
Neuroplasticity refers to the nervous system's ability to adapt and reorganize its cell structures and neuronal networks in response to internal and external stimuli. In adults, this process involves neurogenesis, synaptogenesis, and synaptic and neurochemical plasticity. Several studies have reported the significant impact of the purinergic system on neuroplasticity modulation. And, there is considerable evidence supporting the role of purine nucleosides, such as adenosine, inosine, and guanosine, in this process. This review presents extensive research on how these nucleosides enhance the neuroplasticity of the adult central nervous system, particularly in response to damage. The mechanisms through which these nucleosides exert their effects involve complex interactions with various receptors and signaling pathways. Adenosine's influence on neurogenesis involves interactions with adenosine receptors, specifically A1R and A2AR. A1R activation appears to inhibit neuronal differentiation and promote astrogliogenesis, while A2AR activation supports neurogenesis, neuritogenesis, and synaptic plasticity. Inosine and guanosine positively impact cell proliferation, neurogenesis, and neuritogenesis. Inosine seems to modulate extracellular adenosine levels, and guanosine might act through interactions between purinergic and glutamatergic systems. Additionally, the review discusses the potential therapeutic implications of purinergic signaling in neurodegenerative and neuropsychiatric diseases, emphasizing the importance of these nucleosides in the neuroplasticity of brain function and recovery.
Collapse
Affiliation(s)
- Beatriz Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Tetsade Piermartiri
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
- Programa de Pós-Graduação Em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
14
|
Sheema, Zafar S, Uddin G, Rashid A. A comprehensive review on the ethnobotanical, phytochemical, and pharmacological aspects of the genus Malvastrum. Fitoterapia 2023; 171:105666. [PMID: 37673276 DOI: 10.1016/j.fitote.2023.105666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
The genus Malvastrum, from the family Malvaceae, is a small genus of twenty four species, distributed worldwide. Some of the species have a long and rich history of ethnobotanical and traditional medicinal uses. Few reports of systematic scientific studies can be found in the literature which highlight the rich chemical profile and pharmacological properties of the genus. This is the first ever attempt to compile the available literature and provide a critical overview for future studies on the genus. For this purpose, several databases, such as PubMed, Scifinder, Elsevier, Google Scholar, and others were utilized. Literature records the presence of bioactive metabolites in the genus, effective against dysentery, gastrointestinal distress, fever, enteritis, hepatitis, cough, sore throat, arthritis, and diabetes. Seventy four biologically active secondary metabolites have been identified from different species of Malvastrum, including four pure isolates. Furthermore, this report also documents their potential properties. This article may prove as a milestone for new researchers, eager to work on Malvastrum species and perform further in-depth studies on this genus.
Collapse
Affiliation(s)
- Sheema
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Salman Zafar
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan.
| | - Ghias Uddin
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Afsana Rashid
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| |
Collapse
|
15
|
Liu D, Liu X, Huang S, Shen X, Zhang X, Zhang L, Zhang Y. Simultaneous Mapping of Amino Neurotransmitters and Nucleoside Neuromodulators on Brain Tissue Sections by On-Tissue Chemoselective Derivatization and MALDI-MSI. Anal Chem 2023; 95:16549-16557. [PMID: 37906039 DOI: 10.1021/acs.analchem.3c02674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Neurotransmitters (NTs) and neuromodulators (NMs) are two of the most important neurochemicals in the brain, and their imbalances in specific brain regions are thought to underlie certain neurological disorders. We present an on-tissue chemoselective derivatization mass spectrometry imaging (OTCD-MSI) method for the simultaneous mapping of NTs and NMs. Our derivatization system consists of a pyridiniumyl-benzylboronic acid based derivatization reagent and pyrylium salt, which facilitate covalent charge labeling of molecules containing cis-diol and primary amino, respectively. These derivatization systems improved the detection sensitivity of matrix-assisted laser desorption/ionization (MALDI)-MSI and simplified the identification of amino NTs and nucleoside NMs by the innate chemoselectivity of derivatization reagents and the unique isotopic pattern of boron-derivative reagents. We demonstrated the ability of the developed method on brain sections from a hypoxia mouse model and control. The simultaneous imaging of NTs and NMs provided a method for exploring how hypoxic stress and drugs affect specific brain regions through neurotransmitter modulation.
Collapse
Affiliation(s)
- Dan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Xinxin Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Shuai Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- University of Chinese Academy of Science, Beijing 100039, PR China
| | - Xue Shen
- Innovative Drug Research Center of Shanxi Province, Northwestern University, Xi'an 710127, PR China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| |
Collapse
|
16
|
Godoy-Gallardo M, Merino-Gómez M, Mateos-Timoneda MA, Eckhard U, Gil FJ, Perez RA. Advanced Binary Guanosine and Guanosine 5'-Monophosphate Cell-Laden Hydrogels for Soft Tissue Reconstruction by 3D Bioprinting. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37319328 DOI: 10.1021/acsami.2c23277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soft tissue defects or pathologies frequently necessitate the use of biomaterials that provide the volume required for subsequent vascularization and tissue formation as autrografts are not always a feasible alternative. Supramolecular hydrogels represent promising candidates because of their 3D structure, which resembles the native extracellular matrix, and their capacity to entrap and sustain living cells. Guanosine-based hydrogels have emerged as prime candidates in recent years since the nucleoside self-assembles into well-ordered structures like G-quadruplexes by coordinating K+ ions and π-π stacking, ultimately forming an extensive nanofibrillar network. However, such compositions were frequently inappropriate for 3D printing due to material spreading and low shape stability over time. Thus, the present work aimed to develop a binary cell-laden hydrogel capable of ensuring cell survival while providing enough stability to ensure scaffold biointegration during soft tissue reconstruction. For that purpose, a binary hydrogel made of guanosine and guanosine 5'-monophosphate was optimized, rat mesenchymal stem cells were entrapped, and the composition was bioprinted. To further increase stability, the printed structure was coated with hyperbranched polyethylenimine. Scanning electron microscopic studies demonstrated an extensive nanofibrillar network, indicating excellent G-quadruplex formation, and rheological analysis confirmed good printing and thixotropic qualities. Additionally, diffusion tests using fluorescein isothiocyanate labeled-dextran (70, 500, and 2000 kDa) showed that nutrients of various molecular weights may diffuse through the hydrogel scaffold. Finally, cells were evenly distributed throughout the printed scaffold, cell survival was 85% after 21 days, and lipid droplet formation was observed after 7 days under adipogenic conditions, indicating successful differentiation and proper cell functioning. To conclude, such hydrogels may enable the 3D bioprinting of customized scaffolds perfectly matching the respective soft tissue defect, thereby potentially improving the outcome of the tissue reconstruction intervention.
Collapse
Affiliation(s)
- Maria Godoy-Gallardo
- Bioengineering Institute of Technology (BIT), International University of Catalonia (UIC), Carrer de Josep Trueta, Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Maria Merino-Gómez
- Bioengineering Institute of Technology (BIT), International University of Catalonia (UIC), Carrer de Josep Trueta, Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Miguel A Mateos-Timoneda
- Bioengineering Institute of Technology (BIT), International University of Catalonia (UIC), Carrer de Josep Trueta, Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Ulrich Eckhard
- Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC), Barcelona Science Park, Baldiri Reixac 15-21, Barcelona 08028, Spain
| | - F Javier Gil
- Bioengineering Institute of Technology (BIT), International University of Catalonia (UIC), Carrer de Josep Trueta, Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Roman A Perez
- Bioengineering Institute of Technology (BIT), International University of Catalonia (UIC), Carrer de Josep Trueta, Sant Cugat del Vallès, Barcelona 08195, Spain
| |
Collapse
|
17
|
Pietrangelo T, Santangelo C, Bondi D, Cocci P, Piccinelli R, Piacenza F, Rosato E, Azman SNA, Binetti E, Farina M, Locatelli M, Brunetti V, Le Donne C, Marramiero L, Di Filippo ES, Verratti V, Fulle S, Scollo V, Palermo F. Endurance-dependent urinary extracellular vesicle signature: shape, metabolic miRNAs, and purine content distinguish triathletes from inactive people. Pflugers Arch 2023; 475:691-709. [PMID: 37156970 DOI: 10.1007/s00424-023-02815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
Extracellular vesicles (EVs) enriched with bioactive molecules have gained considerable attention in nanotechnology because they are critical to intercellular communication while maintaining low immunological impact. Among biological matrices, urine has emerged as a noninvasive source of extracellular-contained liquid biopsy, currently of interest as a readout for physiological adaptations. Therefore, we aimed to evaluate chronic adaptations of endurance sport practice in terms of urinary EV parameters and evaluated by food consumption assessment. Two balanced groups of 13 inactive controls vs. triathlon athletes were enrolled; their urinary EVs were obtained by differential ultracentrifugation and analyzed by dynamic light scattering and transmission electron and atomic force microscopy. The cargo was analyzed by means of purine and miRNA content through HPLC-UV and qRT-PCR. Specific urinary EV signatures differentiated inactive versus endurance-trained in terms of peculiar shape. Particularly, a spheroid shape, smaller size, and lower roughness characterize EVs from triathletes. Metabolic and regulatory miRNAs often associated with skeletal muscle (i.e., miR378a-5p, miR27a-3p, miR133a, and miR206) also accounted for a differential signature. These miRNAs and guanosine in urinary EVs can be used as a readout for metabolic status along with the shape and roughness of EVs, novel informative parameters that are rarely considered. The network models allow scholars to entangle nutritional and exercise factors related to EVs' miRNA and purine content to depict metabolic signatures. All in all, multiplex biophysical and molecular analyses of urinary EVs may serve as promising prospects for research in exercise physiology.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.
| | - Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Raffaela Piccinelli
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Roma, Italy
| | - Francesco Piacenza
- IRCCS-Istituto Nazionale di Riposo e Cura per Anziani, Polo Scientifico e Tecnologico, Centro di Tecnologie Avanzate nell'Invecchiamento, Ancona, Italy
| | - Enrica Rosato
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - S N Afifa Azman
- Department of Information Engineering, Polytechnic University of Marche, Ancona, Italy
| | - Enrico Binetti
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, Lecce, Italy
- Institute for Microelectronics and Microsystems, National Research Council of Italy, Lecce, Italy
| | - Marco Farina
- Department of Information Engineering, Polytechnic University of Marche, Ancona, Italy
| | - Marcello Locatelli
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Virgilio Brunetti
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, Lecce, Italy
| | - Cinzia Le Donne
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Roma, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Ester Sara Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Valentina Scollo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Francesco Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
18
|
Weese-Myers ME, Cryan MT, Witt CE, Caldwell KCN, Modi B, Ross AE. Dynamic and Rapid Detection of Guanosine during Ischemia. ACS Chem Neurosci 2023; 14:1646-1658. [PMID: 37040534 PMCID: PMC10265669 DOI: 10.1021/acschemneuro.3c00048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Guanosine acts in both neuroprotective and neurosignaling pathways in the central nervous system; in this paper, we present the first fast voltammetric measurements of endogenous guanosine release during pre- and post-ischemic conditions. We discuss the metric of our measurements via analysis of event concentration, duration, and interevent time of rapid guanosine release. We observe changes across all three metrics from our normoxic to ischemic conditions. Pharmacological studies were performed to confirm that guanosine release is a calcium-dependent process and that the signaling observed is purinergic. Finally, we show the validity of our ischemic model via staining and fluorescent imaging. Overall, this paper sets the tone for rapid monitoring of guanosine and provides a platform to investigate the extent to which guanosine accumulates at the site of brain injury, i.e., ischemia.
Collapse
Affiliation(s)
- Moriah E. Weese-Myers
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
- Co-first author
| | - Michael T. Cryan
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
- Co-first author
| | - Colby E. Witt
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| | - Kaejaren C. N. Caldwell
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| | - Bindu Modi
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| |
Collapse
|
19
|
Camargo A, Dalmagro AP, Altê GA, Zeni ALB, Tasca CI, Rodrigues ALS. NMDA receptor-mediated modulation on glutamine synthetase and glial glutamate transporter GLT-1 is involved in the antidepressant-like and neuroprotective effects of guanosine. Chem Biol Interact 2023; 375:110440. [PMID: 36878458 DOI: 10.1016/j.cbi.2023.110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Guanosine has been reported to elicit antidepressant-like responses in rodents, but if these actions are associated with its ability to afford neuroprotection against glutamate-induced toxicity still needs to be fully understood. Therefore, this study investigated the antidepressant-like and neuroprotective effects elicited by guanosine in mice and evaluated the possible involvement of NMDA receptors, glutamine synthetase, and GLT-1 in these responses. We found that guanosine (0.05 mg/kg, but not 0.01 mg/kg, p. o.) was effective in producing an antidepressant-like effect and protecting hippocampal and prefrontocortical slices against glutamate-induced damage. Our results also unveiled that ketamine (1 mg/kg, but not 0.1 mg/kg, i. p, an NMDA receptor antagonist) effectively elicited antidepressant-like actions and protected hippocampal and prefrontocortical slices against glutamatergic toxicity. Furthermore, the combined administration of sub-effective doses of guanosine (0.01 mg/kg, p. o.) with ketamine (0.1 mg/kg, i. p.) promoted an antidepressant-like effect and augmented glutamine synthetase activity and GLT-1 immunocontent in the hippocampus, but not in the prefrontal cortex. Our results also showed that the combination of sub-effective doses of ketamine and guanosine, at the same protocol schedule that exhibited an antidepressant-like effect, effectively abolished glutamate-induced damage in hippocampal and prefrontocortical slices. Our in vitro results reinforce that guanosine, ketamine, or sub-effective concentrations of guanosine plus ketamine protect against glutamate exposure by modulating glutamine synthetase activity and GLT-1 levels. Finally, molecular docking analysis suggests that guanosine might interact with NMDA receptors at the ketamine or glycine/d-serine co-agonist binding sites. These findings provide support for the premise that guanosine has antidepressant-like effects and should be further investigated for depression management.
Collapse
Affiliation(s)
- Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Ana P Dalmagro
- Department of Natural Sciences, Center of Natural and Exact Sciences, Universidade Regional de Blumenau, Blumenau CEP, 89030-903, Santa Catarina, Brazil
| | - Glorister A Altê
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Ana Lúcia B Zeni
- Department of Natural Sciences, Center of Natural and Exact Sciences, Universidade Regional de Blumenau, Blumenau CEP, 89030-903, Santa Catarina, Brazil
| | - Carla I Tasca
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil.
| |
Collapse
|
20
|
Li Y, Kim S, Lee S, Kim S. Metabolic effects of diclofenac on the aquatic food chain - 1 H-NMR study of water flea-zebrafish system. Toxicol Res 2023; 39:307-315. [PMID: 37008688 PMCID: PMC10050267 DOI: 10.1007/s43188-022-00167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 02/19/2023] Open
Abstract
In the environment, aquatic organisms are not only directly exposed to pollutants, but the effects can be exacerbated along the food chain. In this study, we investigated the effect of the food (water flea) on the secondary consumer (zebrafish) with the exposure diclofenac (DCF) Both organisms were exposed to an environmentally relevant concentrations (15 µg/L) of diclofenac for five days, and zebrafish were fed exposed and non-exposed water fleas, respectively. Metabolites of the water fleas were directly analyzed using HRMAS NMR, and for zebrafish, polar metabolite were extracted and analyzed using liquid NMR. Metabolic profiling was performed and statistically significant metabolites which affected by DCF exposure were identified. There were more than 20 metabolites with variable importance (VIP) score greater than 1.0 in comparisons in fish groups, and identified metabolites differed depending on the effect of exposure and the effect of food. Specifically, exposure to DCF significantly increased alanine and decreased NAD + in zebrafish, which means energy demand was increased. Additionally, the effects of exposed food decreased in guanosine, a neuroprotective metabolite, which explained that the neurometabolic pathway was perturbated by the feeding of exposed food. Our results which short-term exposed primary consumers to pollutants indirectly affected the metabolism of secondary consumers suggest that the long-term exposure further study remains to be investigated.
Collapse
Affiliation(s)
- Youzhen Li
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busandaehak-ro 63, Geumjeong-gu, 46241 Busan, Republic of Korea
| | - Seonghye Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busandaehak-ro 63, Geumjeong-gu, 46241 Busan, Republic of Korea
| | - Sujin Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busandaehak-ro 63, Geumjeong-gu, 46241 Busan, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busandaehak-ro 63, Geumjeong-gu, 46241 Busan, Republic of Korea
| |
Collapse
|
21
|
Merino-Gómez M, Godoy-Gallardo M, Wendner M, Mateos-Timoneda MA, Gil FJ, Perez RA. Optimization of guanosine-based hydrogels with boric acid derivatives for enhanced long-term stability and cell survival. Front Bioeng Biotechnol 2023; 11:1147943. [PMID: 37020512 PMCID: PMC10069680 DOI: 10.3389/fbioe.2023.1147943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Tissue defects can lead to serious health problems and often require grafts or transplants to repair damaged soft tissues. However, these procedures can be complex and may not always be feasible due to a lack of available tissue. Hydrogels have shown potential as a replacement for tissue grafts due to their ability to support cell survival and encapsulate biomolecules such as growth factors. In particular, guanosine-based hydrogels have been explored as a potential solution, but they often exhibit limited stability which hampers their use in the biofabrication of complex grafts. To address this issue, we explored the use of borate ester chemistry and more complex boric acid derivatives to improve the stability and properties of guanosine-based hydrogels. We hypothesized that the aromatic rings in these derivatives would enhance the stability and printability of the hydrogels through added π-π stack interactions. After optimization, 13 compositions containing either 2-naphthylboronic acid or boric acid were selected. Morphology studies shows a well-defined nanofibrilar structure with good printable properties (thixotropic behaviour, print fidelity and printability). Moreover, the pH of all tested hydrogels was within the range suitable for cell viability (7.4-8.3). Nevertheless, only the boric acid-based formulations were stable for at least 7 days. Thus, our results clearly demonstrated that the presence of additional aromatic rings did actually impair the hydrogel properties. We speculate that this is due to steric hindrance caused by adjacent groups, which disrupt the correct orientation of the aromatic groups required for effective π-π stack interactions of the guanosine building block. Despite this drawback, the developed guanosine-boric acid hydrogel exhibited good thixotropic properties and was able to support cell survival, proliferation, and migration. For instance, SaOS-2 cells planted on these printed structures readily migrated into the hydrogel and showed nearly 100% cell viability after 7 days. In conclusion, our findings highlight the potential of guanosine-boric acid hydrogels as tissue engineering scaffolds that can be readily enhanced with living cells and bioactive molecules. Thus, our work represents a significant advancement towards the development of functionalized guanosine-based hydrogels.
Collapse
Affiliation(s)
- Maria Merino-Gómez
- Bioengineering Institute of Technology (BIT), Faculty of Medicine and Health Sciences, International University of Catalonia (UIC), Sant Cugat del Vallès, Spain
| | - Maria Godoy-Gallardo
- Bioengineering Institute of Technology (BIT), Faculty of Medicine and Health Sciences, International University of Catalonia (UIC), Sant Cugat del Vallès, Spain
| | - Mathias Wendner
- Bioengineering Institute of Technology (BIT), Faculty of Medicine and Health Sciences, International University of Catalonia (UIC), Sant Cugat del Vallès, Spain
| | - Miguel A. Mateos-Timoneda
- Bioengineering Institute of Technology (BIT), Faculty of Medicine and Health Sciences, International University of Catalonia (UIC), Sant Cugat del Vallès, Spain
| | - F. Javier Gil
- Bioengineering Institute of Technology (BIT), Faculty of Medicine and Health Sciences, International University of Catalonia (UIC), Sant Cugat del Vallès, Spain
- Department of Dentistry, Faculty of Dentistry, International University of Catalonia (UIC), Sant Cugat del Vallès, Spain
| | - Roman A. Perez
- Bioengineering Institute of Technology (BIT), Faculty of Medicine and Health Sciences, International University of Catalonia (UIC), Sant Cugat del Vallès, Spain
| |
Collapse
|
22
|
Zuccarini M, Pruccoli L, Balducci M, Giuliani P, Caciagli F, Ciccarelli R, Di Iorio P. Influence of Guanine-Based Purines on the Oxidoreductive Reactions Involved in Normal or Altered Brain Functions. J Clin Med 2023; 12:jcm12031172. [PMID: 36769818 PMCID: PMC9917437 DOI: 10.3390/jcm12031172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The production of reactive oxygen species (ROS) in the brain is homeostatically controlled and contributes to normal neural functions. Inefficiency of control mechanisms in brain aging or pathological conditions leads to ROS overproduction with oxidative neural cell damage and degeneration. Among the compounds showing therapeutic potential against neuro-dysfunctions induced by oxidative stress are the guanine-based purines (GBPs), of which the most characterized are the nucleoside guanosine (GUO) and the nucleobase guanine (GUA), which act differently. Indeed, the administration of GUO to in vitro or in vivo models of acute brain injury (ischemia/hypoxia or trauma) or chronic neurological/neurodegenerative disorders, exerts neuroprotective and anti-inflammatory effects, decreasing the production of reactive radicals and improving mitochondrial function via multiple molecular signals. However, GUO administration to rodents also causes an amnesic effect. In contrast, the metabolite, GUA, could be effective in memory-related disorders by transiently increasing ROS production and stimulating the nitric oxide/soluble guanylate cyclase/cGMP/protein kinase G cascade, which has long been recognized as beneficial for cognitive function. Thus, it is worth pursuing further studies to ascertain the therapeutic role of GUO and GUA and to evaluate the pathological brain conditions in which these compounds could be more usefully used.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Letizia Pruccoli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy
| | - Martina Balducci
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Renata Ciccarelli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
- Correspondence:
| |
Collapse
|
23
|
Veeraswamy SD, Raju I, Mohan S. Phytochemical Evaluation and Antioxidant Potential of Polyherbal Extract Mixture-an In Vitro and In Silico Study. Appl Biochem Biotechnol 2023; 195:672-692. [PMID: 36129597 DOI: 10.1007/s12010-022-04141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Standardisation of polyherbal formulations plays a key role in estimating the quality and safety of drugs. In this study, a novel polyherbal formulation was prepared for the treatment of diabetic nephropathy and it was attempted to evaluate for its safety and efficacy against free radicals. To ascertain the safety of the formulation, individual herbs and polyherbal formulation have been screened for microbial load, heavy metals, pesticide residues and aflatoxins according to Ayush guidelines. Phytochemical analysis was carried out using standard procedures and GCMS analysis to identify the bioactive compounds. Antioxidant methods such as DPPH, nitric oxide, hydrogen peroxide, hydroxyl and superoxide radical scavenging assays were undertaken. To predict the mechanism behind the antioxidant efficacy, a molecular docking analysis was performed against Keap1/Nrf2 (PDB ID: 2FLU) protein using AutoDock Vina software. Phytochemical analysis showed the presence of alkaloids, tannins, flavones, glycosides, polyphenols, phytosterols and saponins. The results of in vitro antioxidant studies showed increase in percentage inhibition with increase in concentration and found no significant difference compare with standards. Among the 15 bioactive compounds identified from GCMS analysis, guanosine showed high binding affinity with Keap1/Nrf2 and interacting with similar residues as that of standard ascorbic acid which is analysed through molecular docking. Based on the results, it has been concluded that the safety parameters of polyherbal formulation were found within specified limits of Ayush guidelines and its efficacy against oxidative stress plays an effective role to treat diabetic nephropathy due to its synergistic antioxidant effect.
Collapse
Affiliation(s)
- Sharmila Devi Veeraswamy
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, 603203, Tamil Nadu, India
| | - Ilavarasan Raju
- Captain Srinivasa Murthy Regional Ayurveda Drug Development Institute, CCRAS, Chennai, 600106, Tamil Nadu, India
| | - Sumithra Mohan
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
24
|
de Mariz E Miranda LS. The synergy between nucleotide biosynthesis inhibitors and antiviral nucleosides: New opportunities against viral infections? Arch Pharm (Weinheim) 2023; 356:e2200217. [PMID: 36122181 DOI: 10.1002/ardp.202200217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023]
Abstract
5'-Phosphorylated nucleoside derivatives are molecules that can be found in all living organisms and viruses. Over the last century, the development of structural analogs that could disrupt the transcription and translation of genetic information culminated in the development of clinically relevant anticancer and antiviral drugs. However, clinically effective broad-spectrum antiviral compounds or treatments are lacking. This viewpoint proposes that molecules that inhibit nucleotide biosynthesis may sensitize virus-infected cells toward direct-acting antiviral nucleosides. Such potentially synergistic combinations might allow the repurposing of drugs, leading to the development of new combination therapies.
Collapse
Affiliation(s)
- Leandro S de Mariz E Miranda
- Department of Organic Chemistry, Chemistry Institute, Biocatalysis and Organic Synthesis Group, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Luo P, Li L, Huang J, Mao D, Lou S, Ruan J, Chen J, Tang R, Shi Y, Zhou S, Yang H. The role of SUMOylation in the neurovascular dysfunction after acquired brain injury. Front Pharmacol 2023; 14:1125662. [PMID: 37033632 PMCID: PMC10073463 DOI: 10.3389/fphar.2023.1125662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Acquired brain injury (ABI) is the most common disease of the nervous system, involving complex pathological processes, which often leads to a series of nervous system disorders. The structural destruction and dysfunction of the Neurovascular Unit (NVU) are prominent features of ABI. Therefore, understanding the molecular mechanism underlying NVU destruction and its reconstruction is the key to the treatment of ABI. SUMOylation is a protein post-translational modification (PTM), which can degrade and stabilize the substrate dynamically, thus playing an important role in regulating protein expression and biological signal transduction. Understanding the regulatory mechanism of SUMOylation can clarify the molecular mechanism of the occurrence and development of neurovascular dysfunction after ABI and is expected to provide a theoretical basis for the development of potential treatment strategies. This article reviews the role of SUMOylation in vascular events related to ABI, including NVU dysfunction and vascular remodeling, and puts forward therapeutic prospects.
Collapse
Affiliation(s)
- Pengren Luo
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Lin Li
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiashang Huang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Deqiang Mao
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Silong Lou
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jian Ruan
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jie Chen
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Ronghua Tang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - You Shi
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Shuai Zhou
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- *Correspondence: Shuai Zhou, ; Haifeng Yang,
| | - Haifeng Yang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
- *Correspondence: Shuai Zhou, ; Haifeng Yang,
| |
Collapse
|
26
|
Guanosine Prevents Spatial Memory Impairment and Hippocampal Damage Following Amyloid-β 1-42 Administration in Mice. Metabolites 2022; 12:metabo12121207. [PMID: 36557245 PMCID: PMC9780960 DOI: 10.3390/metabo12121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative illness responsible for cognitive impairment and dementia. Accumulation of amyloid-beta (Aβ) peptides in neurons and synapses causes cell metabolism to unbalance, and the production of reactive oxygen species (ROS), leading to neuronal death and cognitive damage. Guanosine is an endogenous nucleoside recognized as a neuroprotective agent since it prevents glutamate-induced neurotoxicity by a mechanism not yet completely elucidated. In this study, we evaluated behavioral and biochemical effects in the hippocampus caused by the intracerebroventricular (i.c.v.) infusion of Aβ1-42 peptide (400 pmol/site) in mice, and the neuroprotective effect of guanosine (8 mg/kg, i.p.). An initial evaluation on the eighth day after Aβ1-42 infusion showed no changes in the tail suspension test, although ex vivo analyses in hippocampal slices showed increased ROS production. In the second protocol, on the tenth day following Aβ1-42 infusion, no effect was observed in the sucrose splash test, but a reduction in the recognition index in the object location test showed impaired spatial memory. Analysis of hippocampal slices showed no ROS production and mitochondrial membrane potential alteration, but a tendency to increase glutamate release and a significant lactate release, pointing to a metabolic alteration. Those effects were accompanied by decreased cell viability and increased membrane damage. Guanosine treatment prevented behavioral and biochemical alterations evoked by Aβ1-42, suggesting a potential role against behavioral and biochemical damage evoked by Aβ in the hippocampus.
Collapse
|
27
|
Deng TT, Xie YB, Sun WW, Huang J, He TT, Liu JK, Wu B. Synthesis of Nucleoside and Nucleotide Analogues by Cyclization of the Guanine Base with 1,1,3,3-Tetramethoxypropane. Org Lett 2022; 24:7834-7838. [DOI: 10.1021/acs.orglett.2c03252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ting-Ting Deng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Yi-Bing Xie
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Wen-Wu Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jie Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ting-Ting He
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Bin Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
28
|
Theoretical study on the hydrolytic deamination reaction mechanism of guanine and (H2O)n. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Wang Y, Zhou H, Zhou K, Han Q, Wang Z, Xu B. Study on the roles of microorganisms and endogenous enzymes in the evolution of metabolic characteristics of lean portion during traditional Chinese bacon processing. Food Res Int 2022; 162:112087. [DOI: 10.1016/j.foodres.2022.112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/11/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022]
|
30
|
Camargo A, Bettio LEB, Rosa PB, Rosa JM, Altê GA, Rodrigues ALS. The antidepressant-like effect of guanosine involves the modulation of adenosine A 1 and A 2A receptors. Purinergic Signal 2022:10.1007/s11302-022-09898-8. [PMID: 36166131 DOI: 10.1007/s11302-022-09898-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
Guanosine has been considered a promising candidate for antidepressant responses, but if this nucleoside could modulate adenosine A1 (A1R) and A2A (A2AR) receptors to exert antidepressant-like actions remains to be elucidated. This study investigated the role of A1R and A2AR in the antidepressant-like response of guanosine in the mouse tail suspension test and molecular interactions between guanosine and A1R and A2AR by docking analysis. The acute (60 min) administration of guanosine (0.05 mg/kg, p.o.) significantly decreased the immobility time in the tail suspension test, without affecting the locomotor performance in the open-field test, suggesting an antidepressant-like effect. This behavioral response was paralleled with increased A1R and reduced A2AR immunocontent in the hippocampus, but not in the prefrontal cortex, of mice. Guanosine-mediated antidepressant-like effect was not altered by the pretreatment with caffeine (3 mg/kg, i.p., a non-selective adenosine A1R/A2AR antagonist), 8-cyclopentyl-1,3-dipropylxanthine (DPCPX - 2 mg/kg, i.p., a selective adenosine A1R antagonist), or 4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo-{2,3-a}{1,3,5}triazin-5-yl-amino]ethyl)-phenol (ZM241385 - 1 mg/kg, i.p., a selective adenosine A2AR antagonist). However, the antidepressant-like response of guanosine was completely abolished by adenosine (0.5 mg/kg, i.p., a non-selective adenosine A1R/A2AR agonist), N-6-cyclohexyladenosine (CHA - 0.05 mg/kg, i.p., a selective adenosine A1 receptor agonist), and N-6-[2-(3,5-dimethoxyphenyl)-2-(methylphenyl)ethyl]adenosine (DPMA - 0.1 mg/kg, i.p., a selective adenosine A2A receptor agonist). Finally, docking analysis also indicated that guanosine might interact with A1R and A2AR at the adenosine binding site. Overall, this study reinforces the antidepressant-like of guanosine and unveils a previously unexplored modulation of the modulation of A1R and A2AR in its antidepressant-like effect.
Collapse
Affiliation(s)
- Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, FlorianopolisSanta Catarina, 88040-900, Brazil
| | - Luis E B Bettio
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, FlorianopolisSanta Catarina, 88040-900, Brazil
| | - Priscila B Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, FlorianopolisSanta Catarina, 88040-900, Brazil
| | - Julia M Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, FlorianopolisSanta Catarina, 88040-900, Brazil
| | - Glorister A Altê
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, FlorianopolisSanta Catarina, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, FlorianopolisSanta Catarina, 88040-900, Brazil.
| |
Collapse
|
31
|
Gambino G, Giglia G, Gallo D, Scordino M, Giardina C, Zuccarini M, Di Iorio P, Giuliani P, Ciruela F, Ferraro G, Mudò G, Sardo P, Di Liberto V. Guanosine modulates K + membrane currents in SH-SY5Y cells: involvement of adenosine receptors. Pflugers Arch 2022; 474:1133-1145. [PMID: 36048287 PMCID: PMC9560947 DOI: 10.1007/s00424-022-02741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/09/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022]
Abstract
Guanosine (GUO), widely considered a key signaling mediator, is implicated in the regulation of several cellular processes. While its interaction with neural membranes has been described, GUO still is an orphan neuromodulator. It has been postulated that GUO may eventually interact with potassium channels and adenosine (ADO) receptors (ARs), both particularly important for the control of cellular excitability. Accordingly, here, we investigated the effects of GUO on the bioelectric activity of human neuroblastoma SH-SY5Y cells by whole-cell patch-clamp recordings. We first explored the contribution of voltage-dependent K+ channels and, besides this, the role of ARs in the regulation of GUO-dependent cellular electrophysiology. Our data support that GUO is able to specifically modulate K+-dependent outward currents over cell membranes. Importantly, administering ADO along with GUO potentiates its effects. Overall, these results suggested that K+ outward membrane channels may be targeted by GUO with an implication of ADO receptors in SH-SY5Y cells, but also support the hypothesis of a functional interaction of the two ligands. The present research runs through the leitmotif of the deorphanization of GUO, adding insight on the interplay with adenosinergic signaling and suggesting GUO as a powerful modulator of SH-SY5Y excitability.
Collapse
Affiliation(s)
- Giuditta Gambino
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| | - Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Daniele Gallo
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Miriana Scordino
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Costanza Giardina
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, CAST, "G. D'Annunzio" University Foundation, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, CAST, "G. D'Annunzio" University Foundation, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, CAST, "G. D'Annunzio" University Foundation, Chieti, Italy
| | - Francisco Ciruela
- Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Giuseppe Ferraro
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Giuseppa Mudò
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Pierangelo Sardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| |
Collapse
|
32
|
Guanosine as a promising target for fast-acting antidepressant responses. Pharmacol Biochem Behav 2022; 218:173422. [PMID: 35732211 DOI: 10.1016/j.pbb.2022.173422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
Although the rapid-onset and sustained antidepressant responses elicited by ketamine have gained considerable attention in recent years, it has some knock-on effects that limit its widespread clinical use. Therefore, ketamine is considered the prototype for the new generation of glutamate-based rapid-acting antidepressants. Within this context, it has been demonstrated that guanosine, an endogenous guanine-based purine, has overlapping mechanisms of action with ketamine and is effective in eliciting fast antidepressant-like responses and even potentiating ketamine's actions in preclinical studies. Here, we review the recent findings regarding the ability of guanosine to produce rapid-acting antidepressant-like effects and we provide an overview of the molecular mechanisms underlying its antidepressant-like actions. Moreover, the neurobiological mechanisms underpinning the ability of guanosine in boosting the antidepressant-like and pro-synaptogenic effects elicited by ketamine are also reported. Taken together, this review opens perspectives for the use of guanosine alone or in combination with ketamine for the management of treatment-resistant depression.
Collapse
|
33
|
Jang D, Lee E, Lee S, Kwon Y, Kang KS, Kim CE, Kim D. System-level investigation of anti-obesity effects and the potential pathways of Cordyceps militaris in ovariectomized rats. BMC Complement Med Ther 2022; 22:132. [PMID: 35550138 PMCID: PMC9102749 DOI: 10.1186/s12906-022-03608-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/21/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cordyceps species have been used as tonics to enhance energy, stamina, and libido in traditional Asian medicine for more than 1600 years, indicating their potential for improving reproductive hormone disorders and energy metabolic diseases. Among Cordyceps, Cordyceps militaris has been reported to prevent metabolic syndromes including obesity and benefit the reproductive hormone system, suggesting that Cordyceps militaris can also regulate obesity induced by the menopause. We investigated the effectiveness of Cordyceps militaris extraction (CME) on menopausal obesity and its mechanisms. METHODS We applied an approach combining in vivo, in vitro, and in silico methods. Ovariectomized rats were administrated CME, and their body weight, area of adipocytes, liver and uterus weight, and lipid levels were measured. Next, after the exposure of MCF-7 human breast cancer cells to CME, cell proliferation and the phosphorylation of estrogen receptor and mitogen-activated protein kinases (MAPK) were measured. Finally, network pharmacological methods were applied to predict the anti-obesity mechanisms of CME. RESULTS CME prevented overweight, fat accumulation, liver hypertrophy, and lowered triglyceride levels, some of which were improved in a dose-dependent manner. In MCF-7 cell lines, CME showed not only estrogen receptor agonistic activity through an increase in cell proliferation and the phosphorylation of estrogen receptors, but also phosphorylation of extracellular-signal-regulated kinase and p38. In the network pharmacological analysis, bioactive compounds of CME such as cordycepin, adenine, and guanosine were predicted to interact with non-overlapping genes. The targeted genes were related to the insulin signaling pathway, insulin resistance, the MARK signaling pathway, the PI3K-Akt signaling pathway, and the estrogen signaling pathway. CONCLUSIONS These results suggest that CME has anti-obesity effects in menopause and estrogenic agonistic activity. Compounds in CME have the potential to regulate obesity-related and menopause-related pathways. This study will contribute to developing the understanding of anti-obesity effects and mechanisms of Cordyceps militaris.
Collapse
Affiliation(s)
- Dongyeop Jang
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam, 13120 Korea
| | - Eunjoo Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120 Korea
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120 Korea
| | - Yongsam Kwon
- Dong-A Pharmaceutical Co., LTD, Yongin, 17073 Korea
| | - Ki Sung Kang
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam, 13120 Korea
| | - Chang-Eop Kim
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam, 13120 Korea
| | - Daeyoung Kim
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120 Korea
| |
Collapse
|
34
|
Kiziltan T, Baran A, Kankaynar M, Şenol O, Sulukan E, Yildirim S, Ceyhun SB. Effects of the food colorant carmoisine on zebrafish embryos at a wide range of concentrations. Arch Toxicol 2022; 96:1089-1099. [PMID: 35146542 PMCID: PMC8831007 DOI: 10.1007/s00204-022-03240-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 12/04/2022]
Abstract
Since the middle of the twentieth century, the use of dyes has become more common in every food group as well as in the pharmaceutical, textile and cosmetic industries. Azo dyes, including carmoisine, are the most important of the dye classes with the widest color range. In this study, the effects of carmoisine exposure on the embryonic development of zebrafish at a wide dose scale, including recommended and overexposure doses (from 4 to 2000 ppm), were investigated in detail. For this purpose, many morphological and physiological parameters were examined in zebrafish exposed to carmoisine at determined doses for 96 h, and the mechanisms of action of the changes in these parameters were tried to be clarified with the metabolite levels determined. The no observed effect concentration (NOEC) and median lethal concentration (LC50) were recorded at 5 ppm and 1230.53 ppm dose at 96 hpf, respectively. As a result, it was determined that the applied carmoisine caused serious malformations, reduction in height and eye diameter, increase in the number of free oxygen radicals, in apoptotic cells and in lipid accumulation, decrease in locomotor activity depending on the dose and at the highest dose, decrease in blood flow rate. In the metabolome analysis performed to elucidate the metabolism underlying all these changes, 45 annotated metabolites were detected.
Collapse
Affiliation(s)
- Tuba Kiziltan
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
- Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Alper Baran
- Department of Food Quality Control and Analysis, Technical Vocational School, Atatürk University, Erzurum, Turkey
| | - Meryem Kankaynar
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
- Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Onur Şenol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240, Erzurum, Turkey
| | - Serkan Yildirim
- Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey.
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
35
|
Wang Y, Wei P, Yan F, Luo Y, Zhao G. Animal Models of Epilepsy: A Phenotype-oriented Review. Aging Dis 2022; 13:215-231. [PMID: 35111370 PMCID: PMC8782545 DOI: 10.14336/ad.2021.0723] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
Epilepsy is a serious neurological disorder characterized by abnormal, recurrent, and synchronous discharges in the brain. Long-term recurrent seizure attacks can cause serious damage to brain function, which is usually observed in patients with temporal lobe epilepsy. Controlling seizure attacks is vital for the treatment and prognosis of epilepsy. Animal models, such as the kindling model, which was the most widely used model in the past, allow the understanding of the potential epileptogenic mechanisms and selection of antiepileptic drugs. In recent years, various animal models of epilepsy have been established to mimic different seizure types, without clear merits and demerits. Accordingly, this review provides a summary of the views mentioned above, aiming to provide a reference for animal model selection.
Collapse
Affiliation(s)
- Yilin Wang
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Penghu Wei
- 1Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Feng Yan
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yumin Luo
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,3Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Guoguang Zhao
- 1Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,3Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Protection against Amyloid-β Oligomer Neurotoxicity by Small Molecules with Antioxidative Properties: Potential for the Prevention of Alzheimer’s Disease Dementia. Antioxidants (Basel) 2022; 11:antiox11010132. [PMID: 35052635 PMCID: PMC8773221 DOI: 10.3390/antiox11010132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
Soluble oligomeric assemblies of amyloid β-protein (Aβ), called Aβ oligomers (AβOs), have been recognized as primary pathogenetic factors in the molecular pathology of Alzheimer’s disease (AD). AβOs exert neurotoxicity and synaptotoxicity and play a critical role in the pathological progression of AD by aggravating oxidative and synaptic disturbances and tau abnormalities. As such, they are important therapeutic targets. From a therapeutic standpoint, it is not only important to clear AβOs or prevent their formation, it is also beneficial to reduce their neurotoxicity. In this regard, recent studies have reported that small molecules, most with antioxidative properties, show promise as therapeutic agents for reducing the neurotoxicity of AβOs. In this mini-review, we briefly review the significance of AβOs and oxidative stress in AD and summarize studies on small molecules with AβO-neurotoxicity-reducing effects. We also discuss mechanisms underlying the effects of these compounds against AβO neurotoxicity as well as their potential as drug candidates for the prevention and treatment of AD.
Collapse
|
37
|
Metabolic Analysis of the Development of the Plant-Parasitic Cyst Nematodes Heterodera schachtii and Heterodera trifolii by Capillary Electrophoresis Time-of-Flight Mass Spectrometry. Int J Mol Sci 2021; 22:ijms221910488. [PMID: 34638828 PMCID: PMC8508704 DOI: 10.3390/ijms221910488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
The cyst nematodes Heterodera schachtii and Heterodera trifolii, whose major hosts are sugar beet and clover, respectively, damage a broad range of plants, resulting in significant economic losses. Nematodes synthesize metabolites for organismal development and social communication. We performed metabolic profiling of H. schachtii and H. trifolii in the egg, juvenile 2 (J2), and female stages. In all, 392 peaks were analyzed by capillary electrophoresis time-of-flight mass spectrometry, which revealed a lot of similarities among metabolomes. Aromatic amino acid metabolism, carbohydrate metabolism, choline metabolism, methionine salvage pathway, glutamate metabolism, urea cycle, glycolysis, gluconeogenesis, coenzyme metabolism, purine metabolism, pyrimidine metabolism, and tricarboxylic acid (TCA) cycle for energy conversion (β-oxidation and branched-chain amino acid metabolism) energy storage were involved in all stages studied. The egg and female stages synthesized higher levels of metabolites compared to the J2 stage. The key metabolites detected were glycerol, guanosine, hydroxyproline, citric acid, phosphorylcholine, and the essential amino acids Phe, Leu, Ser, and Val. Metabolites, such as hydroxyproline, acetylcholine, serotonin, glutathione, and glutathione disulfide, which are associated with growth and reproduction, mobility, and neurotransmission, predominated in the J2 stage. Other metabolites, such as SAM, 3PSer, 3-ureidopropionic acid, CTP, UDP, UTP, 3-hydroxy-3-methylglutaric acid, 2-amino-2-(hydroxymethyl-1,3-propanediol, 2-hydroxy-4-methylvaleric acid, Gly Asp, glucuronic acid-3 + galacturonic acid-3 Ser-Glu, citrulline, and γ-Glu-Asn, were highly detected in the egg stage. Meanwhile, nicotinamide, 3-PG, F6P, Cys, ADP-Ribose, Ru5P, S7P, IMP, DAP, diethanolamine, p-Hydroxybenzoic acid, and γ-Glu-Arg_divalent were unique to the J2 stage. Formiminoglutamic acid, nicotinaminde riboside + XC0089, putrescine, thiamine 2,3-dihydroxybenzoic acid, 3-methyladenine, caffeic acid, ferulic acid, m-hydrobenzoic acid, o- and p-coumaric acid, and shikimic acid were specific to the female stage. Overall, highly similar identities and quantities of metabolites between the corresponding stages of the two species of nematode were observed. Our results will be a valuable resource for further studies of physiological changes related to the development of nematodes and nematode-plant interactions.
Collapse
|
38
|
Chojnowski K, Opielka M, Nazar W, Kowianski P, Smolenski RT. Neuroprotective Effects of Guanosine in Ischemic Stroke-Small Steps towards Effective Therapy. Int J Mol Sci 2021; 22:6898. [PMID: 34199004 PMCID: PMC8268871 DOI: 10.3390/ijms22136898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Guanosine (Guo) is a nucleotide metabolite that acts as a potent neuromodulator with neurotrophic and regenerative properties in neurological disorders. Under brain ischemia or trauma, Guo is released to the extracellular milieu and its concentration substantially raises. In vitro studies on brain tissue slices or cell lines subjected to ischemic conditions demonstrated that Guo counteracts destructive events that occur during ischemic conditions, e.g., glutaminergic excitotoxicity, reactive oxygen and nitrogen species production. Moreover, Guo mitigates neuroinflammation and regulates post-translational processing. Guo asserts its neuroprotective effects via interplay with adenosine receptors, potassium channels, and excitatory amino acid transporters. Subsequently, guanosine activates several prosurvival molecular pathways including PI3K/Akt (PI3K) and MEK/ERK. Due to systemic degradation, the half-life of exogenous Guo is relatively low, thus creating difficulty regarding adequate exogenous Guo distribution. Nevertheless, in vivo studies performed on ischemic stroke rodent models provide promising results presenting a sustained decrease in infarct volume, improved neurological outcome, decrease in proinflammatory events, and stimulation of neuroregeneration through the release of neurotrophic factors. In this comprehensive review, we discuss molecular signaling related to Guo protection against brain ischemia. We present recent advances, limitations, and prospects in exogenous guanosine therapy in the context of ischemic stroke.
Collapse
Affiliation(s)
- Karol Chojnowski
- Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland; (K.C.); (W.N.)
| | - Mikolaj Opielka
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
- International Research Agenda 3P—Medicine Laboratory, Medical University of Gdańsk, 3A Sklodowskiej-Curie Street, 80-210 Gdansk, Poland
| | - Wojciech Nazar
- Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland; (K.C.); (W.N.)
| | - Przemyslaw Kowianski
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki Street, 80-211 Gdańsk, Poland;
- Institute of Health Sciences, Pomeranian University of Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| |
Collapse
|
39
|
Luo Y, Chen H, Huang R, Wu Q, Li Y, He Y. Guanosine and uridine alleviate airway inflammation via inhibition of the MAPK and NF-κB signals in OVA-induced asthmatic mice. Pulm Pharmacol Ther 2021; 69:102049. [PMID: 34102301 DOI: 10.1016/j.pupt.2021.102049] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/12/2021] [Accepted: 05/30/2021] [Indexed: 02/05/2023]
Abstract
Asthma is one of the most common respiratory diseases. Lack of response or poor adherence to corticosteroids demands the development of new drug candidates for asthma. Endogenous nucleosides could be potential options since uridine has been reported to have an anti-inflammatory effect in asthma model. However, its molecular pathways and whether other nucleosides have similar therapeutic effects remain untouched. Thus, we herein report our investigation into the anti-inflammatory effects of guanosine and uridine, and the related inner signaling pathways in asthma model. Present study shows that administration of guanosine or uridine can reduce lung inflammation in OVA-challenged mice. Total cell counts in BALF, cytokines such as IL-4, IL-6, IL-13, OVA-specific IgE and mRNA level of Cxcl1, Cxlc3, IL-17 and Muc5ac were decreased in asthmatic mice after treatment. Besides, the production of IL-6 in LPS/IFN-γ induced THP-1 cells was also decreased by both nucleosides. In vivo and in vitro expressions of key molecules in the MAPK and NF-κB pathways were reduced after the treatment of both compounds. These findings suggest that guanosine has a similar potential therapeutic value in asthma as uridine and they exert anti-inflammatory effects through suppression of the MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Yujiao Luo
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Ridong Huang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Qiong Wu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Ying Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
40
|
Massari CM, Constantino LC, Tasca CI. Adenosine A 1 and A 2A receptors are involved on guanosine protective effects against oxidative burst and mitochondrial dysfunction induced by 6-OHDA in striatal slices. Purinergic Signal 2021; 17:247-254. [PMID: 33548045 PMCID: PMC8155135 DOI: 10.1007/s11302-021-09765-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022] Open
Abstract
6-Hydroxydopamine (6-OHDA) is the most used toxin in experimental Parkinson's disease (PD) models. 6-OHDA shows high affinity for the dopamine transporter and once inside the neuron, it accumulates and undergoes non-enzymatic auto-oxidation, promoting reactive oxygen species (ROS) formation and selective damage of catecholaminergic neurons. In this way, our group has established a 6-OHDA in vitro protocol with rat striatal slices as a rapid and effective model for screening of new drugs with protective effects against PD. We have shown that co-incubation with guanosine (GUO, 100 μM) prevented the 6-OHDA-induced damage in striatal slices. As the exact GUO mechanism of action remains unknown, the aim of this study was to investigate if adenosine A1 (A1R) and/or A2A receptors (A2AR) are involved on GUO protective effects on striatal slices. Pre-incubation with DPCPX, an A1R antagonist prevented guanosine effects on 6-OHDA-induced ROS formation and mitochondrial membrane potential depolarization, while CCPA, an A1R agonist, did not alter GUO effects. Regarding A2AR, the antagonist SCH58261 had similar protective effect as GUO in ROS formation and mitochondrial membrane potential. Additionally, SCH58261 did not affect GUO protective effects. The A2AR agonist CGS21680, although, completely blocked GUO effects. Finally, the A1R antagonist DPCPX, and the A2AR agonist CGS21680 also abolished the preventive guanosine effect on 6-OHDA-induced ATP levels decrease. These results reinforce previous evidence for a putative interaction of GUO with A1R-A2AR heteromer as its molecular target and clearly indicate a dependence on adenosine receptors modulation to GUO protective effect.
Collapse
Affiliation(s)
- C M Massari
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - L C Constantino
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - C I Tasca
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
- Laboratório de Neuroquímica-4, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
41
|
Rosa PB, Bettio LEB, Neis VB, Moretti M, Kaufmann FN, Tavares MK, Werle I, Dalsenter Y, Platt N, Rosado AF, Fraga DB, Heinrich IA, Freitas AE, Leal RB, Rodrigues ALS. Antidepressant-like effect of guanosine involves activation of AMPA receptor and BDNF/TrkB signaling. Purinergic Signal 2021; 17:285-301. [PMID: 33712981 PMCID: PMC8155134 DOI: 10.1007/s11302-021-09779-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Guanosine is a purine nucleoside that has been shown to exhibit antidepressant effects, but the mechanisms underlying its effect are not well established. We investigated if the antidepressant-like effect induced by guanosine in the tail suspension test (TST) in mice involves the modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, voltage-dependent calcium channel (VDCC), and brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) pathway. We also evaluated if the antidepressant-like effect of guanosine is accompanied by an acute increase in hippocampal and prefrontocortical BDNF levels. Additionally, we investigated if the ability of guanosine to elicit a fast behavioral response in the novelty suppressed feeding (NSF) test is associated with morphological changes related to hippocampal synaptogenesis. The antidepressant-like effect of guanosine (0.05 mg/kg, p.o.) in the TST was prevented by DNQX (AMPA receptor antagonist), verapamil (VDCC blocker), K-252a (TrkBantagonist), or BDNF antibody. Increased P70S6K phosphorylation and higher synapsin I immunocontent in the hippocampus, but not in the prefrontal cortex, were observed 1 h after guanosine administration. Guanosine exerted an antidepressant-like effect 1, 6, and 24 h after its administration, an effect accompanied by increased hippocampal BDNF level. In the prefrontal cortex, BDNF level was increased only 1 h after guanosine treatment. Finally, guanosine was effective in the NSF test (after 1 h) but caused no alterations in dendritic spine density and remodeling in the ventral dentate gyrus (DG). Altogether, the results indicate that guanosine modulates targets known to be implicated in fast antidepressant behavioral responses (AMPA receptor, VDCC, and TrkB/BDNF pathway).
Collapse
Affiliation(s)
- Priscila B. Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Luis E. B. Bettio
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil ,Division of Medical Sciences, University of Victoria, Victoria, BC Canada
| | - Vivian B. Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Fernanda N. Kaufmann
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Mauren K. Tavares
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Isabel Werle
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Yasmim Dalsenter
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Nicolle Platt
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Axel F. Rosado
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Daiane B. Fraga
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Isabella A. Heinrich
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Andiara E. Freitas
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Rodrigo B. Leal
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| |
Collapse
|
42
|
Kundu D, Dubey VK. Purines and Pyrimidines: Metabolism, Function and Potential as Therapeutic Options in Neurodegenerative Diseases. Curr Protein Pept Sci 2021; 22:170-189. [PMID: 33292151 DOI: 10.2174/1389203721999201208200605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/01/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
Various neurodegenerative disorders have various molecular origins but some common molecular mechanisms. In the current scenario, there are very few treatment regimens present for advanced neurodegenerative diseases. In this context, there is an urgent need for alternate options in the form of natural compounds with an ameliorating effect on patients. There have been individual scattered experiments trying to identify potential values of various intracellular metabolites. Purines and Pyrimidines, which are vital molecules governing various aspects of cellular biochemical reactions, have been long sought as crucial candidates for the same, but there are still many questions that go unanswered. Some critical functions of these molecules associated with neuromodulation activities have been identified. They are also known to play a role in foetal neurodevelopment, but there is a lacuna in understanding their mechanisms. In this review, we have tried to assemble and identify the importance of purines and pyrimidines, connecting them with the prevalence of neurodegenerative diseases. The leading cause of this class of diseases is protein misfolding and the formation of amyloids. A direct correlation between loss of balance in cellular homeostasis and amyloidosis is yet an unexplored area. This review aims at bringing the current literature available under one umbrella serving as a foundation for further extensive research in this field of drug development in neurodegenerative diseases.
Collapse
Affiliation(s)
- Debanjan Kundu
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP - 221005, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP - 221005, India
| |
Collapse
|
43
|
Mao Y, Xing Y, Li J, Dong D, Zhang S, Zhao Z, Xie J, Wang R, Li H. Guanosine ameliorates positive symptoms of schizophrenia via modulating 5-HT 1A and 5-HT 2A receptors. Am J Transl Res 2021; 13:4040-4054. [PMID: 34149997 PMCID: PMC8205766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Schizophrenia is a serious mental disorder characterized by hallucinations, delusions, and extremely disordered thinking and behavior. There are several hypotheses of pathogenesis in schizophrenia: dopaminergic, glutamatergic, or serotonergic hyperfunction. Guanosine reportedly protects the central nervous system by modulating the glutamatergic system. Thus, we assumed that guanosine may exert a positive effect on the pathophysiology of schizophrenia. Herein, we demonstrated that guanosine significantly reduced MK-801-induced hyperlocomotion and stereotyped behaviors, but showed no effect on hyperlocomotion induced by d-amphetamine, indicating that guanosine may directly affect the glutamatergic system. Guanosine dose-dependently reduced 5-HTP-induced wet dog shakes (WDS) and other serotonin syndromes (SS) behaviors, indicating that it might block serotonin 5-HT1A or 5-HT2A receptors. Finally, we confirm that that guanosine modulates serotonin 5-HT1A and 5-HT2A receptors and it might be anti-schizophrenic partly through pertussis toxin-sensitive Gi/o-coupled PI3K/Akt signaling. Collectively, this study provides possible compounds and mechanisms for therapeutic effects on schizophrenia.
Collapse
Affiliation(s)
- Yu Mao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Yao Xing
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Jie Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Dong Dong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Shoude Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Pharmacy, Medical College of Qinghai University, Qinghai UniversityQinghai 810016, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science & TechnologyShanghai 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| |
Collapse
|
44
|
Di Iorio P, Beggiato S, Ronci M, Nedel CB, Tasca CI, Zuccarini M. Unfolding New Roles for Guanine-Based Purines and Their Metabolizing Enzymes in Cancer and Aging Disorders. Front Pharmacol 2021; 12:653549. [PMID: 33935764 PMCID: PMC8085521 DOI: 10.3389/fphar.2021.653549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/12/2021] [Indexed: 12/22/2022] Open
Affiliation(s)
- P Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy
| | - S Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy
| | - M Ronci
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy.,Department of Pharmacy, University G. D'Annunzio Chieti, Chieti, Italy
| | - C B Nedel
- Laboratório de Biologia Celular de Gliomas, Programa de Pós-Graduação Em Biologia Celular e Do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - C I Tasca
- Laboratório de Neuroquímica-4, Programa de Pós-Graduação Em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
45
|
Massari CM, Zuccarini M, Di Iorio P, Tasca CI. Guanosine Mechanisms of Action: Toward Molecular Targets. Front Pharmacol 2021; 12:653146. [PMID: 33867993 PMCID: PMC8044438 DOI: 10.3389/fphar.2021.653146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/26/2021] [Indexed: 01/02/2023] Open
Affiliation(s)
- Caio M Massari
- Laboratório De Neuroquímica-4, Departamento De Bioquímica, Centro De Ciências Biológicas, Universidade Federal De Santa Catarina, Florianópolis, Brazil
| | - Mariachiara Zuccarini
- Department of Biomedical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Biomedical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Carla I Tasca
- Laboratório De Neuroquímica-4, Departamento De Bioquímica, Centro De Ciências Biológicas, Universidade Federal De Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
46
|
Sharma A, Noda M, Sugiyama M, Kumar B, Kaur B. Application of Pediococcus acidilactici BD16 ( alaD +) expressing L-alanine dehydrogenase enzyme as a starter culture candidate for secondary wine fermentation. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1995496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Anshula Sharma
- Systems Biology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab, India
| | - Masafumi Noda
- Department of Molecular Microbiology and Biotechnology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Masanori Sugiyama
- Department of Molecular Microbiology and Biotechnology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Balvir Kumar
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Baljinder Kaur
- Systems Biology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
47
|
Frinchi M, Verdi V, Plescia F, Ciruela F, Grillo M, Garozzo R, Condorelli DF, Di Iorio P, Caciagli F, Ciccarelli R, Belluardo N, Di Liberto V, Mudò G. Guanosine-Mediated Anxiolytic-Like Effect: Interplay with Adenosine A 1 and A 2A Receptors. Int J Mol Sci 2020; 21:ijms21239281. [PMID: 33291390 PMCID: PMC7729560 DOI: 10.3390/ijms21239281] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023] Open
Abstract
Acute or chronic administration of guanosine (GUO) induces anxiolytic-like effects, for which the adenosine (ADO) system involvement has been postulated yet without a direct experimental evidence. Thus, we aimed to investigate whether adenosine receptors (ARs) are involved in the GUO-mediated anxiolytic-like effect, evaluated by three anxiety-related paradigms in rats. First, we confirmed that acute treatment with GUO exerts an anxiolytic-like effect. Subsequently, we investigated the effects of pretreatment with ADO or A1R (CPA, CCPA) or A2AR (CGS21680) agonists 10 min prior to GUO on a GUO-induced anxiolytic-like effect. All the combined treatments blocked the GUO anxiolytic-like effect, whereas when administered alone, each compound was ineffective as compared to the control group. Interestingly, the pretreatment with nonselective antagonist caffeine or selective A1R (DPCPX) or A2AR (ZM241385) antagonists did not modify the GUO-induced anxiolytic-like effect. Finally, binding assay performed in hippocampal membranes showed that [3H]GUO binding became saturable at 100–300 nM, suggesting the existence of a putative GUO binding site. In competition experiments, ADO showed a potency order similar to GUO in displacing [3H]GUO binding, whereas AR selective agonists, CPA and CGS21680, partially displaced [3H]GUO binding, but the sum of the two effects was able to displace [3H]GUO binding to the same extent of ADO alone. Overall, our results strengthen previous data supporting GUO-mediated anxiolytic-like effects, add new evidence that these effects are blocked by A1R and A2AR agonists and pave, although they do not elucidate the mechanism of GUO and ADO receptor interaction, for a better characterization of GUO binding sites in ARs.
Collapse
Affiliation(s)
- Monica Frinchi
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (M.F.); (V.V.); (M.G.); (N.B.); (V.D.L.)
| | - Vincenzo Verdi
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (M.F.); (V.V.); (M.G.); (N.B.); (V.D.L.)
- Institut de Psychiatrie et Neurosciences de Paris, INSERM U1266, Université de Paris, F-75014 Paris, France
| | - Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy;
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, 08907 Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
- Correspondence: (F.C.); (G.M.)
| | - Maria Grillo
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (M.F.); (V.V.); (M.G.); (N.B.); (V.D.L.)
| | - Roberta Garozzo
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy; (R.G.); (D.F.C.)
| | - Daniele F. Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy; (R.G.); (D.F.C.)
- Laboratory of Complex Systems, Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.I.); (F.C.); (R.C.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco Caciagli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.I.); (F.C.); (R.C.)
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.I.); (F.C.); (R.C.)
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100 Chieti, Italy
| | - Natale Belluardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (M.F.); (V.V.); (M.G.); (N.B.); (V.D.L.)
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (M.F.); (V.V.); (M.G.); (N.B.); (V.D.L.)
| | - Giuseppa Mudò
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (M.F.); (V.V.); (M.G.); (N.B.); (V.D.L.)
- Correspondence: (F.C.); (G.M.)
| |
Collapse
|
48
|
Prabu S, Samad NA, Ahmad NA, Jumbri K, Raoov M, Rahim NY, Samikannu K, Mohamad S. Studies on the supramolecular complex of a guanosine with beta-cyclodextrin and evaluation of its anti-proliferative activity. Carbohydr Res 2020; 497:108138. [DOI: 10.1016/j.carres.2020.108138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/01/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
|
49
|
Birder LA, Wolf-Johnston A, Wein AJ, Cheng F, Grove-Sullivan M, Kanai AJ, Watson AM, Stoltz D, Watkins SC, Robertson AM, Newman D, Dmochowski RR, Jackson EK. Purine nucleoside phosphorylase inhibition ameliorates age-associated lower urinary tract dysfunctions. JCI Insight 2020; 5:140109. [PMID: 32910805 PMCID: PMC7605521 DOI: 10.1172/jci.insight.140109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
In the aging population, lower urinary tract (LUT) dysfunction is common and often leads to storage and voiding difficulties classified into overlapping symptom syndromes. Despite prevalence and consequences of these syndromes, LUT disorders continue to be undertreated simply because there are few therapeutic options. LUT function and structure were assessed in aged (>25 months) male and female Fischer 344 rats randomized to oral treatment with a purine nucleoside phosphorylase (PNPase inhibitor) 8-aminoguanine (8-AG) or vehicle for 6 weeks. The bladders of aged rats exhibited multiple abnormalities: tactile insensitivity, vascular remodeling, reduced collagen-fiber tortuosity, increased bladder stiffness, abnormal smooth muscle morphology, swelling of mitochondria, and increases in urodamaging purine metabolites. Treatment of aged rats with 8-AG restored all evaluated histological, ultrastructural, and physiological abnormalities toward that of a younger state. 8-AG is an effective treatment that ameliorates key age-related structural and physiologic bladder abnormalities. Because PNPase inhibition blocks metabolism of inosine to hypoxanthine and guanosine to guanine, likely uroprotective effects of 8-AG are mediated by increased bladder levels of uroprotective inosine and guanosine and reductions in urodamaging hypoxanthine and xanthine. These findings demonstrate that 8-AG has translational potential for treating age-associated LUT dysfunctions and resultant syndromes in humans.
Collapse
Affiliation(s)
- Lori A Birder
- Department of Medicine, Renal-Electrolyte Division, and.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Alan J Wein
- Division of Urology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fangzhou Cheng
- Department of Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mara Grove-Sullivan
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony J Kanai
- Department of Medicine, Renal-Electrolyte Division, and.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alan M Watson
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Donna Stoltz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anne M Robertson
- Department of Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Diane Newman
- Division of Urology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roger R Dmochowski
- Department of Urology, Vanderbilt Medical Center, Nashville, Tennessee, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
50
|
Nindawat S, Agrawal V. Arabian Primrose leaf extract mediated synthesis of silver nanoparticles: their industrial and biomedical applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:1259-1271. [PMID: 33016155 DOI: 10.1080/21691401.2020.1817056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study encompasses green synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Arabian Primrose within 6 min of reaction at 60 °C, pH 7 and their characterisation using physico-chemical analytical techniques. UV-Visible spectroscopy elucidated the surface plasmon resonance around 420 nm. FESEM and TEM images revealed that AgNPs were spherical with average diameter 10-60 nm. XRD pattern confirmed their crystalline nature. The leaf extract rich in phenolics and flavonoids was subjected to GC-MS analysis that identified bioactive compounds helping in reduction and stabilisation of AgNPs. The synthesised AgNPs possessed high anti-oxidant potential against DPPH and H2O2 radicals. Incidentally, the AgNPs acted as excellent nanocatalyst towards borohydride reduction and degradation of structurally different organic dyes. The AgNPs also exhibited selective colorimetric sensing of hazardous mercuric, ferric ions and ammonia. Such AgNPs were cytotoxic against HeLa cells (IC50 7.18 µg/mL) and compatible towards normal L20B cells. These AgNPs showed effective anti-microbial activity against different human pathogens tested (bacterial and fungal). This is probably the first report of AgNPs synthesis using Arabian Primrose leaf extract showing strong anti-oxidant, catalytic, biosensing, anti-cancer and anti-microbial activities and find remarkable applications in medical, industrial and ecological sectors.
Collapse
Affiliation(s)
- Shruti Nindawat
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, Delhi, India
| | - Veena Agrawal
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|