1
|
Kweon HY, Song EJ, Jeong SJ, Lee S, Sonn SK, Seo S, Jin J, Kim S, Kim TK, Moon SH, Kim D, Park YM, Woo HA, Oh GT. Extracellular peroxiredoxin 5 exacerbates atherosclerosis via the TLR4/MyD88 pathway. Atherosclerosis 2025; 400:119052. [PMID: 39549462 DOI: 10.1016/j.atherosclerosis.2024.119052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUNGD AND AIMS Peroxiredoxin 5 (PRDX5), an atypical 2-Cys peroxiredoxin (PRDX), is known to regulate global oxidative stresses and inflammatory responses. Inflammation and oxidative stress are pivotal factors in the development of atherosclerosis, especially in the context of vascular endothelial dysfunction. However, effects of PRDX5 on atherosclerosis remain unclear. This study aimed to elucidate the role of PRDX5 in the pathogenesis of atherosclerosis. METHODS For in vivo analysis, normal chow diet 60-week old Apolipoprotein E knockout (ApoE-/-) and Prdx5-/-; ApoE-/- mice were used for the experiments. For in vitro analysis, human umbilical vein endothelial cells (HUVECs) were stimulated with oxidized LDL (oxLDL; 50 ng/ml) for 24hrs, following serum starvation by incubation with serum-free Endothelial Cell Growth Medium-2 (EGM-2) for 1hr. RESULTS We observed elevated PRDX5 expression under atherosclerotic conditions in both humans and mice. Unexpectedly, Prdx5-/-; ApoE-/- mice exhibited reduced plaque formation, with no discernible difference in aortic hydrogen peroxide (H2O2) levels compared to ApoE-/- mice. Additionally, there was a notable decrease in macrophage accumulation and vascular inflammation in the atherosclerotic aorta of Prdx5-/-; ApoE-/-. In vitro, HUVECs stimulated with oxLDL showed upregulated PRDX5 expression in both lysate and culture medium. Moreover, PRDX5 knockdown in oxLDL-stimulated (oxLDL-siPRDX5) HUVECs significantly reduced the migration and adhesion of human monocytic cells (THP-1) to HUVECs, indicating diminished vascular immune responses. Mechanistically, both in vivo and in vitro, PRDX5 deficiency inhibited the Toll-like receptor 4 (TLR4)/Myeloid differentiation primary response 88 (MyD88) signaling pathway, resulting in reduced nuclear factor kappa B (NF-κB) and P38 phosphorylation. Furthermore, treatment with recombinant PRDX5 (rPRDX5) protein restored TLR4/MyD88 signaling in oxLDL-siPRDX5 HUVECs. CONCLUSIONS These data demonstrate that extracellular PRDX5 contributes to endothelial inflammation, promoting macrophage accumulation in the atherosclerotic aorta through activation of TLR4/MyD88/NF-κB and P38 signaling pathways, thereby exacerbating the progression of atherosclerosis.
Collapse
Affiliation(s)
- Hyae Yon Kweon
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eun Ju Song
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, Saint Louis, United States
| | - SoonHo Lee
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seong-Keun Sonn
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seungwoon Seo
- Imvastech Inc., 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Jing Jin
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sinai Kim
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Tae Kyeong Kim
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr, Farmington, CT 06032, United States
| | - Shin Hye Moon
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Doyeon Kim
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Young Mi Park
- Department of Molecular Medicine, Ewha Womans University School of Medicine, Seoul, 03760, Republic of Korea
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea; College of Pharmacy, Graduate School of Applied Science and Technology for Skin Health and Aesthetics, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea; Imvastech Inc., 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
2
|
Rodrigo DCG, Udayantha HMV, Liyanage DS, Omeka WKM, Kodagoda YK, Hanchapola HACR, Dilshan MAH, Ganepola GANP, Warnakula WADLR, Kim G, Kim J, Lee J, Wan Q, Lee J. Functional characterization of peroxiredoxin 5 from yellowtail clownfish (Amphiprion clarkii): Immunological expression assessment, antioxidant activities, heavy metal detoxification, and nitrosative stress mitigation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105289. [PMID: 39536807 DOI: 10.1016/j.dci.2024.105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/10/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Peroxiredoxin 5 (Prdx5) is the last recognized member of Prdx family. It is a unique, atypical, 2-Cys antioxidant enzyme, protecting cells from death caused by reactive oxygen species (ROS). In this study, the Prdx5 ortholog of Amphiprion clarkii (AcPrdx5) was identified and characterized to explore its specific structural features and functional properties. The open reading frame of AcPrdx5 is 573 bp long and encodes 190 amino acids containing a mitochondrial targeting sequence, thioredoxin domain, and two conserved cysteine residues responsible for antioxidant function. The predicted molecular weight and theoretical isoelectric point of AcPrdx5 are 20.3 kDa and 9.01, respectively. AcPrdx5 sequences were found to be highly conserved across the other orthologs from various organisms and it distinctively clustered within the fish Prdx5 subclade of the phylogenetic tree. The expression of AcPrdx5 was ubiquitously detected among twelve tested tissues, with the highest level in the brain. Furthermore, the mRNA levels of AcPrdx5 in the blood and head-kidney tissues were significantly (p < 0.05) upregulated following polyinosinic-polycytidylic acid (Poly I:C), lipopolysaccharide (LPS), and Vibrio harveyi immune challenge. A concentration-dependent antioxidant potential of recombinant AcPrdx5 was observed in insulin disulfide bond reduction, heavy metal detoxification, free radical and hydrogen peroxide (H2O2) scavenging assays. Additionally, AcPrdx5 overexpression in fathead minnow (FHM) cells upregulated the antioxidant-associated gene (Rrm1, MAPK, SOD2, and PRDX1) expression after H2O2 treatment, and promoted cell viability upon arsenic (As) exposure. In macrophages, AcPrdx5 overexpression effectively suppressed substantial nitric oxide production under lipopolysaccharide treatment. Collectively, our results suggest that AcPrdx5 may play roles in both antioxidant defense system and innate immune response against pathogenic invasions in A. clarkii.
Collapse
Affiliation(s)
- D C G Rodrigo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - Y K Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - M A H Dilshan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - G A N P Ganepola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - Jeongeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - Jihun Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, South Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, South Korea.
| |
Collapse
|
3
|
Fu M, Jia S, Xu L, Li X, Lv Y, Zhong Y, Ai S. Single-cell multiomic analysis identifies macrophage subpopulations in promoting cardiac repair. J Clin Invest 2024; 134:e175297. [PMID: 39190625 PMCID: PMC11444165 DOI: 10.1172/jci175297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Cardiac mononuclear phagocytic cells (Cardiac MPCs) participate in maintaining homeostasis and orchestrating cardiac responses upon injury. However, the function of specific MPC subtypes and the related cell fate commitment mechanisms remain elusive in regenerative and nonregenerative hearts due to their cellular heterogeneities. Using spatiotemporal single-cell epigenomic analysis of cardiac MPCs in regenerative (P1) and nonregenerative (P10) mouse hearts after injury, we found that P1 hearts accumulate reparative Arg1+ macrophages, while proinflammatory S100a9+Ly6c+ monocytes are uniquely abundant during nonregenerative remodeling. Moreover, blocking chemokine CXCR2 to inhibit the specification of the S100a9+Ly6c+-biased inflammatory fate in P10 hearts resulted in elevated wound repair responses and marked improvements in cardiac function after injury. Single-cell RNA-Seq further confirmed an increased Arg1+ macrophage subpopulation after CXCR2 blockade, which was accomplished by increased expression of wound repair-related genes and reduced expression of proinflammatory genes. Collectively, our findings provide instructive insights into the molecular mechanisms underlying the function and fate specification of heterogeneous MPCs during cardiac repair and identify potential therapeutic targets for myocardial infarction.
Collapse
Affiliation(s)
- Mingzhu Fu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shengtao Jia
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Longhui Xu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Li
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yufang Lv
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yulong Zhong
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shanshan Ai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Rodrigo DCG, Udayantha HMV, Omeka WKM, Liyanage DS, Dilshan MAH, Hanchapola HACR, Kodagoda YK, Lee J, Lee S, Jeong T, Wan Q, Lee J. Molecular characterization, cytoprotective, DNA protective, and immunological assessment of peroxiredoxin-1 (Prdx1) from yellowtail clownfish (Amphiprion clarkii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105175. [PMID: 38574831 DOI: 10.1016/j.dci.2024.105175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Peroxiredoxin-1 (Prdx1) is a thiol-specific antioxidant enzyme that detoxifies reactive oxygen species (ROS) and regulates the redox status of cells. In this study, the Prdx1 cDNA sequence was isolated from the pre-established Amphiprion clarkii (A. clarkii) (AcPrdx1) transcriptome database and characterized structurally and functionally. The AcPrdx1 coding sequence comprises 597 bp and encodes 198 amino acids with a molecular weight of 22.1 kDa and a predicted theoretical isoelectric point of 6.3. AcPrdx1 is localized and functionally available in the cytoplasm and nucleus of cells. The TXN domain of AcPrdx1 comprises two peroxiredoxin signature VCP motifs, which contain catalytic peroxidatic (Cp-C52) and resolving cysteine (CR-C173) residues. The constructed phylogenetic tree and sequence alignment revealed that AcPrdx1 is evolutionarily conserved, and its most closely related counterpart is Amphiprion ocellaris. Under normal physiological conditions, AcPrdx1 was ubiquitously detected in all tissues examined, with the most robust expression in the spleen. Furthermore, AcPrdx1 transcripts were significantly upregulated in the spleen, head kidney, and blood after immune stimulation by polyinosinic:polycytidylic acid (poly (I:C)), lipopolysaccharide (LPS), and Vibrio harveyi injection. Recombinant AcPrdx1 (rAcPrdx1) demonstrated antioxidant and DNA protective properties in a concentration-dependent manner, as evidenced by insulin disulfide reduction, peroxidase activity, and metal-catalyzed oxidation (MCO) assays, whereas cells transfected with pcDNA3.1(+)/AcPrdx1 showed significant cytoprotective function under oxidative and nitrosative stress. Overexpression of AcPrdx1 in fathead minnow (FHM) cells led to a lower viral copy number following viral hemorrhagic septicemia virus (VHSV) infection, along with upregulation of several antiviral genes. Collectively, this study provides insights into the function of AcPrdx1 in defense against oxidative stressors and its role in the immune response against pathogenic infections in A. clarkii.
Collapse
Affiliation(s)
- D C G Rodrigo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - M A H Dilshan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Y K Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jihun Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
5
|
Amich J. The many roles of sulfur in the fungal-host interaction. Curr Opin Microbiol 2024; 79:102489. [PMID: 38754292 DOI: 10.1016/j.mib.2024.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Sulfur is an essential macronutrient for life, and consequently, all living organisms must acquire it from external sources to thrive and grow. Sulfur is a constituent of a multitude of crucial molecules, such as the S-containing proteinogenic amino acids cysteine and methionine; cofactors and prosthetic groups, such as coenzyme-A and iron-sulfur (Fe-S) clusters; and other essential organic molecules, such as glutathione or S-adenosylmethionine. Additionally, sulfur in cysteine thiols is an active redox group that plays paramount roles in protein stability, enzyme catalysis, and redox homeostasis. Furthermore, H2S is gaining more attention as a crucial signaling molecule that influences metabolism and physiological functions. Given its importance, it is not surprising that sulfur plays key roles in the host-pathogen interaction. However, in contrast to its well-recognized involvement in the plant-pathogen interaction, the specific contributions of sulfur to the human-fungal interaction are much less understood. In this short review, I highlight some of the most important known mechanisms and propose directions for further research.
Collapse
Affiliation(s)
- Jorge Amich
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain.
| |
Collapse
|
6
|
Erban T, Kadleckova D, Sopko B, Harant K, Talacko P, Markovic M, Salakova M, Kadlikova K, Tachezy R, Tachezy J. Varroa destructor parasitism and Deformed wing virus infection in honey bees are linked to peroxisome-induced pathways. Proteomics 2024; 24:e2300312. [PMID: 38446070 DOI: 10.1002/pmic.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
The ectoparasitic mite Varroa destructor transmits and triggers viral infections that have deleterious effects on honey bee colonies worldwide. We performed a manipulative experiment in which worker bees collected at emergence were exposed to Varroa for 72 h, and their proteomes were compared with those of untreated control bees. Label-free quantitative proteomics identified 77 differentially expressed A. mellifera proteins (DEPs). In addition, viral proteins were identified by orthogonal analysis, and most importantly, Deformed wing virus (DWV) was found at high levels/intensity in Varroa-exposed bees. Pathway enrichment analysis suggested that the main pathways affected included peroxisomal metabolism, cyto-/exoskeleton reorganization, and cuticular proteins. Detailed examination of individual DEPs revealed that additional changes in DEPs were associated with peroxisomal function. In addition, the proteome data support the importance of TGF-β signaling in Varroa-DWV interaction and the involvement of the mTORC1 and Hippo pathways. These results suggest that the effect of DWV on bees associated with Varroa feeding results in aberrant autophagy. In particular, autophagy is selectively modulated by peroxisomes, to which the observed proteome changes strongly corresponded. This study complements previous research with different study designs and suggests the importance of the peroxisome, which plays a key role in viral infections.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague 6-Ruzyne, Czechia
| | - Dominika Kadleckova
- Department of Genetics and Microbiology, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Bruno Sopko
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague 6-Ruzyne, Czechia
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Martin Markovic
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague 6-Ruzyne, Czechia
| | - Martina Salakova
- Department of Genetics and Microbiology, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Klara Kadlikova
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague 6-Ruzyne, Czechia
| | - Ruth Tachezy
- Department of Genetics and Microbiology, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| |
Collapse
|
7
|
Strader ME, Wright RM, Pezner AK, Nuttall MF, Aichelman HE, Davies SW. Intersection of coral molecular responses to a localized mortality event and ex situ deoxygenation. Ecol Evol 2024; 14:e11275. [PMID: 38654712 PMCID: PMC11036075 DOI: 10.1002/ece3.11275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
In July 2016, East Bank of Flower Garden Banks (FGB) National Marine Sanctuary experienced a localized mortality event (LME) of multiple invertebrate species that ultimately led to reductions in coral cover. Abiotic data taken directly after the event suggested that acute deoxygenation contributed to the mortality. Despite the large impact of this event on the coral community, there was no direct evidence that this LME was driven by acute deoxygenation, and thus we explored whether gene expression responses of corals to the LME would indicate what abiotic factors may have contributed to the LME. Gene expression of affected and unaffected corals sampled during the mortality event revealed evidence of the physiological consequences of the LME on coral hosts and their algal symbionts from two congeneric species (Orbicella franksi and Orbicella faveolata). Affected colonies of both species differentially regulated genes involved in mitochondrial regulation and oxidative stress. To further test the hypothesis that deoxygenation led to the LME, we measured coral host and algal symbiont gene expression in response to ex situ experimental deoxygenation (control = 6.9 ± 0.08 mg L-1, anoxic = 0.083 ± 0.017 mg L-1) in healthy O. faveolata colonies from the FGB. However, this deoxygenation experiment revealed divergent gene expression patterns compared to the corals sampled during the LME and was more similar to a generalized coral environmental stress response. It is therefore likely that while the LME was connected to low oxygen, it was a series of interconnected stressors that elicited the unique gene expression responses observed here. These in situ and ex situ data highlight how field responses to stressors are unique from those in controlled laboratory conditions, and that the complexities of deoxygenation events in the field likely arise from interactions between multiple environmental factors simultaneously.
Collapse
Affiliation(s)
- Marie E. Strader
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Rachel M. Wright
- Department of Biological SciencesSouthern Methodist UniversityDallasTexasUSA
| | | | | | | | - Sarah W. Davies
- Department of BiologyBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
8
|
Mu R, Chang M, Feng C, Cui Y, Li T, Liu C, Wang Y, Guo X. Analysis of the Expression of PRDX6 in Patients with Hepatocellular Carcinoma and its Effect on the Phenotype of Hepatocellular Carcinoma Cells. Curr Genomics 2024; 25:2-11. [PMID: 38544826 PMCID: PMC10964084 DOI: 10.2174/0113892029273682240111052317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 08/25/2024] Open
Abstract
Objectives This research aimed to study the expression of PRDX6 mRNA in hepatocellular carcinoma (HCC) and its effect on the prognosis of HCC. Moreover, the effect of PRDX6 gene knockdown on the proliferation, migration, and invasion of HepG2 cells mediated by lentivirus was also examined. This study offers a theoretical and experimental basis for further research on the mechanism of PRDX6 in liver cancer and new methods for clinical diagnosis and treatment. Methods RNA sequence data of 369 HCC patients were screened through the TCGA database, and the expression and clinical characteristics of PRDX6 mRNA were analyzed based on high-throughput RNA sequencing data. HepG2 cells were divided into WT, sh-NC and sh-PRDX6 groups. Real-time PCR and Western blot were used to detect the expression levels of the PRDX6 gene and protein, respectively. CCK8 method was used to detect the proliferation activity of HepG2 cells, scratch healing test was used to detect the migration ability, Transwell chamber was used to detect the invasion ability, and Western blot was used to detect the expression levels of PI3K/Akt/mTOR signaling pathway and Notch signaling pathway-related proteins. Results The expression of PRDX6 was significantly correlated with the gender, race, clinical stage, histological grade, and survival time of HCC patients (P < 0.05). Compared with that in WT and sh-NC groups, the expression level of PRDX6 protein in HCC patients was significantly lower (P < 0.01), the proliferation activity of HCC cells was significantly decreased (P < 0.05), and the migration and invasion ability was significantly decreased (P < 0.05) in the sh-PRDX6 group. The expression levels of PI3K, p-Akt, p-mTOR, Notch1, and Hes1 proteins in the sh-PRDX6 group were significantly lower than those in WT and sh-NC groups (P < 0.05). Conclusion The expression of PRDX6 may be closely related to the prognosis of HCC. Lentivirus-mediated PRDX6 knockdown can inhibit the proliferation, migration and invasion of HCC cells, which may be related to its regulating the PI3K/Akt/mTOR and Notch1 signaling pathways. PRDX6 is expected to be a new target for the diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Runhong Mu
- Basic Medicine College of Beihua University, Jilin, 132000, P.R. China
| | - Mingzhu Chang
- Basic Medicine College of Beihua University, Jilin, 132000, P.R. China
| | - Chuanbo Feng
- School of Pharmacy, Beihua University, Jilin, 132000, P.R. China
| | - Yunhe Cui
- Basic Medicine College of Beihua University, Jilin, 132000, P.R. China
| | - Tingyu Li
- Basic Medicine College of Beihua University, Jilin, 132000, P.R. China
| | - Chang Liu
- School of Pharmacy, Beihua University, Jilin, 132000, P.R. China
| | - Yilin Wang
- Zhuhai Integrated Traditional Chinese and Western Medicine Hospital, Zhuhai, 519000, China
- Zhuhai Hospital Affiliated to Southern Medical University, Zhuhai, 519000, China
| | - Xiao Guo
- School of Pharmacy, Beihua University, Jilin, 132000, P.R. China
| |
Collapse
|
9
|
Sernoskie SC, Bonneil É, Thibault P, Jee A, Uetrecht J. Involvement of Extracellular Vesicles in the Proinflammatory Response to Clozapine: Implications for Clozapine-Induced Agranulocytosis. J Pharmacol Exp Ther 2024; 388:827-845. [PMID: 38262745 DOI: 10.1124/jpet.123.001970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024] Open
Abstract
Most idiosyncratic drug reactions (IDRs) appear to be immune-mediated, but mechanistic events preceding severe reaction onset remain poorly defined. Damage-associated molecular patterns (DAMPs) may contribute to both innate and adaptive immune phases of IDRs, and changes in extracellular vesicle (EV) cargo have been detected post-exposure to several IDR-associated drugs. To explore the hypothesis that EVs are also a source of DAMPs in the induction of the immune response preceding drug-induced agranulocytosis, the proteome and immunogenicity of clozapine- (agranulocytosis-associated drug) and olanzapine- (non-agranulocytosis-associated drug) exposed EVs were compared in two preclinical models: THP-1 macrophages and Sprague-Dawley rats. Compared with olanzapine, clozapine induced a greater increase in the concentration of EVs enriched from both cell culture media and rat serum. Moreover, treatment of drug-naïve THP-1 cells with clozapine-exposed EVs induced an inflammasome-dependent response, supporting a potential role for EVs in immune activation. Proteomic and bioinformatic analyses demonstrated an increased number of differentially expressed proteins with clozapine that were enriched in pathways related to inflammation, myeloid cell chemotaxis, wounding, transforming growth factor-β signaling, and negative regulation of stimuli response. These data indicate that, although clozapine and olanzapine exposure both alter the protein cargo of EVs, clozapine-exposed EVs carry mediators that exhibit significantly greater immunogenicity. Ultimately, this supports the working hypothesis that drugs associated with a risk of IDRs induce cell stress, release of proinflammatory mediators, and early immune activation that precedes severe reaction onset. Further studies characterizing EVs may elucidate biomarkers that predict IDR risk during development of drug candidates. SIGNIFICANCE STATEMENT: This work demonstrates that clozapine, an idiosyncratic drug-induced agranulocytosis (IDIAG)-associated drug, but not olanzapine, a safer structural analogue, induces an acute proinflammatory response and increases extracellular vesicle (EV) release in two preclinical models. Moreover, clozapine-exposed EVs are more immunogenic, as measured by their ability to activate inflammasomes, and contain more differentially expressed proteins, highlighting a novel role for EVs during the early immune response to clozapine and enhancing our mechanistic understanding of IDIAG and other idiosyncratic reactions.
Collapse
Affiliation(s)
- Samantha Christine Sernoskie
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Éric Bonneil
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Pierre Thibault
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Alison Jee
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Jack Uetrecht
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| |
Collapse
|
10
|
Zhang L, Zhou X, Zhao J, Wang X. Research hotspots and frontiers of preconditioning in cerebral ischemia: A bibliometric analysis. Heliyon 2024; 10:e24757. [PMID: 38317957 PMCID: PMC10839892 DOI: 10.1016/j.heliyon.2024.e24757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/13/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Background Preconditioning is a promising strategy against ischemic brain injury, and numerous studies in vitro and in vivo have demonstrated its neuroprotective effects. However, at present there is no bibliometric analysis of preconditioning in cerebral ischemia. Therefore, a comprehensive overview of the current status, hot spots, and emerging trends in this research field is necessary. Materials and methods Studies on preconditioning in cerebral ischemia from January 1999-December 2022 were retrieved from the Web of Science Core Collection (WOSCC) database. CiteSpace was used for data mining and visual analysis. Results A total of 1738 papers on preconditioning in cerebral ischemia were included in the study. The annual publications showed an upwards and then downwards trend but currently remain high in terms of annual publications. The US was the leading country, followed by China, the most active country in recent years. Capital Medical University published the largest number of articles. Perez-Pinzon, Miguel A contributed the most publications, while KITAGAWA K was the most cited author. The focus of the study covered three areas: (1) relevant diseases and experimental models, (2) types of preconditioning and stimuli, and (3) mechanisms of ischemic tolerance. Remote ischemic preconditioning, preconditioning of mesenchymal stem cells (MSCs), and inflammation are the frontiers of research in this field. Conclusion Our study provides a visual and scientific overview of research on preconditioning in cerebral ischemia, providing valuable information and new directions for researchers.
Collapse
Affiliation(s)
- Long Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Traditional Chinese Medicine, Zibo TCM-Integrated Hospital, Zibo ,255026, China
| | - Xue Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jing Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xingchen Wang
- Division of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China
| |
Collapse
|
11
|
Ferreira MM, Farias KS, Zugaib M, Alves AMM, Amaral GV, Santos MLDC, Freitas ADS, Santana BCG, dos Santos Júnior SL, Mora-Ocampo IY, Santos AS, da Silva MF, Andrade BS, Pirovani CP. TcSERPIN, an inhibitor that interacts with cocoa defense proteins and has biotechnological potential against human pathogens. FRONTIERS IN PLANT SCIENCE 2024; 15:1337750. [PMID: 38348273 PMCID: PMC10859438 DOI: 10.3389/fpls.2024.1337750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024]
Abstract
In plants, serpins are a superfamily of serine and cysteine protease inhibitors involved in stress and defense mechanisms, with potential for controlling agricultural pests, making them important biotechnological tools. The objective of this study was to characterize a serpin from Theobroma cacao, called TcSERPIN, to identify its endogenous targets and determine its function and biotechnological potential. TcSERPIN has 390 amino acid residues and shows conservation of the main active site, RCL. Cis-elements related to light, stress, hormones, anaerobic induction, cell cycle regulation and defense have been identified in the gene's regulatory region. TcSERPIN transcripts are accumulated in different tissues of Theobroma cacao. Furthermore, in plants infected with Moniliophtora perniciosa and Phytophthora palmivora, the expression of TcSERPIN was positively regulated. The protein spectrum, rTcSERPIN, reveals a typical β-sheet pattern and is thermostable at pH 8, but loses its structure with temperature increases above 66°C at pH 7. At the molar ratios of 0.65 and 0.49, rTcSERPIN inhibited 55 and 28% of the activity of papain from Carica papaya and trypsin from Sus scrofa, respectively. The protease trap containing immobilized rTcSERPIN captured endogenous defense proteins from cocoa extracts that are related to metabolic pathways, stress and defense. The evaluation of the biotechnological potential against geohelminth larvae showed that rTcSERPIN and rTcCYS4 (Theobroma cacao cystatin 4) reduced the movement of larvae after 24 hours. The results of this work show that TcSERPIN has ideal biochemical characteristics for biotechnological applications, as well as potential for studies of resistance to phytopathogens of agricultural crops.
Collapse
Affiliation(s)
- Monaliza Macêdo Ferreira
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Keilane Silva Farias
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Maria Zugaib
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Akyla Maria Martins Alves
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Geiseane Velozo Amaral
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Maria Luíza do Carmo Santos
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Andria dos Santos Freitas
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Brenda Conceição Guimarães Santana
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Sérgio Liberato dos Santos Júnior
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Irma Yuliana Mora-Ocampo
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Ariana Silva Santos
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Marcelo Fernandes da Silva
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Bruno Silva Andrade
- Laboratório de Bioinformática e Química Computacional (LBQC), Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia, Brazil
| | - Carlos Priminho Pirovani
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| |
Collapse
|
12
|
Lapenna D. Glutathione and glutathione-dependent enzymes: From biochemistry to gerontology and successful aging. Ageing Res Rev 2023; 92:102066. [PMID: 37683986 DOI: 10.1016/j.arr.2023.102066] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
The tripeptide glutathione (GSH), namely γ-L-glutamyl-L-cysteinyl-glycine, is an ubiquitous low-molecular weight thiol nucleophile and reductant of utmost importance, representing the central redox agent of most aerobic organisms. GSH has vital functions involving also antioxidant protection, detoxification, redox homeostasis, cell signaling, iron metabolism/homeostasis, DNA synthesis, gene expression, cysteine/protein metabolism, and cell proliferation/differentiation or death including apoptosis and ferroptosis. Various functions of GSH are exerted in concert with GSH-dependent enzymes. Indeed, although GSH has direct scavenging antioxidant effects, its antioxidant function is substantially accomplished by glutathione peroxidase-catalyzed reactions with reductive removal of H2O2, organic peroxides such as lipid hydroperoxides, and peroxynitrite; to this antioxidant activity also contribute peroxiredoxins, enzymes further involved in redox signaling and chaperone activity. Moreover, the detoxifying function of GSH is basically exerted in conjunction with glutathione transferases, which have also antioxidant properties. GSH is synthesized in the cytosol by the ATP-dependent enzymes glutamate cysteine ligase (GCL), which catalyzes ligation of cysteine and glutamate forming γ-glutamylcysteine (γ-GC), and glutathione synthase, which adds glycine to γ-GC resulting in GSH formation; GCL is rate-limiting for GSH synthesis, as is the precursor amino acid cysteine, which may be supplemented as N-acetylcysteine (NAC), a therapeutically available compound. After its cell export, GSH is degraded extracellularly by the membrane-anchored ectoenzyme γ-glutamyl transferase, a process occurring, as GSH synthesis and export, in the γ-glutamyl cycle. GSH degradation occurs also intracellularly by the cytoplasmic enzymatic ChaC family of γ-glutamyl cyclotransferase. Synthesis and degradation of GSH, together with its export, translocation to cell organelles, utilization for multiple essential functions, and regeneration from glutathione disulfide by glutathione reductase, are relevant to GSH homeostasis and metabolism. Notably, GSH levels decline during aging, an alteration generally related to impaired GSH biosynthesis and leading to cell dysfunction. However, there is evidence of enhanced GSH levels in elderly subjects with excellent physical and mental health status, suggesting that heightened GSH may be a marker and even a causative factor of increased healthspan and lifespan. Such aspects, and much more including GSH-boosting substances administrable to humans, are considered in this state-of-the-art review, which deals with GSH and GSH-dependent enzymes from biochemistry to gerontology, focusing attention also on lifespan/healthspan extension and successful aging; the significance of GSH levels in aging is considered also in relation to therapeutic possibilities and supplementation strategies, based on the use of various compounds including NAC-glycine, aimed at increasing GSH and related defenses to improve health status and counteract aging processes in humans.
Collapse
Affiliation(s)
- Domenico Lapenna
- Dipartimento di Medicina e Scienze dell'Invecchiamento, and Laboratorio di Fisiopatologia dello Stress Ossidativo, Center for Advanced Studies and Technology (CAST, former CeSI-MeT, Center of Excellence on Aging), Università degli Studi "G. d'Annunzio" Chieti Pescara, U.O.C. Medicina Generale 2, Ospedale Clinicizzato "Santissima Annunziata", Via dei Vestini, 66100 Chieti, Italy.
| |
Collapse
|
13
|
Wanvimonsuk S, Somboonwiwat K. Peroxiredoxin-4 supplementation modulates the immune response, shapes the intestinal microbiome, and enhances AHPND resistance in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023:108915. [PMID: 37355217 DOI: 10.1016/j.fsi.2023.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
Peroxiredoxin-4 from Penaeus vannamei (LvPrx4) is considered a damage-associated molecular pattern (DAMP) that can activate the expression of immune-related genes through the Toll pathway. We previously demonstrated that the recombinant LvPrx4 (rLvPrx4) can enhance shrimp resistance against Vibrio parahaemolyticus, causing acute hepatopancreatic necrosis disease (VPAHPND), which causes great production losses in shrimp farming. Herein, we showed that the rLvPrx4 had a thermal tolerance of around 60 °C and that the ionic strength had no noticeable effect on its activity. We discovered that feeding a diet containing rLvPrx4 to shrimp for three weeks increased the expression of the immune-related genes LvPEN4 and LvVago5. Furthermore, pre-treatment with rLvPrx4 feeding could significantly prolong shrimp survival following the VPAHPND challenge. The shrimp intestinal microbiome was then characterized using PCR amplification of the 16S rRNA gene and Illumina sequencing. Three weeks of rLvPrx4 supplementation altered the bacterial community structure (beta diversity) and revealed the induction of differentially abundant families, including Cryomorphaceae, Flavobacteriaceae, Pirellulaceae, Rhodobacteraceae, and Verrucomicrobiaceae, in the rLvPrx4 group. Metagenomic predictions indicated that some amino acid metabolism pathways, such as arginine and proline metabolism, and genetic information processing were significantly elevated in the rLvPrx4 group compared to the control group. This study is the first to describe the potential use of rLvPrx4 supplementation to enhance shrimp resistance to VPAHPND and alter the composition of a beneficial bacterial community in shrimp, making rLvPrx4 a promising feed supplement as an alternative to antibiotics for controlling VPAHPND infection in shrimp aquaculture.
Collapse
Affiliation(s)
- Supitcha Wanvimonsuk
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
14
|
Török S, Almási N, Veszelka M, Börzsei D, Szabó R, Varga C. Protective Effects of H 2S Donor Treatment in Experimental Colitis: A Focus on Antioxidants. Antioxidants (Basel) 2023; 12:antiox12051025. [PMID: 37237891 DOI: 10.3390/antiox12051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic, inflammatory disorders of the gastrointestinal (GI) system, which have become a global disease over the past few decades. It has become increasingly clear that oxidative stress plays a role in the pathogenesis of IBD. Even though several effective therapies exist against IBD, these might have serious side effects. It has been proposed that hydrogen sulfide (H2S), as a novel gasotransmitter, has several physiological and pathological effects on the body. Our present study aimed to investigate the effects of H2S administration on antioxidant molecules in experimental rat colitis. As a model of IBD, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was used intracolonically (i.c.) to induce colitis in male Wistar-Hannover rats. Animals were orally treated (2 times/day) with H2S donor Lawesson's reagent (LR). Our results showed that H2S administration significantly decreased the severity of inflammation in the colons. Furthermore, LR significantly suppressed the level of oxidative stress marker 3-nitrotyrosine (3-NT) and caused a significant elevation in the levels of antioxidant GSH, Prdx1, Prdx6, and the activity of SOD compared to TNBS. In conclusion, our results suggest that these antioxidants may offer potential therapeutic targets and H2S treatment through the activation of antioxidant defense mechanisms and may provide a promising strategy against IBD.
Collapse
Affiliation(s)
- Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
15
|
Real-Time PCR Quantification of 87 miRNAs from Cerebrospinal Fluid: miRNA Dynamics and Association with Extracellular Vesicles after Severe Traumatic Brain Injury. Int J Mol Sci 2023; 24:ijms24054751. [PMID: 36902179 PMCID: PMC10003046 DOI: 10.3390/ijms24054751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Severe traumatic brain injury (sTBI) is an intracranial damage triggered by external force, most commonly due to falls and traffic accidents. The initial brain injury can progress into a secondary injury involving numerous pathophysiological processes. The resulting sTBI dynamics makes the treatment challenging and prompts the improved understanding of underlying intracranial processes. Here, we analysed how extracellular microRNAs (miRNAs) are affected by sTBI. We collected thirty-five cerebrospinal fluids (CSF) from five sTBI patients during twelve days (d) after the injury and combined them into d1-2, d3-4, d5-6 and d7-12 CSF pools. After miRNA isolation and cDNA synthesis with added quantification spike-ins, we applied a real-time PCR-array targeting 87 miRNAs. We detected all of the targeted miRNAs, with totals ranging from several nanograms to less than a femtogram, with the highest levels found at d1-2 followed by decreasing levels in later CSF pools. The most abundant miRNAs were miR-451a, miR-16-5p, miR-144-3p, miR-20a-5p, let-7b-5p, miR-15a-5p, and miR-21-5p. After separating CSF by size-exclusion chromatography, most miRNAs were associated with free proteins, while miR-142-3p, miR-204-5p, and miR-223-3p were identified as the cargo of CD81-enriched extracellular vesicles, as characterised by immunodetection and tunable resistive pulse sensing. Our results indicate that miRNAs might be informative about both brain tissue damage and recovery after sTBI.
Collapse
|
16
|
Peroxiredoxins and Hypoxia-Inducible Factor-1α in Duodenal Tissue: Emerging Factors in the Pathophysiology of Pediatric Celiac Disease Patients. Curr Issues Mol Biol 2023; 45:1779-1793. [PMID: 36826059 PMCID: PMC9954839 DOI: 10.3390/cimb45020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Celiac disease (CD) is an autoimmune enteropathy. Peroxiredoxins (PRDXs) are powerful antioxidant enzymes having an important role in significant cellular pathways including cell survival, apoptosis, and inflammation. This study aimed at investigating the expression levels of all PRDX isoforms (1-6) and their possible relationships with a transcription factor, HIF-1α, in the small intestinal tissue samples of pediatric CD patients. The study groups consisted of first-diagnosed CD patients (n = 7) and non-CD patients with functional gastrointestinal tract disorders as the controls (n = 7). The PRDXs and HIF-1α expression levels were determined by using real-time PCR and Western blotting in duodenal biopsy samples. It was observed that the mRNA and protein expression levels of PRDX 5 were significantly higher in the CD patients, whereas the PRDX 1, -2, and -4 expressions were decreased in each case compared to the control group. No significant differences were detected in the PRDX 3 and PRDX 6 expressions. The expression of HIF-1α was also significantly elevated in CD patients. These findings indicate, for the first time, that PRDXs, particularly PRDX 5, may play a significant role in the pathogenesis of CD. Furthermore, our results suggest that HIF-1α may upregulate PRDX-5 transcription in the duodenal tissue of CD.
Collapse
|
17
|
Ganeshalingam S, Nadarajapillai K, Sellaththurai S, Kim G, Kim J, Lee JH, Jeong T, Wan Q, Lee J. Molecular characterization, immune expression, and functional delineation of peroxiredoxin 1 in Epinephelus akaara. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108552. [PMID: 36669605 DOI: 10.1016/j.fsi.2023.108552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Peroxiredoxin 1 is a member of the typical 2-Cys peroxiredoxin family, which serves diverse functions in gene expression, immune and inflammatory responses, and tumor progression. In this study, we aimed to analyze the structural, functional, and immunomodulatory properties of peroxiredoxin 1 from Epinephelus akaara (EaPrx1). The open reading frame of EaPrx1 is 597 base pairs in length, encoding 198 amino acids, with a molecular weight of approximately 22 kDa. The in silico analysis revealed that EaPrx1 shares a conserved thioredoxin fold and signature motifs that are critical for its catalytic activity and oligomerization. Further, EaPrx1 is closely related to Epinephelus lanceolatus Prx1 and clustered in the Fishes group of the vertebrate clade, revealing that EaPrx1 was conserved throughout evolution. In terms of tissue distribution, a high level of EaPrx1 expression was observed in the spleen, brain, and blood tissues. Likewise, in immune challenge experiments, significant transcriptional modulations of EaPrx1 upon lipopolysaccharide, polyinosinic:polycytidylic acid, and nervous necrosis virus injections were noted at different time points, indicating the immunological role of EaPrx1 against pathogenic infections. In the functional analysis, rEaPrx1 exhibited substantial DNA protection, insulin disulfide reduction, and tissue repair activities, which were concentration-dependent. EaPrx1/pcDNA™ 3.1 (+)-transfected fathead minnow cells revealed high cell viability upon arsenic toxicity, indicating the heavy metal detoxification activity of EaPrx1. Taken together, the transcriptional and functional studies imply critical roles of EaPrx1 in innate immunity, redox regulation, apoptosis, and tissue-repair processes in E. akaara.
Collapse
Affiliation(s)
- Subothini Ganeshalingam
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jeongeun Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Ji Hun Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
18
|
Ma Q, Hui Y, Huang BR, Yang BF, Li JX, Fan TT, Gao XC, Ma DY, Chen WF, Pei ZX. Ferroptosis and cuproptosis prognostic signature for prediction of prognosis, immunotherapy and drug sensitivity in hepatocellular carcinoma: development and validation based on TCGA and ICGC databases. Transl Cancer Res 2023; 12:46-64. [PMID: 36760376 PMCID: PMC9906058 DOI: 10.21037/tcr-22-2203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignancy. Ferroptosis and cuproptosis promote HCC spread and proliferation. While fewer studies have combined ferroptosis and cuproptosis to construct prognostic signature of HCC. This work attempts to establish a novel scoring system for predicting HCC prognosis, immunotherapy, and medication sensitivity based on ferroptosis-related genes (FRGs) and cuproptosis-related genes (CRGs). Methods FerrDb and previous literature were used to identify FRGs. CRGs came from original research. The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases included the HCC transcriptional profile and clinical information [survival time, survival status, age, gender, Tumor Node Metastasis (TNM) stage, etc.]. Correlation, Cox, and least absolute shrinkage and selection operator (LASSO) regression analyses were used to narrow down prognostic genes and develop an HCC risk model. Using "caret", R separated TCGA-HCC samples into a training risk set and an internal test risk set. As external validation, we used ICGC samples. We employed Kaplan-Meier analysis and receiver operating characteristic (ROC) curve to evaluate the model's clinical efficacy. CIBERSORT and TIMER measured immunocytic infiltration in high- and low-risk populations. Results TXNRD1 [hazard ratio (HR) =1.477, P<0.001], FTL (HR =1.373, P=0.001), GPX4 (HR =1.650, P=0.004), PRDX1 (HR =1.576, P=0.002), VDAC2 (HR =1.728, P=0.008), OTUB1 (HR =1.826, P=0.002), NRAS (HR =1.596, P=0.005), SLC38A1 (HR =1.290, P=0.002), and SLC1A5 (HR =1.306, P<0.001) were distinguished to build predictive model. In both the model cohort (P<0.001) and the validation cohort (P<0.05), low-risk patients had superior overall survival (OS). The areas under the curve (AUCs) of the ROC curves in the training cohort (1-, 3-, and 5-year AUCs: 0.751, 0.727, and 0.743), internal validation cohort (1-, 3-, and 5-year AUCs: 0.826, 0.624, and 0.589), and ICGC cohort (1-, 3-, and 5-year AUCs: 0.699, 0.702, and 0.568) were calculated. Infiltration of immune cells and immunological checkpoints were also connected with our signature. Treatments with BI.2536, Epothilone.B, Gemcitabine, Mitomycin.C, Obatoclax. Mesylate, and Sunitinib may profit high-risk patients. Conclusions We analyzed FRGs and CRGs profiles in HCC and established a unique risk model for treatment and prognosis. Our data highlight FRGs and CRGs in clinical practice and suggest ferroptosis and cuproptosis may be therapeutic targets for HCC patients. To validate the model's clinical efficacy, more HCC cases and prospective clinical assessments are needed.
Collapse
Affiliation(s)
- Qi Ma
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuan Hui
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Bang-Rong Huang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Bin-Feng Yang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Jing-Xian Li
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Ting-Ting Fan
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiang-Chun Gao
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Da-You Ma
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Wei-Fu Chen
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zheng-Xue Pei
- Department of Integrative Medicine, Gansu Cancer Hospital, Lanzhou, China
| |
Collapse
|
19
|
Wanvimonsuk S, Jaree P, Kawai T, Somboonwiwat K. Prx4 acts as DAMP in shrimp, enhancing bacterial resistance via the toll pathway and prophenoloxidase activation. iScience 2022; 26:105793. [PMID: 36619979 PMCID: PMC9813724 DOI: 10.1016/j.isci.2022.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Peroxiredoxin (Prx), an antioxidant enzyme family, has been identified as immune modulating damage-associated molecular patterns (DAMPs) in mammals but not in shrimp. Acute non-lethal heat shock (NLHS) that enhances shrimp Penaeus vannamei resistance to Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (VPAHPND). Among the five P. vannamei Prxs (LvPrx) isoforms, LvPrx4, the most abundant in unchallenged shrimp hemocytes that was upregulated in hemocytes following NLHS treatment, is of great interest. The escalation of the LvPrx4 monomer in hemolymph of NLHS treated shrimp indicates that it probably acts as DAMP. This study revealed that pre-challenge with rLvPrx4 could prolong VPAHPND-infected shrimp survival, increase prophenoloxidase (proPO) activity and promote Toll pathway-related genes expression mediated by Toll-like receptor (TLR) 1 and 2. The presented findings elucidated the molecular mechanism of LvPrx4 monomer as DAMP in NLHS-induced VPAHPND resistance by inducing the TLR1/2 signaling pathway and the proPO activating system.
Collapse
Affiliation(s)
- Supitcha Wanvimonsuk
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Phattarunda Jaree
- Center of Applied Shrimp Research and Innovation, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Corresponding author
| |
Collapse
|
20
|
de Bus IA, America AHP, de Ruijter NCA, Lam M, van de Sande JW, Poland M, Witkamp RF, Zuilhof H, Balvers MGJ, Albada B. PUFA-Derived N-Acylethanolamide Probes Identify Peroxiredoxins and Small GTPases as Molecular Targets in LPS-Stimulated RAW264.7 Macrophages. ACS Chem Biol 2022; 17:2054-2064. [PMID: 35867905 PMCID: PMC9396616 DOI: 10.1021/acschembio.1c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the mechanistic and biological origins of anti-inflammatory poly-unsaturated fatty acid-derived N-acylethanolamines using synthetic bifunctional chemical probes of docosahexaenoyl ethanolamide (DHEA) and arachidonoyl ethanolamide (AEA) in RAW264.7 macrophages stimulated with 1.0 μg mL-1 lipopolysaccharide. Using a photoreactive diazirine, probes were covalently attached to their target proteins, which were further studied by introducing a fluorescent probe or biotin-based affinity purification. Fluorescence confocal microscopy showed DHEA and AEA probes localized in cytosol, specifically in structures that point toward the endoplasmic reticulum and in membrane vesicles. Affinity purification followed by proteomic analysis revealed peroxiredoxin-1 (Prdx1) as the most significant binding interactor of both DHEA and AEA probes. In addition, Prdx4, endosomal related proteins, small GTPase signaling proteins, and prostaglandin synthase 2 (Ptgs2, also known as cyclooxygenase 2 or COX-2) were identified. Lastly, confocal fluorescence microscopy revealed the colocalization of Ptgs2 and Rac1 with DHEA and AEA probes. These data identified new molecular targets suggesting that DHEA and AEA may be involved in reactive oxidation species regulation, cell migration, cytoskeletal remodeling, and endosomal trafficking and support endocytosis as an uptake mechanism.
Collapse
Affiliation(s)
- Ian-Arris de Bus
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Antoine H P America
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Norbert C A de Ruijter
- Laboratory of Cell Biology, Wageningen Light Microscopy Centre, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Milena Lam
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jasper W van de Sande
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Mieke Poland
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, People's Republic of China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
21
|
Changing Perspectives from Oxidative Stress to Redox Signaling-Extracellular Redox Control in Translational Medicine. Antioxidants (Basel) 2022; 11:antiox11061181. [PMID: 35740078 PMCID: PMC9228063 DOI: 10.3390/antiox11061181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/07/2022] Open
Abstract
Extensive research has changed the understanding of oxidative stress that has been linked to every major disease. Today we distinguish oxidative eu- and distress, acknowledging that redox modifications are crucial for signal transduction in the form of specific thiol switches. Long underestimated, reactive species and redox proteins of the Thioredoxin (Trx) family are indeed essential for physiological processes. Moreover, extracellular redox proteins, low molecular weight thiols and thiol switches affect signal transduction and cell–cell communication. Here, we highlight the impact of extracellular redox regulation for health, intermediate pathophenotypes and disease. Of note, recent advances allow the analysis of redox changes in body fluids without using invasive and expensive techniques. With this new knowledge in redox biochemistry, translational strategies can lead to innovative new preventive and diagnostic tools and treatments in life sciences and medicine.
Collapse
|
22
|
Oxidative Stress Markers in Cerebrospinal Fluid of Newly Diagnosed Multiple Sclerosis Patients and Their Link to Iron Deposition and Atrophy. Diagnostics (Basel) 2022; 12:diagnostics12061365. [PMID: 35741175 PMCID: PMC9221788 DOI: 10.3390/diagnostics12061365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress has been implied in cellular injury even in the early phases of multiple sclerosis (MS). In this study, we quantified levels of biomarkers of oxidative stress and antioxidant capacity in cerebrospinal fluid (CSF) in newly diagnosed MS patients and their associations with brain atrophy and iron deposits in the brain tissue. Consecutive treatment-naive adult MS patients (n = 103) underwent brain MRI and CSF sampling. Healthy controls (HC, n = 99) had brain MRI. CSF controls (n = 45) consisted of patients with non-neuroinflammatory conditions. 3T MR included isotropic T1 weighted (MPRAGE) and gradient echo (GRE) images that were processed to quantitative susceptibility maps. The volume and magnetic susceptibility of deep gray matter (DGM) structures were calculated. The levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG), 8-iso prostaglandin F2α (8-isoPG), neutrophil gelatinase-associated lipocalin (NGAL), peroxiredoxin-2 (PRDX2), and malondialdehyde and hydroxyalkenals (MDA + HAE) were measured in CSF. Compared to controls, MS patients had lower volumes of thalamus, pulvinar, and putamen, higher susceptibility in caudate nucleus and globus pallidus, and higher levels of 8-OHdG, PRDX2, and MDA + HAE. In MS patients, the level of NGAL correlated negatively with volume and susceptibility in the dentate nucleus. The level of 8-OHdG correlated negatively with susceptibility in the caudate, putamen, and the red nucleus. The level of PRDX2 correlated negatively with the volume of the thalamus and both with volume and susceptibility of the dentate nucleus. From MRI parameters with significant differences between MS and HC groups, only caudate susceptibility and thalamic volume were significantly associated with CSF parameters. Our study shows that increased oxidative stress in CSF detected in newly diagnosed MS patients suggests its role in the pathogenesis of MS.
Collapse
|
23
|
Zhang Q, Luo P, Zheng L, Chen J, Zhang J, Tang H, Liu D, He X, Shi Q, Gu L, Li J, Guo Q, Yang C, Wong YK, Xia F, Wang J. 18beta-Glycyrrhetinic acid induces ROS-mediated apoptosis to ameliorate hepatic fibrosis by targeting PRDX1/2 in activated HSCs. J Pharm Anal 2022; 12:570-582. [PMID: 36105163 PMCID: PMC9463498 DOI: 10.1016/j.jpha.2022.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 10/26/2022] Open
|
24
|
Wu M, Deng C, Lo TH, Chan KY, Li X, Wong CM. Peroxiredoxin, Senescence, and Cancer. Cells 2022; 11:cells11111772. [PMID: 35681467 PMCID: PMC9179887 DOI: 10.3390/cells11111772] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 02/08/2023] Open
Abstract
Peroxiredoxins are multifunctional enzymes that play a key role in protecting cells from stresses and maintaining the homeostasis of many cellular processes. Peroxiredoxins were firstly identified as antioxidant enzymes that can be found in all living organisms. Later studies demonstrated that peroxiredoxins also act as redox signaling regulators, chaperones, and proinflammatory factors and play important roles in oxidative defense, redox signaling, protein folding, cycle cell progression, DNA integrity, inflammation, and carcinogenesis. The versatility of peroxiredoxins is mainly based on their unique active center cysteine with a wide range of redox states and the ability to switch between low- and high-molecular-weight species for regulating their peroxidase and chaperone activities. Understanding the molecular mechanisms of peroxiredoxin in these processes will allow the development of new approaches to enhance longevity and to treat various cancers. In this article, we briefly review the history of peroxiredoxins, summarize recent advances in our understanding of peroxiredoxins in aging- and cancer-related biological processes, and discuss the future perspectives of using peroxiredoxins in disease diagnostics and treatments.
Collapse
|
25
|
Anti-Inflammatory Activity of Bryophytes Extracts in LPS-Stimulated RAW264.7 Murine Macrophages. Molecules 2022; 27:molecules27061940. [PMID: 35335304 PMCID: PMC8953629 DOI: 10.3390/molecules27061940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/26/2022] [Accepted: 03/12/2022] [Indexed: 01/27/2023] Open
Abstract
Bryophytes produce rare and bioactive compounds with a broad range of therapeutic potential, and many species are reported in ethnomedicinal uses. However, only a few studies have investigated their potential as natural anti-inflammatory drug candidate compounds. The present study investigates the anti-inflammatory effects of thirty-two species of bryophytes, including mosses and liverworts, on Raw 264.7 murine macrophages stimulated with lipopolysaccharide (LPS) or recombinant human peroxiredoxin (hPrx1). The 70% ethanol extracts of bryophytes were screened for their potential to reduce the production of nitric oxide (NO), an important pro-inflammatory mediator. Among the analyzed extracts, two moss species significantly inhibited LPS-induced NO production without cytotoxic effects. The bioactive extracts of Dicranum majus and Thuidium delicatulum inhibited NO production in a concentration-dependent manner with IC50 values of 1.04 and 1.54 µg/mL, respectively. The crude 70% ethanol and ethyl acetate extracts were then partitioned with different solvents in increasing order of polarity (n-hexane, diethyl ether, chloroform, ethyl acetate, and n-butanol). The fractions were screened for their inhibitory effects on NO production stimulated with LPS at 1 ng/mL or 10 ng/mL. The NO production levels were significantly affected by the fractions of decreasing polarity such as n-hexane and diethyl ether ones. Therefore, the potential of these extracts to inhibit the LPS-induced NO pathway suggests their effective properties in attenuating inflammation and could represent a perspective for the development of innovative therapeutic agents.
Collapse
|
26
|
Cavalcante JDS, de Almeida CAS, Clasen MA, da Silva EL, de Barros LC, Marinho AD, Rossini BC, Marino CL, Carvalho PC, Jorge RJB, Dos Santos LD. A fingerprint of plasma proteome alteration after local tissue damage induced by Bothrops leucurus snake venom in mice. J Proteomics 2022; 253:104464. [PMID: 34954398 DOI: 10.1016/j.jprot.2021.104464] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 12/21/2022]
Abstract
Bothrops spp. is responsible for about 70% of snakebites in Brazil, causing a diverse and complex pathophysiological condition. Bothrops leucurus is the main species of medical relevance found in the Atlantic coast in the Brazilian Northeast region. The pathophysiological effects involved B. leucurus snakebite as well as the organism's reaction in response to this envenoming, it has not been explored yet. Thus, edema was induced in mice paw using 1.2, 2.5, and 5.0 μg of B. leucurus venom, the percentage of edema was measured 30 min after injection and the blood plasma was collected and analyzed by shotgun proteomic strategy. We identified 80 common plasma proteins with differential abundance among the experimental groups and we can understand the early aspects of this snake envenomation, regardless of the suggestive severity of an ophidian accident. The results showed B. leucurus venom triggers a thromboinflammation scenario where family's proteins of the Serpins, Apolipoproteins, Complement factors and Component subunits, Cathepsins, Kinases, Oxidoreductases, Proteases inhibitors, Proteases, Collagens, Growth factors are related to inflammation, complement and coagulation systems, modulators platelets and neutrophils, lipid and retinoid metabolism, oxidative stress and tissue repair. Our findings set precedents for future studies in the area of early diagnosis and/or treatment of snakebites. SIGNIFICANCE: The physiopathological effects that the snake venoms can cause have been investigated through classical and reductionist tools, which allowed, so far, the identification of action mechanisms of individual components associated with specific tissue damage. The currently incomplete limitations of this knowledge must be expanded through new approaches, such as proteomics, which may represent a big leap in understanding the venom-modulated pathological process. The exploration of the complete protein set that suffer modifications by the simultaneous action of multiple toxins, provides a map of the establishment of physiopathological phenotypes, which favors the identification of multiple toxin targets, that may or may not act in synergy, as well as favoring the discovery of biomarkers and therapeutic targets for manifestations that are not neutralized by the antivenom.
Collapse
Affiliation(s)
- Joeliton Dos Santos Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Milan Avila Clasen
- Laboratory for Structural and Computational Proteomics, ICC, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, PR, Brazil
| | - Emerson Lucena da Silva
- Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Luciana Curtolo de Barros
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Aline Diogo Marinho
- Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Bruno Cesar Rossini
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, SP, Brazil; Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Celso Luís Marino
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, SP, Brazil; Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Paulo Costa Carvalho
- Laboratory for Structural and Computational Proteomics, ICC, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, PR, Brazil
| | - Roberta Jeane Bezerra Jorge
- Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Lucilene Delazari Dos Santos
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil; Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
27
|
Lu J, Zhang M, Liang H, Shen C, Zhang B, Liang B. Comparative proteomics and transcriptomics illustrate the allograft-induced stress response in the pearl oyster (Pinctada fucata martensii). FISH & SHELLFISH IMMUNOLOGY 2022; 121:74-85. [PMID: 34990804 DOI: 10.1016/j.fsi.2021.12.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Implantation of a spherical nucleus into a recipient oyster is a critical step in artificial pearl production. However, the molecular mechanisms underlying the response of the pearl oyster to this operation are poorly understood. In this research, we used transcriptomic and proteomic analyses to examine allograft-induced changes in gene/protein expression patterns in Pinctada fucata martensii 12 h after nucleus implantation. Transcriptome analysis identified 688 differential expression genes (DEGs) (FDR<0.01 and |fold change) > 2). Using a 1.2-fold increase or decrease in protein expression as a benchmark for differentially expressed proteins (DEPs), 108 DEPs were reliably quantified, including 71 up-regulated proteins (DUPs) and 37 down-regulated proteins (DDPs). Further analysis revealed that the GO terms, including "cellular process", "biological regulation" and "metabolic process" were considerably enriched. In addition, the transcriptomics analysis showed that "Neuroactive ligand-receptor interaction", "NF-kappa B signaling pathway", "MAPK signaling pathway", "PI3K-Akt signaling pathway', "Toll-like receptor signaling pathway", and "Notch signaling pathway" were significantly enriched in DEGs. The proteomics analysis showed that "ECM-receptor interaction", "Human papillomavirus infection", and "PI3K-Akt signaling pathway" were significantly enriched in DEPs. The results indicate that these functions could play an important role in response to pear oyster stress at nucleus implantation. To assess the potential relevance of quantitative information between mRNA and proteins, using Ward's hierarchical clustering analysis clustered the protein/gene expression patterns across the experimental and control samples into six groups. To investigate the biological processes associated with the protein in each cluster, we identified the significantly enriched GO terms and KEGG pathways in the proteins in each cluster. Gene set enrichment analysis (GSEA) was used to reveal the potential protein or transcription pathways associated with the response to nuclear implantation. Thus, the study of P. f. martensii is essential to enhance our understanding of the molecular mechanisms involved in pearl biosynthesis and the biology of bivalve molluscs.
Collapse
Affiliation(s)
- Jinzhao Lu
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Meizhen Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Haiying Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, 524088, China.
| | - Chenghao Shen
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Bin Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Bidan Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
28
|
Yuan F, Wei C. Gene expression profiles in Malpighian tubules of the vector leafhopper Psammotettix striatus (L.) revealed regional functional diversity and heterogeneity. BMC Genomics 2022; 23:67. [PMID: 35057738 PMCID: PMC8781387 DOI: 10.1186/s12864-022-08300-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background Many leafhoppers are known as pests and disease vectors of economically important plants. Previous studies of the physiological functions of vector leafhoppers have mainly focused on the salivary glands and the alimentary tract that are deemed to be associated with digestion, host defense and phytoplasma and/or virus transmission. By contrast, the significance of Malpighian tubules (MTs) is less studied. To clarify the physiological function of MTs of the vector leafhopper Psammotettix striatus that transmits phytoplasma triggering the wheat blue dwarf disease, we performed a transcriptome study on P. striatus MTs and compared gene expression profiles among different anatomical regions in the tubules (i.e., MT1+2, the anterior segment together with the sub-anterior segment; MT3, the inflated segment; and MT4, the distal segment). Results Transcriptome of P. striatus MTs generate a total of 42,815 high-quality unigenes, among which highly expressed unigenes are mainly involved in organic solute transport, detoxification and immunity in addition to osmoregulation. Region-specific comparative analyses reveal that all these MT regions have functions in osmoregulation, organic solute transport and detoxification, but each region targets different substrates. Differential expression and regional enrichment of immunity-related effector activities and molecules involved in phagocytosis and the biosynthesis of antimicrobial peptides among different regions indicate that MT1+2 and MT4 have the ability to eliminate the invading pathogens. However, in MT3 which secrets brochosomes to the integument and eggs as physical barriers, disulfide-isomerase, acidic ribosomal protein P and many other unigenes were highly expressed, which can be attractive candidate genes for future studies of the biosynthesis and the origin of brochosomes. Conclusions Psammotettix striatus MTs perform multiple physiological functions as versatile organs than just excretory organs with osmoregulatory function. Heterogeneity of physiological functions among different MT regions is related to organic solute transport, detoxification, immunity and brochosome biosynthesis in addition to osmoregulation, and each region targets different substrates. These functions may be helpful for P. striatus to resist pathogens from habitats and to utilize a wider range of host plants, which may assist the transmission and spread of phytoplasmas. The results provide potential molecular targets for the exploit of chemical and/or gene-silencing insecticides. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08300-6.
Collapse
|
29
|
Szeliga M. Comprehensive analysis of the expression levels and prognostic values of PRDX family genes in glioma. Neurochem Int 2021; 153:105256. [PMID: 34968631 DOI: 10.1016/j.neuint.2021.105256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
Gliomas are a histologically and molecularly heterogeneous group of neoplasms accounting for 80% of malignant primary brain tumors. Growing evidence suggests that production of reactive oxygen species (ROS) is linked to glioma pathogenesis, although it is still unclear whether it is a cause or an effect of this process. Peroxiredoxins (PRDXs), a family of six antioxidant proteins, may promote or inhibit carcinogenesis, depending on the tumor type and stage. The current knowledge on their expression, regulation and functions in glioma is scarce. In this study, a comprehensive analysis of PRDXs expression in distinct glioma subtypes and non-tumor brain tissues was conducted using gene expression data from The Cancer Genome Atlas (TCGA), REpository for Molecular BRAin NeoplasiaDaTa (REMBRANDT), The Chinese Glioma Atlas (CGGA) and Gene Expression Omnibus (GEO) datasets. The association between gene expression and patient survival was investigated. DNA methylation, mutations, copy number alterations of deregulated PRDXs as well as the correlation between gene expression and tumor-infiltrating immune cells were assessed. The analysis revealed overexpression of PRDX1, PRDX4, and PRDX6 in most histological glioma types compared to the non-tumor tissues, while PRDX2, PRDX3 and PRDX5 expression remained unaltered. The expression of PRDX4 and PRDX6 was higher in mesenchymal than proneural and classical glioma subtypes. Moreover, lower expression of PRDX1, PRDX4 and PRDX6 was observed in tumors with a glioma CpG island methylator phenotype (G-CIMP) compared to non-G-CIMP tumors, as well as in isocitrate dehydrogenase (IDH) mutant and 1p/19q co-deleted gliomas compared to the wild-type counterparts. High expression of PRDX1, PRDX4 or PRDX6 correlated with poor survival of glioma patients. PRDX1 and PRDX6 displayed a positive correlation with different immune cell population in low grade gliomas and, to a lesser extent, in glioblastoma. PRDX1 expression exhibited negative correlation with DNA methylation. These results indicate that high expression of PRDX1, PRDX4 and PRDX6 is associated with poor outcome in gliomas.
Collapse
Affiliation(s)
- Monika Szeliga
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland.
| |
Collapse
|
30
|
Salovska B, Kondelova A, Pimkova K, Liblova Z, Pribyl M, Fabrik I, Bartek J, Vajrychova M, Hodny Z. Peroxiredoxin 6 protects irradiated cells from oxidative stress and shapes their senescence-associated cytokine landscape. Redox Biol 2021; 49:102212. [PMID: 34923300 PMCID: PMC8688892 DOI: 10.1016/j.redox.2021.102212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022] Open
Abstract
Cellular senescence is a complex stress response defined as an essentially irreversible cell cycle arrest mediated by the inhibition of cell cycle-specific cyclin dependent kinases. The imbalance in redox homeostasis and oxidative stress have been repeatedly observed as one of the hallmarks of the senescent phenotype. However, a large-scale study investigating protein oxidation and redox signaling in senescent cells in vitro has been lacking. Here we applied a proteome-wide analysis using SILAC-iodoTMT workflow to quantitatively estimate the level of protein sulfhydryl oxidation and proteome level changes in ionizing radiation-induced senescence (IRIS) in hTERT-RPE-1 cells. We observed that senescent cells mobilized the antioxidant system to buffer the increased oxidation stress. Among the antioxidant proteins with increased relative abundance in IRIS, a unique 1-Cys peroxiredoxin family member, peroxiredoxin 6 (PRDX6), was identified as an important contributor to protection against oxidative stress. PRDX6 silencing increased ROS production in senescent cells, decreased their resistance to oxidative stress-induced cell death, and impaired their viability. Subsequent SILAC-iodoTMT and secretome analysis after PRDX6 silencing showed the downregulation of PRDX6 in IRIS affected protein secretory pathways, decreased expression of extracellular matrix proteins, and led to unexpected attenuation of senescence-associated secretory phenotype (SASP). The latter was exemplified by decreased secretion of pro-inflammatory cytokine IL-6 which was also confirmed after treatment with an inhibitor of PRDX6 iPLA2 activity, MJ33. In conclusion, by combining different methodological approaches we discovered a novel role of PRDX6 in senescent cell viability and SASP development. Our results suggest PRDX6 could have a potential as a drug target for senolytic or senomodulatory therapy. SILAC-iodoTMT is a powerful tool to quantify redox imbalance in IRIS. Senescence in hTERT-RPE-1 cells is not accompanied by bulk cysteine oxidation. Antioxidant proteins are upregulated in senescent hTERT-RPE-1 cells. PRDX6 silencing affects redox homeostasis and viability of senescent cells. PRDX6 silencing alters secretome of senescent RPE-1 cells and suppresses IL-6.
Collapse
Affiliation(s)
- Barbora Salovska
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexandra Kondelova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristyna Pimkova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; BIOCEV, 1st Medical Faculty, Charles University, Vestec, Czech Republic
| | - Zuzana Liblova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslav Pribyl
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Marie Vajrychova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
31
|
Yu G, Ou W, Ai Q, Zhang W, Mai K, Zhang Y. In vitro study of sodium butyrate on soyasaponin challenged intestinal epithelial cells of turbot (Scophthalmus maximus L.) refer to inflammation, apoptosis and antioxidant enzymes. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100031. [PMID: 36420502 PMCID: PMC9680047 DOI: 10.1016/j.fsirep.2021.100031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 10/23/2021] [Indexed: 01/14/2023] Open
Abstract
The study is aimed to investigate the protective effect and potential mechanisms of sodium butyrate (NaBT) on soyasaponins (SA) induced intestinal epithelial cells (IECs) injury in vitro. The primary IECs of turbot were developed and treated with 0.4, 1 and 4 mM NaBT in the presence of 0.4 mg/mL SA for 6 h to explore the protective effects of NaBT. The results showed that the addition of NaBT significantly down-regulated gene expression of inflammatory cytokine TNF-α, IL-1β and IL-8, pro-apoptosis relevant gene BAX, caspase-3, caspase-7 and caspase-9 induced by SA, while up-regulated anti-apoptosis gene Bcl-2. SA stimulation did not induce reactive oxygen species production, but elevated gene expression of antioxidant enzyme heme oxygenase-1 and superoxide dismutase. Moreover, the gene expression of those antioxidant enzyme was further up-regulated in NaBT groups. Furthermore, NaBT supplementation decreased the acid phosphatase and alkaline phosphatase activities and suppressed phosphorylation of p38 and c-Jun N-terminal kinase (JNK). In conclusion, NaBT could mitigate SA-induced inflammation and apoptosis and elevate gene expression of antioxidant enzymes on IECs of turbot and p38 and JNK signaling pathway participated in those processes.
Collapse
|
32
|
Li X, Feng M, Zhao Y, Zhang Y, Zhou R, Zhou H, Pang Z, Tachibana H, Cheng X. A Novel TLR4-Binding Domain of Peroxiredoxin From Entamoeba histolytica Triggers NLRP3 Inflammasome Activation in Macrophages. Front Immunol 2021; 12:758451. [PMID: 34659265 PMCID: PMC8515043 DOI: 10.3389/fimmu.2021.758451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophages promote early host responses to infection by releasing pro-inflammatory cytokines, and they are crucial to combat amoebiasis, a disease affecting millions of people worldwide. Macrophages elicit pro-inflammatory responses following direct cell/cell interaction of Entamoeba histolytica, inducing NLRP3 inflammasome activation with high-output IL-1β/IL-18 secretion. Here, we found that trophozoites could upregulate peroxiredoxins (Prx) expression and abundantly secrete Prxs when encountering host cells. The C-terminal of Prx was identified as the key functional domain in promoting NLRP3 inflammasome activation, and a recombinant C-terminal domain could act directly on macrophage. The Prxs derived from E. histolytica triggered toll-like receptor 4-dependent activation of NLRP3 inflammasome in a cell/cell contact-independent manner. Through genetic, immunoblotting or pharmacological inhibition methods, NLRP3 inflammasome activation was induced through caspase-1-dependent canonical pathway. Our data suggest that E. histolytica Prxs had stable and durable cell/cell contact-independent effects on macrophages following abundantly secretion during invasion, and the C-terminal of Prx was responsible for activating NLRP3 inflammasome in macrophages. This new alternative pathway may represent a potential novel therapeutic approach for amoebiasis, a global threat to millions.
Collapse
Affiliation(s)
- Xia Li
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanqing Zhao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuhan Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ruixue Zhou
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hang Zhou
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhen Pang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Japan
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
33
|
Mierzejewski K, Stryiński R, Łopieńska-Biernat E, Mateos J, Bogacka I, Carrera M. A Complex Proteomic Response of the Parasitic Nematode Anisakis simplex s.s. to Escherichia coliLipopolysaccharide. Mol Cell Proteomics 2021; 20:100166. [PMID: 34673282 PMCID: PMC8605257 DOI: 10.1016/j.mcpro.2021.100166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/06/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Helminths are masters at manipulating host's immune response. Especially, parasitic nematodes have evolved strategies that allow them to evade, suppress, or modulate host's immune response to persist and spread in the host's organism. While the immunomodulatory effects of nematodes on their hosts are studied with a great commitment, very little is known about nematodes' own immune system, immune response to their pathogens, and interactions between parasites and bacteria in the host's organism. To illustrate the response of the parasitic nematode Anisakis simplex s.s. during simulated interaction with Escherichia coli, different concentrations of lipopolysaccharide (LPS) were used, and the proteomic analysis with isobaric mass tags for relative and absolute quantification (tandem mass tag-based LC-MS/MS) was performed. In addition, gene expression and biochemical analyses of selected markers of oxidative stress were determined. The results revealed 1148 proteins in a group of which 115 were identified as differentially regulated proteins, for example, peroxiredoxin, thioredoxin, and macrophage migration inhibitory factor. Gene Ontology annotation and Reactome pathway analysis indicated that metabolic pathways related to catalytic activity, oxidation-reduction processes, antioxidant activity, response to stress, and innate immune system were the most common, in which differentially regulated proteins were involved. Further biochemical analyses let us confirm that the LPS induced the oxidative stress response, which plays a key role in the innate immunity of parasitic nematodes. Our findings, to our knowledge, indicate for the first time, the complexity of the interaction of parasitic nematode, A. simplex s.s. with bacterial LPS, which mimics the coexistence of helminth and gut bacteria in the host. The simulation of this crosstalk led us to conclude that the obtained results could be hugely valuable in the integrated systems biology approach to describe a relationship between parasite, host, and its commensal bacteria.
Collapse
Affiliation(s)
- Karol Mierzejewski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), Vigo, Spain.
| |
Collapse
|
34
|
Wang C, Feng H, Zhang X, Li K, Yang F, Cao W, Liu H, Gao L, Xue Z, Liu X, Zhu Z, Zheng H. Porcine Picornavirus 3C Protease Degrades PRDX6 to Impair PRDX6-mediated Antiviral Function. Virol Sin 2021; 36:948-957. [PMID: 33721217 PMCID: PMC7957437 DOI: 10.1007/s12250-021-00352-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Peroxiredoxin-6 (PRDX6) is an antioxidant enzyme with both the activities of peroxidase and phospholipase A2 (PLA2), which is involved in regulation of many cellular reactions. However, the function of PRDX6 during virus infection remains unknown. In this study, we found that the abundance of PRDX6 protein was dramatically decreased in foot-and-mouth disease virus (FMDV) infected cells. Overexpression of PRDX6 inhibited FMDV replication. In contrast, knockdown of PRDX6 expression promoted FMDV replication, suggesting an antiviral role of PRDX6. To explore whether the activity of peroxidase and PLA2 was associated with PRDX6-mediated antiviral function, a specific inhibitor of PLA2 (MJ33) and a specific inhibitor of peroxidase activity (mercaptosuccinate) were used to treat the cells before FMDV infection. The results showed that incubation of MJ33 but not mercaptosuccinate promoted FMDV replication. Meanwhile, overexpression of PRDX6 slightly enhanced type I interferon signaling. We further determined that the viral 3Cpro was responsible for degradation of PRDX6, and 3Cpro-induced reduction of PRDX6 was independent of the proteasome, lysosome, and caspase pathways. The protease activity of 3Cpro was required for induction of PRDX6 reduction. Besides, PRDX6 suppressed the replication of another porcine picornavirus Senecavirus A (SVA), and the 3Cpro of SVA induced the reduction of PRDX6 through its proteolytic activity as well. Together, our results suggested that PRDX6 plays an important antiviral role during porcine picornavirus infection, and the viral 3Cpro induces the degradation of PRDX6 to overcome PRDX6-mediated antiviral function.
Collapse
Affiliation(s)
- Congcong Wang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Huanhuan Feng
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xiangle Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Kangli Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Huisheng Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Lili Gao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zhaoning Xue
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
35
|
Liao Z, Liu H, Ma L, Lei J, Tong B, Li G, Ke W, Wang K, Feng X, Hua W, Li S, Yang C. Engineering Extracellular Vesicles Restore the Impaired Cellular Uptake and Attenuate Intervertebral Disc Degeneration. ACS NANO 2021; 15:14709-14724. [PMID: 34476937 DOI: 10.1021/acsnano.1c04514] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Extracellular vesicles (EVs) are potential alternatives for mesenchymal stem cells (MSCs) in the treatment of musculoskeletal degenerative diseases, including intervertebral disc degeneration (IDD). Usually, EVs are internalized and then deliver bioactive molecules that impart phenotypic changes in recipient cells. For effective utilization of EVs in the IDD therapy, understanding the mechanism of EV uptake is of vital importance. In this study, we found that EVs delivered antioxidant proteins to protect against pyroptosis of nucleus pulposus cells (NPCs). In particular, the therapeutic effect of EVs decreased in TNF-α-treated NPCs due to the impaired caveolae-mediated endocytosis pathway. Transcriptome sequencing and functional verification revealed that caveolae associated protein 2 (Cavin-2) played an important role in the uptake process of EVs. We then constructed the Cavin-2-modified engineering EVs via the gene-editing of parental MSCs. These kinds of modified EVs presented an improved uptake rate in TNF-α-treated NPCs, which effectively ameliorated the cell death of NPCs in a three-dimensional hydrogel culture model and retarded the progression of IDD in the ex vivo organ culture model. Collectively, these findings illustrate the mechanism of EV uptake in NPCs and explore the application of engineering EVs in the treatment of IDD.
Collapse
Affiliation(s)
- Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
36
|
Bento FMM, Darolt JC, Merlin BL, Penã L, Wulff NA, Cônsoli FL. The molecular interplay of the establishment of an infection - gene expression of Diaphorina citri gut and Candidatus Liberibacter asiaticus. BMC Genomics 2021; 22:677. [PMID: 34544390 PMCID: PMC8454146 DOI: 10.1186/s12864-021-07988-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Candidatus Liberibacter asiaticus (CLas) is one the causative agents of greening disease in citrus, an unccurable, devastating disease of citrus worldwide. CLas is vectored by Diaphorina citri, and the understanding of the molecular interplay between vector and pathogen will provide additional basis for the development and implementation of successful management strategies. We focused in the molecular interplay occurring in the gut of the vector, a major barrier for CLas invasion and colonization. RESULTS We investigated the differential expression of vector and CLas genes by analyzing a de novo reference metatranscriptome of the gut of adult psyllids fed of CLas-infected and healthy citrus plants for 1-2, 3-4 and 5-6 days. CLas regulates the immune response of the vector affecting the production of reactive species of oxygen and nitrogen, and the production of antimicrobial peptides. Moreover, CLas overexpressed peroxiredoxin, probably in a protective manner. The major transcript involved in immune expression was related to melanization, a CLIP-domain serine protease we believe participates in the wounding of epithelial cells damaged during infection, which is supported by the down-regulation of pangolin. We also detected that CLas modulates the gut peristalsis of psyllids through the down-regulation of titin, reducing the elimination of CLas with faeces. The up-regulation of the neuromodulator arylalkylamine N-acetyltransferase implies CLas also interferes with the double brain-gut communication circuitry of the vector. CLas colonizes the gut by expressing two Type IVb pilin flp genes and several chaperones that can also function as adhesins. We hypothesized biofilm formation occurs by the expression of the cold shock protein of CLas. CONCLUSIONS The thorough detailed analysis of the transcritome of Ca. L. asiaticus and of D. citri at different time points of their interaction in the gut tissues of the host led to the identification of several host genes targeted for regulation by L. asiaticus, but also bacterial genes coding for potential effector proteins. The identified targets and effector proteins are potential targets for the development of new management strategies directed to interfere with the successful utilization of the psyllid vector by this pathogen.
Collapse
Affiliation(s)
- Flavia Moura Manoel Bento
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| | - Josiane Cecília Darolt
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Institute of Chemistry, São Paulo State University – UNESP, Araraquara, São Paulo Brazil
| | - Bruna Laís Merlin
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| | - Leandro Penã
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Nelson Arno Wulff
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Institute of Chemistry, São Paulo State University – UNESP, Araraquara, São Paulo Brazil
| | - Fernando Luis Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| |
Collapse
|
37
|
Proteome profiling of human placenta reveals developmental stage-dependent alterations in protein signature. Clin Proteomics 2021; 18:18. [PMID: 34372761 PMCID: PMC8351416 DOI: 10.1186/s12014-021-09324-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/01/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction Placenta is a complex organ that plays a significant role in the maintenance of pregnancy health. It is a dynamic organ that undergoes dramatic changes in growth and development at different stages of gestation. In the first-trimester, the conceptus develops in a low oxygen environment that favors organogenesis in the embryo and cell proliferation and angiogenesis in the placenta; later in pregnancy, higher oxygen concentration is required to support the rapid growth of the fetus. This oxygen transition, which appears unique to the human placenta, must be finely tuned through successive rounds of protein signature alterations. This study compares placental proteome in normal first-trimester (FT) and term human placentas (TP). Methods Normal human first-trimester and term placental samples were collected and differentially expressed proteins were identified using two-dimensional liquid chromatography-tandem mass spectrometry. Results Despite the overall similarities, 120 proteins were differently expressed in first and term placentas. Out of these, 72 were up-regulated and 48 were down-regulated in the first when compared with the full term placentas. Twenty out of 120 differently expressed proteins were sequenced, among them seven showed increased (GRP78, PDIA3, ENOA, ECH1, PRDX4, ERP29, ECHM), eleven decreased (TRFE, ALBU, K2C1, ACTG, CSH2, PRDX2, FABP5, HBG1, FABP4, K2C8, K1C9) expression in first-trimester compared to the full-term placentas and two proteins exclusively expressed in first-trimester placentas (MESD, MYDGF). Conclusion According to Reactome and PANTHER softwares, these proteins were mostly involved in response to chemical stimulus and stress, regulation of biological quality, programmed cell death, hemostatic and catabolic processes, protein folding, cellular oxidant detoxification, coagulation and retina homeostasis. Elucidation of alteration in protein signature during placental development would provide researchers with a better understanding of the critical biological processes of placentogenesis and delineate proteins involved in regulation of placental function during development. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09324-y.
Collapse
|
38
|
Andreadou I, Efentakis P, Frenis K, Daiber A, Schulz R. Thiol-based redox-active proteins as cardioprotective therapeutic agents in cardiovascular diseases. Basic Res Cardiol 2021; 116:44. [PMID: 34275052 DOI: 10.1007/s00395-021-00885-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Thiol-based redox compounds, namely thioredoxins (Trxs), glutaredoxins (Grxs) and peroxiredoxins (Prxs), stand as a pivotal group of proteins involved in antioxidant processes and redox signaling. Glutaredoxins (Grxs) are considered as one of the major families of proteins involved in redox regulation by removal of S-glutathionylation and thereby reactivation of other enzymes with thiol-dependent activity. Grxs are also coupled to Trxs and Prxs recycling and thereby indirectly contribute to reactive oxygen species (ROS) detoxification. Peroxiredoxins (Prxs) are a ubiquitous family of peroxidases, which play an essential role in the detoxification of hydrogen peroxide, aliphatic and aromatic hydroperoxides, and peroxynitrite. The Trxs, Grxs and Prxs systems, which reversibly induce thiol modifications, regulate redox signaling involved in various biological events in the cardiovascular system. This review focuses on the current knowledge of the role of Trxs, Grxs and Prxs on cardiovascular pathologies and especially in cardiac hypertrophy, ischemia/reperfusion (I/R) injury and heart failure as well as in the presence of cardiovascular risk factors, such as hypertension, hyperlipidemia, hyperglycemia and metabolic syndrome. Further studies on the roles of thiol-dependent redox systems in the cardiovascular system will support the development of novel protective and therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Katie Frenis
- Department of Cardiology 1, Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.,Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr 1, 55131, Mainz, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
39
|
Caserta S, Ghezzi P. Release of redox enzymes and micro-RNAs in extracellular vesicles, during infection and inflammation. Free Radic Biol Med 2021; 169:248-257. [PMID: 33862160 DOI: 10.1016/j.freeradbiomed.2021.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
Many studies reported that redox enzymes, particularly thioredoxin and peroxiredoxin, can be released by cells and act as soluble mediators in immunity. Recently, it became clear that peroxiredoxins can be secreted via the exosome-release route, yet it remains unclear how this exactly happens and why. This review will first introduce briefly the possible redox states of protein cysteines and the role of redox enzymes in their regulation. We will then discuss the studies on the extracellular forms of some of these enzymes, their association with exosomes/extracellular vesicles and with exosome micro-RNAs (miRNAs)/mRNAs involved in oxidative processes, relevant in infection and inflammation.
Collapse
Affiliation(s)
- Stefano Caserta
- Department of Biomedical Sciences, Hardy Building, The University of Hull, Hull, HU6 7RX, United Kingdom
| | - Pietro Ghezzi
- Department of Clinical Experimental Medicine, Brighton & Sussex Medical School, Brighton, BN19RY, United Kingdom.
| |
Collapse
|
40
|
Del Corvo M, Lazzari B, Capra E, Zavarez L, Milanesi M, Utsunomiya YT, Utsunomiya ATH, Stella A, de Paula Nogueira G, Garcia JF, Ajmone-Marsan P. Methylome Patterns of Cattle Adaptation to Heat Stress. Front Genet 2021; 12:633132. [PMID: 34122501 PMCID: PMC8194315 DOI: 10.3389/fgene.2021.633132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Heat stress has a detrimental impact on cattle health, welfare and productivity by affecting gene expression, metabolism and immune response, but little is known on the epigenetic mechanisms mediating the effect of temperature at the cellular and organism level. In this study, we investigated genome-wide DNA methylation in blood samples collected from 5 bulls of the heat stress resilient Nellore breed and 5 bulls of the Angus that are more heat stress susceptible, exposed to the sun and high temperature-high humidity during the summer season of the Brazilian South-East region. The methylomes were analyzed during and after the exposure by Reduced Representation Bisulfite Sequencing, which provided genome-wide single-base resolution methylation profiles. Significant methylation changes between stressful and recovery periods were observed in 819 genes. Among these, 351 were only seen in Angus, 366 were specific to Nellore, and 102 showed significant changes in methylation patterns in both breeds. KEGG and Gene Ontology (GO) enrichment analyses showed that responses were breed-specific. Interestingly, in Nellore significant genes and pathways were mainly involved in stress responses and cellular defense and were under methylated during heat stress, whereas in Angus the response was less focused. These preliminary results suggest that heat challenge induces changes in methylation patterns in specific loci, which should be further scrutinized to assess their role in heat tolerance.
Collapse
Affiliation(s)
- Marcello Del Corvo
- Department of Animal Science Food and Nutrition - DIANA, Nutrigenomics and Proteomics Research Centre - PRONUTRIGEN, and Biodiversity and Ancient DNA Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy.,Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Milan, Italy
| | - Barbara Lazzari
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Milan, Italy
| | - Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Milan, Italy
| | - Ludmilla Zavarez
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Marco Milanesi
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Yuri Tani Utsunomiya
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Adam Taiti Harth Utsunomiya
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Alessandra Stella
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Milan, Italy
| | - Guilherme de Paula Nogueira
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (unesp), Araçatuba, Brazil
| | - Josè Fernando Garcia
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Paolo Ajmone-Marsan
- Department of Animal Science Food and Nutrition - DIANA, Nutrigenomics and Proteomics Research Centre - PRONUTRIGEN, and Biodiversity and Ancient DNA Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
41
|
Saggam A, Limgaokar K, Borse S, Chavan-Gautam P, Dixit S, Tillu G, Patwardhan B. Withania somnifera (L.) Dunal: Opportunity for Clinical Repurposing in COVID-19 Management. Front Pharmacol 2021; 12:623795. [PMID: 34012390 PMCID: PMC8126694 DOI: 10.3389/fphar.2021.623795] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
As the COVID-19 pandemic is progressing, the therapeutic gaps in conventional management have highlighted the need for the integration of traditional knowledge systems with modern medicine. Ayurvedic medicines, especially Ashwagandha (Withania somnifera (L.) Dunal, WS), may be beneficial in the management of COVID-19. WS is a widely prescribed Ayurvedic botanical known as an immunomodulatory, antiviral, anti-inflammatory, and adaptogenic agent. The chemical profile and pharmacological activities of WS have been extensively reported. Several clinical studies have reported its safety for use in humans. This review presents a research synthesis of in silico, in vitro, in vivo, and clinical studies on Withania somnifera (L.) Dunal (WS) and discusses its potential for prophylaxis and management of COVID-19. We have collated the data from studies on WS that focused on viral infections (HIV, HSV, H1N1 influenza, etc.) and noncommunicable diseases (hypertension, diabetes, cancer, etc.). The experimental literature indicates that WS has the potential for 1) maintaining immune homeostasis, 2) regulating inflammation, 3) suppressing pro-inflammatory cytokines, 4) organ protection (nervous system, heart, lung, liver, and kidney), and 5) anti-stress, antihypertensive, and antidiabetic activities. Using these trends, the review presents a triangulation of Ayurveda wisdom, pharmacological properties, and COVID-19 pathophysiology ranging from viral entry to end-stage acute respiratory distress syndrome (ARDS). The review proposes WS as a potential therapeutic adjuvant for various stages of COVID-19 management. WS may also have beneficial effects on comorbidities associated with the COVID-19. However, systematic studies are needed to realize the potential of WS for improving clinical outcome of patients with COVID-19.
Collapse
Affiliation(s)
- Akash Saggam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Kirti Limgaokar
- Division of Biochemistry, Department of Chemistry, Fergusson College (Autonomous), Pune, India
| | - Swapnil Borse
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Preeti Chavan-Gautam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | | | - Girish Tillu
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Bhushan Patwardhan
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
42
|
López L, Chiribao ML, Girard MC, Gómez KA, Carasi P, Fernandez M, Hernandez Y, Robello C, Freire T, Piñeyro MD. The cytosolic tryparedoxin peroxidase from Trypanosoma cruzi induces a pro-inflammatory Th1 immune response in a peroxidatic cysteine-dependent manner. Immunology 2021; 163:46-59. [PMID: 33410127 PMCID: PMC8044337 DOI: 10.1111/imm.13302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/25/2020] [Accepted: 12/19/2020] [Indexed: 12/25/2022] Open
Abstract
Trypanosoma cruzi cytosolic tryparedoxin peroxidase (c-TXNPx) is a 2-Cys peroxiredoxin (Prx) with an important role in detoxifying host cell oxidative molecules during parasite infection. c-TXNPx is a virulence factor, as its overexpression enhances parasite infectivity and resistance to exogenous oxidation. As Prxs from other organisms possess immunomodulatory properties, we studied the effects of c-TXNPx in the immune response and analysed whether the presence of the peroxidatic cysteine is necessary to mediate these properties. To this end, we used a recombinant c-TXNPx and a mutant version (c-TXNPxC52S) lacking the peroxidatic cysteine. We first analysed the oligomerization profile, oxidation state and peroxidase activity of both proteins by gel filtration, Western blot and enzymatic assay, respectively. To investigate their immunological properties, we analysed the phenotype and functional activity of macrophage and dendritic cells and the T-cell response by flow cytometry after injection into mice. Our results show that c-TXNPx, but not c-TXNPxC52S, induces the recruitment of IL-12/23p40-producing innate antigen-presenting cells and promotes a strong specific Th1 immune response. Finally, we studied the cellular and humoral immune response developed in the context of parasite natural infection and found that only wild-type c-TXNPx induces proliferation and high levels of IFN-γ secretion in PBMC from chronic patients without demonstrable cardiac manifestations. In conclusion, we demonstrate that c-TXNPx possesses pro-inflammatory properties that depend on the presence of peroxidatic cysteine that is essential for peroxidase activity and quaternary structure of the protein and could contribute to rational design of immune-based strategies against Chagas disease.
Collapse
Affiliation(s)
- Lucía López
- Laboratorio de Inmunomodulación y Desarrollo de VacunasDepartamento de InmunobiologíaFacultad de MedicinaUniversidad de La RepúblicaMontevideoUruguay
- Unidad de Biología MolecularInstitut Pasteur MontevideoMontevideoUruguay
| | - María Laura Chiribao
- Unidad de Biología MolecularInstitut Pasteur MontevideoMontevideoUruguay
- Departamento de BioquímicaFacultad de MedicinaUniversidad de La RepúblicaMontevideoUruguay
| | - Magalí C. Girard
- Laboratorio de Inmunología de las Infecciones por TripanosomátidosInstituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI‐CONICET)Buenos AiresArgentina
| | - Karina A. Gómez
- Laboratorio de Inmunología de las Infecciones por TripanosomátidosInstituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI‐CONICET)Buenos AiresArgentina
| | - Paula Carasi
- Laboratorio de Inmunomodulación y Desarrollo de VacunasDepartamento de InmunobiologíaFacultad de MedicinaUniversidad de La RepúblicaMontevideoUruguay
| | - Marisa Fernandez
- Instituto Nacional de Parasitología ‘Doctor Mario Fatala Chabén’Buenos AiresArgentina
| | - Yolanda Hernandez
- Instituto Nacional de Parasitología ‘Doctor Mario Fatala Chabén’Buenos AiresArgentina
| | - Carlos Robello
- Unidad de Biología MolecularInstitut Pasteur MontevideoMontevideoUruguay
- Departamento de BioquímicaFacultad de MedicinaUniversidad de La RepúblicaMontevideoUruguay
| | - Teresa Freire
- Laboratorio de Inmunomodulación y Desarrollo de VacunasDepartamento de InmunobiologíaFacultad de MedicinaUniversidad de La RepúblicaMontevideoUruguay
| | - María Dolores Piñeyro
- Unidad de Biología MolecularInstitut Pasteur MontevideoMontevideoUruguay
- Departamento de BioquímicaFacultad de MedicinaUniversidad de La RepúblicaMontevideoUruguay
| |
Collapse
|
43
|
ALOTAIBI TAREQF, THACKRAY ALICEE, ROBERTS MATTHEWJ, ALANAZI TURKIM, BISHOP NICOLETTEC, WADLEY ALEXJ, KING JAMESA, O’DONNELL EMMA, STEINER MICHAELC, SINGH SALLYJ, STENSEL DAVIDJ. Acute Running and Coronary Heart Disease Risk Markers in Male Cigarette Smokers and Nonsmokers: A Randomized Crossover Trial. Med Sci Sports Exerc 2021; 53:1021-1032. [PMID: 33196606 PMCID: PMC8048727 DOI: 10.1249/mss.0000000000002560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Cigarette smoking is an independent risk factor for coronary heart disease and is associated with impaired postprandial metabolism. Acute exercise reduces postprandial lipemia and improves other coronary heart disease risk markers in nonsmokers. Less is known about responses in cigarette smokers. METHODS Twelve male cigarette smokers (mean ± SD; age = 23 ± 4 yr, body mass index = 24.9 ± 3.0 kg·m-2) and 12 male nonsmokers (age = 24 ± 4 yr, body mass index = 24.1 ± 2.0 kg·m-2) completed two, 2-d conditions (control and exercise) in a randomized crossover design. On day 1, participants rested for 9 h (0800-1700) in both conditions except a 60-min treadmill run (65% ± 7% peak oxygen uptake, 2.87 ± 0.54 MJ) was completed between 6.5 and 7.5 h (1430-1530) in the exercise condition. On day 2 of both conditions, participants rested and consumed two high-fat meals over 8 h (0900-1700) during which 13 venous blood samples and nine resting arterial blood pressure measurements were collected. RESULTS Smokers exhibited higher postprandial triacylglycerol and C-reactive protein than nonsmokers (main effect group effect size [Cohen's d] ≥ 0.94, P ≤ 0.034). Previous day running reduced postprandial triacylglycerol, insulin, and systolic and diastolic blood pressure (main effect condition d ≥ 0.28, P ≤ 0.044) and elevated postprandial nonesterified fatty acid and C-reactive protein (main effect condition d ≥ 0.41, P ≤ 0.044). Group-condition interactions were not apparent for any outcome across the total postprandial period (0-8 h; all P ≥ 0.089), but the exercise-induced reduction in postprandial triacylglycerol in the early postprandial period (0-4 h) was greater in nonsmokers than smokers (-21%, d = 0.43, vs -5%, d = 0.16, respectively; group-condition interaction P = 0.061). CONCLUSIONS Acute moderate-intensity running reduced postprandial triacylglycerol, insulin, and resting arterial blood pressure the day after exercise in male cigarette smokers and nonsmokers. These findings highlight the ability of acute exercise to augment the postprandial metabolic health of cigarette smokers and nonsmokers.
Collapse
Affiliation(s)
- TAREQ F. ALOTAIBI
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UNITED KINGDOM
- Leicester Respiratory Biomedical Research Unit, Department of Respiratory Medicine, Centre for Exercise and Rehabilitation Science, Glenfield Hospital, University Hospitals of Leicester, Leicester, UNITED KINGDOM
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, SAUDI ARABIA
| | - ALICE E. THACKRAY
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UNITED KINGDOM
- Leicester Biomedical Research Centre, National Institute for Health Research (NIHR), University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UNITED KINGDOM
| | - MATTHEW J. ROBERTS
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UNITED KINGDOM
- Leicester Biomedical Research Centre, National Institute for Health Research (NIHR), University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UNITED KINGDOM
| | - TURKI M. ALANAZI
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UNITED KINGDOM
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, SAUDI ARABIA
| | - NICOLETTE C. BISHOP
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UNITED KINGDOM
- Leicester Respiratory Biomedical Research Unit, Department of Respiratory Medicine, Centre for Exercise and Rehabilitation Science, Glenfield Hospital, University Hospitals of Leicester, Leicester, UNITED KINGDOM
- Leicester Biomedical Research Centre, National Institute for Health Research (NIHR), University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UNITED KINGDOM
- Department of Respiratory Sciences, College of Life Sciences, NIHR Leicester Biomedical Research Centre–Respiratory, Glenfield Hospital, University of Leicester, Leicester, UNITED KINGDOM
| | - ALEX J. WADLEY
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UNITED KINGDOM
- Leicester Biomedical Research Centre, National Institute for Health Research (NIHR), University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UNITED KINGDOM
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UNITED KINGDOM
| | - JAMES A. KING
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UNITED KINGDOM
- Leicester Biomedical Research Centre, National Institute for Health Research (NIHR), University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UNITED KINGDOM
| | - EMMA O’DONNELL
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UNITED KINGDOM
| | - MICHAEL C. STEINER
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UNITED KINGDOM
- Leicester Respiratory Biomedical Research Unit, Department of Respiratory Medicine, Centre for Exercise and Rehabilitation Science, Glenfield Hospital, University Hospitals of Leicester, Leicester, UNITED KINGDOM
- Leicester Biomedical Research Centre, National Institute for Health Research (NIHR), University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UNITED KINGDOM
- Department of Respiratory Sciences, College of Life Sciences, NIHR Leicester Biomedical Research Centre–Respiratory, Glenfield Hospital, University of Leicester, Leicester, UNITED KINGDOM
| | - SALLY J. SINGH
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UNITED KINGDOM
- Leicester Respiratory Biomedical Research Unit, Department of Respiratory Medicine, Centre for Exercise and Rehabilitation Science, Glenfield Hospital, University Hospitals of Leicester, Leicester, UNITED KINGDOM
- Leicester Biomedical Research Centre, National Institute for Health Research (NIHR), University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UNITED KINGDOM
- Department of Respiratory Sciences, College of Life Sciences, NIHR Leicester Biomedical Research Centre–Respiratory, Glenfield Hospital, University of Leicester, Leicester, UNITED KINGDOM
| | - DAVID J. STENSEL
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UNITED KINGDOM
- Leicester Biomedical Research Centre, National Institute for Health Research (NIHR), University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UNITED KINGDOM
| |
Collapse
|
44
|
Quigley TP, Amdam GV. Social modulation of ageing: mechanisms, ecology, evolution. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190738. [PMID: 33678020 PMCID: PMC7938163 DOI: 10.1098/rstb.2019.0738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2020] [Indexed: 12/11/2022] Open
Abstract
Human life expectancy increases, but the disease-free part of lifespan (healthspan) and the quality of life in old people may not show the same development. The situation poses considerable challenges to healthcare systems and economies, and calls for new strategies to increase healthspan and for sustainable future approaches to elder care. This call has motivated innovative research on the role of social relationships during ageing. Correlative data from clinical surveys indicate that social contact promotes healthy ageing, and it is time to reveal the causal mechanisms through experimental research. The fruit fly Drosophila melanogaster is a prolific model animal, but insects with more developed social behaviour can be equally instrumental for this research. Here, we discuss the role of social contact in ageing, and identify lines of study where diverse insect models can help uncover the mechanisms that are involved. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Tyler P. Quigley
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA
| | - Gro V. Amdam
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5002, N-1432 Aas, Norway
| |
Collapse
|
45
|
Redox Enzymes of the Thioredoxin Family as Potential and Novel Markers in Pemphigus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6672693. [PMID: 33868574 PMCID: PMC8032527 DOI: 10.1155/2021/6672693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/03/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
Pemphigus vulgaris (PV) is a severe autoimmune blistering disease affecting both skin and mucous membranes. Its pathogenesis is related to IgG autoantibodies primarily targeting the cellular adhesion protein desmoglein (Dsg) 3, one of the major desmosome components. Impaired redox regulation is considered a major player in the pathogenesis of autoimmune diseases such as pemphigus by enhancing inflammation and breakdown of immunological tolerance by structural protein modifications. Despite many recent advances, local and systemic redox profiles that characterize the immune response in pemphigus are virtually unknown but potentially crucial in further advancing our understanding of redox-dependent modifications that eventually lead to clinical manifestation. Here, we have analyzed the individual expression pattern of four major redox enzymes that are members of the thioredoxin (Trx) fold superfamily (peroxiredoxins (Prxs) 1 and 4, glutaredoxin (Grx) 2, and Trx1) in serum and PBMCs as well as their distribution in the skin of pemphigus patients compared to healthy controls. We show that in groups of five pemphigus patients, Prx1 is upregulated in both serum and PBMCs, while its epithelial distribution remains within the spinous epithelial layer. Expression of Grx2 and Prx4 is both reduced in serum and PBMCs, while their distinct and similar expression in the skin changes from an even distribution throughout the basal layer (healthy) to ubiquitous nuclear localization in pemphigus patients. In PV patients, Trx1 is secreted into serum, and cellular distribution appears membrane-bound and cytosolic compared to healthy controls. We furthermore showed that a 3D ex vivo human skin model can indeed be used to reproduce similar changes in the protein levels and distribution of redox enzymes by application of cold atmospheric plasma. Deciphering the relationship between redox enzyme expression and autoimmunity in the context of pemphigus could be critical in elucidating key pathogenic mechanisms and developing novel interventions for clinical management.
Collapse
|
46
|
Xu M, Xu J, Zhu D, Su R, Zhuang B, Xu R, Li L, Chen S, Ling Y. Expression and prognostic roles of PRDXs gene family in hepatocellular carcinoma. J Transl Med 2021; 19:126. [PMID: 33771165 PMCID: PMC7995729 DOI: 10.1186/s12967-021-02792-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/16/2021] [Indexed: 01/10/2023] Open
Abstract
Background As the fourth leading cause of cancer-related death in the world, the therapeutic effect and 5-year overall survival of hepatocellular carcinoma (HCC) are not optimistic. Previous researches indicated that the disorder of PRDXs was related to the occurrence and development of cancers. Methods In this study, PRDXs were found in various tumor cell lines by CCLE database analysis. The analysis results of UALCAN, HCCDB and Human Protein Atlas databases showed the expression of PRDXs mRNA and protein in HCC tissues was dysregulated. Besides, UALCAN was used to assess the correlations between PRDXs mRNA as well as methylation levels and clinical characterization. Results High expression of PRDX1 or low expression of PRDX2/3 suggested poor prognosis for HCC patients which was demonstrated by Kaplan–Meier Plotter. The genetic alterations and biological interaction network of PRDXs in HCC samples were obtained from c-Bioportal. In addition, LinkedOmics was employed to analyze PRDXs related differentially expressed genes, and on this basis, enrichment of KEGG pathway and miRNAs targets of PRDXs were conducted. The results indicated that these genes were involved in several canonical pathways and certain amino acid metabolism, some of which may effect on the progression of HCC. Conclusions In conclusion, the disordered expression of some PRDX family members was associated with the prognosis of HCC patients, suggesting that these PRDX family members may become new molecular targets for the treatment and prognosis prediction of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02792-8.
Collapse
Affiliation(s)
- Mingxing Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Jianliang Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Dun Zhu
- Department of Surgery, Chaya People's Hospital, Changdu, 854300, Tibet, China
| | - Rishun Su
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Baoding Zhuang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Ruiyun Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Lingli Li
- Department of Ultrasound Medicine, Banan District People's Hospital of Chongqing, No. 2 Xinong Street, Yudong, Banan District, Chongqing, 401320, China.
| | - Shuxian Chen
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Yunbiao Ling
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
47
|
Sharapov MG, Glushkova OV, Parfenyuk SB, Gudkov SV, Lunin SM, Novoselova EG. The role of TLR4/NF-κB signaling in the radioprotective effects of exogenous Prdx6. Arch Biochem Biophys 2021; 702:108830. [PMID: 33727039 DOI: 10.1016/j.abb.2021.108830] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 01/11/2023]
Abstract
Peroxiredoxin 6 (Prdx6) is a bifunctional enzyme with multi-substrate peroxidase and phospholipase activities that is involved in cell redox homeostasis and regulates intracellular processes. Previously, recombinant Prdx6 was shown to exert a radioprotective effect during whole-body exposure to a lethal dose of X-ray radiation. Moreover, a mutant form Prdx6-C47S, which lacks peroxidase activity, also had a radioprotective effect, and this indicates that the mechanism of radioprotection is unknown. The present study was aimed to test the hypothesis that the radioprotective effect of Prdx6 and Prdx6-C47S may be mediated through the TLR4/NF-κB signaling pathway. It was demonstrated that exogenously applied Prdx6 protected 3T3 fibroblast cells against LD50 X-ray radiation in vitro. Pretreatment with Prdx6 increased cell survival, stimulated proliferation, normalized the level of reactive oxygen species in culture, and suppressed apoptosis and necrosis. Wild-type Prdx6 and, to a lesser degree, the Prdx6-C47S mutant proteins promoted a significant increase in NF-κB activation in irradiated cells, which likely contributes to the antiapoptotic effect. Pretreatment with TLR4 inhibitors, especially those directed to the extracellular part of the receptor, significantly reduced the radioprotective effect, and this supports the role of TLR4 signaling in the protective effects of Prdx6. Therefore, the radioprotective effect of Prdx6 was related not only to its antioxidant properties, but also to its ability to trigger cellular defense mechanisms through interaction with the TLR4 receptor and subsequent activation of the NF-κB pathway. Recombinant Prdx6 may be useful for the development of a new class of safe radioprotective compounds that have a combination of antioxidant and immunomodulatory properties.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia.
| | - Olga V Glushkova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| | - Svetlana B Parfenyuk
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey M Lunin
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| | - Elena G Novoselova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| |
Collapse
|
48
|
Panwar B, Schmiedel BJ, Liang S, White B, Rodriguez E, Kalunian K, McKnight AJ, Soloff R, Seumois G, Vijayanand P, Ay F. Multi-cell type gene coexpression network analysis reveals coordinated interferon response and cross-cell type correlations in systemic lupus erythematosus. Genome Res 2021; 31:659-676. [PMID: 33674349 PMCID: PMC8015858 DOI: 10.1101/gr.265249.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is an incurable autoimmune disease disproportionately affecting women. A major obstacle in finding targeted therapies for SLE is its remarkable heterogeneity in clinical manifestations as well as in the involvement of distinct cell types. To identify cell-specific targets as well as cross-correlation relationships among expression programs of different cell types, we here analyze six major circulating immune cell types from SLE patient blood. Our results show that presence of an interferon response signature stratifies patients into two distinct groups (IFNneg vs. IFNpos). Comparing these two groups using differential gene expression and differential gene coexpression analysis, we prioritize a relatively small list of genes from classical monocytes including two known immune modulators: TNFSF13B/BAFF (target of belimumab, an approved therapeutic for SLE) and IL1RN (the basis of anakinra, a therapeutic for rheumatoid arthritis). We then develop a multi-cell type extension of the weighted gene coexpression network analysis (WGCNA) framework, termed mWGCNA. Applying mWGCNA to RNA-seq data from six sorted immune cell populations (15 SLE, 10 healthy donors), we identify a coexpression module with interferon-stimulated genes (ISGs) among all cell types and a cross-cell type correlation linking expression of specific T helper cell markers to B cell response as well as to TNFSF13B expression from myeloid cells, all of which in turn correlates with disease severity of IFNpos patients. Our results demonstrate the power of a hypothesis-free and data-driven approach to discover drug targets and to reveal novel cross-correlation across cell types in SLE with implications for other autoimmune diseases.
Collapse
Affiliation(s)
- Bharat Panwar
- La Jolla Institute for Immunology, La Jolla, California 92037, USA
| | | | - Shu Liang
- La Jolla Institute for Immunology, La Jolla, California 92037, USA
| | - Brandie White
- La Jolla Institute for Immunology, La Jolla, California 92037, USA
| | - Enrique Rodriguez
- Kyowa Kirin Pharmaceutical Research, Incorporated, La Jolla, California 92037, USA
| | - Kenneth Kalunian
- School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Andrew J McKnight
- Kyowa Kirin Pharmaceutical Research, Incorporated, La Jolla, California 92037, USA
| | - Rachel Soloff
- Kyowa Kirin Pharmaceutical Research, Incorporated, La Jolla, California 92037, USA
| | - Gregory Seumois
- La Jolla Institute for Immunology, La Jolla, California 92037, USA
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, California 92037, USA.,School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, California 92037, USA.,School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
49
|
Jagaraj CJ, Parakh S, Atkin JD. Emerging Evidence Highlighting the Importance of Redox Dysregulation in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS). Front Cell Neurosci 2021; 14:581950. [PMID: 33679322 PMCID: PMC7929997 DOI: 10.3389/fncel.2020.581950] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
The cellular redox state, or balance between cellular oxidation and reduction reactions, serves as a vital antioxidant defence system that is linked to all important cellular activities. Redox regulation is therefore a fundamental cellular process for aerobic organisms. Whilst oxidative stress is well described in neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), other aspects of redox dysfunction and their contributions to pathophysiology are only just emerging. ALS is a fatal neurodegenerative disease affecting motor neurons, with few useful treatments. Hence there is an urgent need to develop more effective therapeutics in the future. Here, we discuss the increasing evidence for redox dysregulation as an important and primary contributor to ALS pathogenesis, which is associated with multiple disease mechanisms. Understanding the connection between redox homeostasis, proteins that mediate redox regulation, and disease pathophysiology in ALS, may facilitate a better understanding of disease mechanisms, and lead to the design of better therapeutic strategies.
Collapse
Affiliation(s)
- Cyril Jones Jagaraj
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sonam Parakh
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
50
|
Krivosova M, Grendar M, Hrtanek I, Ondrejka I, Tonhajzerova I, Sekaninova N, Bona Olexova L, Mokra D, Mokry J. Potential major depressive disorder biomarkers in pediatric population - a pilot study. Physiol Res 2020; 69:S523-S532. [PMID: 33476174 DOI: 10.33549/physiolres.934590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mental disorders affect 10-20 % of the young population in the world. Major depressive disorder (MDD) is a common mental disease with a multifactorial and not clearly explained pathophysiology. Many cases remain undetected and untreated, which influences patients' physical and mental health and their quality of life also in adulthood. The aim of our pilot study was to assess the prediction value of selected potential biomarkers, including blood cell counts, blood cell ratios, and parameters like peroxiredoxin 1 (PRDX1), tenascin C (TNC) and type IV collagen (COL4) between depressive pediatric patients and healthy peers and to evaluate a short effect of antidepressant treatment. In this study, 27 young depressive patients and 26 non-depressed age-matched controls were included. Blood analyses and immunological assays using commercial kits were performed. Platelet count was the only blood parameter for which the case/control status was statistically significant (p=0.01) in a regression model controlling for the age and gender differences. The results from ELISA analyses showed that the case/control status is a significant predictor of the parameters PRDX1 (p=0.05) and COL4 (p=0.009) in respective regression model considering the age and gender differences between MDD patients and controls. A major finding of this study is that values of platelet count, monocyte to lymphocyte ratio, white blood cell, and monocyte counts were assessed by the Random Forest machine learning algorithm as relevant predictors for discrimination between MDD patients and healthy controls with a power of prediction AUC=0.749.
Collapse
Affiliation(s)
- M Krivosova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|