1
|
Chen J, Su H, Kim JH, Liu L, Liu R. Recent advances in the CRISPR/Cas system-based visual detection method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6599-6614. [PMID: 39345221 DOI: 10.1039/d4ay01147c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Currently, various infectious pathogens and bacterial toxins as well as heavy metal pollution pose severe threats to global environmental health and the socio-economic infrastructure. Therefore, there is a pressing need for rapid, sensitive, and convenient visual molecular detection methods. The rapidly evolving detection approach based on clustered regularly interspaced short palindromic repeats (CRISPR)/associated nucleases (Cas) has opened a new frontier in the field of molecular diagnostics. This paper reviews the development of visual detection methods in recent years based on different Cas and analyzes their advantages and disadvantages as well as the challenges of future research. Firstly, different CRISPR/Cas effectors and their working principles in the diagnosis of various diseases are briefly reviewed. Subsequently, the article focuses on the development of visual readout signals in point-of-care testing using laboratory-based CRISPR/Cas technology, including colorimetric, fluorescence, and lateral flow analysis. Finally, the challenges and prospects of visual detection methods based on CRISPR/Cas technology are discussed.
Collapse
Affiliation(s)
- Jinrong Chen
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea.
- Shandong Province Key Laboratory of Detection Technology of Tumor Markers, Linyi University, Linyi 276005, China.
| | - Hang Su
- Shandong Province Key Laboratory of Detection Technology of Tumor Markers, Linyi University, Linyi 276005, China.
| | - June Hyun Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea.
| | - Lishang Liu
- Shandong Province Key Laboratory of Detection Technology of Tumor Markers, Linyi University, Linyi 276005, China.
| | - Rui Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea.
| |
Collapse
|
2
|
Prezja F, Annala L, Kiiskinen S, Lahtinen S, Ojala T, Ruusuvuori P, Kuopio T. Improving performance in colorectal cancer histology decomposition using deep and ensemble machine learning. Heliyon 2024; 10:e37561. [PMID: 39309850 PMCID: PMC11415691 DOI: 10.1016/j.heliyon.2024.e37561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
In routine colorectal cancer management, histologic samples stained with hematoxylin and eosin are commonly used. Nonetheless, their potential for defining objective biomarkers for patient stratification and treatment selection is still being explored. The current gold standard relies on expensive and time-consuming genetic tests. However, recent research highlights the potential of convolutional neural networks (CNNs) to facilitate the extraction of clinically relevant biomarkers from these readily available images. These CNN-based biomarkers can predict patient outcomes comparably to golden standards, with the added advantages of speed, automation, and minimal cost. The predictive potential of CNN-based biomarkers fundamentally relies on the ability of CNNs to accurately classify diverse tissue types from whole slide microscope images. Consequently, enhancing the accuracy of tissue class decomposition is critical to amplifying the prognostic potential of imaging-based biomarkers. This study introduces a hybrid deep transfer learning and ensemble machine learning model that improves upon previous approaches, including a transformer and neural architecture search baseline for this task. We employed a pairing of the EfficientNetV2 architecture with a random forest classification head. Our model achieved 96.74% accuracy (95% CI: 96.3%-97.1%) on the external test set and 99.89% on the internal test set. Recognizing the potential of these models in the task, we have made them publicly available.
Collapse
Affiliation(s)
- Fabi Prezja
- University of Jyväskylä, Faculty of Information Technology, Jyväskylä, 40014, Finland
| | - Leevi Annala
- University of Helsinki, Faculty of Science, Department of Computer Science, Helsinki, Finland
- University of Helsinki, Faculty of Agriculture and Forestry, Department of Food and Nutrition, Helsinki, Finland
| | - Sampsa Kiiskinen
- University of Jyväskylä, Faculty of Information Technology, Jyväskylä, 40014, Finland
| | - Suvi Lahtinen
- University of Jyväskylä, Faculty of Information Technology, Jyväskylä, 40014, Finland
- University of Jyväskylä, Faculty of Mathematics and Science, Department of Biological and Environmental Science, Jyväskylä, 40014, Finland
| | - Timo Ojala
- University of Jyväskylä, Faculty of Information Technology, Jyväskylä, 40014, Finland
| | - Pekka Ruusuvuori
- University of Turku, Institute of Biomedicine, Cancer Research Unit, Turku, 20014, Finland
- Turku University Hospital, FICAN West Cancer Centre, Turku, 20521, Finland
| | - Teijo Kuopio
- University of Jyväskylä, Department of Biological and Environmental Science, Jyväskylä, 40014, Finland
- Hospital Nova of Central Finland, Department of Pathology, Jyväskylä, 40620, Finland
| |
Collapse
|
3
|
Hua H, Long W, Pan Y, Li S, Zhou J, Wang H, Chen S. scCrab: A Reference-Guided Cancer Cell Identification Method based on Bayesian Neural Networks. Interdiscip Sci 2024:10.1007/s12539-024-00655-6. [PMID: 39348073 DOI: 10.1007/s12539-024-00655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
Cancer is a significant global public health concern, where early detection can greatly enhance curative outcomes. Therefore, the identification of cancer cells holds significant importance as the primary method for cancer diagnosis. The advancement of single-cell RNA sequencing (scRNA-seq) technology has made it possible to address the problem of cancer cell identification at the single-cell level more efficiently with computational methods, as opposed to the time-consuming and less reproducible manual identification methods. However, existing computational methods have shown suboptimal identification performance and a lack of capability to incorporate external reference data as prior information. Here, we propose scCrab, a reference-guided automatic cancer cell identification method, which performs ensemble learning based on a Bayesian neural network (BNN) with multi-head self-attention mechanisms and a linear regression model. Through a series of experiments on various datasets, we systematically validated the superior performance of scCrab in both intra- and inter-dataset predictions. Besides, we demonstrated the robustness of scCrab to dropout rate and sample size, and conducted ablation experiments to investigate the contributions of each component in scCrab. Furthermore, as a dedicated model for cancer cell identification, scCrab effectively captures cancer-related biological significance during the identification process.
Collapse
Affiliation(s)
- Heyang Hua
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China
| | - Wenxin Long
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China
| | - Yan Pan
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Siyu Li
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China
| | - Jianyu Zhou
- College of Software, Nankai University, Tianjin, 300071, China.
| | - Haixin Wang
- Cadre Medical Department, The 1St Clinical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Shengquan Chen
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Yang Y, Du P, Hou X, Yan K, Dai Y, Sun Z, Wu Q, Li S, Yan Y, Wang Z, Qi L, Chen M, Zheng H, Gao W, Gao M, Xue W, Zhang X. Early cancer screening surveillance in one medical center of China. PeerJ 2024; 12:e18179. [PMID: 39351369 PMCID: PMC11441387 DOI: 10.7717/peerj.18179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Objectives Cancer screening aims to detect and treat malignant lesions at an early stage and to prolong patients' lifetime. There is still a lack of effective cancer screening programs in China. We initiated a screening project in 2018 and this study presented the cancer screening status in China. Methods We conducted a cross-sectional study in one cancer-care medical center of China. The screening program included routine blood tests, plasma tumor markers, gastric endoscopy, colonoscopy, ultrasound, and computed tomography (CT) scans. Screening results were presented as sensitivity, specificity and positive predictive values (PPVs). Results Twenty-three (1.46%) out of 1,576 participants were eventually diagnosed with malignant tumors or high-grade intraepithelial neoplasia (HGIN). A family history of malignancy (78.26% in diagnosed cancer and HGIN vs. 46.36% in the others) was the only statistically significant parameter associated with cancer detection (p = 0.002). None of the common tumor markers were associated with the cancers screened. Except for colonoscopy (50.00%) and ultrasound for renal cancer (66.67%), the sensitivities of most screening methods were 100%. The specificities of all the screening means were above 96%. Most PPVs ranged from 30-60%. Conclusion We emphasized risk stratification for early cancer screening, such as a family history of cancer. The survey illustrated that gastric endoscopy, colonoscopy, ultrasound, and lung CT for early cancer screening had high specificity, reasonable sensitivity, and PPV. We anticipated this report would motivate larger-sample studies to estimate the risk-to-benefit ratio of cancer screening and urge the establishment of a native Chinese screening project and even guidelines.
Collapse
Affiliation(s)
- Ying Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education, China), The VIP-II Gastrointestinal Cancer Division of Medical Department, Peking University Cancer Hospital & Institute, Beijing, China
| | - Peng Du
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education, China), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaolu Hou
- Western Beijing Cancer Hospital, Beijing, China
| | - Kun Yan
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education, China), Department of Ultrasonography, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ying Dai
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education, China), Department of Ultrasonography, Peking University Cancer Hospital & Institute, Beijing, China
| | - ZhiYing Sun
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education, China), Department of Ultrasonography, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qi Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education, China), Department of Endoscopy, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shijie Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education, China), Department of Endoscopy, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Yan
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education, China), Department of Endoscopy, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhilong Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education, China), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liping Qi
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education, China), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Mailin Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education, China), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hong Zheng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education, China), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Weijiao Gao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education, China), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Gao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education, China), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Weicheng Xue
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education, China), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaodong Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education, China), The VIP-II Gastrointestinal Cancer Division of Medical Department, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
5
|
Shen L, Peng T, Dong J, Liang Z, Si J, Ye H, Xie J, Yu X, Dai X. Establishment of a multi-line immunochromatography based on magnetic nanoparticles for simultaneous screening of multiple biomarkers. Anal Bioanal Chem 2024; 416:4823-4831. [PMID: 38981912 DOI: 10.1007/s00216-024-05432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Biomarkers screening is a benefit approach for early diagnosis of major diseases. In this study, magnetic nanoparticles (MNPs) have been utilized as labels to establish a multi-line immunochromatography (MNP-MLIC) for simultaneous detection of carcinoembryonic antigen (CEA), carbohydrate antigen 199 (CA 19-9), and alpha-fetoprotein (AFP) in a single serum sample. Under the optimal parameters, the three biomarkers can be rapidly and simultaneously qualitative screening within 15 min by naked eye. As for quantitative detection, the MNP-MLIC test strips were precisely positioned and captured by a smartphone, and signals on the test and control lines were extracted by ImageJ software. The signal ratio of test and control lines has been calculated and used to plot quantitative standard curves with the logarithmic concentration, of which the correlation coefficients are more than 0.99, and the limit of detection for CEA, CA 19-9, and AFP were 0.60 ng/mL, 1.21 U/mL, and 0.93 ng/mL, respectively. The recoveries of blank serum were 75.0 ~ 112.5% with the relative standard deviation ranging from 2.5 to 15.3%, and the specificity investigation demonstrated that the MNP-MLIC is highly specific to the three biomarkers. In conclusion, the developed MNP-MLIC offers a rapid, simple, accurate, and highly specific method for simultaneously detecting multiple biomarkers in serum samples, which provides an efficient and accurate approach for the early diagnosis of diseases.
Collapse
Affiliation(s)
- Liyue Shen
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, PR China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Tao Peng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Jiahui Dong
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, PR China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Zhanwei Liang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Jihao Si
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Hua Ye
- Department of Neurology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University/The Third Affiliated Hospital of Shanghai University/Wenzhou People's Hospital, Wenzhou, 325000, PR China
| | - Jie Xie
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, PR China.
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China.
| |
Collapse
|
6
|
Wang B, Zhang L, Liang G, Meng L, Xu Y, Li H, Song Z, Zhang X, Li Z, Guo C, Guan T, He Y. Realization of high-performance biosensor through sandwich analysis utilizing weak value amplification. Talanta 2024; 277:126302. [PMID: 38830277 DOI: 10.1016/j.talanta.2024.126302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
A label-free optical sandwich immunoassay sensor, utilizing weak value amplification and total internal reflection, was devised for real-time, high-sensitivity analysis and detection of low-concentration targets. 3D printed channels and sodium chloride solution were employed to ensure reproducibility, reliability, and stability of the measurements for calibration. The sandwich structure demonstrated enhanced responsiveness in the proposed optical biosensor through a comparative analysis of the direct assay and sandwich assay for detecting alpha-fetoprotein (AFP) at the same concentration. By optimizing the binding sequences of the coating antibody, target, and detection antibody in the sandwich method, a more suitable sandwich sensing approach based on weak value amplification was achieved. With this approach, the limit of detection (LOD) of 6.29 ng/mL (pM level) for AFP in PBS solution was achieved. AFP testing and regeneration experiments in human serum have proved the feasibility of our methods in detecting complex samples and the reusability of sensing chips. Additionally, the method demonstrated excellent selectivity for unpaired antigens. The efficacy of this methodology was evaluated by simultaneously detecting AFP, carcinoembryonic antigen (CEA), and CA15-3 on a singular sensor chip. In conclusion, the label-free sandwich immunoassay sensing scheme holds promise for advancing the proposed optical sensors based on weak value amplification in early diagnosis and prevention applications. Compared to other biomarker detection methods, it will be easier to promote in practical applications.
Collapse
Affiliation(s)
- Bei Wang
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lizhong Zhang
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Gengyu Liang
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lingqin Meng
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yang Xu
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Han Li
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zishuo Song
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiaonan Zhang
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhangyan Li
- College of Physics and Information Engineering, Zhaotong University, Zhaotong, 657000, China
| | - Cuixia Guo
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China.
| | - Tian Guan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yonghong He
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Tan CJ, Ilham S, Willis C, Kim A, Cong Z, Brixner D, Stenehjem D. Modeling the population health impact of incorporating a multi-cancer early detection (MCED) test to existing cancer screening among immunocompromised individuals. Curr Med Res Opin 2024; 40:1577-1587. [PMID: 39082096 DOI: 10.1080/03007995.2024.2386049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/18/2024]
Abstract
OBJECTIVE To assess the screening efficiency of an multi-cancer early detection (MCED) test added to standard of care (SoC) screening, compared to SoC screening alone, among immunocompromised individuals, and to estimate the diagnostic workup costs associated with positive screening results. METHODS We estimated the potential impact of cancer screening among immunocompromised individuals aged 50-79 years within the University of Utah Health system who underwent a stem cell/solid organ transplant or were diagnosed with a primary or secondary immunodeficiency disorder between January 2000 and February 2018. We derived cancer incidence rates from the Huntsman Cancer Institute Tumor Registry, and screening performance of SoC screening and an MCED test from published literature. Outcomes of screening efficiency included the true-positive to false-positive (TP:FP) ratio, diagnostic yield (DY), and cancer detection rate (CDR) for SoC screening alone and an incremental MCED test. Scenario and probabilistic sensitivity analyses were conducted. RESULTS Among 4932 immunocompromised individuals aged 50-79 years, we estimated that 2595 tests would be done under SoC screening and assumed that all individuals received an additional MCED test. Adding an MCED test to SoC screening substantially improved screening efficiency (TP:FP = 1:1, DY = 5.15/1000 tests, CDR = 42.0%), compared to SoC screening alone (TP:FP = 1:99, DY = 1.23/1000 tests, CDR = 5.3%), assuming an MCED test with 100% uptake. Our findings were also robust to parameter uncertainty. CONCLUSION Adding an MCED test to complement existing screening may be a highly efficient strategy to increase the detection of cancers among immunocompromised individuals. These results could help to improve cancer prevention and detection efforts among individuals with multiple cancer risk factors.
Collapse
Affiliation(s)
- Chia Jie Tan
- Department of Pharmacotherapy, College of Pharmacy, Pharmacotherapy Outcomes Research Center, University of Utah, Salt Lake City, UT, USA
| | - Sabrina Ilham
- Department of Pharmacotherapy, College of Pharmacy, Pharmacotherapy Outcomes Research Center, University of Utah, Salt Lake City, UT, USA
| | - Connor Willis
- Department of Pharmacotherapy, College of Pharmacy, Pharmacotherapy Outcomes Research Center, University of Utah, Salt Lake City, UT, USA
| | | | - Ze Cong
- GRAIL, LLC, Menlo Park, CA, USA
| | - Diana Brixner
- Department of Pharmacotherapy, College of Pharmacy, Pharmacotherapy Outcomes Research Center, University of Utah, Salt Lake City, UT, USA
| | - David Stenehjem
- Department of Pharmacotherapy, College of Pharmacy, Pharmacotherapy Outcomes Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, USA
| |
Collapse
|
8
|
Chen C, Tseng J, Amersi F, Silberman AW. Second primary malignancies in women with breast cancer. J Surg Oncol 2024; 130:355-359. [PMID: 39031014 DOI: 10.1002/jso.27785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 06/25/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Increased screening and treatment advancements have resulted in improved survival rates in women with breast cancer (BC). However, recent data suggests these women have elevated risk of developing a second primary malignancy (SPM) compared to the general population. Limited data exists on factors associated with BC patients developing a SPM. METHOD A retrospective review of a prospective single institution database (1990-2016) identified 782 patients with a history of BC. One hundred and ninety-four BC patients developed a SPM. Clinicopathologic and treatment characteristics were analyzed. RESULTS Of the 194 patients (24.8%) who developed a SPM, 56 (28.9%) BC patients were <50 years old (range: 24-87 years). Two-thirds (64.9%) had at least one first or second degree relative with a malignancy (no relatives-35.1%; ≥1 relative-62.9%). Most patients had invasive ductal carcinoma (n = 117, 60.3%) or ductal carcinoma in situ (n = 39, 20.1%). Twenty-two patients (11.3%) had pathogenic genetic mutations. Mean time to developing a SPM was 8.9 years (range: 4 months-50 years). Eighty (47.6%) patients received chemotherapy with 91 (54.5%) completing radiation. The most common SPMs were breast (22%), melanoma (17.8%), gynecologic (14.1%), colorectal (12.6%), hematologic (8.9%), and sarcoma (6.5%). Most breast tumors were estrogen receptor (ER) (n = 99, 78.0%) or progesterone receptor (PR) positive (n = 87, 73.1%) but not HER2-neu positive (n = 13, 14.0%). CONCLUSION Most BC patients who developed a SPM had ER/PR positive tumors and a family history of malignancy, with most <50 years old. Although chemotherapy and radiation increase cancer risk, there were an equal number of patients with SPMs who did or did not receive either treatment. Most SPMs were breast, soft tissue, gynecologic, hematologic, or colorectal. BC patients should be followed closely given an elevated propensity for developing SPMs.
Collapse
MESH Headings
- Humans
- Female
- Neoplasms, Second Primary/epidemiology
- Neoplasms, Second Primary/pathology
- Middle Aged
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Breast Neoplasms/genetics
- Adult
- Aged
- Aged, 80 and over
- Retrospective Studies
- Young Adult
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/therapy
- Carcinoma, Ductal, Breast/epidemiology
- Carcinoma, Ductal, Breast/genetics
- Prospective Studies
- Follow-Up Studies
- Risk Factors
Collapse
Affiliation(s)
- Courtney Chen
- Department of Surgery, Cedars-Sinai Medical Center, Division of Surgical Oncology, Los Angeles, CA, USA
| | - Joshua Tseng
- Department of Surgery, Cedars-Sinai Medical Center, Division of Surgical Oncology, Los Angeles, CA, USA
| | - Farin Amersi
- Department of Surgery, Cedars-Sinai Medical Center, Division of Surgical Oncology, Los Angeles, CA, USA
| | - Allan W Silberman
- Department of Surgery, Cedars-Sinai Medical Center, Division of Surgical Oncology, Los Angeles, CA, USA
| |
Collapse
|
9
|
Denysyuk HV, Pires IM, Garcia NM. A roadmap for empowering cardiovascular disease patients: a 5P-Medicine approach and technological integration. PeerJ 2024; 12:e17895. [PMID: 39224824 PMCID: PMC11368085 DOI: 10.7717/peerj.17895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
This article explores the multifaceted concept of cardiovascular disease (CVD) patients' empowerment, emphasizing a shift from compliance-oriented models to active patient participation. In recognizing that cardiovascular disease is a paramount global health challenge, this study illuminates the pressing need for empowering patients, underscoring their role as active participants in their healthcare journey. Grounded in 5P-Medicine principles-Predictive, Preventive, Participatory, Personalized, and Precision Medicine-the importance of empowering CVD patients through analytics, prevention, participatory decision making, and personalized treatments is highlighted. Incorporating a comprehensive overview of patient empowerment strategies, including self-management, health literacy, patient involvement, and shared decision making, the article advocates for tailored approaches aligned with individual needs, cultural contexts, and healthcare systems. Technological integration is examined to enhance patient engagement and personalized healthcare experiences. The critical role of patient-centered design in integrating digital tools for CVD management is emphasized, ensuring successful adoption and meaningful impact on healthcare outcomes. The conclusion proposes vital research questions addressing challenges and opportunities in CVD patient empowerment. These questions stress the importance of medical community research, understanding user expectations, evaluating existing technologies, defining ideal empowerment scenarios, and conducting a literature review for informed advancements. This article lays the foundation for future research, contributing to ongoing patient-centered healthcare evolution, especially in empowering individuals with a 5P-Medicine approach to cardiovascular diseases.
Collapse
Affiliation(s)
- Hanna V. Denysyuk
- Instituto de Telecomunicações, Universidade da Beira Interior, Covilhã, Portugal
| | - Ivan Miguel Pires
- Instituto de Telecomunicações, Escola Superior de Tecnologia e Gestão de Águeda, Universidade de Aveiro, Águeda, Portugal
| | - Nuno M. Garcia
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
10
|
Parmigiani G. Benefits and Harms of Interception and Early Detection of Cancer. Hematol Oncol Clin North Am 2024; 38:731-741. [PMID: 38789374 DOI: 10.1016/j.hoc.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Strategies for early detection and interception of cancer are based on 2 synergistic elements: proactive search for asymptomatic cancer, precancer, or cancer predisposition and proactive disruption of cancer evolution. Benefits and harms of both these elements will vary widely depending on the screened populations, the types of cancers targeted, the detection modalities, and the health care delivery approaches following diagnosis. This article attempts to identify common elements that can inform the evaluation of alternative strategies across many of these scenarios.
Collapse
Affiliation(s)
- Giovanni Parmigiani
- Department of Data Science, Dana Farber Cancer Institute; Department of Biostatistics, Harvard T.H. Chan School of Public Health.
| |
Collapse
|
11
|
Ouled Ltaief O, Ben Amor I, Hemmami H, Hamza W, Zeghoud S, Ben Amor A, Benzina M, Alnazza Alhamad A. Recent developments in cancer diagnosis and treatment using nanotechnology. Ann Med Surg (Lond) 2024; 86:4541-4554. [PMID: 39118776 PMCID: PMC11305775 DOI: 10.1097/ms9.0000000000002271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/05/2024] [Indexed: 08/10/2024] Open
Abstract
The article provides an insightful overview of the pivotal role of nanotechnology in revolutionizing cancer diagnosis and treatment. It discusses the critical importance of nanoparticles in enhancing the accuracy of cancer detection through improved imaging contrast agents and the synthesis of various nanomaterials designed for oncology applications. The review broadly classifies nanoparticles used in therapeutics, including metallic, magnetic, polymeric, and many other types, with an emphasis on their functions in drug delivery systems for targeted cancer therapy. It details targeting mechanisms, including passive and intentional targeting, to maximize treatment efficacy while minimizing side effects. Furthermore, the article addresses the clinical applications of nanomaterials in cancer treatment, highlights prospects, and addresses the challenges of integrating nanotechnology into cancer treatment.
Collapse
Affiliation(s)
- Olfa Ouled Ltaief
- Water, Energy and Environment Laboratory, National School of Engineers of Sfax, University of Safx, Safx, Tunisia
| | - Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Wiem Hamza
- Water, Energy and Environment Laboratory, National School of Engineers of Sfax, University of Safx, Safx, Tunisia
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Asma Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Mourad Benzina
- Water, Energy and Environment Laboratory, National School of Engineers of Sfax, University of Safx, Safx, Tunisia
| | - Ali Alnazza Alhamad
- Department of Chemistry, Faculty of Science, University of Aleppo, Aleppo, Syria
- Department of Technology of organic synthesis, Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
12
|
Kohaar I, Hodges NA, Srivastava S. Biomarkers in Cancer Screening: Promises and Challenges in Cancer Early Detection. Hematol Oncol Clin North Am 2024; 38:869-888. [PMID: 38782647 PMCID: PMC11222039 DOI: 10.1016/j.hoc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cancer continues to be one the leading causes of death worldwide, primarily due to the late detection of the disease. Cancers detected at early stages may enable more effective intervention of the disease. However, most cancers lack well-established screening procedures except for cancers with an established early asymptomatic phase and clinically validated screening tests. There is a critical need to identify and develop assays/tools in conjunction with imaging approaches for precise screening and detection of the aggressive disease at an early stage. New developments in molecular cancer screening and early detection include germline testing, synthetic biomarkers, and liquid biopsy approaches.
Collapse
Affiliation(s)
- Indu Kohaar
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, 9609 Medical Center Drive, NCI Shady Grove Building, Rockville, MD 20850, USA
| | - Nicholas A Hodges
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, 9609 Medical Center Drive, NCI Shady Grove Building, Rockville, MD 20850, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, 9609 Medical Center Drive, NCI Shady Grove Building, Rockville, MD 20850, USA.
| |
Collapse
|
13
|
Weimer JM, Kuhn E, Ludwig M, Malle GL, Kapipi G, Schäfer VS, Sadiq A, Henke O. Effectiveness of an ultrasound basic cancer training program through on-site training and virtual case discussions in rural Tanzania: a proof-of-concept study. Ecancermedicalscience 2024; 18:1722. [PMID: 39026658 PMCID: PMC11257097 DOI: 10.3332/ecancer.2024.1722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Cancer rates are rising in low- and middle-income countries. While point-of-care ultrasound is now available globally and could serve to mitigate against this rise, its use in diagnosing cancers is inconsistent in lower-resourced healthcare contexts. This proof-of-concept study investigates the feasibility of an ultrasound training concept in a low-resource setting. It evaluates whether this educational concept led to improved knowledge and application of ultrasound diagnostics, cancer screening and staging and patient care. Material and methods The curriculum was developed through expert exchange and is based on the World Health Organisation's Manual of Diagnostic Ultrasound. It consisted of two didactic components: an on-site training phase across 5 days for a total of 24 hours, and a digital follow-up phase involving the meeting of a bi-weekly tumor board online. The learning objectives of the on-site training were normal imaging and recognition of common pathologies of the abdominal organs, vessels, lymph nodes, female breasts and lungs. The virtual tumour boards met to discuss cases and ultrasound findings, thus aiding continuing professional development after the training sessions had concluded. The face-to-face course component was accompanied by tests given before and after training as well as an evaluation sheet (Likert-scale with 1 = 'completely/very good' and 7 'not at all/very poor'). Results Of 20 participants from a rural hospital in Tanzania, a total of 16 were included in the analysis (clinical officers n = 6; medical officers n = 10). A significant increase in knowledge (p < 0.01) was measured both in the subjective self-assessment and in the theoretical competence tests. In multivariate linear regression, the status 'medical officers yes' (β = 5.4; p = 0.04) had a significant influence on theory test results at T2. During the 24 virtual tumour board meetings, 28 cases were discussed and a continuous improvement in image acquisition quality was observed. Conclusion The ultrasound education concept comes with a sustainable increase in clinical competence and improved oncological ultrasound screening locally. There is potential for the transfer of the concept to other locations, which can be explored in the future.
Collapse
Affiliation(s)
- Johannes Matthias Weimer
- Rudolf -Frey Learning Clinic, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Eva Kuhn
- Section Global Health, Institute of Hygiene and Public Health, University Hospital Bonn, Bonn 53127, Germany
| | - Michael Ludwig
- Section Global Health, Institute of Hygiene and Public Health, University Hospital Bonn, Bonn 53127, Germany
- Department of Internal Medicine I, Hospital of the German Armed Forces, Berlin 10115, Germany
| | | | - Godfrid Kapipi
- Marangu Lutheran Hospital, PO Box 107, Marangu, Tanzania
| | - Valentin Sebastian Schäfer
- Department of Rheumatology and Clinical Immunology, Clinic of Internal Medicine III, University Hospital Bonn, Bonn, Germany
| | - Adnan Sadiq
- Kilimanjaro Christian Medical University College, Moshi 2240, Tanzania
| | - Oliver Henke
- Section Global Health, Institute of Hygiene and Public Health, University Hospital Bonn, Bonn 53127, Germany
| |
Collapse
|
14
|
Gromek P, Senkowska Z, Płuciennik E, Pasieka Z, Zhao LY, Gielecińska A, Kciuk M, Kłosiński K, Kałuzińska-Kołat Ż, Kołat D. Revisiting the standards of cancer detection and therapy alongside their comparison to modern methods. World J Methodol 2024; 14:92982. [PMID: 38983668 PMCID: PMC11229876 DOI: 10.5662/wjm.v14.i2.92982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024] Open
Abstract
In accordance with the World Health Organization data, cancer remains at the forefront of fatal diseases. An upward trend in cancer incidence and mortality has been observed globally, emphasizing that efforts in developing detection and treatment methods should continue. The diagnostic path typically begins with learning the medical history of a patient; this is followed by basic blood tests and imaging tests to indicate where cancer may be located to schedule a needle biopsy. Prompt initiation of diagnosis is crucial since delayed cancer detection entails higher costs of treatment and hospitalization. Thus, there is a need for novel cancer detection methods such as liquid biopsy, elastography, synthetic biosensors, fluorescence imaging, and reflectance confocal microscopy. Conventional therapeutic methods, although still common in clinical practice, pose many limitations and are unsatisfactory. Nowadays, there is a dynamic advancement of clinical research and the development of more precise and effective methods such as oncolytic virotherapy, exosome-based therapy, nanotechnology, dendritic cells, chimeric antigen receptors, immune checkpoint inhibitors, natural product-based therapy, tumor-treating fields, and photodynamic therapy. The present paper compares available data on conventional and modern methods of cancer detection and therapy to facilitate an understanding of this rapidly advancing field and its future directions. As evidenced, modern methods are not without drawbacks; there is still a need to develop new detection strategies and therapeutic approaches to improve sensitivity, specificity, safety, and efficacy. Nevertheless, an appropriate route has been taken, as confirmed by the approval of some modern methods by the Food and Drug Administration.
Collapse
Affiliation(s)
- Piotr Gromek
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zuzanna Senkowska
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Karol Kłosiński
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| |
Collapse
|
15
|
Ehrhorn EG, Lovell P, Svechkarev D, Romanova S, Mohs AM. Optimizing the performance of silica nanoparticles functionalized with a near-infrared fluorescent dye for bioimaging applications. NANOTECHNOLOGY 2024; 35:10.1088/1361-6528/ad3fc5. [PMID: 38631329 PMCID: PMC11216106 DOI: 10.1088/1361-6528/ad3fc5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Modified fluorescent nanoparticles continue to emerge as promising candidates for drug delivery, bioimaging, and labeling tools for various biomedical applications. The ability of nanomaterials to fluorescently label cells allow for the enhanced detection and understanding of diseases. Silica nanoparticles have a variety of unique properties that can be harnessed for many different applications, causing their increased popularity. In combination with an organic dye, fluorescent nanoparticles demonstrate a vast range of advantageous properties including long photostability, surface modification, and signal amplification, thus allowing ease of manipulation to best suit bioimaging purposes. In this study, the Stöber method with tetraethyl orthosilicate (TEOS) and a fluorescent dye sulfo-Cy5-amine was used to synthesize fluorescent silica nanoparticles. The fluorescence spectra, zeta potential, quantum yield, cytotoxicity, and photostability were evaluated. The increased intracellular uptake and photostability of the dye-silica nanoparticles show their potential for bioimaging.
Collapse
Affiliation(s)
- Evie G. Ehrhorn
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, 68198, United States
| | - Paul Lovell
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, 68198, United States
| | - Denis Svechkarev
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Chemistry, University of Nebraska at Omaha, Omaha, Nebraska 68182, United States
| | - Svetlana Romanova
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Aaron M. Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, 68198, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, United States
| |
Collapse
|
16
|
Saultier P, Michel G. How I treat long-term survivors of childhood acute leukemia. Blood 2024; 143:1795-1806. [PMID: 38227937 DOI: 10.1182/blood.2023019804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
ABSTRACT The population of survivors of childhood leukemia who reach adulthood is growing due to improved therapy. However, survivors are at risk of long-term complications. Comprehensive follow-up programs play a key role in childhood leukemia survivor care. The major determinant of long-term complications is the therapeutic burden accumulated over time. Relapse chemotherapy, central nervous system irradiation, hematopoietic stem cell transplantation, and total body irradiation are associated with greater risk of long-term complications. Other parameters include clinical characteristics such as age and sex as well as environmental, genetic, and socioeconomic factors, which can help stratify the risk of long-term complications and organize follow-up program. Early diagnosis improves the management of several late complications such as anthracycline-related cardiomyopathy, secondary cancers, metabolic syndrome, development defects, and infertility. Total body irradiation is the treatment associated with worse long-term toxicity profile with a wide range of complications. Patients treated with chemotherapy alone are at a lower risk of long-term complications, although the optimal long-term follow-up remains unclear. Novel immunotherapies and targeted therapy are generally associated with a better short-term safety profile but still require careful long-term toxicity monitoring. Advances in understanding genetic susceptibility to long-term complications could enable tailored therapeutic strategies for leukemia treatment and optimized follow-up programs.
Collapse
Affiliation(s)
- Paul Saultier
- Department of Pediatric Hematology, Immunology and Oncology, Aix Marseille Université, APHM, INSERM, INRAe, C2VN, La Timone Children's Hospital, Marseille, France
| | - Gérard Michel
- Department of Pediatric Hematology, Immunology and Oncology, Aix Marseille Université, APHM, CERESS, La Timone Children's Hospital, Marseille, France
| |
Collapse
|
17
|
Dong X, Qu Y, Sheng T, Fan Y, Chen S, Yuan Q, Ma G, Ge Y. HCMMD: systematic evaluation of metabolites in body fluids as liquid biopsy biomarker for human cancers. Aging (Albany NY) 2024; 16:7487-7504. [PMID: 38683118 PMCID: PMC11087094 DOI: 10.18632/aging.205779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/03/2024] [Indexed: 05/01/2024]
Abstract
Metabolomics is a rapidly expanding field in systems biology used to measure alterations of metabolites and identify metabolic biomarkers in response to disease processes. The discovery of metabolic biomarkers can improve early diagnosis, prognostic prediction, and therapeutic intervention for cancers. However, there are currently no databases that provide a comprehensive evaluation of the relationship between metabolites and cancer processes. In this review, we summarize reported metabolites in body fluids across pan-cancers and characterize their clinical applications in liquid biopsy. We conducted a search for metabolic biomarkers using the keywords ("metabolomics" OR "metabolite") AND "cancer" in PubMed. Of the 22,254 articles retrieved, 792 were deemed potentially relevant for further review. Ultimately, we included data from 573,300 samples and 17,083 metabolic biomarkers. We collected information on cancer types, sample size, the human metabolome database (HMDB) ID, metabolic pathway, area under the curve (AUC), sensitivity and specificity of metabolites, sample source, detection method, and clinical features were collected. Finally, we developed a user-friendly online database, the Human Cancer Metabolic Markers Database (HCMMD), which allows users to query, browse, and download metabolite information. In conclusion, HCMMD provides an important resource to assist researchers in reviewing metabolic biomarkers for diagnosis and progression of cancers.
Collapse
Affiliation(s)
- Xun Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yaoyao Qu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tongtong Sheng
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuanming Fan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Silu Chen
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qinbo Yuan
- Department of Urology, Wuxi Fifth People’s Hospital, Wuxi, China
| | - Gaoxiang Ma
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
- Deparment of Oncology, Pukou Hospital of Chinese Medicine affiliated to China Pharmaceutical University, Nanjing, China
| | - Yuqiu Ge
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Yi T, Wagner G. Malignant tumor cells engender second membrane-lined organelles for self-protection and tumor progression. Proc Natl Acad Sci U S A 2024; 121:e2317141121. [PMID: 38294933 PMCID: PMC10861905 DOI: 10.1073/pnas.2317141121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/14/2023] [Indexed: 02/02/2024] Open
Abstract
Cancer is a leading cause of mortality in humans, but the efficacy of current treatments for many cancers is limited, as they lack unique mechanistically defined targets. Here, we show that, upon malignant transformation, aggressive oncocells generate a second membrane exterior to their plasma membrane to form cytocapsulas (CCs) and cytocapsular tubes (CCTs), which all together constitute cytocapsular oncocells with pleotropic biological functions in cancer patient tissues in vivo. Proteomic and biochemical analyses revealed that the PMCA2 calcium pump is highly up-regulated in CCs and CCTs in malignant tumors but not in normal tissues, thus identifying a unique cancer biomarker and target for cancer therapy. Cytocapsular oncocells are universally present in solid cancers and appear in hematologic cancers in immune organs. Multi-cell malignant tumors are also enveloped by protective CC membranes. These cytocapsular tumors (CTs) generate numerous CCTs that form freeways for cancer cell metastasis to both neighboring and distant destinations. Entire cytocapsular tumor networks (CTNs) dominate physical cancer metastasis pathways in cancer patients in vivo. Later, CCTs invade micro blood vessels and release cytocapsular oncocells into the blood, providing a source of circulating tumor cells. CTNs interconnect cytocapsular tumors in primary and secondary cancer niches, creating larger cytocapsular tumor network systems (CTNSs). Primary and secondary CTNSs are in turn interconnected, forming dynamic and integrated CTNSs. Thus, interconnected cytocapsular oncocells, CTNs, and CTNSs coordinate cancer progression via the integrated cytocapsular membrane systems.
Collapse
Affiliation(s)
- Tingfang Yi
- Cytocapsula Research Institute, Cambridge, MA02142
- Centiver Ltd., Cambridge, MA02142
| | - Gerhard Wagner
- Cytocapsula Research Institute, Cambridge, MA02142
- Centiver Ltd., Cambridge, MA02142
- Department of Biological Chemistry and Molecular Pharmacology of Harvard Medical School, Boston, MA02115
| |
Collapse
|
19
|
Maqsood Q, Sumrin A, Saleem Y, Wajid A, Mahnoor M. Exosomes in Cancer: Diagnostic and Therapeutic Applications. Clin Med Insights Oncol 2024; 18:11795549231215966. [PMID: 38249520 PMCID: PMC10799603 DOI: 10.1177/11795549231215966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/29/2023] [Indexed: 01/23/2024] Open
Abstract
Small extracellular vesicles called exosomes are produced by cells and contain a range of biomolecules, including proteins, lipids, and nucleic acids. Exosomes have been implicated in the development and spread of cancer, and recent studies have shown that their contents may be exploited as biomarkers for early detection and ongoing surveillance of the disease. In this review article, we summarize the current knowledge on exosomes as biomarkers of cancer. We discuss the various methods used for exosome isolation and characterization, as well as the different types of biomolecules found within exosomes that are relevant for cancer diagnosis and prognosis. We also highlight recent studies that have demonstrated the utility of exosomal biomarkers in different types of cancer, such as lung cancer, breast cancer, and pancreatic cancer. Overall, exosomes show great promise as noninvasive biomarkers for cancer detection and monitoring. Exosomes have the ability to transform cancer diagnostic and therapeutic paradigms, providing promise for more efficient and individualized. This review seeks to serve as an inspiration for new ideas and research in the never-ending fight against cancer. Moreover, further studies are needed to validate their clinical utility and establish standardized protocols for their isolation and analysis. With continued research and development, exosomal biomarkers have the potential to revolutionize cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Quratulain Maqsood
- Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Aleena Sumrin
- Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Yasar Saleem
- Department of Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex Lahore, Lahore, Pakistan
| | - Abdul Wajid
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Muhammada Mahnoor
- Department of Rehabilitation Science, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
20
|
Christyani G, Carswell M, Qin S, Kim W. An Overview of Advances in Rare Cancer Diagnosis and Treatment. Int J Mol Sci 2024; 25:1201. [PMID: 38256274 PMCID: PMC10815984 DOI: 10.3390/ijms25021201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer stands as the leading global cause of mortality, with rare cancer comprising 230 distinct subtypes characterized by infrequent incidence. Despite the inherent challenges in addressing the diagnosis and treatment of rare cancers due to their low occurrence rates, several biomedical breakthroughs have led to significant advancement in both areas. This review provides a comprehensive overview of state-of-the-art diagnostic techniques that encompass new-generation sequencing and multi-omics, coupled with the integration of artificial intelligence and machine learning, that have revolutionized rare cancer diagnosis. In addition, this review highlights the latest innovations in rare cancer therapeutic options, comprising immunotherapy, targeted therapy, transplantation, and drug combination therapy, that have undergone clinical trials and significantly contribute to the tumor remission and overall survival of rare cancer patients. In this review, we summarize recent breakthroughs and insights in the understanding of rare cancer pathophysiology, diagnosis, and therapeutic modalities, as well as the challenges faced in the development of rare cancer diagnosis data interpretation and drug development.
Collapse
Affiliation(s)
| | | | - Sisi Qin
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (G.C.); (M.C.)
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (G.C.); (M.C.)
| |
Collapse
|
21
|
Li S, Lin Z, Chen H, Luo Q, Han S, Huang K, Chen R, Zhan Y, Chen B, Yao H. Synthesis and Application of a Near-Infrared Light-Emitting Fluorescent Probe for Specific Imaging of Cancer Cells with High Sensitivity and Selectivity. Drug Des Devel Ther 2024; 18:29-41. [PMID: 38225973 PMCID: PMC10788685 DOI: 10.2147/dddt.s439038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
Background The preclinical diagnosis of tumors is of great significance to cancer treatment. Near-infrared fluorescence imaging technology is promising for the in-situ detection of tumors with high sensitivity. Methods Here, a fluorescent probe was synthesized on the basis of Au nanoclusters with near-infrared light emission and applied to fluorescent cancer cell labeling. Near-infrared methionine-N-Hydroxy succinimide Au nanoclusters (Met-NHs-AuNCs) were prepared successfully by one-pot synthesis using Au nanoclusters, methionine, and N-Hydroxy succinimide as frameworks, reductants, and stabilizers, respectively. The specific fluorescence imaging of tumor cells or tissues by fluorescent probe was studied on the basis of SYBYL Surflex-DOCK simulation model of LAT1 active site of overexpressed receptor on cancer cell surface. The results showed that Met-NHs-AuNCs interacted with the surface of LAT1, and C_Score scored the conformation of the probe and LAT1 as five. Results Characterization and in vitro experiments were conducted to explore the Met-NHs-AuNCs targeted uptake of cancer cells. The prepared near-infrared fluorescent probe (Met-NHs-AuNCs) can specifically recognize the overexpression of L-type amino acid transporter 1 (LAT1) in cancer cells so that it can show red fluorescence in cancer cells. Meanwhile, normal cells (H9c2) have no fluorescence. Conclusion The fluorescent probe demonstrates the power of targeting and imaging cancer cells.
Collapse
Affiliation(s)
- Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Zhan Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Haobo Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Qiu Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Shengnan Han
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Kunlong Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Ruichan Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Yuying Zhan
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Bing Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
22
|
Ihlamur M, Kelleci K, Zengin Y, Allahverdiyev MA, Abamor EŞ. Applications of Exosome Vesicles in Different Cancer Types as Biomarkers. Curr Mol Med 2024; 24:281-297. [PMID: 36941811 DOI: 10.2174/1566524023666230320120419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/11/2022] [Accepted: 01/09/2023] [Indexed: 03/23/2023]
Abstract
One of the biggest challenges in the fight against cancer is early detection. Early diagnosis is vital, but there are some barriers such as economic, cultural, and personal factors. Considering the disadvantages of radiological imaging techniques or serological analysis methods used in cancer diagnosis, such as being expensive, requiring expertise, and being time-consuming, there is a need to develop faster, more reliable, and cost-effective diagnostic methods for use in cancer diagnosis. Exosomes, which are responsible for intercellular communication with sizes ranging from 30-120 nm, are naturally produced biological nanoparticles. Thanks to the cargo contents they carry, they are a potential biomarker to be used in the diagnosis of cancer. Exosomes, defined as extracellular vesicles of endosomal origin, are effective in cancer growth, progression, metastasis, and drug resistance, and changes in microenvironmental conditions during tumor development change exosome secretion. Due to their high cellular activity, tumor cells produce much higher exosomes than healthy cells. Therefore, it is known that the number of exosomes in body fluids is significantly rich compared to other cells and can act as a stand-alone diagnostic biomarker. Cancer- derived exosomes have received great attention in recent years for the early detection of cancer and the evaluation of therapeutic response. In this article, the content, properties, and differences of exosomes detected in common types of cancer (lung, liver, pancreas, ovaries, breast, colorectal), which are the leading causes of cancer-related deaths, are reviewed. We also discuss the potential utility of exosome contents as a biomarker for early detection, which is known to be important in targeted cancer therapy.
Collapse
Affiliation(s)
- Murat Ihlamur
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
- Biruni University, Vocational School, Department of Electronics and Automation, Istanbul, Turkey
| | - Kübra Kelleci
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
- Beykoz University, Vocational School, Department of Medical Services and Techniques, Istanbul, Turkey
| | - Yağmur Zengin
- Bogazici University, Biomedical Engineering Institute, Department of Biomedical Engineering, Istanbul, Turkey
| | - M Adil Allahverdiyev
- Institute of the V. Akhundov National Scientific Research Medical Prophylactic, Baku, Azerbaijan Republic
| | - Emrah Şefik Abamor
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
| |
Collapse
|
23
|
Nie Y, Sanna U, Sipola T, Kokkonen A, Päkkilä I, Sumen J, Rahkamaa-Tolonen K, Tkachenko V, Vespini V, Coppola S, Ferraro P, Grilli S, Ottevaere H. Miniaturized, high numerical aperture confocal fluorescence detection enhanced with pyroelectric droplet accumulation for sub-attomole analyte diagnosis. BIOMEDICAL OPTICS EXPRESS 2023; 14:6138-6150. [PMID: 38420309 PMCID: PMC10898570 DOI: 10.1364/boe.504757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 03/02/2024]
Abstract
To meet the growing demand for early fatal disease screening among large populations, current fluorescence detection instruments aiming at point-of-care diagnosis have the tendency to be low cost and high sensitivity, with a high potential for the analysis of low-volume, multiplex analytes with easy operation. In this work, we present the development of a miniaturized, high numerical aperture confocal fluorescence scanner for sub-micro-liter fluid diagnosis. It is enhanced with high-rate analyte accumulation using a pyroelectro-hydrodynamic dispensing system for generating tiny, stable sample droplets. The simplified confocal fluorescence scanner (numerical aperture 0.79, working distance 7.3 mm) uses merely off-the-shelf mass-production optical components. Experimental results show that it can achieve a high-sensitive, cost-efficient detection for sub-micro-liter, low-abundant (0.04 µL, 0.67 attomoles) fluid diagnosis, promising for point-of-care diagnosis.
Collapse
Affiliation(s)
- Yunfeng Nie
- Vrije Universiteit Brussel and Flanders Make, Brussel Photonics, Dept. of Applied Physics and Photonics, Pleinlaan 2, 1050 Brussels, Belgium
| | - Uusitalo Sanna
- VTT Technical Research Centre of Finland Ltd, Kaitoväylä 1, FI-90571 Oulu, Finland
| | - Teemu Sipola
- VTT Technical Research Centre of Finland Ltd, Kaitoväylä 1, FI-90571 Oulu, Finland
| | - Annukka Kokkonen
- VTT Technical Research Centre of Finland Ltd, Kaitoväylä 1, FI-90571 Oulu, Finland
| | - Inka Päkkilä
- VTT Technical Research Centre of Finland Ltd, Kaitoväylä 1, FI-90571 Oulu, Finland
| | - Juha Sumen
- VTT Technical Research Centre of Finland Ltd, Kaitoväylä 1, FI-90571 Oulu, Finland
| | | | - Volodymyr Tkachenko
- Institute of Applied Sciences and Intelligent Systems, National Council of Research (CNR-ISASI), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Veronica Vespini
- Institute of Applied Sciences and Intelligent Systems, National Council of Research (CNR-ISASI), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Sara Coppola
- Institute of Applied Sciences and Intelligent Systems, National Council of Research (CNR-ISASI), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Pietro Ferraro
- Institute of Applied Sciences and Intelligent Systems, National Council of Research (CNR-ISASI), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Simonetta Grilli
- Institute of Applied Sciences and Intelligent Systems, National Council of Research (CNR-ISASI), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Heidi Ottevaere
- Vrije Universiteit Brussel and Flanders Make, Brussel Photonics, Dept. of Applied Physics and Photonics, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
24
|
Mills S, Donnan P, Buchanan D, Smith BH. Age and cancer type: associations with increased odds of receiving a late diagnosis in people with advanced cancer. BMC Cancer 2023; 23:1174. [PMID: 38036975 PMCID: PMC10691149 DOI: 10.1186/s12885-023-11652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
PURPOSE In order to deliver appropriate and timely care planning and minimise avoidable late diagnoses, clinicians need to be aware of which patients are at higher risk of receiving a late cancer diagnosis. We aimed to determine which demographic and clinical factors are associated with receiving a 'late' cancer diagnosis (within the last 12 weeks of life). METHOD Retrospective cohort study of 2,443 people who died from cancer ('cancer decedents') in 2013-2015. Demographic and cancer registry datasets linked using patient-identifying Community Health Index numbers. Analysis used binary logistic regression, with univariate and adjusted odds ratios (SPSS v25). RESULTS One third (n = 831,34.0%) received a late diagnosis. Age and cancer type were significantly associated with late cancer diagnosis (p < 0.001). Other demographic factors were not associated with receiving a late diagnosis. Cancer decedents with lung cancer (Odds Ratios presented in abstract are the inverse of those presented in the main text, where lung cancer is the reference category. Presented as 1/(OR multivariate)) were more likely to have late diagnosis than those with bowel (95% Confidence Interval [95%CI] Odds Ratio (OR)1.52 (OR1.12 to 2.04)), breast or ovarian (95%CI OR3.33 (OR2.27 to 5.0) or prostate (95%CI OR9.09 (OR4.0 to 20.0)) cancers. Cancer decedents aged > 85 years had higher odds of late diagnosis (95%CI OR3.45 (OR2.63 to 4.55)), compared to those aged < 65 years. CONCLUSIONS Cancer decedents who were older and those with lung cancer were significantly more likely to receive late cancer diagnoses than those who were younger or who had other cancer types.
Collapse
Affiliation(s)
- Sarah Mills
- Population and Behavioural Science Division, School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9T, Scotland.
- Population Health and Genomics Division, University of Dundee Medical School Mackenzie Building, Ninewells Hospital and Medical School, Kirsty Semple Way, Dundee, DD2 4BF, Scotland.
| | - Peter Donnan
- Population Health and Genomics Division, University of Dundee Medical School Mackenzie Building, Ninewells Hospital and Medical School, Kirsty Semple Way, Dundee, DD2 4BF, Scotland
| | - Deans Buchanan
- NHS Tayside, Ninewells Hospital, South Block, Level 7, Dundee, DD2 4BF, Scotland
| | - Blair H Smith
- Population Health and Genomics Division, University of Dundee Medical School Mackenzie Building, Ninewells Hospital and Medical School, Kirsty Semple Way, Dundee, DD2 4BF, Scotland
| |
Collapse
|
25
|
Roseleur J, Edney LC, Jung J, Karnon J. Prevalence of unmet supportive care needs reported by individuals ever diagnosed with cancer in Australia: a systematic review to support service prioritisation. Support Care Cancer 2023; 31:676. [PMID: 37934313 PMCID: PMC10630245 DOI: 10.1007/s00520-023-08146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE Improved health outcomes for individuals ever diagnosed with cancer require comprehensive, coordinated care that addresses their supportive care needs. Implementing interventions to address these is confounded by a lack of evidence on population needs and a large pool of potential interventions. This systematic review estimates the point prevalence of different supportive care needs stratified by the tool used to measure needs and cancer type in Australia. METHODS We searched MEDLINE, Embase, and Scopus from 2010 to April 2023 to identify relevant studies published on the prevalence of supportive care needs in Australia. RESULTS We identified 35 studies that met the inclusion criteria. The highest prevalent unmet need across all cancers was 'fear of cancer spreading' (20.7%) from the Supportive Care Needs Survey Short-Form 34 (SCNS-SF34), ranging from 9.4% for individuals ever diagnosed with haematological cancer to 36.3% for individuals ever diagnosed with gynaecological cancer, and 'concerns about cancer coming back' (17.9%) from the Cancer Survivors' Unmet Needs (CaSUN), ranging from 9.7% for individuals ever diagnosed with prostate cancer to 37.8% for individuals ever diagnosed with breast cancer. Two studies assessed needs in Aboriginal and Torres Strait Islander populations, reporting the highest needs for financial worries (21.1%). CONCLUSIONS Point prevalence estimates presented here, combined with estimates of the costs and effects of potential interventions, can be used within economic evaluations to inform evidence-based local service provision to address the supportive care needs of individuals ever diagnosed with cancer. IMPLICATIONS FOR CANCER SURVIVORS Local health services can use local evidence to prioritise the implementation of interventions targeted at unmet needs.
Collapse
Affiliation(s)
- Jackie Roseleur
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| | - Laura Catherine Edney
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Jayda Jung
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Jonathan Karnon
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
26
|
Zheng S, Wang X, Matskova L, Zhou X, Zhang Z, Kashuba E, Ernberg I, Aspenström P. MTSS1 is downregulated in nasopharyngeal carcinoma (NPC) which disrupts adherens junctions leading to enhanced cell migration and invasion. Front Cell Dev Biol 2023; 11:1275668. [PMID: 37920825 PMCID: PMC10618355 DOI: 10.3389/fcell.2023.1275668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Loss of cell-cell adhesions is the indispensable first step for cancer cells to depart from the primary tumor mass to metastasize. Metastasis suppressor 1 (MTSS1) is frequently lost in metastatic tissues, correlating to advanced tumor stages and poor prognosis across a variety of cancers. Here we explore the anti-metastatic mechanisms of MTSS1, which have not been well understood. We found that MTSS1 is downregulated in NPC tissues. Lower levels of MTSS1 expression correlate to worse prognosis. We show that MTSS1 suppresses NPC cell migration and invasion in vitro through cytoskeletal remodeling at cell-cell borders and assembly of E-cadherin/β-catenin/F-actin in adherens junctions. The I-BAR domain of MTSS1 was both necessary and sufficient to restore this formation of E-cadherin/β-catenin/F-actin-mediated cell adherens junctions.
Collapse
Affiliation(s)
- Shixing Zheng
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Xiaoxia Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Liudmila Matskova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoying Zhou
- Scientific Research Centre, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pontus Aspenström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Vieira-Coimbra M, Nogueira-Martins N, Zadykowicz R, Rodrigues Gaspar H, Calleja-Agius J, Pakiz M, Mukhopadhyay S, Mahmood T. Provision of screening services for cervical and breast cancer - A scientific study commissioned by the European Board & College of Obstetrics and Gynaecology (EBCOG). Eur J Obstet Gynecol Reprod Biol 2023; 289:208-216. [PMID: 37679212 DOI: 10.1016/j.ejogrb.2023.08.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
OBJECTIVE Cancer screening can play an important role in early detection, improving treatment outcomes and reducing morbidity and mortality. Breast and cervical cancers belong to the most common gynaecological cancers group. Countries provide different screening programmes on its eligible population basis centred on different health care policies. This scientific study aims to assess and understand the health inequalities in the member countries of the European Board & College of Obstetrics and Gynaecology (EBCOG) as regards screening programmes of gynaecological cancer, with a special focus on breast and cervical cancers' screening strategies. STUDY DESIGN A descriptive questionnaire-based study was conducted, addressed to EBCOG member countries. RESULTS Ninety-one percent of the countries have an organized national or regional screening programme for cervical cancer. Of these, 45% of countries use both cytology and testing for Human Papilloma Virus (HPV) as screening test, 31% use cytology exclusively and 17% only perform HPV testing. Considerable differences were found regarding the interval of screening test: there are countries performing HPV detection triennially, while others perform only conventional cytology every 5 years. Sixty-nine percent of countries included in this study begin screening for cervical cancer in women aged 25 to 29 years, four of them using HPV detection as the screening test. Six countries begin cervical cancer screening before the age of 25. As regards vaccination against HPV, almost all countries have implemented national HPV vaccination programme, except in Poland and Turkey. The 9-valent HPV vaccine is the most frequently offered (77% of countries) and the majority vaccination programmes include both girls and boys. As regards breast cancer screening, all thirty-two countries have an implemented screening programme. All countries perform mammography as the screening test, 62.5% of them begin in women aged 50 to 54, with a 2-yearly interval in the majority. In five countries, screening programmes are performed biennially, starting between 45 and 49 years old. Seven countries start in women aged 41 to 44. CONCLUSIONS There are discrepancies around gynaecological cancer screenings provision among EBCOG member countries. It is important to establish European recommendations about screening for gynaecological cancers, in order to standardize the access to equitable better health care in gynaecological cancers within Europe.
Collapse
Affiliation(s)
- Márcia Vieira-Coimbra
- Department of Gynaecology and Obstetrics of Centro Hospitalar Tondela-Viseu EPE, Viseu, Portugal.
| | - Nuno Nogueira-Martins
- Department of Gynaecology and Obstetrics of Centro Hospitalar Tondela-Viseu EPE, Viseu, Portugal
| | - Rafal Zadykowicz
- Department of Obstetrics, Perinatology and Gynaecology, Medical University of Warsaw, Poland
| | - Hugo Rodrigues Gaspar
- Department of Gynaecology and Obstetrics of Hospital Central do Funchal, Madeira, Portugal
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Maja Pakiz
- Department for Gynaecologic and Breast Oncology, University Medical Centre Maribor, Slovenia
| | - Sambit Mukhopadhyay
- Department of Obstetrics and Gynaecology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Tahir Mahmood
- Visiting Consultant Gynaecologist Spire Murrayfield Hospital, Edinburgh, Scotland, UK and Chair Standing Committee on Standards of Care and Position Statements of EBCOG
| |
Collapse
|
28
|
Vieira-Coimbra M, Nogueira-Martins N, Zadykowicz R, Gaspar HR, Calleja-Agius J, Pakiz M, Mukhopadhyay S, Mahmood T. EBCOG position statement on Inequalities in screening for cervical and breast cancer. Eur J Obstet Gynecol Reprod Biol 2023; 289:217-218. [PMID: 37689510 DOI: 10.1016/j.ejogrb.2023.08.386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Gynaecological cancers, namely breast and cervical cancer represent a high burden in women's health. It is well established that cervical and breast cancer screening programmes are effective in reducing morbidity and mortality. It is of the most importance to define strategies to provide a universal access to screening. In European countries, significant progress has been made over the past years concerning screening strategies, namely the choice of screening test, its frequency as well as the age to start and stop the screening. Introduction of Human Papillomavirus vaccination programmes is also making a measurable impact to reduce cervical cancer prevalence and mortality. Our survey has shown a variation among European countries in delivery of cervical and breast cancer screening programmes. These variations can be due to organizational, economic or cultural reasons. The European Board and College of Obstetrics and Gynaecology calls for an implementation of a unified policy of prevention, screening and early detection of cervical and breast cancer across Europe to optimize clinical outcomes and reduce variations.
Collapse
Affiliation(s)
- Márcia Vieira-Coimbra
- Department of Gynaecology and Obstetrics of Centro Hospitalar Tondela-Viseu EPE, Viseu, Portugal.
| | - Nuno Nogueira-Martins
- Department of Gynaecology and Obstetrics of Centro Hospitalar Tondela-Viseu EPE, Viseu, Portugal
| | - Rafal Zadykowicz
- Department of Obstetrics, Perinatology and Gynaecology, Medical University of Warsaw, Poland
| | - Hugo Rodrigues Gaspar
- Department of Gynaecology and Obstetrics of Hospital Central do Funchal, Madeira, Portugal
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Maja Pakiz
- Department for Gynaecologic and Breast Oncology, University Medical Centre Maribor, Slovenia
| | - Sambit Mukhopadhyay
- Department of Obstetrics and Gynaecology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Tahir Mahmood
- Visiting Consultant Gynaecologist Spire Murrayfield Hospital, Edinburgh, Scotland and Chair Standing Committee on Standards of Care and Position Statements of EBCOG, UK
| |
Collapse
|
29
|
Gold BO, Ghosh A, Goldberg SI, Chino F, Efstathiou JA, Kamran SC. Disparities in testicular cancer incidence, mortality, and place of death trends from 1999 to 2020: A comprehensive cohort study. Cancer Rep (Hoboken) 2023; 6:e1880. [PMID: 37584159 PMCID: PMC10598251 DOI: 10.1002/cnr2.1880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Testicular cancer (TC) mortality rates have decreased over time, however it is unclear whether these improvements are consistent across all communities. AIMS The aim of this study was to analyze trends in TC incidence, mortality, and place of death (PoD) in the United States between 1999-2020 and identify disparities across race, ethnicity, and geographic location. METHODS AND RESULTS This cross-sectional study used CDC WONDER and NAACCR, to calculate age-adjusted rates of TC incidence and mortality, respectively. PoD data for individuals who died of TC were collected from CDC WONDER. Using Joinpoint analysis, longitudinal mortality trends were evaluated by age, race, ethnicity, US census region, and urbanization category. TC stage (localized vs metastatic) trends were also evaluated. Univariate and multivariate regression analysis identified demographic disparities for PoD. A total of 8,456 patients died of TC from 1999-2020. Average annual percent change (AAPC) of testicular cancer-specific mortality (TCSM) remained largely stable (AAPC, 0.4; 95% CI -0.2 to 0.9; p = 0.215). Men ages 25-29 experienced a significant increase in TCSM (AAPC, 1.3, p = 0.003), consistent with increased metastatic testicular cancer-specific incidence (TCSI) trend for this age group (AAPC, 1.6; p < 0.01). Mortality increased for Hispanic men (AAPC, 1.7, p < 0.001), with increased metastatic TCSI (AAPC, 2.5; p < 0.001). Finally, younger (<45), single, and Hispanic or Black men were more likely to die in medical facilities (all p < 0.001). The retrospective study design is a limitation. CONCLUSION Significant increases in metastatic TC were found for Hispanic men and men aged 25-29 potentially driving increasing testicular cancer specific mortality in these groups. Evidence of racial and ethnic differences in place of death may also highlight treatment disparities.
Collapse
Affiliation(s)
- Beck O. Gold
- Department of Radiation OncologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Anushka Ghosh
- Department of Radiation OncologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Saveli I. Goldberg
- Department of Radiation OncologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Fumiko Chino
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Jason A. Efstathiou
- Department of Radiation OncologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Sophia C. Kamran
- Department of Radiation OncologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
30
|
Prezja F, Äyrämö S, Pölönen I, Ojala T, Lahtinen S, Ruusuvuori P, Kuopio T. Improved accuracy in colorectal cancer tissue decomposition through refinement of established deep learning solutions. Sci Rep 2023; 13:15879. [PMID: 37741820 PMCID: PMC10517936 DOI: 10.1038/s41598-023-42357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
Hematoxylin and eosin-stained biopsy slides are regularly available for colorectal cancer patients. These slides are often not used to define objective biomarkers for patient stratification and treatment selection. Standard biomarkers often pertain to costly and slow genetic tests. However, recent work has shown that relevant biomarkers can be extracted from these images using convolutional neural networks (CNNs). The CNN-based biomarkers predicted colorectal cancer patient outcomes comparably to gold standards. Extracting CNN-biomarkers is fast, automatic, and of minimal cost. CNN-based biomarkers rely on the ability of CNNs to recognize distinct tissue types from microscope whole slide images. The quality of these biomarkers (coined 'Deep Stroma') depends on the accuracy of CNNs in decomposing all relevant tissue classes. Improving tissue decomposition accuracy is essential for improving the prognostic potential of CNN-biomarkers. In this study, we implemented a novel training strategy to refine an established CNN model, which then surpassed all previous solutions . We obtained a 95.6% average accuracy in the external test set and 99.5% in the internal test set. Our approach reduced errors in biomarker-relevant classes, such as Lymphocytes, and was the first to include interpretability methods. These methods were used to better apprehend our model's limitations and capabilities.
Collapse
Affiliation(s)
- Fabi Prezja
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, 40014, Finland.
- Digital Health Intelligence Laboratory, University of Jyväskylä, Jyväskylä, 40014, Finland.
| | - Sami Äyrämö
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, 40014, Finland
- Digital Health Intelligence Laboratory, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Ilkka Pölönen
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, 40014, Finland
- Spectral Imaging Laboratory, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Timo Ojala
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, 40014, Finland
- Digital Health Intelligence Laboratory, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Suvi Lahtinen
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, 40014, Finland
- Department of Biological and Environmental Science, Faculty of Mathematics and Science, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Pekka Ruusuvuori
- Institute of Biomedicine, Cancer Research Unit, University of Turku, Turku, 20014, Finland
- FICAN West Cancer Centre, Turku University Hospital, Turku, 20521, Finland
| | - Teijo Kuopio
- Department of Education and Research, Hospital Nova of Central Finland, Jyväskylä, 40620, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, 40014, Finland
- Department of Pathology, Hospital Nova of Central Finland, Jyväskylä, 40620, Finland
| |
Collapse
|
31
|
Beylerli O, Encarnacion Ramirez MDJ, Shumadalova A, Ilyasova T, Zemlyanskiy M, Beilerli A, Montemurro N. Cell-Free miRNAs as Non-Invasive Biomarkers in Brain Tumors. Diagnostics (Basel) 2023; 13:2888. [PMID: 37761255 PMCID: PMC10529040 DOI: 10.3390/diagnostics13182888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Diagnosing brain tumors, especially malignant variants, such as glioblastoma, medulloblastoma, or brain metastasis, presents a considerable obstacle, while current treatment methods often yield unsatisfactory results. The monitoring of individuals with brain neoplasms becomes burdensome due to the intricate tumor nature and associated risks of tissue biopsies, compounded by the restricted accuracy and sensitivity of presently available non-invasive diagnostic techniques. The uncertainties surrounding diagnosis and the tumor's reaction to treatment can lead to delays in critical determinations that profoundly influence the prognosis of the disease. Consequently, there exists a pressing necessity to formulate and validate dependable, minimally invasive biomarkers that can effectively diagnose and predict brain tumors. Cell-free microRNAs (miRNAs), which remain stable and detectable in human bodily fluids, such as blood and cerebrospinal fluid (CSF), have emerged as potential indicators for a range of ailments, brain tumors included. Numerous investigations have showcased the viability of profiling cell-free miRNA expression in both CSF and blood samples obtained from patients with brain tumors. Distinct miRNAs demonstrate varying expression patterns within CSF and blood. While cell-free microRNAs in the blood exhibit potential in diagnosing, prognosticating, and monitoring treatment across diverse tumor types, they fall short in effectively diagnosing brain tumors. Conversely, the cell-free miRNA profile within CSF demonstrates high potential in delivering precise and specific evaluations of brain tumors.
Collapse
Affiliation(s)
- Ozal Beylerli
- Bashkir State Medical University, 450008 Ufa, Russia
| | | | | | | | - Mikhail Zemlyanskiy
- Department of Neurosurgery, Podolsk Regional Hospital, 141110 Moscow, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 625000 Tyumen, Russia
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
32
|
Tébar-Martínez R, Martín-Arana J, Gimeno-Valiente F, Tarazona N, Rentero-Garrido P, Cervantes A. Strategies for improving detection of circulating tumor DNA using next generation sequencing. Cancer Treat Rev 2023; 119:102595. [PMID: 37390697 DOI: 10.1016/j.ctrv.2023.102595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Cancer has become a global health issue and liquid biopsy has emerged as a non-invasive tool for various applications. In cancer, circulating tumor DNA (ctDNA) can be detected from cell-free DNA (cfDNA) obtained from plasma and has potential for early diagnosis, treatment, resistance, minimal residual disease detection, and tumoral heterogeneity identification. However, the low frequency of ctDNA requires techniques for accurate analysis. Multitarget assay such as Next Generation Sequencing (NGS) need improvement to achieve limits of detection that can identify the low frequency variants present in the cfDNA. In this review, we provide a general overview of the use of cfDNA and ctDNA in cancer, and discuss techniques developed to optimize NGS as a tool for ctDNA detection. We also summarize the results obtained using NGS strategies in both investigational and clinical contexts.
Collapse
Affiliation(s)
- Roberto Tébar-Martínez
- Department of Medical Oncology, INCLIVA Health Research Institute, University of Valencia, C. de Menéndez y Pelayo, 4, 46010 Valencia, Spain; Precision Medicine Unit, INCLIVA Health Research Institute, C. de Menéndez y Pelayo, 4, 46010 Valencia, Spain.
| | - Jorge Martín-Arana
- Department of Medical Oncology, INCLIVA Health Research Institute, University of Valencia, C. de Menéndez y Pelayo, 4, 46010 Valencia, Spain; Bioinformatics Unit, INCLIVA Health Research Institute, C. de Menéndez y Pelayo, 4, 46010 Valencia, Spain.
| | - Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College of London Cancer Institute, 72 Huntley St, WC1E 6DD London, United Kingdom.
| | - Noelia Tarazona
- Department of Medical Oncology, INCLIVA Health Research Institute, University of Valencia, C. de Menéndez y Pelayo, 4, 46010 Valencia, Spain; Health Institute Carlos III, CIBERONC, C/ Sinesio Delgado, 4, 28029 Madrid, Spain.
| | - Pilar Rentero-Garrido
- Precision Medicine Unit, INCLIVA Health Research Institute, C. de Menéndez y Pelayo, 4, 46010 Valencia, Spain.
| | - Andrés Cervantes
- Department of Medical Oncology, INCLIVA Health Research Institute, University of Valencia, C. de Menéndez y Pelayo, 4, 46010 Valencia, Spain; Health Institute Carlos III, CIBERONC, C/ Sinesio Delgado, 4, 28029 Madrid, Spain.
| |
Collapse
|
33
|
Felsky D, Cannitelli A, Pipitone J. Whole Person Modeling: a transdisciplinary approach to mental health research. DISCOVER MENTAL HEALTH 2023; 3:16. [PMID: 37638348 PMCID: PMC10449734 DOI: 10.1007/s44192-023-00041-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
The growing global burden of mental illness has prompted calls for innovative research strategies. Theoretical models of mental health include complex contributions of biological, psychosocial, experiential, and other environmental influences. Accordingly, neuropsychiatric research has self-organized into largely isolated disciplines working to decode each individual contribution. However, research directly modeling objective biological measurements in combination with cognitive, psychological, demographic, or other environmental measurements is only now beginning to proliferate. This review aims to (1) to describe the landscape of modern mental health research and current movement towards integrative study, (2) to provide a concrete framework for quantitative integrative research, which we call Whole Person Modeling, (3) to explore existing and emerging techniques and methods used in Whole Person Modeling, and (4) to discuss our observations about the scarcity, potential value, and untested aspects of highly transdisciplinary research in general. Whole Person Modeling studies have the potential to provide a better understanding of multilevel phenomena, deliver more accurate diagnostic and prognostic tests to aid in clinical decision making, and test long standing theoretical models of mental illness. Some current barriers to progress include challenges with interdisciplinary communication and collaboration, systemic cultural barriers to transdisciplinary career paths, technical challenges in model specification, bias, and data harmonization, and gaps in transdisciplinary educational programs. We hope to ease anxiety in the field surrounding the often mysterious and intimidating world of transdisciplinary, data-driven mental health research and provide a useful orientation for students or highly specialized researchers who are new to this area.
Collapse
Affiliation(s)
- Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8 Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, ON Canada
- Faculty of Medicine, McMaster University, Hamilton, ON Canada
| | - Alyssa Cannitelli
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8 Canada
- Faculty of Medicine, McMaster University, Hamilton, ON Canada
| | - Jon Pipitone
- Department of Psychiatry, Queen’s University, Kingston, ON Canada
| |
Collapse
|
34
|
Razzaghi H, Khabbazpour M, Heidary Z, Heiat M, Shirzad Moghaddam Z, Derogar P, Khoncheh A, Zaki-Dizaji M. Emerging Role of Tumor-Educated Platelets as a New Liquid Biopsy Tool for Colorectal Cancer. ARCHIVES OF IRANIAN MEDICINE 2023; 26:447-454. [PMID: 38301107 PMCID: PMC10685733 DOI: 10.34172/aim.2023.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/03/2023] [Indexed: 02/03/2024]
Abstract
Colorectal cancer (CRC) is a major cause of cancer-associated death universally. Currently, the diagnosis, prognosis, and treatment monitoring of CRC mostly depends on endoscopy integrated with tissue biopsy. Recently, liquid biopsy has gained more and more attention in the area of molecular detection and monitoring of tumors due to ease of sampling, and its safe, non-invasive, and dynamic nature. Platelets, despite their role in hemostasis and thrombosis, are known to have an active, bifacial relationship with cancers. Platelets are the second most common type of cell in the blood and are one of the wealthy liquid biopsy biosources. These cells have the potential to absorb nucleic acids and proteins and modify their transcriptome with regard to external signals, which are termed tumor-educated platelets (TEPs). Liquid biopsies depend on TEPs' biomarkers which can be used to screen and also detect cancer in terms of prognosis, personalized treatment, monitoring, and prediction of recurrence. The value of TEPs as an origin of tumor biomarkers is relatively new, but platelets are commonly isolated using formidable and rapid techniques in clinical practice. Numerous preclinical researches have emphasized the potential of platelets as a new liquid biopsy biosource for detecting several types of tumors. This review discusses the potential use of platelets as a liquid biopsy for CRC.
Collapse
Affiliation(s)
- Hossein Razzaghi
- Department of Laboratory Sciences, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
| | - Milad Khabbazpour
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zohreh Heidary
- Vali-e-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirzad Moghaddam
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Derogar
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ahmad Khoncheh
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Yi Q, Yue J, Liu Y, Shi H, Sun W, Feng J, Sun W. Recent advances of exosomal circRNAs in cancer and their potential clinical applications. J Transl Med 2023; 21:516. [PMID: 37525158 PMCID: PMC10388565 DOI: 10.1186/s12967-023-04348-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA that forms a covalently closed, uninterrupted loop. The expression of circRNA differs among cell types and tissues, and various circRNAs are aberrantly expressed in a variety of diseases, including cancer. Aberrantly expressed circRNAs contribute to disease progression by acting as microRNA sponges, functional protein sponges, or novel templates for protein translation. Recent studies have shown that circRNAs are enriched in exosomes. Exosomes are spherical bilayer vesicles released by cells into extracellular spaces that mediate intercellular communication by delivering cargoes. These cargoes include metabolites, proteins, lipids, and RNA molecules. Exosome-mediated cell-cell or cell-microenvironment communications influence the progression of carcinogenesis by regulating cell proliferation, angiogenesis, metastasis as well as immune escape. In this review, we summarize the current knowledge about exosomal circRNAs in cancers and discuss their specific functions in tumorigenesis. Additionally, we discuss the potential value of exosomal circRNAs as diagnostic biomarkers and the potential applications of exosomal circRNA-based cancer therapy.
Collapse
Affiliation(s)
- Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Jiaji Yue
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Yang Liu
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Houyin Shi
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Sun
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Weichao Sun
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
36
|
Wang D, Liu J, Duan J, Yi H, Liu J, Song H, Zhang Z, Shi J, Zhang K. Enrichment and sensing tumor cells by embedded immunomodulatory DNA hydrogel to inhibit postoperative tumor recurrence. Nat Commun 2023; 14:4511. [PMID: 37500633 PMCID: PMC10374534 DOI: 10.1038/s41467-023-40085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Postoperative tumor recurrence and metastases often lead to cancer treatment failure. Here, we develop a local embedded photodynamic immunomodulatory DNA hydrogel for early warning and inhibition of postoperative tumor recurrence. The DNA hydrogel contains PDL1 aptamers that capture and enrich in situ relapsed tumor cells, increasing local ATP concentration to provide a timely warning signal. When a positive signal is detected, local laser irradiation is performed to trigger photodynamic therapy to kill captured tumor cells and release tumor-associated antigens (TAA). In addition, reactive oxygen species break DNA strands in the hydrogel to release encoded PDL1 aptamer and CpG, which together with TAA promote sufficient systemic antitumor immunotherapy. In a murine model where tumor cells are injected at the surgical site to mimic tumor recurrence, we find that the hydrogel system enables timely detection of tumor recurrence by enriching relapsed tumor cells to increase local ATP concentrations. As a result, a significant inhibitory effect of approximately 88.1% on recurrent tumors and effectively suppressing metastasis, offering a promising avenue for timely and effective treatment of postoperative tumor recurrence.
Collapse
Affiliation(s)
- Danyu Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingwen Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Duan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hua Yi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Haiwei Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore.
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China.
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China.
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China.
| |
Collapse
|
37
|
Zhao R, Han Z, Zhou H, Xue Y, Chen X, Cao X. Diagnostic and prognostic role of circRNAs in pancreatic cancer: a meta-analysis. Front Oncol 2023; 13:1174577. [PMID: 37361594 PMCID: PMC10285410 DOI: 10.3389/fonc.2023.1174577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Background Circular RNAs (circRNAs) are types of endogenous noncoding RNAs produced by selective splicing that are expressed highly specifically in various organisms and tissues and have numerous clinical implications in the regulation of cancer development and progression. Since circRNA is resistant to digestion by ribonucleases and has a long half-life, there is increasing evidence that circRNA can be used as an ideal candidate biomarker for the early diagnosis and prognosis of tumors. In this study, we aimed to reveal the diagnostic and prognostic value of circRNA in human pancreatic cancer (PC). Methods A systematic search for publications from inception to 22 July 2022 was conducted on Embase, PubMed, Web of Science (WOS), and the Cochrane Library databases. Available studies that correlated circRNA expression in tissue or serum with the clinicopathological, diagnostic, and prognostic values of PC patients were enrolled. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were used to evaluate clinical pathological characteristics. Area under the curve (AUC), sensitivity, and specificity were adopted to assess diagnostic value. Hazard ratios (HRs) were utilized to assess disease-free survival (DFS) and overall survival (OS). Results This meta-analysis enrolled 32 eligible studies, including six on diagnosis and 21 on prognosis, which accounted for 2,396 cases from 245 references. For clinical parameters, high expression of carcinogenic circRNA was significantly associated with degree of differentiation (OR = 1.85, 95% CI = 1.47-2.34), TNM stage (OR = 0.46, 95% CI = 0.35-0.62), lymph node metastasis (OR = 0.39, 95% CI = 0.32-0.48), and distant metastasis (OR = 0.26, 95% CI = 0.13-0.51). As for clinical diagnostic utility, circRNA could discriminate patients with pancreatic cancer from controls, with an AUC of 0.86 (95% CI: 0.82-0.88), a relatively high sensitivity of 84%, and a specificity of 80% in tissue. In terms of prognostic significance, carcinogenic circRNA was correlated with poor OS (HR = 2.00, 95% CI: 1.76-2.26) and DFS (HR = 1.96, 95% CI: 1.47-2.62). Conclusion In summary, this study demonstrated that circRNA may act as a significant diagnostic and prognostic biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- Ruihua Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuo Han
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi’an, China
| | - Haiting Zhou
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yaru Xue
- Department of Pediatric Medicine, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Xiaobing Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinguang Cao
- Department of Digestive Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Shin H, Choi BH, Shim O, Kim J, Park Y, Cho SK, Kim HK, Choi Y. Single test-based diagnosis of multiple cancer types using Exosome-SERS-AI for early stage cancers. Nat Commun 2023; 14:1644. [PMID: 36964142 PMCID: PMC10039041 DOI: 10.1038/s41467-023-37403-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/16/2023] [Indexed: 03/26/2023] Open
Abstract
Early cancer detection has significant clinical value, but there remains no single method that can comprehensively identify multiple types of early-stage cancer. Here, we report the diagnostic accuracy of simultaneous detection of 6 types of early-stage cancers (lung, breast, colon, liver, pancreas, and stomach) by analyzing surface-enhanced Raman spectroscopy profiles of exosomes using artificial intelligence in a retrospective study design. It includes classification models that recognize signal patterns of plasma exosomes to identify both their presence and tissues of origin. Using 520 test samples, our system identified cancer presence with an area under the curve value of 0.970. Moreover, the system classified the tumor organ type of 278 early-stage cancer patients with a mean area under the curve of 0.945. The final integrated decision model showed a sensitivity of 90.2% at a specificity of 94.4% while predicting the tumor organ of 72% of positive patients. Since our method utilizes a non-specific analysis of Raman signatures, its diagnostic scope could potentially be expanded to include other diseases.
Collapse
Affiliation(s)
- Hyunku Shin
- EXoPERT Corporation, Seoul, 02580, Republic of Korea
| | - Byeong Hyeon Choi
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
- Korea Artificial Organ Center, Korea University, Seoul, 02841, Republic of Korea
| | - On Shim
- EXoPERT Corporation, Seoul, 02580, Republic of Korea
| | - Jihee Kim
- EXoPERT Corporation, Seoul, 02580, Republic of Korea
| | - Yong Park
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Suk Ki Cho
- Division of Thoracic Surgery, Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyun Koo Kim
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Korea University, 02841, Seoul, Republic of Korea.
| | - Yeonho Choi
- EXoPERT Corporation, Seoul, 02580, Republic of Korea.
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea.
- Department of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea.
- Interdisciplinary Program in Precision Public Health, Korea University, 02841, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Rao Bommi J, Kummari S, Lakavath K, Sukumaran RA, Panicker LR, Marty JL, Yugender Goud K. Recent Trends in Biosensing and Diagnostic Methods for Novel Cancer Biomarkers. BIOSENSORS 2023; 13:398. [PMID: 36979610 PMCID: PMC10046866 DOI: 10.3390/bios13030398] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Cancer is one of the major public health issues in the world. It has become the second leading cause of death, with approximately 75% of cancer deaths transpiring in low- or middle-income countries. It causes a heavy global economic cost estimated at more than a trillion dollars per year. The most common cancers are breast, colon, rectum, prostate, and lung cancers. Many of these cancers can be treated effectively and cured if detected at the primary stage. Nowadays, around 50% of cancers are detected at late stages, leading to serious health complications and death. Early diagnosis of cancer diseases substantially increases the efficient treatment and high chances of survival. Biosensors are one of the potential screening methodologies useful in the early screening of cancer biomarkers. This review summarizes the recent findings about novel cancer biomarkers and their advantages over traditional biomarkers, and novel biosensing and diagnostic methods for them; thus, this review may be helpful in the early recognition and monitoring of treatment response of various human cancers.
Collapse
Affiliation(s)
| | - Shekher Kummari
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| | - Kavitha Lakavath
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| | - Reshmi A. Sukumaran
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| | - Lakshmi R. Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| | - Jean Louis Marty
- Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France
| | - Kotagiri Yugender Goud
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| |
Collapse
|
40
|
S100 as Serum Tumor Marker in Advanced Uveal Melanoma. Biomolecules 2023; 13:biom13030529. [PMID: 36979464 PMCID: PMC10046712 DOI: 10.3390/biom13030529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
S100 protein is routinely used as a serum tumor marker in advanced cutaneous melanoma. However, there is scarce and inconclusive evidence on its value in monitoring disease progression of uveal melanoma. In this monocenter study, we retrospectively assessed the connection between documented S100 protein levels of patients suffering from stage IV uveal melanoma and the clinical course of disease. Where available, we analyzed expression of S100 in melanoma metastases by immunohistochemistry. A total of 101 patients were included, 98 had available serum S100 levels, and in 83 cases, sufficient data were available to assess a potential link of S100 with the clinical course of the uveal melanoma. Only 12 of 58 (20.7%) patients had elevated serum levels at first diagnosis of stage IV disease. During progressive disease, 54% of patients showed rising serum S100 levels, while 46% of patients did not. Tumor material of 56 patients was stained for S100. Here, 26 (46.4%) showed expression, 19 (33.9%) weak expression, and 11 (19.6%) no expression of S100. Serum S100 levels rose invariably in all patients with strong expression throughout the course of disease, while patients without S100 expression in metastases never showed rising S100 levels. Thus, the value of S100 serum levels in monitoring disease progression can be predicted by immunohistochemistry of metastases. It is not a reliable marker for early detection of advanced disease.
Collapse
|
41
|
Tapia JL, Taberner-Bonastre MT, Collado-Martínez D, Pouptsis A, Núñez-Abad M, Duñabeitia JA. Effectiveness of a Computerized Home-Based Cognitive Stimulation Program for Treating Cancer-Related Cognitive Impairment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4953. [PMID: 36981862 PMCID: PMC10049401 DOI: 10.3390/ijerph20064953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Cancer patients assert that after chemotherapy their cognitive abilities have deteriorated. Cognitive stimulation is the clinical treatment of choice for reversing cognitive decline. The current study describes a computerized home-based cognitive stimulation program in patients who survived breast cancer. It aims to assess safety and effectiveness of cognitive stimulation in the oncology population. A series of 45-min training sessions was completed by the participants. A thorough assessment was performed both before and after the intervention. The mini-Mental Adjustment to Cancer Scale, the Cognitive Assessment for Chemo Fog Research, and the Functionality Assessment Instrument in Cancer Treatment-Cognitive Function served as the main assessment tools. The State-Trait Anxiety Inventory, Beck Depression Inventory, Brief Fatigue Inventory, and Measuring Quality of Life-The World Health Organization data were gathered as secondary outcomes. Home-based cognitive stimulation demonstrated beneficial effects in the oncology population, with no side effects being reported. Cognitive, physical, and emotional improvements were observed, along with decreased interference in daily life activities and a better overall quality of life.
Collapse
Affiliation(s)
- Jose L. Tapia
- Centro de Investigación Nebrija en Cognición (CINC), Universidad Nebrija, 28015 Madrid, Spain
| | | | - David Collado-Martínez
- Servicio de Oncología Médica, Hospital Universitario de la Ribera, 46600 Valencia, Spain
| | - Athanasios Pouptsis
- Servicio de Oncología Médica, Hospital Universitario de la Ribera, 46600 Valencia, Spain
| | - Martín Núñez-Abad
- Servicio de Oncología Médica, Hospital Universitario de la Ribera, 46600 Valencia, Spain
| | - Jon Andoni Duñabeitia
- Centro de Investigación Nebrija en Cognición (CINC), Universidad Nebrija, 28015 Madrid, Spain
- AcqVA Aurora Center, The Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
42
|
Saladino GM, Vogt C, Brodin B, Shaker K, Kilic NI, Andersson K, Arsenian-Henriksson M, Toprak MS, Hertz HM. XFCT-MRI hybrid multimodal contrast agents for complementary imaging. NANOSCALE 2023; 15:2214-2222. [PMID: 36625091 DOI: 10.1039/d2nr05829d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Multimodal contrast agents in biomedical imaging enable the collection of more comprehensive diagnostic information. In the present work, we design hybrid ruthenium-decorated superparamagnetic iron oxide nanoparticles (NPs) as the contrast agents for both magnetic resonance imaging (MRI) and X-ray fluorescence computed tomography (XFCT). The NPs are synthesized via a one-pot polyol hot injection route, in diethylene glycol. In vivo preclinical studies demonstrate the possibility of correlative bioimaging with these contrast agents. The complementarity allows accurate localization, provided by the high contrast of the soft tissues in MRI combined with the elemental selectivity of XFCT, leading to NP detection with high specificity and resolution. We envision that this multimodal imaging could find future applications for early tumor diagnosis, improved long-term treatment monitoring, and enhanced radiotherapy planning.
Collapse
Affiliation(s)
- Giovanni Marco Saladino
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Carmen Vogt
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Bertha Brodin
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Kian Shaker
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Nuzhet Inci Kilic
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Kenth Andersson
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Marie Arsenian-Henriksson
- Department of Microbiology Tumor and Cell Biology (MTC), Karolinska Institute, SE 17165 Stockholm, Sweden
| | - Muhammet Sadaka Toprak
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Hans Martin Hertz
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| |
Collapse
|
43
|
Wang W, Xiong Y, Hu X, Lu F, Qin T, Zhang L, Guo E, Yang B, Fu Y, Hu D, Fan J, Qin X, Liu C, Xiao R, Chen G, Li Z, Sun C. Codelivery of adavosertib and olaparib by tumor-targeting nanoparticles for augmented efficacy and reduced toxicity. Acta Biomater 2023; 157:428-441. [PMID: 36549633 DOI: 10.1016/j.actbio.2022.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Ovarian cancer (OC) ranks first among gynecologic malignancies in terms of mortality. The benefits of poly (ADP-ribose) polymerase (PARP) inhibitors appear to be limited to OC with BRCA mutations. Concurrent administration of WEE1 inhibitors (eg, adavosertib (Ada)) and PARP inhibitors (eg, olaparib (Ola)) effectively suppress ovarian tumor growth regardless of BRCA mutation status, but is poorly tolerated. Henceforth, we aimed to seek a strategy to reduce the toxic effects of this combination by taking advantage of the mesoporous polydopamine (MPDA) nanoparticles with good biocompatibility and high drug loading capacity. In this work, we designed a tumor-targeting peptide TMTP1 modified MPDA-based nano-drug delivery system (TPNPs) for targeted co-delivery of Ada and Ola to treat OC. Ada and Ola could be effectively loaded into MPDA nanoplatform and showed tumor microenvironment triggered release behavior. The nanoparticles induced more apoptosis in OC cells, and significantly enhanced the synergy of combination therapy with Ada plus Ola in murine OC models. Moreover, the precise drug delivery of TPNPs towards tumor cells significantly diminished the toxic side effects caused by concurrent administration of Ada and Ola. Co-delivery of WEE1 inhibitors and PARP inhibitors via TPNPs represents a promising approach for the treatment of OC. STATEMENT OF SIGNIFICANCE: Combination therapy of WEE1 inhibitors (eg, Ada) with PARP inhibitors (eg, Ola) effectively suppress ovarian tumor growth regardless of BRCA mutation status. However, poor tolerability limits its clinical application. To address this issue, we construct a tumor-targeting nano-drug delivery system (TPNP) for co-delivery of Ada and Ola. The nanoparticles specifically target ovarian cancer and effectively enhance the antitumor effect while minimizing undesired toxic side effects. As the first nanomedicine co-loaded with a WEE1 inhibitor and a PARP inhibitor, TPNP-Ada-Ola may provide a promising and generally applicable therapeutic strategy for ovarian cancer patients.
Collapse
Affiliation(s)
- Wei Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xingyuan Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Funian Lu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ensong Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dianxing Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - JunPeng Fan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - RouRou Xiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
44
|
Gharehzadehshirazi A, Zarejousheghani M, Falahi S, Joseph Y, Rahimi P. Biomarkers and Corresponding Biosensors for Childhood Cancer Diagnostics. SENSORS (BASEL, SWITZERLAND) 2023; 23:1482. [PMID: 36772521 PMCID: PMC9919359 DOI: 10.3390/s23031482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 05/11/2023]
Abstract
Although tremendous progress has been made in treating childhood cancer, it is still one of the leading causes of death in children worldwide. Because cancer symptoms overlap with those of other diseases, it is difficult to predict a tumor early enough, which causes cancers in children to be more aggressive and progress more rapidly than in adults. Therefore, early and accurate detection methods are urgently needed to effectively treat children with cancer therapy. Identification and detection of cancer biomarkers serve as non-invasive tools for early cancer screening, prevention, and treatment. Biosensors have emerged as a potential technology for rapid, sensitive, and cost-effective biomarker detection and monitoring. In this review, we provide an overview of important biomarkers for several common childhood cancers. Accordingly, we have enumerated the developed biosensors for early detection of pediatric cancer or related biomarkers. This review offers a restructured platform for ongoing research in pediatric cancer diagnostics that can contribute to the development of rapid biosensing techniques for early-stage diagnosis, monitoring, and treatment of children with cancer and reduce the mortality rate.
Collapse
Affiliation(s)
- Azadeh Gharehzadehshirazi
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Mashaalah Zarejousheghani
- Freiberg Center for Water Research—ZeWaF, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Sedigheh Falahi
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Yvonne Joseph
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
- Freiberg Center for Water Research—ZeWaF, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Parvaneh Rahimi
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
- Freiberg Center for Water Research—ZeWaF, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| |
Collapse
|
45
|
Zangouei AS, Zangoue M, Taghehchian N, Zangooie A, Rahimi HR, Saburi E, Alavi MS, Moghbeli M. Cell cycle related long non-coding RNAs as the critical regulators of breast cancer progression and metastasis. Biol Res 2023; 56:1. [PMID: 36597150 PMCID: PMC9808980 DOI: 10.1186/s40659-022-00411-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Cell cycle is one of the main cellular mechanisms involved in tumor progression. Almost all of the active molecular pathways in tumor cells directly or indirectly target the cell cycle progression. Therefore, it is necessary to assess the molecular mechanisms involved in cell cycle regulation in tumor cells. Since, early diagnosis has pivotal role in better cancer management and treatment, it is required to introduce the non-invasive diagnostic markers. Long non-coding RNAs (LncRNAs) have higher stability in body fluids in comparison with mRNAs. Therefore, they can be used as efficient non-invasive markers for the early detection of breast cancer (BCa). In the present review we have summarized all of the reported lncRNAs involved in cell cycle regulation in BCa. It has been reported that lncRNAs mainly affect the cell cycle in G1/S transition through the CCND1/CDK4-6 complex. Present review paves the way of introducing the cell cycle related lncRNAs as efficient markers for the early detection of BCa.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Zangoue
- grid.411701.20000 0004 0417 4622Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran ,grid.411701.20000 0004 0417 4622Department of Anesthesiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Taghehchian
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Zangooie
- grid.411701.20000 0004 0417 4622Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran ,grid.411701.20000 0004 0417 4622Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamid Reza Rahimi
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahya Sadat Alavi
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Wei L, Li H, Xiao M, Zhou C, Liu J, Weng S, Wei R. CCNF is a potential pancancer biomarker and immunotherapy target. Front Oncol 2023; 13:1109378. [PMID: 37168372 PMCID: PMC10164972 DOI: 10.3389/fonc.2023.1109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Background CCNF catalyzes the transfer of ubiquitin molecules from E2 ubiquitin-conjugating enzymes to target proteins, thereby regulating the G1/S or G2/M transition of tumor cells. Thus far, CCNF expression and its potential as a pancancer biomarker and immunotherapy target have not been reported. Methods TCGA datasets and the R language were used to analyze the pancancer gene expression, protein expression, and methylation levels of CCNF; the relationship of CCNF expression with overall survival (OS), recurrence-free survival (RFS), immune matrix scores, sex and race; and the mechanisms for posttranscriptional regulation of CCNF. Results CCNF expression analysis showed that CCNF mRNA expression was higher in cancer tissues than in normal tissues in the BRCA, CHOL, COAD, ESCA, HNSC, LUAD, LUSC, READ, STAD, and UCEC; CCNF protein expression was also high in many cancer tissues, indicating that it could be an important predictive factor for OS and RFS. CCNF overexpression may be caused by CCNF hypomethylation. CCNF expression was also found to be significantly different between patients grouped based on sex and race. Overexpression of CCNF reduces immune and stromal cell infiltration in many cancers. Posttranscriptional regulation analysis showed that miR-98-5p negatively regulates the expression of the CCNF gene. Conclusion CCNF is overexpressed across cancers and is an adverse prognostic factor in terms of OS and RFS in many cancers; this phenomenon may be related to hypomethylation of the CCNF gene, which could lead to cancer progression and worsen prognosis. In addition, CCNF expression patterns were significantly different among patients grouped by sex and race. Its overexpression reduces immune and stromal cell infiltration. miR-98-5p negatively regulates CCNF gene expression. Hence, CCNF is a potential pancancer biomarker and immunotherapy target.
Collapse
Affiliation(s)
- Lifang Wei
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Huiming Li
- Department of Preventive Medicine, Medical School of Yichun University, Yichun, China
| | - Mengjun Xiao
- Oncology Department, Shenzhen Overseas Chinese Hospital Affiliated to Jinan University, Shenzhen, China
| | - Cuiling Zhou
- Oncology Department, Shenzhen Overseas Chinese Hospital Affiliated to Jinan University, Shenzhen, China
| | - Jiliang Liu
- Oncology Department, Shenzhen Overseas Chinese Hospital Affiliated to Jinan University, Shenzhen, China
| | - Shilian Weng
- Oncology Department, Shenzhen Overseas Chinese Hospital Affiliated to Jinan University, Shenzhen, China
- *Correspondence: Ruda Wei, ; Shilian Weng,
| | - Ruda Wei
- Oncology Department, Shenzhen Overseas Chinese Hospital Affiliated to Jinan University, Shenzhen, China
- *Correspondence: Ruda Wei, ; Shilian Weng,
| |
Collapse
|
47
|
Computer-aided detection and prognosis of colorectal cancer on whole slide images using dual resolution deep learning. J Cancer Res Clin Oncol 2023; 149:91-101. [PMID: 36331654 DOI: 10.1007/s00432-022-04435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Rapid diagnosis and risk stratification can provide timely treatment for colorectal cancer (CRC) patients. Deep learning (DL) is not only used to identify tumor regions in histopathological images, but also applied to predict survival and achieve risk stratification. Whereas, most of methods dependent on regions of interest annotated by pathologist and ignore the global information in the image. METHODS A dual resolution DL network based on weakly supervised learning (WDRNet) was proposed for CRC identification and prognosis. The proposed method was trained and validated on the dataset from The Cancer Genome Atlas (TCGA) and tested on the external dataset from Affiliated Cancer Hospital and Institute of Guangzhou Medical University (ACHIGMU). RESULTS In identification task, WDRNet accurately identified tumor images with an accuracy of 0.977 in slide level and 0.953 in patch level. Besides, in prognosis task, WDRNet showed an excellent prediction performance in both datasets with the concordance index (C-index) of 0.716 ± 0.037 and 0.598 ± 0.024 respectively. Moreover, the results of risk stratification were statistically significant in univariate analysis (p < 0.001, HR = 7.892 in TCGA-CRC, and p = 0.009, HR = 1.718 in ACHIGMU) and multivariate analysis (p < 0.001, HR = 5.914 in TCGA-CRC, and p = 0.025, HR = 1.674 in ACHIGMU). CONCLUSIONS We developed a weakly supervised resolution DL network to achieve precise identification and prognosis of CRC patients, which will assist doctors in diagnosis on histopathological images and stratify patients to select appropriate therapeutic schedule.
Collapse
|
48
|
Yuan K, Jurado-Sánchez B, Escarpa A. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: a review. J Nanobiotechnology 2022; 20:537. [PMID: 36544151 PMCID: PMC9771791 DOI: 10.1186/s12951-022-01711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) is a very promising tool for the direct detection of biomarkers for the diagnosis of i.e., cancer and pathogens. Yet, current SERS strategies are hampered by non-specific interactions with co-existing substances in the biological matrices and the difficulties of obtaining molecular fingerprint information from the complex vibrational spectrum. Raman signal enhancement is necessary, along with convenient surface modification and machine-based learning to address the former issues. This review aims to describe recent advances and prospects in SERS-based approaches for cancer and pathogens diagnosis. First, direct SERS strategies for key biomarker sensing, including the use of substrates such as plasmonic, semiconductor structures, and 3D order nanostructures for signal enhancement will be discussed. Secondly, we will illustrate recent advances for indirect diagnosis using active nanomaterials, Raman reporters, and specific capture elements as SERS tags. Thirdly, critical challenges for translating the potential of the SERS sensing techniques into clinical applications via machine learning and portable instrumentation will be described. The unique nature and integrated sensing capabilities of SERS provide great promise for early cancer diagnosis or fast pathogens detection, reducing sanitary costs but most importantly allowing disease prevention and decreasing mortality rates.
Collapse
Affiliation(s)
- Kaisong Yuan
- Bio-Analytical Laboratory, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, China
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28802, Madrid, Spain
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares, 28802, Madrid, Spain
| |
Collapse
|
49
|
Nuhu JM, Barnes R, van der Merwe A. Exercise interventions used along the continuum of cancer care: A scoping review protocol. SOUTH AFRICAN JOURNAL OF PHYSIOTHERAPY 2022; 78:1819. [PMID: 36483132 PMCID: PMC9724114 DOI: 10.4102/sajp.v78i1.1819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/05/2022] [Indexed: 09/10/2024] Open
Abstract
Background Cancer is one of the leading causes of death worldwide. Exercise is crucial for ameliorating the burden associated with cancer and its management. A broad review of exercise interventions for cancer patients is not available. Objective Our study aims to review the documented exercise interventions prescribed for adult cancer patients aimed at ameliorating cancer-related and cancer treatment-induced symptoms in patients along the continuum of care. Methods A three-step search strategy will be used, the research question was developed; the first step in the research process was identified and the search strategy was developed using the Participants-Concept-Context framework. English language publications from 15 electronic databases from 2011 to 2021 will be searched. The Joanna Briggs Institute methodology for scoping reviews will be to guide the review and the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for scoping reviews will be used for the report. The search strategy incorporated terms relevant to the research question. The reference lists of articles included in the review will be screened for additional papers. Searched articles will be screened to determine their eligibility for inclusion and a pretested data extraction form will be used to chart the extracted evidence. Results This article presents a protocol for a scoping review on exercise interventions to affect symptoms in cancer patients from diagnosis to end-of-life care. Conclusion A broad review of exercise interventions for cancer management in adult patients will elucidate the characteristics and context of exercises used along the cancer care continuum. Clinical implications Exercise interventions used as part of cancer management will be mapped out to provide an overview of such exercise interventions. This could enhance knowledge among exercise oncology experts regarding exercise interventions for different cancer patient populations.
Collapse
Affiliation(s)
- Jibril M Nuhu
- Department of Physiotherapy, School of Health and Rehabilitation Sciences, University of the Free State, Bloemfontein, South Africa
| | - Roline Barnes
- Department of Physiotherapy, School of Health and Rehabilitation Sciences, University of the Free State, Bloemfontein, South Africa
| | - Anke van der Merwe
- Department of Physiotherapy, School of Health and Rehabilitation Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
50
|
Li S, He M, Lei Y, Liu Y, Li X, Xiang X, Wu Q, Wang Q. Oral Microbiota and Tumor-A New Perspective of Tumor Pathogenesis. Microorganisms 2022; 10:2206. [PMID: 36363799 PMCID: PMC9692822 DOI: 10.3390/microorganisms10112206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 09/11/2023] Open
Abstract
Microorganisms have long been known to play key roles in the initiation and development of tumors. The oral microbiota and tumorigenesis have been linked in epidemiological research relating to molecular pathology. Notably, some bacteria can impact distal tumors by their gastrointestinal or blood-borne transmission under pathological circumstances. Certain bacteria drive tumorigenesis and progression through direct or indirect immune system actions. This review systemically discusses the recent advances in the field of oral microecology and tumor, including the oncogenic role of oral microbial abnormalities and various potential carcinogenesis mechanisms (excessive inflammatory response, host immunosuppression, anti-apoptotic activity, and carcinogen secretion) to introduce future directions for effective tumor prevention.
Collapse
Affiliation(s)
- Simin Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Mingxin He
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yang Liu
- Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xinquan Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|