1
|
Osorio-Llanes E, Castellar-López J, Rosales-Rada W, Montoya Y, Bustamante J, Zalaquett R, Bravo-Sagua R, Riquelme JA, Sánchez G, Chiong M, Lavandero S, Mendoza-Torres E. Novel Strategies to Improve the Cardioprotective Effects of Cardioplegia. Curr Cardiol Rev 2024; 20:CCR-EPUB-137763. [PMID: 38275069 PMCID: PMC11071679 DOI: 10.2174/011573403x263956231129064455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/17/2023] [Accepted: 10/20/2023] [Indexed: 01/27/2024] Open
Abstract
The use of cardioprotective strategies as adjuvants of cardioplegic solutions has become an ideal alternative for the improvement of post-surgery heart recovery. The choice of the optimal cardioplegia, as well as its distribution mechanism, remains controversial in the field of cardiovascular surgery. There is still a need to search for new and better cardioprotective methods during cardioplegic procedures. New techniques for the management of cardiovascular complications during cardioplegia have evolved with new alternatives and additives, and each new strategy provides a tool to neutralize the damage after ischemia/reperfusion events. Researchers and clinicians have committed themselves to studying the effect of new strategies and adjuvant components with the potential to improve the cardioprotective effect of cardioplegic solutions in preventing myocardial ischemia/reperfusion-induced injury during cardiac surgery. The aim of this review is to explore the different types of cardioplegia, their protection mechanisms, and which strategies have been proposed to enhance the function of these solutions in hearts exposed to cardiovascular pathologies that require surgical alternatives for their corrective progression.
Collapse
Affiliation(s)
- Estefanie Osorio-Llanes
- Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Colombia
| | - Jairo Castellar-López
- Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Colombia
| | - Wendy Rosales-Rada
- Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Colombia
| | - Yulieth Montoya
- Grupo de Dinámica Cardiovascular (GDC), Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana
| | - John Bustamante
- Grupo de Dinámica Cardiovascular (GDC), Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana
| | - Ricardo Zalaquett
- Department of Surgery, Clínica Las Condes, Santiago, Chile. Advanced Center for Chronic Diseases (ACCDiS)
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jaime A Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gina Sánchez
- Physiopathology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, USA
| | - Evelyn Mendoza-Torres
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Faculty of Health Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla, Colombia
| |
Collapse
|
2
|
Bottermann K, Spychala A, Eliacik A, Amin E, Moussavi-Torshizi SE, Klöcker N, Gödecke A, Heinen A. Extracellular flux analysis in intact cardiac tissue slices-A novel tool to investigate cardiac substrate metabolism in mouse myocardium. Acta Physiol (Oxf) 2023; 239:e14004. [PMID: 37227741 DOI: 10.1111/apha.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
AIM Cardiac pathologies are accompanied by alterations in substrate metabolism, and extracellular flux analysis is a standard tool to investigate metabolic disturbances, especially in immortalized cell lines. However, preparations of primary cells, such as adult cardiomyocytes require enzymatic dissociation and cultivation affecting metabolism. Therefore, we developed a flux analyzer-based method for the assessment of substrate metabolism in intact vibratome-sliced mouse heart tissue. METHODS Oxygen consumption rates were determined using a Seahorse XFe24-analyzer and "islet capture plates." We demonstrate that tissue slices are suitable for extracellular flux analysis and metabolize both free fatty acids (FFA) and glucose/glutamine. Functional integrity of tissue slices was proven by optical mapping-based assessment of action potentials. In a proof-of-principle approach, the sensitivity of the method was tested by analyzing substrate metabolism in the remote myocardium after myocardial infarction (I/R). RESULTS Here, I/R increased uncoupled OCR compared with sham animals indicating a stimulated metabolic capacity. This increase was caused by a higher glucose/glutamine metabolism, whereas FFA oxidation was unchanged. CONCLUSION In conclusion, we describe a novel method to analyze cardiac substrate metabolism in intact cardiac tissue slices by extracellular flux analysis. The proof-of-principle experiment demonstrated that this approach has a sensitivity allowing the investigation of pathophysiologically relevant disturbances in cardiac substrate metabolism.
Collapse
Affiliation(s)
- Katharina Bottermann
- Institute for Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Andre Spychala
- Institute for Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Asena Eliacik
- Institute for Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Ehsan Amin
- Institute of Neural und Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - S Erfan Moussavi-Torshizi
- Institute of Neural und Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nikolaj Klöcker
- Institute of Neural und Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Axel Gödecke
- Institute for Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Andre Heinen
- Institute for Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Fasting increases susceptibility to acute myocardial ischaemia/reperfusion injury through a sirtuin-3 mediated increase in fatty acid oxidation. Sci Rep 2022; 12:20551. [PMID: 36446868 PMCID: PMC9708654 DOI: 10.1038/s41598-022-23847-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Fasting increases susceptibility to acute myocardial ischaemia/reperfusion injury (IRI) but the mechanisms are unknown. Here, we investigate the role of the mitochondrial NAD+-dependent deacetylase, Sirtuin-3 (SIRT3), which has been shown to influence fatty acid oxidation and cardiac outcomes, as a potential mediator of this effect. Fasting was shown to shift metabolism from glucose towards fatty acid oxidation. This change in metabolic fuel substrate utilisation increased myocardial infarct size in wild-type (WT), but not SIRT3 heterozygous knock-out (KO) mice. Further analysis revealed SIRT3 KO mice were better adapted to starvation through an improved cardiac efficiency, thus protecting them from acute myocardial IRI. Mitochondria from SIRT3 KO mice were hyperacetylated compared to WT mice which may regulate key metabolic processes controlling glucose and fatty acid utilisation in the heart. Fasting and the associated metabolic switch to fatty acid respiration worsens outcomes in WT hearts, whilst hearts from SIRT3 KO mice are better adapted to oxidising fatty acids, thereby protecting them from acute myocardial IRI.
Collapse
|
4
|
Zhou B, Shi X, Tang X, Zhao Q, Wang L, Yao F, Hou Y, Wang X, Feng W, Wang L, Sun X, Wang L, Hu S. Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes. Signal Transduct Target Ther 2022; 7:254. [PMID: 35882831 PMCID: PMC9325714 DOI: 10.1038/s41392-022-01044-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/11/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular diseases are the most common cause of death globally. Accurately modeling cardiac homeostasis, dysfunction, and drug response lies at the heart of cardiac research. Adult human primary cardiomyocytes (hPCMs) are a promising cellular model, but unstable isolation efficiency and quality, rapid cell death in culture, and unknown response to cryopreservation prevent them from becoming a reliable and flexible in vitro cardiac model. Combing the use of a reversible inhibitor of myosin II ATPase, (-)-blebbistatin (Bleb), and multiple optimization steps of the isolation procedure, we achieved a 2.74-fold increase in cell viability over traditional methods, accompanied by better cellular morphology, minimally perturbed gene expression, intact electrophysiology, and normal neurohormonal signaling. Further optimization of culture conditions established a method that was capable of maintaining optimal cell viability, morphology, and mitochondrial respiration for at least 7 days. Most importantly, we successfully cryopreserved hPCMs, which were structurally, molecularly, and functionally intact after undergoing the freeze-thaw cycle. hPCMs demonstrated greater sensitivity towards a set of cardiotoxic drugs, compared to human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Further dissection of cardiomyocyte drug response at both the population and single-cell transcriptomic level revealed that hPCM responses were more pronouncedly enriched in cardiac function, whereas hiPSC-CMs responses reflected cardiac development. Together, we established a full set of methodologies for the efficient isolation and prolonged maintenance of functional primary adult human cardiomyocytes in vitro, unlocking their potential as a cellular model for cardiovascular research, drug discovery, and safety pharmacology.
Collapse
Affiliation(s)
- Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Xun Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quanyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Le Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Yao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongfeng Hou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,18 Jinma Industrial Park, Fangshan District, Beijing, China
| | - Xianqiang Wang
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Feng
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liqing Wang
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaogang Sun
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China. .,Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Torp MK, Ranheim T, Schjalm C, Hjorth M, Heiestad C, Dalen KT, Nilsson PH, Mollnes TE, Pischke SE, Lien E, Vaage J, Yndestad A, Stensløkken KO. Intracellular Complement Component 3 Attenuated Ischemia-Reperfusion Injury in the Isolated Buffer-Perfused Mouse Heart and Is Associated With Improved Metabolic Homeostasis. Front Immunol 2022; 13:870811. [PMID: 35432387 PMCID: PMC9011808 DOI: 10.3389/fimmu.2022.870811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022] Open
Abstract
The innate immune system is rapidly activated during myocardial infarction and blockade of extracellular complement system reduces infarct size. Intracellular complement, however, appears to be closely linked to metabolic pathways and its role in ischemia-reperfusion injury is unknown and may be different from complement activation in the circulation. The purpose of the present study was to investigate the role of intracellular complement in isolated, retrogradely buffer-perfused hearts and cardiac cells from adult male wild type mice (WT) and from adult male mice with knockout of complement component 3 (C3KO). Main findings: (i) Intracellular C3 protein was expressed in isolated cardiomyocytes and in whole hearts, (ii) after ischemia-reperfusion injury, C3KO hearts had larger infarct size (32 ± 9% in C3KO vs. 22 ± 7% in WT; p=0.008) and impaired post-ischemic relaxation compared to WT hearts, (iii) C3KO cardiomyocytes had lower basal oxidative respiration compared to WT cardiomyocytes, (iv) blocking mTOR decreased Akt phosphorylation in WT, but not in C3KO cardiomyocytes, (v) after ischemia, WT hearts had higher levels of ATP, but lower levels of both reduced and oxidized nicotinamide adenine dinucleotide (NADH and NAD+, respectively) compared to C3KO hearts. Conclusion: intracellular C3 protected the heart against ischemia-reperfusion injury, possibly due to its role in metabolic pathways important for energy production and cell survival.
Collapse
Affiliation(s)
- M-K. Torp
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- *Correspondence: M-K. Torp,
| | - T. Ranheim
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Division of Surgery, Inflammatory Diseases and Transplantation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - C. Schjalm
- Department of Immunology, Institute of Clinical Medicine University of Oslo, Oslo, Norway
| | - M. Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - C.M. Heiestad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - K. T. Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - P. H. Nilsson
- Department of Immunology, Institute of Clinical Medicine University of Oslo, Oslo, Norway
- Linnaeus Centre for Biomaterials Chemistry, and the Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - T. E. Mollnes
- Department of Immunology, Institute of Clinical Medicine University of Oslo, Oslo, Norway
- Stiftelsen Kristian Gerhard Jebsen (K.G. Jebsen) Inflammation Research Center (IRC), University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, and Faculty of Health Sciences, Stiftelsen Kristian Gerhard Jebsen (K.G. Jebsen) Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - S. E. Pischke
- Department of Immunology, Institute of Clinical Medicine University of Oslo, Oslo, Norway
- Department of Research & Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - E. Lien
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Medical School, Worchester, MA, United States
| | - J. Vaage
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Research & Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - A. Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - K-O. Stensløkken
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Tsukimoto R, Isono K, Kajino T, Iuchi S, Shinozawa A, Yotsui I, Sakata Y, Taji T. Mitochondrial Fission Complex Is Required for Long-Term Heat Tolerance of Arabidopsis. PLANT & CELL PHYSIOLOGY 2022; 63:296-304. [PMID: 34865144 DOI: 10.1093/pcp/pcab171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Plants are often exposed not only to short-term (S) heat stress but also to long-term (L) heat stress over several consecutive days. A few Arabidopsis mutants defective in L-heat tolerance have been identified, but the molecular mechanisms involved are less well understood than those involved in S-heat tolerance. To elucidate the mechanisms, we isolated the new sensitive to long-term heat5 (sloh5) mutant from EMS-mutagenized seeds of L-heat-tolerant Col-0. The sloh5 mutant was hypersensitive to L-heat but not to S-heat, osmo-shock, salt-shock or oxidative stress. The causal gene, SLOH5, is identical to elongatedmitochondria1 (ELM1), which plays an important role in mitochondrial fission in conjunction with dynamin-related proteins DRP3A and DRP3B. Transcript levels of ELM1, DRP3A and DRP3B were time-dependently increased by L-heat stress, and drp3a drp3b double mutants were hypersensitive to L-heat stress. The sloh5 mutant contained massively elongated mitochondria. L-heat stress caused mitochondrial dysfunction and cell death in sloh5. Furthermore, WT plants treated with a mitochondrial myosin ATPase inhibitor were hypersensitive to L-heat stress. These findings suggest that mitochondrial fission and function are important in L-heat tolerance of Arabidopsis.
Collapse
Affiliation(s)
- Ryo Tsukimoto
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 Japan
| | - Kazuho Isono
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 Japan
| | - Takuma Kajino
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 Japan
| | - Satoshi Iuchi
- Experimental Plant Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074 Japan
| | - Akihisa Shinozawa
- Nodai Genome Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 Japan
| | - Izumi Yotsui
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 Japan
| |
Collapse
|
7
|
Understanding the key functions of Myosins in viral infection. Biochem Soc Trans 2022; 50:597-607. [PMID: 35212367 DOI: 10.1042/bst20211239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
Myosins, a class of actin-based motor proteins existing in almost any organism, are originally considered only involved in driving muscle contraction, reshaping actin cytoskeleton, and anchoring or transporting cargoes, including protein complexes, organelles, vesicles. However, accumulating evidence reveals that myosins also play vital roles in viral infection, depending on viral species and infection stages. This review systemically summarizes the described various myosins, the performed functions, and the involved mechanisms or molecular pathways during viral infection. Meanwhile, the existing issues are also discussed. Additionally, the important technologies or agents, including siRNA, gene editing, and myosin inhibitors, would facilitate dissecting the actions and mechanisms for described and undescribed myosins, which could be adopted to prevent or control viral infection are also characterized.
Collapse
|
8
|
Greiner J, Schiatti T, Kaltenbacher W, Dente M, Semenjakin A, Kok T, Fiegle DJ, Seidel T, Ravens U, Kohl P, Peyronnet R, Rog-Zielinska EA. Consecutive-Day Ventricular and Atrial Cardiomyocyte Isolations from the Same Heart: Shifting the Cost-Benefit Balance of Cardiac Primary Cell Research. Cells 2022; 11:233. [PMID: 35053351 PMCID: PMC8773758 DOI: 10.3390/cells11020233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Freshly isolated primary cardiomyocytes (CM) are indispensable for cardiac research. Experimental CM research is generally incompatible with life of the donor animal, while human heart samples are usually small and scarce. CM isolation from animal hearts, traditionally performed by coronary artery perfusion of enzymes, liberates millions of cells from the heart. However, due to progressive cell remodeling following isolation, freshly isolated primary CM need to be used within 4-8 h post-isolation for most functional assays, meaning that the majority of cells is essentially wasted. In addition, coronary perfusion-based isolation cannot easily be applied to human tissue biopsies, and it does not straightforwardly allow for assessment of regional differences in CM function within the same heart. Here, we provide a method of multi-day CM isolation from one animal heart, yielding calcium-tolerant ventricular and atrial CM. This is based on cell isolation from cardiac tissue slices following repeated (usually overnight) storage of the tissue under conditions that prolong CM viability beyond the day of organ excision by two additional days. The maintenance of cells in their near-native microenvironment slows the otherwise rapid structural and functional decline seen in isolated CM during attempts for prolonged storage or culture. Multi-day slice-based CM isolation increases the amount of useful information gained per animal heart, improving reproducibility and reducing the number of experimental animals required in basic cardiac research. It also opens the doors to novel experimental designs, including exploring same-heart regional differences.
Collapse
Affiliation(s)
- Joachim Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, Albert-Ludwig University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Teresa Schiatti
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, Albert-Ludwig University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Wenzel Kaltenbacher
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, Albert-Ludwig University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Marica Dente
- Department of Experimental and Clinical Medicine, Division of Physiology, University of Florence, 50134 Florence, Italy
| | - Alina Semenjakin
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, Albert-Ludwig University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Thomas Kok
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, Albert-Ludwig University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Dominik J Fiegle
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Seidel
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, Albert-Ludwig University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, Albert-Ludwig University of Freiburg, 79110 Freiburg im Breisgau, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, Albert-Ludwig University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, Albert-Ludwig University of Freiburg, 79110 Freiburg im Breisgau, Germany
| |
Collapse
|
9
|
Kalkhoran SB, Kriston-Vizi J, Hernandez-Resendiz S, Crespo-Avilan GE, Rosdah AA, Lees JG, Costa JRSD, Ling NXY, Holien JK, Samangouei P, Chinda K, Yap EP, Riquelme JA, Ketteler R, Yellon DM, Lim SY, Hausenloy DJ. Hydralazine protects the heart against acute ischaemia/reperfusion injury by inhibiting Drp1-mediated mitochondrial fission. Cardiovasc Res 2022; 118:282-294. [PMID: 33386841 PMCID: PMC8752357 DOI: 10.1093/cvr/cvaa343] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023] Open
Abstract
AIMS Genetic and pharmacological inhibition of mitochondrial fission induced by acute myocardial ischaemia/reperfusion injury (IRI) has been shown to reduce myocardial infarct size. The clinically used anti-hypertensive and heart failure medication, hydralazine, is known to have anti-oxidant and anti-apoptotic effects. Here, we investigated whether hydralazine confers acute cardioprotection by inhibiting Drp1-mediated mitochondrial fission. METHODS AND RESULTS Pre-treatment with hydralazine was shown to inhibit both mitochondrial fission and mitochondrial membrane depolarisation induced by oxidative stress in HeLa cells. In mouse embryonic fibroblasts (MEFs), pre-treatment with hydralazine attenuated mitochondrial fission and cell death induced by oxidative stress, but this effect was absent in MEFs deficient in the mitochondrial fission protein, Drp1. Molecular docking and surface plasmon resonance studies demonstrated binding of hydralazine to the GTPase domain of the mitochondrial fission protein, Drp1 (KD 8.6±1.0 µM), and inhibition of Drp1 GTPase activity in a dose-dependent manner. In isolated adult murine cardiomyocytes subjected to simulated IRI, hydralazine inhibited mitochondrial fission, preserved mitochondrial fusion events, and reduced cardiomyocyte death (hydralazine 24.7±2.5% vs. control 34.1±1.5%, P=0.0012). In ex vivo perfused murine hearts subjected to acute IRI, pre-treatment with hydralazine reduced myocardial infarct size (as % left ventricle: hydralazine 29.6±6.5% vs. vehicle control 54.1±4.9%, P=0.0083), and in the murine heart subjected to in vivo IRI, the administration of hydralazine at reperfusion, decreased myocardial infarct size (as % area-at-risk: hydralazine 28.9±3.0% vs. vehicle control 58.2±3.8%, P<0.001). CONCLUSION We show that, in addition to its antioxidant and anti-apoptotic effects, hydralazine, confers acute cardioprotection by inhibiting IRI-induced mitochondrial fission, raising the possibility of repurposing hydralazine as a novel cardioprotective therapy for improving post-infarction outcomes.
Collapse
Affiliation(s)
- Siavash Beikoghli Kalkhoran
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College, Gower St, Kings Cross, WC1E 6BT London, UK
| | - Sauri Hernandez-Resendiz
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
| | - Gustavo E Crespo-Avilan
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
- Department of Biochemistry, Medical Faculty, Justus Liebig-University, Ludwigstraße 23, 35390 Giessen, Germany
| | - Ayeshah A Rosdah
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, 9 Princes Street Fitzroy Victoria, 3065, Australia
- Faculty of Medicine, Universitas Sriwijaya, Palembang, Bukit Lama, Kec. Ilir Bar. I, Kota Palembang, 30139 Sumatera Selatan, Indonesia
- Department of Surgery and Medicine, University of Melbourne, Medical Building, Cnr Grattan Street & Royal Parade, 3010 Victoria, Australia
| | - Jarmon G Lees
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, 9 Princes Street Fitzroy Victoria, 3065, Australia
- Department of Surgery and Medicine, University of Melbourne, Medical Building, Cnr Grattan Street & Royal Parade, 3010 Victoria, Australia
| | | | - Naomi X Y Ling
- Metabolic Signalling Laboratory, St Vincent’s Institute of Medical Research, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica K Holien
- Department of Surgery and Medicine, University of Melbourne, Medical Building, Cnr Grattan Street & Royal Parade, 3010 Victoria, Australia
- St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy Victoria, 3065, Australia
- ACRF Rational Drug Discovery Centre, St Vincent’s Institute of Medical Research, 9 Princes Street Fitzroy Victoria, 3065, Australia
| | - Parisa Samangouei
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
| | - Kroekkiat Chinda
- Department of Physiology, Faculty of Medical Science, Naresuan University, Tha Pho, Mueang Phitsanulok, 65000, Thailand
| | - En Ping Yap
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
| | - Jaime A Riquelme
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College, Gower St, Kings Cross, WC1E 6BT London, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
| | - Shiang Y Lim
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, 9 Princes Street Fitzroy Victoria, 3065, Australia
- Department of Surgery and Medicine, University of Melbourne, Medical Building, Cnr Grattan Street & Royal Parade, 3010 Victoria, Australia
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, 119228, Singapore
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Lioufeng Rd., Wufeng, 41354 Taichung, Taiwan
| |
Collapse
|
10
|
Blebbistatin protects iPSC-CMs from hypercontraction and facilitates automated patch-clamp based electrophysiological study. Stem Cell Res 2021; 56:102565. [PMID: 34638057 DOI: 10.1016/j.scr.2021.102565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/11/2023] Open
Abstract
Recently, there have been great advances in cardiovascular channelopathy modeling and drug safety pharmacology using human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The automated patch-clamp (APC) technique overcomes the disadvantages of the manual patch-clamp (MPC) technique, which is labor intensive and gives low output. However, the application of the APC platform is still limited in iPSC-CM based research, due to the difficulty in maintaining the high quality of single iPSC-CMs during dissociation and recording. In this study, we improved the method for single iPSC-CM preparation by applying 2.5 µM blebbistatin (BB, an excitation-contraction coupling uncoupler) throughout APC procedures (dissociation, filtration, storage, and recording). Under non-BB buffered condition, iPSC-CMs in suspension showed a severe bleb-like morphology. However, BB-supplement led to significant improvements in morphology and INa recording, and we even obtained several CMs that showed spontaneous action potentials with typical morphology. Furthermore, APC faithfully recapitulated the single-cell electrophysiological phenotypes of iPSC-CMs derived from Brugada syndrome patients, as detected with MPC. Our study indicates that APC is capable of replacing MPC in the modeling of cardiac channelopathies using human iPSC-CMs by providing high-quality data with higher throughput.
Collapse
|
11
|
Prag HA, Gruszczyk AV, Huang MM, Beach TE, Young T, Tronci L, Nikitopoulou E, Mulvey JF, Ascione R, Hadjihambi A, Shattock MJ, Pellerin L, Saeb-Parsy K, Frezza C, James AM, Krieg T, Murphy MP, Aksentijević D. Mechanism of succinate efflux upon reperfusion of the ischaemic heart. Cardiovasc Res 2021; 117:1188-1201. [PMID: 32766828 PMCID: PMC7983001 DOI: 10.1093/cvr/cvaa148] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/13/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
AIMS Succinate accumulates several-fold in the ischaemic heart and is then rapidly oxidized upon reperfusion, contributing to reactive oxygen species production by mitochondria. In addition, a significant amount of the accumulated succinate is released from the heart into the circulation at reperfusion, potentially activating the G-protein-coupled succinate receptor (SUCNR1). However, the factors that determine the proportion of succinate oxidation or release, and the mechanism of this release, are not known. METHODS AND RESULTS To address these questions, we assessed the fate of accumulated succinate upon reperfusion of anoxic cardiomyocytes, and of the ischaemic heart both ex vivo and in vivo. The release of accumulated succinate was selective and was enhanced by acidification of the intracellular milieu. Furthermore, pharmacological inhibition, or haploinsufficiency of the monocarboxylate transporter 1 (MCT1) significantly decreased succinate efflux from the reperfused heart. CONCLUSION Succinate release upon reperfusion of the ischaemic heart is mediated by MCT1 and is facilitated by the acidification of the myocardium during ischaemia. These findings will allow the signalling interaction between succinate released from reperfused ischaemic myocardium and SUCNR1 to be explored.
Collapse
Affiliation(s)
- Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Anja V Gruszczyk
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
- Department of Surgery, University of Cambridge, Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Margaret M Huang
- Department of Surgery, University of Cambridge, Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Timothy E Beach
- Department of Surgery, University of Cambridge, Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Timothy Young
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, PO Box 197, Cambridge CB2 0XZ, UK
| | - Laura Tronci
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, PO Box 197, Cambridge CB2 0XZ, UK
| | - Efterpi Nikitopoulou
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, PO Box 197, Cambridge CB2 0XZ, UK
| | - John F Mulvey
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Raimondo Ascione
- Bristol Medical School and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Anna Hadjihambi
- Département de Physiologie, Université de Lausanne, 7 Rue du Bugnon, 1005 Lausanne, Switzerland
| | - Michael J Shattock
- King’s College London, British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, Lambeth Palace Road, London SE1 7EH, UK
| | - Luc Pellerin
- Département de Physiologie, Université de Lausanne, 7 Rue du Bugnon, 1005 Lausanne, Switzerland
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, 146 Rue Leo Saignat, Bordeaux 33076, France
- Inserm U1082, Université de Poitiers, 2 Rue de la Miletrie, Poitiers 86021, France
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, PO Box 197, Cambridge CB2 0XZ, UK
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Dunja Aksentijević
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
- Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
12
|
孔 令, 孙 娜, 魏 兰, 张 丽, 陈 玉, 常 利, 苏 兴. [Melatonin protects against myocardial ischemia-reperfusion injury by inhibiting contracture in isolated rat hearts]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:958-964. [PMID: 32895155 PMCID: PMC7386215 DOI: 10.12122/j.issn.1673-4254.2020.07.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the protective effect of melatonin against myocardial ischemia reperfusion (IR) injury in isolated rat hearts and explore the underlying mechanisms. METHODS The isolated hearts from 40 male SD rats were randomly divided into 4 groups (n=10): the control group, where the hearts were perfused with KH solution for 175 min; IR group, where the hearts were subjected to global ischemia for 45 min followed by reperfusion for 120 min; IR+melatonin (Mel+IR) group, where melatonin (5 μmol/L) was administered to the hearts 1 min before ischemia and during the first 5 min of reperfusion, followed by 115 min of reperfusion; and IR+2, 3-butanedione monoxime (IR+BDM) group, where the hearts were treated with BDM (20 mmol/L) in the same manner as melatonin treatment. Myocardial injury in the isolated hearts was assessed based on myocardial injury area, caspase-3 activity, and expressions of cytochrome C and cleaved caspase-3 proteins. Cardiac contracture was assessed using HE staining and by detecting lactate dehydrogenase (LDH) activity and the content of cardiac troponin I (cTnI) in the coronary outflow, measurement of left ventricular end-diastolic pressure (LVEDP) and electron microscopy. The content of ATP in the cardiac tissue was also determined. RESULTS Compared with those in the control group, the isolated hearts in IR group showed significantly larger myocardial injury area and higher caspase-3 activity and the protein expressions of cytochrome C and cleaved caspase-3 with significantly increased LDH activity and cTnI content in the coronary outflow and elevated LVEDP at the end of reperfusion; HE staining showed obvious fractures of the myocardial fibers and the content of ATP was significantly decreased in the cardiac tissue; electron microscopy revealed the development of contraction bands. In the isolated hearts with IR, treatment with Mel or BDM significantly reduced the myocardial injury area, caspase-3 activity, and protein expressions of cytochrome C and cleaved caspase-3, obviously inhibited LDH activity, lowered the content of cTnI and LVEDP, reduced myocardial fiber fracture, and increased ATP content in the cardiac tissue. Both Mel and BDM inhibited the formation of contraction bands in the isolated hearts with IR injury. CONCLUSIONS Mel can alleviate myocardial IR injury in isolated rat hearts by inhibiting cardiac contracture, the mechanism of which may involve the upregulation of ATP in the cardiac myocytes to lessen the tear of membrane and reduce cell content leakage.
Collapse
Affiliation(s)
- 令恒 孔
- 西安医学院基础部基础医学研究所,陕西 西安 710061Institute of Basic Medical Science, School of Basic Medical Sciences, Xi'an Medical College, Xi'an 710061, China
| | - 娜 孙
- 西安医学院基础部基础医学研究所,陕西 西安 710061Institute of Basic Medical Science, School of Basic Medical Sciences, Xi'an Medical College, Xi'an 710061, China
| | - 兰兰 魏
- 西安医学院基础部基础医学研究所,陕西 西安 710061Institute of Basic Medical Science, School of Basic Medical Sciences, Xi'an Medical College, Xi'an 710061, China
| | - 丽君 张
- 西安医学院基础部基础医学研究所,陕西 西安 710061Institute of Basic Medical Science, School of Basic Medical Sciences, Xi'an Medical College, Xi'an 710061, China
| | - 玉龙 陈
- 西安医学院基础与转化医学研究所,陕西 西安 710061Institute of Basic and Translational Medicine, Xi'an Medical College, Xi'an 710061, China
| | - 利 常
- 西安医学院基础部基础医学研究所,陕西 西安 710061Institute of Basic Medical Science, School of Basic Medical Sciences, Xi'an Medical College, Xi'an 710061, China
| | - 兴利 苏
- 西安医学院基础部基础医学研究所,陕西 西安 710061Institute of Basic Medical Science, School of Basic Medical Sciences, Xi'an Medical College, Xi'an 710061, China
| |
Collapse
|
13
|
Kirschner Peretz N, Segal S, Yaniv Y. May the Force Not Be With You During Culture: Eliminating Mechano-Associated Feedback During Culture Preserves Cultured Atrial and Pacemaker Cell Functions. Front Physiol 2020; 11:163. [PMID: 32265724 PMCID: PMC7100534 DOI: 10.3389/fphys.2020.00163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/12/2020] [Indexed: 01/24/2023] Open
Abstract
Cultured cardiomyocytes have been shown to possess significant potential as a model for characterization of mechano-Ca2+, mechano-electric, and mechano-metabolic feedbacks in the heart. However, the majority of cultured cardiomyocytes exhibit impaired electrical, mechanical, biochemical, and metabolic functions. More specifically, the cells do not beat spontaneously (pacemaker cells) or beat at a rate far lower than their physiological counterparts and self-oscillate (atrial and ventricular cells) in culture. Thus, efforts are being invested in ensuring that cultured cardiomyocytes maintain the shape and function of freshly isolated cells. Elimination of contraction during culture has been shown to preserve the mechano-Ca2+, mechano-electric, and mechano-metabolic feedback loops of cultured cells. This review focuses on pacemaker cells, which reside in the sinoatrial node (SAN) and generate regular heartbeat through the initiation of the heart’s electrical, metabolic, and biochemical activities. In parallel, it places emphasis on atrial cells, which are responsible for bridging the electrical conductance from the SAN to the ventricle. The review provides a summary of the main mechanisms responsible for mechano-electrical, Ca2+, and metabolic feedback in pacemaker and atrial cells and of culture methods existing for both cell types. The work concludes with an explanation of how the elimination of mechano-electrical, mechano-Ca2+, and mechano-metabolic feedbacks during culture results in sustained cultured cell function.
Collapse
Affiliation(s)
- Noa Kirschner Peretz
- Biomedical Engineering Faculty, Technion Israel Institute of Technology, Haifa, Israel
| | - Sofia Segal
- Biomedical Engineering Faculty, Technion Israel Institute of Technology, Haifa, Israel
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Segal S, Kirschner Peretz N, Arbel-Ganon L, Liang J, Li L, Marbach D, Yang D, Wang SQ, Yaniv Y. Eliminating contraction during culture maintains global and local Ca 2+ dynamics in cultured rabbit pacemaker cells. Cell Calcium 2018; 78:35-47. [PMID: 30594820 DOI: 10.1016/j.ceca.2018.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
Pacemaker cells residing in the sinoatrial node generate the regular heartbeat. Ca2+ signaling controls the heartbeat rate-directly, through the effect on membrane molecules (NCX exchange, K+ channel), and indirectly, through activation of calmodulin-AC-cAMP-PKA signaling. Thus, the physiological role of signaling in pacemaker cells can only be assessed if the Ca2+ dynamics are in the physiological range. Cultured cells that can be genetically manipulated and/or virally infected with probes are required for this purpose. Because rabbit pacemaker cells in culture experience a decrease in their spontaneous action potential (AP) firing rate below the physiological range, Ca2+ dynamics are expected to be affected. However, Ca2+ dynamics in cultured pacemaker cells have not been reported before. We aim to a develop a modified culture method that sustains the global and local Ca2+ kinetics along with the AP firing rate of rabbit pacemaker cells. We used experimental and computational tools to test the viability of rabbit pacemaker cells in culture under various conditions. We tested the effect of culture dish coating, pH, phosphorylation, and energy balance on cultured rabbit pacemaker cells function. The cells were maintained in culture for 48 h in two types of culture media: one without the addition of a contraction uncoupler and one enriched with either 10 mM BDM (2,3-Butanedione 2-monoxime) or 25 μM blebbistatin. The uncoupler was washed out from the medium prior to the experiments. Cells were successfully infected with a GFP adenovirus cultured with either BDM or blebbistatin. Using either uncoupler during culture led to the cell surface area being maintained at the same level as fresh cells. Moreover, the phospholamban and ryanodine receptor densities and their phosphorylation level remained intact in culture when either blebbistatin or BDM were present. Spontaneous AP firing rate, spontaneous Ca2+ kinetics, and spontaneous local Ca2+ release parameters were similar in the cultured cells with blebbistatin as in fresh cells. However, BDM affects these parameters. Using experimental and a computational model, we showed that by eliminating contraction, phosphorylation activity is preserved and energy is reduced. However, the side-effects of BDM render it less effective than blebbistatin.
Collapse
Affiliation(s)
- Sofia Segal
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | | | | | - Jinghui Liang
- College of Life Sciences, Peking University, Beijing, China
| | - Linlin Li
- College of Life Sciences, Peking University, Beijing, China
| | - Daphna Marbach
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Dongmei Yang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Shi-Qiang Wang
- College of Life Sciences, Peking University, Beijing, China
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel.
| |
Collapse
|
15
|
Miklíková M, Jarkovská D, Čedíková M, Švíglerová J, Kuncová J, Nalos L, Kubíková T, Liška V, Holubová M, Lysák D, Králíčková M, Vištejnová L, Štengl M. Beneficial effects of mesenchymal stem cells on adult porcine cardiomyocytes in non-contact co-culture. Physiol Res 2018; 67:S619-S631. [PMID: 30607969 DOI: 10.33549/physiolres.934051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been reported to improve survival of cardiomyocytes (CMCs) and overall regeneration of cardiac tissue. Despite promising preclinical results, interactions of MSCs and CMCs, both direct and indirect, remain unclear. In this study, porcine bone marrow MSCs and freshly isolated porcine primary adult CMCs were used for non-contact co-culture experiments. Morphology, viability and functional parameters of CMCs were measured over time and compared between CMCs cultured alone and CMCs co-cultured with MSCs. In non-contact co-culture, MSCs improved survival of CMCs. CMCs co-cultured with MSCs maintained CMCs morphology and viability in significantly higher percentage than CMCs cultured alone. In viable CMCs, mitochondrial respiration was preserved in both CMCs cultured alone and in CMCs co-cultured with MSCs. Comparison of cellular contractility and calcium handling, measured in single CMCs, revealed no significant differences between viable CMCs from co-culture and CMCs cultured alone. In conclusion, non-contact co-culture of porcine MSCs and CMCs improved survival of CMCs with a sufficient preservation of functional and mitochondrial parameters.
Collapse
Affiliation(s)
- M Miklíková
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Reddy GR, West TM, Jian Z, Jaradeh M, Shi Q, Wang Y, Chen-Izu Y, Xiang YK. Illuminating cell signaling with genetically encoded FRET biosensors in adult mouse cardiomyocytes. J Gen Physiol 2018; 150:1567-1582. [PMID: 30242036 PMCID: PMC6219686 DOI: 10.1085/jgp.201812119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/04/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022] Open
Abstract
FRET-based biosensors are powerful tools to study intracellular signaling that require long culture times for adenoviral infection. Reddy et al. have developed a method for culturing adult mouse cardiomyocytes involving blebbistatin, which preserves cell morphology for up to 50 h after adenoviral infection. FRET-based biosensor experiments in adult cardiomyocytes are a powerful way of dissecting the spatiotemporal dynamics of the complicated signaling networks that regulate cardiac health and disease. However, although much information has been gleaned from FRET studies on cardiomyocytes from larger species, experiments on adult cardiomyocytes from mice have been difficult at best. Thus the large variety of genetic mouse models cannot be easily used for this type of study. Here we develop cell culture conditions for adult mouse cardiomyocytes that permit robust expression of adenoviral FRET biosensors and reproducible FRET experimentation. We find that addition of 6.25 µM blebbistatin or 20 µM (S)-nitro-blebbistatin to a minimal essential medium containing 10 mM HEPES and 0.2% BSA maintains morphology of cardiomyocytes from physiological, pathological, and transgenic mouse models for up to 50 h after adenoviral infection. This provides a 10–15-h time window to perform reproducible FRET readings using a variety of CFP/YFP sensors between 30 and 50 h postinfection. The culture is applicable to cardiomyocytes isolated from transgenic mouse models as well as models with cardiac diseases. Therefore, this study helps scientists to disentangle complicated signaling networks important in health and disease of cardiomyocytes.
Collapse
Affiliation(s)
| | - Toni M West
- Department of Pharmacology, University of California at Davis, Davis, CA
| | - Zhong Jian
- Department of Pharmacology, University of California at Davis, Davis, CA
| | - Mark Jaradeh
- Department of Pharmacology, University of California at Davis, Davis, CA
| | - Qian Shi
- Department of Pharmacology, University of California at Davis, Davis, CA
| | - Ying Wang
- Department of Pharmacology, University of California at Davis, Davis, CA
| | - Ye Chen-Izu
- Department of Pharmacology, University of California at Davis, Davis, CA.,Department of Bioengineering, University of California at Davis, Davis, CA.,Department of Internal Medicine/Cardiology, University of California at Davis, Davis, CA
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, CA .,Veterans Affairs Northern California Health Care System, Mather, CA
| |
Collapse
|
17
|
Tharp KM, Kang MS, Timblin GA, Dempersmier J, Dempsey GE, Zushin PJH, Benavides J, Choi C, Li CX, Jha AK, Kajimura S, Healy KE, Sul HS, Saijo K, Kumar S, Stahl A. Actomyosin-Mediated Tension Orchestrates Uncoupled Respiration in Adipose Tissues. Cell Metab 2018; 27:602-615.e4. [PMID: 29514068 PMCID: PMC5897043 DOI: 10.1016/j.cmet.2018.02.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/18/2017] [Accepted: 02/06/2018] [Indexed: 12/17/2022]
Abstract
The activation of brown/beige adipose tissue (BAT) metabolism and the induction of uncoupling protein 1 (UCP1) expression are essential for BAT-based strategies to improve metabolic homeostasis. Here, we demonstrate that BAT utilizes actomyosin machinery to generate tensional responses following adrenergic stimulation, similar to muscle tissues. The activation of actomyosin mechanics is critical for the acute induction of oxidative metabolism and uncoupled respiration in UCP1+ adipocytes. Moreover, we show that actomyosin-mediated elasticity regulates the thermogenic capacity of adipocytes via the mechanosensitive transcriptional co-activators YAP and TAZ, which are indispensable for normal BAT function. These biomechanical signaling mechanisms may inform future strategies to promote the expansion and activation of brown/beige adipocytes.
Collapse
Affiliation(s)
- Kevin M Tharp
- Program for Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael S Kang
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Greg A Timblin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jon Dempersmier
- Program for Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Garret E Dempsey
- Program for Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter-James H Zushin
- Program for Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jaime Benavides
- Program for Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Catherine Choi
- Program for Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Catherine X Li
- Program for Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Amit K Jha
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shingo Kajimura
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kevin E Healy
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hei Sook Sul
- Program for Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kaoru Saijo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andreas Stahl
- Program for Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
18
|
Ulmer BM, Stoehr A, Schulze ML, Patel S, Gucek M, Mannhardt I, Funcke S, Murphy E, Eschenhagen T, Hansen A. Contractile Work Contributes to Maturation of Energy Metabolism in hiPSC-Derived Cardiomyocytes. Stem Cell Reports 2018; 10:834-847. [PMID: 29503093 PMCID: PMC5919410 DOI: 10.1016/j.stemcr.2018.01.039] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
Energy metabolism is a key aspect of cardiomyocyte biology. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a promising tool for biomedical application, but they are immature and have not undergone metabolic maturation related to early postnatal development. To assess whether cultivation of hiPSC-CMs in 3D engineered heart tissue format leads to maturation of energy metabolism, we analyzed the mitochondrial and metabolic state of 3D hiPSC-CMs and compared it with 2D culture. 3D hiPSC-CMs showed increased mitochondrial mass, DNA content, and protein abundance (proteome). While hiPSC-CMs exhibited the principal ability to use glucose, lactate, and fatty acids as energy substrates irrespective of culture format, hiPSC-CMs in 3D performed more oxidation of glucose, lactate, and fatty acid and less anaerobic glycolysis. The increase in mitochondrial mass and DNA in 3D was diminished by pharmacological reduction of contractile force. In conclusion, contractile work contributes to metabolic maturation of hiPSC-CMs. Higher mitochondrial mass, protein, and DNA content in 3D versus 2D hiPSC-CMs Similarity of mitochondrial proteomes between 3D hiPSC-CMs and adult human heart Preference for oxidative metabolism in favor of anaerobic glycolysis in 3D hiPSC-CMs
Collapse
Affiliation(s)
- Bärbel M Ulmer
- University Medical Center Hamburg Eppendorf, Department of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Center for Heart Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Andrea Stoehr
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mirja L Schulze
- University Medical Center Hamburg Eppendorf, Department of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Center for Heart Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sajni Patel
- Proteomics Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marjan Gucek
- Proteomics Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ingra Mannhardt
- University Medical Center Hamburg Eppendorf, Department of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Center for Heart Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sandra Funcke
- University Medical Center Hamburg Eppendorf, Department of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Center for Heart Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Elizabeth Murphy
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Eschenhagen
- University Medical Center Hamburg Eppendorf, Department of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Center for Heart Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Arne Hansen
- University Medical Center Hamburg Eppendorf, Department of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Center for Heart Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
19
|
Kirschner Peretz N, Segal S, Arbel-Ganon L, Ben Jehuda R, Shemer Y, Eisen B, Davoodi M, Binah O, Yaniv Y. A Method Sustaining the Bioelectric, Biophysical, and Bioenergetic Function of Cultured Rabbit Atrial Cells. Front Physiol 2017; 8:584. [PMID: 28860999 PMCID: PMC5559495 DOI: 10.3389/fphys.2017.00584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/31/2017] [Indexed: 12/16/2022] Open
Abstract
Culturing atrial cells leads to a loss in their ability to be externally paced at physiological rates and to maintain their shape. We aim to develop a culture method that sustains the shape of atrial cells along with their biophysical and bioenergetic properties in response to physiological pacing. We hypothesize that adding 2,3-Butanedione 2-monoxime (BDM), which inhibits contraction during the culture period, will preserve these biophysical and bioenergetic properties. Rabbit atrial cells were maintained in culture for 24 h in a medium enriched with a myofilament contraction inhibitor, BDM. The morphology and volume of the cells, including their ability to contract in response to 1–3 Hz electrical pacing, was maintained at the same level as fresh cells. Importantly, the cells could be successfully infected with a GFP adenovirus. Action potentials, Ca2+ transients, and local Ca2+ spark parameters were similar in the cultured and in fresh cells. Finally, these cultured cells' flavoprotein autofluorescence was maintained at a constant level in response to electrical pacing, a response similar to that of fresh cells. Thus, eliminating contraction during the culture period preserves the bioelectric, biophysical and bioenergetic properties of rabbit atrial myocytes. This method therefore has the potential to further improve our understanding of energetic and biochemical regulation in the atria.
Collapse
Affiliation(s)
- Noa Kirschner Peretz
- Biomedical Engineering Faculty, Technion - Israel Institute of TechnologyHaifa, Israel
| | - Sofia Segal
- Biomedical Engineering Faculty, Technion - Israel Institute of TechnologyHaifa, Israel
| | - Limor Arbel-Ganon
- Biomedical Engineering Faculty, Technion - Israel Institute of TechnologyHaifa, Israel
| | - Ronen Ben Jehuda
- Department of Physiology, Biophysics and Systems Biology, Technion - Israel Institute of TechnologyHaifa, Israel.,The Rappaport Institute, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of TechnologyHaifa, Israel
| | - Yuval Shemer
- Department of Physiology, Biophysics and Systems Biology, Technion - Israel Institute of TechnologyHaifa, Israel.,The Rappaport Institute, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of TechnologyHaifa, Israel
| | - Binyamin Eisen
- Department of Physiology, Biophysics and Systems Biology, Technion - Israel Institute of TechnologyHaifa, Israel.,The Rappaport Institute, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of TechnologyHaifa, Israel
| | - Moran Davoodi
- Biomedical Engineering Faculty, Technion - Israel Institute of TechnologyHaifa, Israel
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Technion - Israel Institute of TechnologyHaifa, Israel.,The Rappaport Institute, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of TechnologyHaifa, Israel
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion - Israel Institute of TechnologyHaifa, Israel
| |
Collapse
|
20
|
Hall AR, Hausenloy DJ. Mitochondrial respiratory inhibition by 2,3-butanedione monoxime (BDM): implications for culturing isolated mouse ventricular cardiomyocytes. Physiol Rep 2016; 4:4/1/e12606. [PMID: 26733241 PMCID: PMC4760411 DOI: 10.14814/phy2.12606] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Experiments in isolated ventricular cardiomyocytes have greatly facilitated the study of cellular and subcellular physiology in the heart. However, the isolation and culture of high‐quality adult murine ventricular cardiomyocytes can be technically challenging. In most experimental protocols, the culture of viable adult murine cardiomyocytes for prolonged time periods is achieved with the addition of the myosin II ATPase inhibitors blebbistatin and/or 2,3‐butanedione monoxime (BDM). These drugs are added to increase cell viability and life span by inhibiting spontaneous cardiomyocyte contraction, thereby preventing calcium overload, cell hypercontracture, and cell death. While the addition of BDM has been reported to prolong the life span of isolated adult murine cardiomyocytes, it is also associated with several off‐target effects. Here, we report a novel off‐target effect, in which BDM inhibits mitochondrial respiration by acting directly on the electron transport chain to reduce cell viability. In contrast, when cells were cultured with blebbistatin alone, cells survived for longer, and no metabolic off‐target effects were observed. Based on these novel observations, we recommend that culture media for isolated mouse ventricular cardiomyocytes should be supplemented with blebbistatin alone, as BDM has the potential to affect mitochondrial respiration and cell viability, effects which may impact adversely on subsequent experiments.
Collapse
Affiliation(s)
- Andrew R Hall
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London Hospital & Medical School, London, UK
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London Hospital & Medical School, London, UK Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore, Singapore National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| |
Collapse
|