1
|
Dominici FP, Gironacci MM, Narvaez Pardo JA. Therapeutic opportunities in targeting the protective arm of the renin-angiotensin system to improve insulin sensitivity: a mechanistic review. Hypertens Res 2024:10.1038/s41440-024-01909-y. [PMID: 39363004 DOI: 10.1038/s41440-024-01909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
In recent years, the knowledge of the physiological and pathophysiological roles of the renin-angiotensin system (RAS) in glucose metabolism has advanced significantly. It is now well-established that blockade of the angiotensin AT1 receptor (AT1R) improves insulin sensitivity. Activation of the AT2 receptor (AT2R) and the MAS receptor are significant contributors to this beneficial effect. Elevated availability of angiotensin (Ang) II) for interaction with the AT2R and increased Ang-(1-7) formation during AT1R blockade mediate these effects. The ongoing development of selective AT2R agonists, such as compound 21 and the novel Ang III peptidomimetics, has significantly advanced the exploration of the role of AT2R in metabolism and its potential as a therapeutic target. These agents show promise, particularly when RAS inhibition is contraindicated. Additionally, other RAS peptides, including Ang IV, des-Asp-Ang I, Ang-(1-9), and alamandine, hold therapeutic capability for addressing metabolic disturbances linked to type 2 diabetes. The possibility of AT2R heteromerization with either AT1R or MAS receptor offers an exciting area for future research, particularly concerning therapeutic strategies to improve glycemic control. This review focuses on therapeutic opportunities to improve insulin sensitivity, taking advantage of the protective arm of the RAS.
Collapse
Affiliation(s)
- Fernando P Dominici
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Mariela M Gironacci
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge A Narvaez Pardo
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Quiroga DT, Narvaéz Pardo JA, Zubiría MG, Barrales B, Muñoz MC, Giovambattista A, Dominici FP. Acute In Vivo Administration of Compound 21 Stimulates Akt and ERK1/2 Phosphorylation in Mouse Heart and Adipose Tissue. Int J Mol Sci 2023; 24:16839. [PMID: 38069161 PMCID: PMC10706736 DOI: 10.3390/ijms242316839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The angiotensin II type 2 (AT2) receptor has a role in promoting insulin sensitivity. However, the mechanisms underlying the AT2 receptor-induced facilitation of insulin are still not completely understood. Therefore, we investigated whether acute in vivo administration of AT2 receptor agonist compound 21 (C21) could activate insulin signaling molecules in insulin-target tissues. We report that, in male C57BL/6 mice, an acute (5 min, 0.25 mg/kg; i.v.) injection of C21 induces the phosphorylation of Akt and ERK1/2 at activating residues (Ser473 and Thr202/Tyr204, respectively) in both epididymal white adipose tissue (WAT) and heart tissue. In WAT, the extent of phosphorylation (p) of Akt and ERK1/2 induced by C21 was approximately 65% of the level detected after a bolus injection of a dose of insulin known to induce maximal activation of the insulin receptor (IR). In the heart, C21 stimulated p-Akt to a lesser extent than in WAT and stimulated p-ERK1/2 to similar levels to those attained by insulin administration. C21 did not modify p-IR levels in either tissue. We conclude that in vivo injection of the AT2 receptor agonist C21 activates Akt and ERK1/2 through a mechanism that does not involve the IR, indicating the participation of these enzymes in AT2R-mediated signaling.
Collapse
Affiliation(s)
- Diego T. Quiroga
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Jorge A. Narvaéz Pardo
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - María G. Zubiría
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA-CONICET-UNLP), La Plata B1906APO, Argentina
| | - Benjamín Barrales
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Marina C. Muñoz
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Andrés Giovambattista
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA-CONICET-UNLP), La Plata B1906APO, Argentina
| | - Fernando P. Dominici
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| |
Collapse
|
3
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
4
|
O'Connor AT, Haspula D, Alanazi AZ, Clark MA. Roles of Angiotensin III in the brain and periphery. Peptides 2022; 153:170802. [PMID: 35489649 DOI: 10.1016/j.peptides.2022.170802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Angiotensin (Ang) III, a biologically active peptide of the renin angiotensin system (RAS) is predominantly known for its central effects on blood pressure. Our understanding of the RAS has evolved from the simplified, classical RAS, a hormonal system regulating blood pressure to a complex system affecting numerous biological processes. Ang II, the main RAS peptide has been widely studied, and its deleterious effects when overexpressed is well-documented. However, other components of the RAS such as Ang III are not well studied. This review examines the molecular and biological actions of Ang III and provides insight into Ang III's potential role in metabolic diseases.
Collapse
Affiliation(s)
- Ann Tenneil O'Connor
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD NIH-20892, USA
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
5
|
de Campos Zani SC, Son M, Bhullar KS, Chan CB, Wu J. IRW (Isoleucine-Arginine-Tryptophan) Improves Glucose Tolerance in High Fat Diet Fed C57BL/6 Mice via Activation of Insulin Signaling and AMPK Pathways in Skeletal Muscle. Biomedicines 2022; 10:biomedicines10061235. [PMID: 35740257 PMCID: PMC9220315 DOI: 10.3390/biomedicines10061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
IRW (Isoleucine−Arginine−Tryptophan), has antihypertensive and anti-inflammatory properties in cells and animal models and prevents angiotensin-II- and tumor necrosis factor (TNF)-α-induced insulin resistance (IR) in vitro. We investigated the effects of IRW on body composition, glucose homeostasis and insulin sensitivity in a high-fat diet (HFD) induced insulin resistant (IR) model. C57BL/6 mice were fed HFD for 6 weeks, after which IRW was incorporated into the diet (45 or 15 mg/kg body weight (BW)) until week 14. IRW45 (at a dose of 45 mg/kg BW) reduced BW (p = 0.0327), fat mass gain (p = 0.0085), and preserved lean mass of HFD mice (p = 0.0065), concomitant with enhanced glucose tolerance and reduced fasting glucose (p < 0.001). In skeletal muscle, IRW45 increased insulin-stimulated protein kinase B (AKT) phosphorylation (p = 0.0132) and glucose transporter 4 (GLUT4) translocation (p < 0.001). Angiotensin 2 receptor (AT2R) (p = 0.0024), phosphorylated 5′-AMP-activated protein kinase (AMPKα) (p < 0.0124) and peroxisome proliferator-activated receptor gamma (PPARγ) (p < 0.001) were enhanced in skeletal muscle of IRW45-treated mice, as was the expression of genes involved in myogenesis. Plasma angiotensin converting enzyme-2 (ACE2) activity was increased (p = 0.0016). Uncoupling protein-1 in white adipose tissue (WAT) was partially restored after IRW supplementation. IRW improves glucose tolerance and body composition in HFD-fed mice and promotes glucose uptake in skeletal muscle via multiple signaling pathways, independent of angiotensin converting enzyme (ACE) inhibition.
Collapse
Affiliation(s)
| | - Myoungjin Son
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (M.S.); (K.S.B.)
| | - Khushwant S. Bhullar
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (M.S.); (K.S.B.)
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Catherine B. Chan
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada; (S.C.d.C.Z.); (C.B.C.)
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (M.S.); (K.S.B.)
| | - Jianping Wu
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (M.S.); (K.S.B.)
- Correspondence: ; Tel.: +1-780-492-6885; Fax: +1-780-492-4346
| |
Collapse
|
6
|
Tanioka T, Maeda K, Takahashi R, Iwamoto S. The Ang III/AT2R Pathway Enhances Glucose Uptake by Improving GLUT1 Expression in 3T3-L1 Adipocytes. Biol Pharm Bull 2021; 44:1014-1018. [PMID: 34193683 DOI: 10.1248/bpb.b20-00946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin III (Ang III) is a heptapeptide derived from Ang II that has been confirmed as the preferred agonist of angiotensin II type 2 receptor (AT2R). Recent studies have revealed AT2R mainly exerts anti-inflammation effects. However, the effects of the Ang III/AT2R pathway on adipocytes remain unknown. Here, the effects of Ang III on glucose uptake were examined. The results showed that AT2R expression was upregulated during adipogenesis in 3T3-L1 preadipocytes, whereas AT1R expression was diminished. Also, Ang III (10 nM) significantly increased glucose uptake by 3T3-L1 adipocytes, which was blocked by PD123319, an AT2R blocker, but not by irbesartan, an AT1R blocker. Ang III also induced the expression of glucose transporter type 1 (GLUT1). These stimulatory effects were inhibited by pretreatment with PD123319, but not with irbesartan. Together, these results indicate that Ang III enhances glucose uptake by upregulating GLUT1 expression via AT2R.
Collapse
Affiliation(s)
- Toshihiro Tanioka
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University
| | - Kohei Maeda
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University
| | - Rei Takahashi
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University
| | - Sanju Iwamoto
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University
| |
Collapse
|
7
|
Fatima N, Patel SN, Hussain T. Angiotensin II Type 2 Receptor: A Target for Protection Against Hypertension, Metabolic Dysfunction, and Organ Remodeling. Hypertension 2021; 77:1845-1856. [PMID: 33840201 PMCID: PMC8115429 DOI: 10.1161/hypertensionaha.120.11941] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The renin-angiotensin system is of vital significance not only in the maintenance of blood pressure but also because of its role in the pathophysiology of different organ systems in the body. Of the 2 Ang II (angiotensin II) receptors, the AT1R (Ang II type 1 receptor) has been extensively studied for its role in mediating the classical functions of Ang II, including vasoconstriction, stimulation of renal tubular sodium reabsorption, hormonal secretion, cell proliferation, inflammation, and oxidative stress. The other receptor, AT2R (Ang II type 2 receptor), is abundantly expressed in both immune and nonimmune cells in fetal tissue. However, its expression is increased under pathological conditions in adult tissues. The role of AT2R in counteracting AT1R function has been discussed in the past 2 decades. However, with the discovery of the nonpeptide agonist C21, the significance of AT2R in various pathologies such as obesity, hypertension, and kidney diseases have been examined. This review focuses on the most recent findings on the beneficial effects of AT2R by summarizing both gene knockout studies as well as pharmacological studies, specifically highlighting its importance in blood pressure regulation, obesity/metabolism, organ protection, and relevance in the treatment of coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Naureen Fatima
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX
| | - Sanket N Patel
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX
| | - Tahir Hussain
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX
| |
Collapse
|
8
|
Sharma N, Gaikwad AB. Ameliorative effect of AT2R and ACE2 activation on ischemic renal injury associated cardiac and hepatic dysfunction. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103501. [PMID: 32979558 DOI: 10.1016/j.etap.2020.103501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
This study explored the role of the depressor arm of renin-angiotensin system (RAS) on ischemic renal injury (IRI)-associated cardio-hepatic sequalae under non-diabetic (ND) and diabetes mellitus (DM) conditions. Firstly, rats were injected with Streptozotocin (55 mg/kg i.p.) to develop DM. ND and DM rats underwent Bilateral IRI followed by 24 h of reperfusion. Further, ND and DM rats were subjected to AT2R agonist-Compound 21 (C21) (0.3 mg/kg/day, i.p.) or ACE2 activator- Diminazene Aceturate (Dize), (5 mg/kg/day, p.o.) per se or its combination therapy. As results, IRI caused cardio-hepatic injuries via altered oxidant/anti-oxidant levels, elevated inflammatory events, and altered protein expressions of ACE, ACE2, Ang II, Ang-(1-7) and urinary AGT. However, concomitant therapy of AT2R agonist and ACE2 activator exerts a protective effect in IRI-associated cardio-hepatic dysfunction as evidenced by inhibited oxidative stress, downregulated inflammation, and enhanced cardio-hepatic depressor arm of RAS under ND and DM conditions.
Collapse
Affiliation(s)
- Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
9
|
Dominici FP, Veiras LC, Shen JZY, Bernstein EA, Quiroga DT, Steckelings UM, Bernstein KE, Giani JF. Activation of AT 2 receptors prevents diabetic complications in female db/db mice by NO-mediated mechanisms. Br J Pharmacol 2020; 177:4766-4781. [PMID: 32851652 DOI: 10.1111/bph.15241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/08/2020] [Accepted: 08/16/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The AT2 receptor plays a role in metabolism by opposing the actions triggered by the AT1 receptors. Activation of AT2 receptors has been shown to enhance insulin sensitivity in both normal and insulin resistance animal models. In this study, we investigated the mechanism by which AT2 receptors activation improves metabolism in diabetic mice. EXPERIMENTAL APPROACH Female diabetic (db/db) and non-diabetic (db/+) mice were treated for 1 month with the selective AT2 agonist, compound 21 (C21, 0.3 mg·kg-1 ·day-1 , s.c.). To evaluate whether the effects of C21 depend on NO production, a subgroup of mice was treated with C21 plus a sub-pressor dose of the NOS inhibitor l-NAME (0.1 mg·ml-1 , drinking water). KEY RESULTS C21-treated db/db mice displayed improved glucose and pyruvate tolerance compared with saline-treated db/db mice. Also, C21-treated db/db mice showed reduced liver weight and decreased hepatic lipid accumulation compared with saline-treated db/db mice. Insulin signalling analysis showed increased phosphorylation of the insulin receptor, Akt and FOXO1 in the livers of C21-treated db/db mice compared with saline-treated counterparts. These findings were associated with increased adiponectin levels in plasma and adipose tissue and reduced adipocyte size in inguinal fat. The beneficial effects of AT2 receptors activation were associated with increased eNOS phosphorylation and higher levels of NO metabolites and were abolished by l-NAME. CONCLUSION AND IMPLICATIONS Chronic C21 infusion exerts beneficial metabolic effects in female diabetic db/db mice, alleviating type 2 diabetes complications, through a mechanism that involves NO production.
Collapse
Affiliation(s)
- Fernando P Dominici
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana C Veiras
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Justin Z Y Shen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Diego T Quiroga
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ulrike M Steckelings
- IMM-Department of Cardiovascular & Renal Research, University of Southern Denmark, Odense, Denmark
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
10
|
Cheema AK, Kaur P, Fadel A, Younes N, Zirie M, Rizk NM. Integrated Datasets of Proteomic and Metabolomic Biomarkers to Predict Its Impacts on Comorbidities of Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2020; 13:2409-2431. [PMID: 32753925 PMCID: PMC7354282 DOI: 10.2147/dmso.s244432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The objective of the current study is to accomplish a relative exploration of the biological roles of differentially dysregulated genes (DRGs) in type 2 diabetes mellitus (T2DM). The study aimed to determine the impact of these DRGs on the biological pathways and networks that are related to the associated disorders and complications in T2DM and to predict its role as prospective biomarkers. METHODS Datasets obtained from metabolomic and proteomic profiling were used for investigation of the differential expression of the genes. A subset of DRGs was integrated into IPA software to explore its biological pathways, related diseases, and their regulation in T2DM. Upon entry into the IPA, only 94 of the DRGs were recognizable, mapped, and matched within the database. RESULTS The study identified networks that explore the dysregulation of several functions; cell components such as degranulation of cells; molecular transport process and metabolism of cellular proteins; and inflammatory responses. Top disorders associated with DRGs in T2DM are related to organ injuries such as renal damage, connective tissue disorders, and acute inflammatory disorders. Upstream regulator analysis predicted the role of several transcription factors of interest, such as STAT3 and HIF alpha, as well as many kinases such as JAK kinases, which affects the gene expression of the dataset in T2DM. Interleukin 6 (IL6) is the top regulator of the DRGs, followed by leptin (LEP). Monitoring the dysregulation of the coupled expression of the following biomarkers (TNF, IL6, LEP, AGT, APOE, F2, SPP1, and INS) highlights that they could be used as potential prognostic biomarkers. CONCLUSION The integration of data obtained by advanced metabolomic and proteomic technologies has made it probable to advantage in understanding the role of these biomarkers in the identification of significant biological processes, pathways, and regulators that are associated with T2DM and its comorbidities.
Collapse
Affiliation(s)
- Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center at Georgetown University Medical Center, Washington, DC, USA
| | - Prabhjit Kaur
- Department of Oncology, Lombardi Comprehensive Cancer Center at Georgetown University Medical Center, Washington, DC, USA
| | - Amina Fadel
- Biomedical Sciences Department, College of Health Sciences and Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
| | - Noura Younes
- Clinical Chemistry Lab, Hamad Medical Corporation, Doha, Qatar
| | - Mahmoud Zirie
- Endocrine Department, Hammad Medical Corporation, Doha, Qatar
| | - Nasser M Rizk
- Biomedical Sciences Department, College of Health Sciences and Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
- Physiology Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| |
Collapse
|
11
|
Abstract
The active hormone of the renin-angiotensin system (RAS), angiotensin II (Ang II), is involved in several human diseases, driving the development and clinical use of several therapeutic drugs, mostly angiotensin I converting enzyme (ACE) inhibitors and angiotensin receptor type I (AT1R) antagonists. However, angiotensin peptides can also bind to receptors different from AT1R, in particular, angiotensin receptor type II (AT2R), resulting in biological and physiological effects different, and sometimes antagonistic, of their binding to AT1R. In the present Perspective, the components of the RAS and the therapeutic tools developed to control it will be reviewed. In particular, the characteristics of AT2R and tools to modulate its functions will be discussed. Agonists or antagonists to AT2R are potential therapeutics in cardiovascular diseases, for agonists, and in the control of pain, for antagonists, respectively. However, controlling their binding properties and their targeting to the target tissues must be optimized.
Collapse
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Chemin des Boveresses 155, CH1011 Lausanne, Switzerland
| |
Collapse
|
12
|
Tyurin-Kuzmin PA, Kalinina NI, Kulebyakin KY, Balatskiy AV, Sysoeva VY, Tkachuk VA. Angiotensin receptor subtypes regulate adipose tissue renewal and remodelling. FEBS J 2020; 287:1076-1087. [PMID: 31899581 DOI: 10.1111/febs.15200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/14/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
Obesity is often associated with high systemic and local renin-angiotensin system (RAS) activity in adipose tissue. Adipose-derived mesenchymal stem/stromal cells (ADSCs), responsible for adipose tissue growth upon high-fat diet, express multiple angiotensin II receptor isoforms, including angiotensin II type 1 receptor (AT1 R), angiotensin II type 2 receptor (AT2 R), Mas and Mas-related G protein-coupled receptor D. Although AT1 R is expressed on most ADSCs, other angiotensin receptors are co-expressed on a small subpopulation of the cells, a phenomenon that results in a complex response pattern. Following AT1 R activation, the effects are transient due to rapid receptor internalisation. This short-lived effect can be prevented by heteromerisation with AT2 R, a particularly important strategy for the regulation of ADSC differentiation and secretory activity. Heteromeric AT2 R might be especially important for the generation of thermogenic beige adipocytes. This review summarises current data regarding the regulation of adipose tissue renewal and particularly ADSC adipogenic differentiation and secretory activity by RAS, with an emphasis on AT2 R and its effects. We reveal a new scheme that implicates AT2 R into the regulation of ADSC hormonal sensitivity.
Collapse
Affiliation(s)
- Pyotr A Tyurin-Kuzmin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Russia
| | - Natalia I Kalinina
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Russia
| | - Konstantin Y Kulebyakin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Russia
| | - Alexander V Balatskiy
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Russia.,Department of Clinical Diagnostics, Medical Centre, Lomonosov Moscow State University, Russia.,National Medical Research Centre in Cardiology, Russia
| | - Veronika Y Sysoeva
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Russia
| | - Vsevolod A Tkachuk
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Russia.,National Medical Research Centre in Cardiology, Russia
| |
Collapse
|
13
|
Quiroga DT, Miquet JG, Gonzalez L, Sotelo AI, Muñoz MC, Geraldes PM, Giani JF, Dominici FP. Mice lacking angiotensin type 2 receptor exhibit a sex-specific attenuation of insulin sensitivity. Mol Cell Endocrinol 2019; 498:110587. [PMID: 31539597 PMCID: PMC6903409 DOI: 10.1016/j.mce.2019.110587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022]
Abstract
The renin-angiotensin system modulates insulin action. Pharmacological stimulation of angiotensin type 2 receptor (AT2R) was shown to have beneficial metabolic effects in various animal models of insulin resistance and type 2 diabetes and also to increase insulin sensitivity in wild type mice. In this study we further explored the role of the AT2R on insulin action and glucose homeostasis by investigating the glycemic profile and in vivo insulin signaling status in insulin-target tissues from both male and female AT2R knockout (KO) mice. When compared to the respective wild-type (WT) group, glycemia and insulinemia was unaltered in AT2RKO mice regardless of sex. However, female AT2RKO mice displayed decreased insulin sensitivity compared to their WT littermates. This was accompanied by a compensatory increase in adiponectinemia and with a specific attenuation of the activity of main insulin signaling components (insulin receptor, Akt and ERK1/2) in adipose tissue with no apparent alterations in insulin signaling in either liver or skeletal muscle. These parameters remained unaltered in male AT2RKO mice as compared to male WT mice. Present data show that the AT2R has a physiological role in the conservation of insulin action in female but not in male mice. Our results suggest a sexual dimorphism in the control of insulin action and glucose homeostasis by the AT2R and reinforce the notion that pharmacological modulation of the balance between the AT1R and AT2R receptor could be important for treatment of metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- Diego T Quiroga
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Johanna G Miquet
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Lorena Gonzalez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Ana I Sotelo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Marina C Muñoz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Pedro M Geraldes
- Research Center of the CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada; Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Fernando P Dominici
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
14
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
15
|
Nag S, Patel S, Mani S, Hussain T. Role of angiotensin type 2 receptor in improving lipid metabolism and preventing adiposity. Mol Cell Biochem 2019; 461:195-204. [PMID: 31414336 DOI: 10.1007/s11010-019-03602-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/08/2019] [Indexed: 01/14/2023]
Abstract
Recent studies on mice with null mutation of the angiotensin type 2 receptor (AT2R) gene have implicated the involvement of AT2R in regulating adipocyte size and obesity, a major risk factor for metabolic syndrome. However, the outcome from these studies remains inconclusive. Therefore, current study was designed to test whether pharmacological activation of AT2R regulates adiposity and lipid metabolism. Male mice (5-weeks old) were pre-treated with vehicle or AT2R agonist (C21, 0.3 mg/kg, i.p., daily, for 4 days) and fed normal diet (ND). Then these animals were subdivided into ND and high-fat diet (HFD) regimen and concomitantly treated with vehicle or C21 through day 14. Vehicle-treated HFD-fed mice demonstrated an increase in epididymal white adipose tissue (eWAT) weight and adipocyte size, which were associated with increased eWAT expression of the lipogenic regulators, fatty acid binding protein and fatty acid synthase, decreased expression of adipose triglyceride lipase and increased expression of hormone-sensitive lipase. Interestingly, C21 pre-treatment altered HFD-induced changes in lipogenic and lipolytic regulators. C21 pre-treatment prevented decrease in expression of uncoupler protein-1 in brown adipose in HFD-fed mice, which was associated with increased core temperature. In addition, C21 pre-treatment ameliorated plasma-free fatty acids, triglycerides, insulin and tumor necrosis factor-α in HFD-fed mice. Ex-vivo study in isolated primary epididymal adipocytes revealed that C21 inhibits long chain fatty acid transporter, via a nitric oxide synthase/guanylate cyclase/protein kinase G-dependent pathway. Collectively, we propose pharmacological activation of AT2R regulates fatty acid metabolism and thermogenesis and prevents HFD-induced adiposity in mice.
Collapse
Affiliation(s)
- Sourashish Nag
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4849 Calhoun Rd., Health 2, Houston, TX, 77204, USA
| | - Sanket Patel
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4849 Calhoun Rd., Health 2, Houston, TX, 77204, USA
| | - Shailaja Mani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tahir Hussain
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4849 Calhoun Rd., Health 2, Houston, TX, 77204, USA.
| |
Collapse
|
16
|
White MC, Fleeman R, Arnold AC. Sex differences in the metabolic effects of the renin-angiotensin system. Biol Sex Differ 2019; 10:31. [PMID: 31262355 PMCID: PMC6604144 DOI: 10.1186/s13293-019-0247-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a global epidemic that greatly increases risk for developing cardiovascular disease and type II diabetes. Sex differences in the obese phenotype are well established in experimental animal models and clinical populations. While having higher adiposity and obesity prevalence, females are generally protected from obesity-related metabolic and cardiovascular complications. This protection is, at least in part, attributed to sex differences in metabolic effects of hormonal mediators such as the renin-angiotensin system (RAS). Previous literature has predominantly focused on the vasoconstrictor arm of the RAS and shown that, in contrast to male rodent models of obesity and diabetes, females are protected from metabolic and cardiovascular derangements produced by angiotensinogen, renin, and angiotensin II. A vasodilator arm of the RAS has more recently emerged which includes angiotensin-(1-7), angiotensin-converting enzyme 2 (ACE2), mas receptors, and alamandine. While accumulating evidence suggests that activation of components of this counter-regulatory axis produces positive effects on glucose homeostasis, lipid metabolism, and energy balance in male animal models, female comparison studies and clinical data related to metabolic outcomes are lacking. This review will summarize current knowledge of sex differences in metabolic effects of the RAS, focusing on interactions with gonadal hormones and potential clinical implications.
Collapse
Affiliation(s)
- Melissa C White
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Rebecca Fleeman
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA.
| |
Collapse
|
17
|
Prevention of lipopolysaccharide-induced CD11b + immune cell infiltration in the kidney: role of AT 2 receptors. Biosci Rep 2019; 39:BSR20190429. [PMID: 31072913 PMCID: PMC6533357 DOI: 10.1042/bsr20190429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/17/2019] [Accepted: 05/02/2019] [Indexed: 12/25/2022] Open
Abstract
Immune cell infiltration plays a central role in mediating endotoxemic acute kidney injury (AKI). Recently, we have reported the anti-inflammatory and reno-protective role of angiotensin-II type-2 receptor (AT2R) activation under chronic low-grade inflammatory condition in the obese Zucker rat model. However, the role of AT2R activation in preventing lipopolysaccharide (LPS)-induced early infiltration of immune cells, inflammation and AKI is not known. Mice were treated with AT2R agonist C21 (0.3 mg/kg), with and without AT2R antagonist PD123319 (5 mg/kg) prior to or concurrently with LPS (5 mg/kg) challenge. Prior-treatment with C21, but not concurrent treatment, significantly prevented the LPS-induced renal infiltration of CD11b+ immune cells, increase in the levels of circulating and/or renal chemotactic cytokines, particularly interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) and markers of renal dysfunction (blood urea nitrogen and albuminuria), while preserving anti-inflammatory interleukin-10 (IL-10) production. Moreover, C21 treatment in the absence of LPS increased renal and circulating IL-10 levels. To investigate the role of IL-10 in a cross-talk between epithelial cells and monocytes, we performed in vitro conditioned media (CM) studies in human kidney proximal tubular epithelial (HK-2) cells and macrophages (differentiated human monocytes, THP-1 cells). These studies revealed that the conditioned-media derived from the C21-treated HK-2 cells reduced LPS-induced THP-1 tumor necrosis factor-α (TNF-α) production via IL-10 originating from HK-2 cells. Our findings suggest that prior activation of AT2R is prophylactic in preventing LPS-induced renal immune cell infiltration and dysfunction, possibly via IL-10 pathway.
Collapse
|
18
|
Shoemaker R, AlSiraj Y, Chen J, Cassis LA. Pancreatic AT1aR Deficiency Decreases Insulin Secretion in Obese C57BL/6 Mice. Am J Hypertens 2019; 32:597-604. [PMID: 30903169 DOI: 10.1093/ajh/hpz042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/15/2019] [Accepted: 03/29/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Previously, we demonstrated that obese mice have marked elevations in systemic concentrations of angiotensin II (AngII). Drugs that inhibit the renin-angiotensin system (RAS), including angiotensin type 1 receptor (AT1R) antagonists, have been reported to delay the onset of type 2 diabetes (T2D), suggesting improvements in insulin sensitivity or regulation of pancreatic insulin secretion. Pancreatic islets possess components of the RAS, including AT1R, but it is unclear if AngII acts at islets to regulate insulin secretion during the development of T2D. METHODS We deleted AT1aR from pancreatic islets and examined effects on insulin secretion in mice fed a low-fat (LF) or high-fat (HF) diet. In separate studies, to exacerbate the system, we infused HF-fed mice of each genotype with AngII. RESULTS Pancreatic AT1aR deficiency impaired glucose tolerance and elevated plasma glucose concentrations in HF, but not LF-fed mice. In HF-fed mice, high glucose increased insulin secretion from islets of AT1aRfl/fl, but not AT1aRpdx mice. In AngII-infused mice, following glucose challenge, plasma glucose or insulin concentrations were not significantly different between genotypes. Moreover, high glucose stimulated insulin secretion from islets of AT1aRfl/fl and AT1aRpdx mice, presumably related to weight loss, and improved insulin sensitivity in both groups of AngII-infused HF-fed mice. CONCLUSIONS Our results suggest that during the adaptive response to insulin resistance from HF feeding, AngII promotes insulin secretion from islets through an AT1aR mechanism. These results suggest the timing of initiation of AT1R blockade may be important in the progression from prediabetes to T2D with β-cell failure.
Collapse
Affiliation(s)
- Robin Shoemaker
- Department of Dietetics and Human Nutrition, University of Kentucky, Lexington, Kentucky, USA
| | - Yasir AlSiraj
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Jeff Chen
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
19
|
Immunomodulatory properties of captopril, an ACE inhibitor, on LPS-induced lung inflammation and fibrosis as well as oxidative stress. Inflammopharmacology 2018; 27:639-647. [PMID: 30291490 DOI: 10.1007/s10787-018-0535-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/14/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND The role of angiotensin converting enzyme inhibitors on the inflammation process has been demonstrated previously. In the present study, the effects of captopril on lung injury induced by lipopolysaccharide (LPS) were investigated. METHODS Control, LPS, 12.5, 25 and 50 mg/kg captopril-treated before LPS administration and captopril 50 mg/kg before saline administration groups of rats were studied. Total and percentage of differential WBC, the levels of MDA, total thiol groups, the activities of SOD and CAT, the levels of IFN-γ, PGE2, TGF-β1 and IL-4 in the BALF were evaluated. RESULTS MDA concentration in LPS groups treated with all captopril concentrations, total WBC in LPS + Cap50, percent of neutrophils in LPS + Cap25 and LPS + Cap50, levels of IFN-γ, PGE2, TGF-β1 in LPS + Cap50 and IFN-γ/IL-4 ratio in LPS + Cap25 and LPS + Cap50 were significantly decreased but total thiol groups and activity of SOD in LPS + Cap25 and LPS + Cap50, percent of lymphocyte, CAT activity and concentration of IL-4 only in LPS + Cap50 group were increased in comparison to the LPS group (p < 0.05 to p < 0.001). CONCLUSION Captopril dose dependently improved oxidant-antioxidant biomarkers, the imbalance between pro-inflammatory and anti-inflammatory cytokines and showed specific immunomodulatory effect on Th1/Th2 balance in the BALF of lung injury induced by LPS.
Collapse
|