1
|
Deng LR, Harmata GIS, Barsotti EJ, Williams AJ, Christensen GE, Voss MW, Saleem A, Rivera-Dompenciel AM, Richards JG, Sathyaputri L, Mani M, Abdolmotalleby H, Fiedorowicz JG, Xu J, Shaffer JJ, Wemmie JA, Magnotta VA. Machine learning with multiple modalities of brain magnetic resonance imaging data to identify the presence of bipolar disorder. J Affect Disord 2025; 368:448-460. [PMID: 39278469 PMCID: PMC11560692 DOI: 10.1016/j.jad.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Bipolar disorder (BD) is a chronic psychiatric mood disorder that is solely diagnosed based on clinical symptoms. These symptoms often overlap with other psychiatric disorders. Efforts to use machine learning (ML) to create predictive models for BD based on data from brain imaging are expanding but have often been limited using only a single modality and the exclusion of the cerebellum, which may be relevant in BD. METHODS In this study, we sought to improve ML classification of BD by combining information from structural, functional, and diffusion-weighted imaging. Participants (108 BD I, 78 control) with BD type I and matched controls were recruited into an imaging study. This dataset was randomly divided into training and testing sets. For each of the three modalities, a separate ML model was selected, trained, and then used to generate a prediction of the class of each test subject. Majority voting was used to combine results from the three models to make a final prediction of whether a subject had BD. An independent replication sample was used to evaluate the ability of the ML classification to generalize to data collected at other sites. RESULTS Combining the three machine learning models through majority voting resulted in an accuracy of 89.5 % for classification of the test subjects as being in the BD or control group. Bootstrapping resulted in a 95 % confidence interval of 78.9 %-97.4 % for test accuracy. Performance was reduced when only using 2 of the 3 modalities. Analysis of feature importance revealed that the cerebellum and nodes of the emotional control network were among the most important regions for classification. The machine learning model performed at chance on the independent replication sample. CONCLUSION BD I could be identified with high accuracy in our relatively small sample by combining structural, functional, and diffusion-weighted imaging data within a single site but not generalize well to an independent replication sample. Future studies using harmonized imaging protocols may facilitate generalization of ML models.
Collapse
Affiliation(s)
- Lubin R Deng
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Gail I S Harmata
- Department of Radiology, University of Iowa, Iowa City, IA, USA; Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | | | | | - Gary E Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Michelle W Voss
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Arshaq Saleem
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | - Merry Mani
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | | | | | - Jia Xu
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Joseph J Shaffer
- Department of Biosciences, Kansas City University, Kansas City, MO, USA
| | - John A Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA; Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Vincent A Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA, USA; Department of Psychiatry, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Inuggi A, Marenco G, Bode J, Bovio A, Versaggi S, Favilla L, Pereira da Silva B, Picci RL, Amore M, Serafini G, Escelsior A. Possible compensatory role of cerebellum in bipolar disorder. A cortical thickness study. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01952-3. [PMID: 39741206 DOI: 10.1007/s00406-024-01952-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 12/08/2024] [Indexed: 01/02/2025]
Abstract
Recent studies suggested that structural changes in the cerebellum are implicated in the pathophysiology of bipolar disorder (BD). Here, we aimed to characterize the structural alterations of cerebellar lobules in BD, evaluating their possible relation with those occurring in the rest of the brain. One-hundred-fifty-five type I BD patients were recruited and compared with one-hundred-nineteen controls subjects. Cerebral cortical thickness (CT) was evaluated vertex-wise, while cerebellar CT at the level of its twelve lobules. A widespread pattern of cortical thinning was found in several clusters of BD patients. In the cerebellum, we found an anterior thinning (lobule I_II, III, X) and a posterior thickening (crus I, crus II, lobule VI and lobule IX) of its lobules in BD. Exploring the relation between cerebral and cerebellar CT changes in BD patients, after correcting for age and disease duration, the CT of a large subset of cerebral regions, found thinned in BD, were also inversely correlated with the thickening of cerebellar lobule IX. We speculate that this lobule may undergo adaptive changes to compensate the widespread cortical thinning which characterizes BD syndrome. Such a compensatory adaptation of the cerebellum would be similar to that found in other neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | - Giacomo Marenco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Juxhin Bode
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Anna Bovio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Silvio Versaggi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Luca Favilla
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Beatriz Pereira da Silva
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Rocco Luigi Picci
- Dipartimento Di Salute Mentale E Dipendenze Patologiche, ASL3, Liguria, Italy
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Gianluca Serafini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy.
| | - Andrea Escelsior
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| |
Collapse
|
3
|
Lee MY, Zhu JD, Tsai HJ, Tsai SJ, Yang AC. Investigating sex-related differences in brain structure and function in bipolar I disorder using multimodal MRI. BMC Psychiatry 2024; 24:855. [PMID: 39604920 PMCID: PMC11603873 DOI: 10.1186/s12888-024-06228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Past research has highlighted that bipolar I disorder is associated with significant changes in brain structure and function. Notably, the manifestation and progression of bipolar I disorder have been known to differ between males and females. However, the relationship between sex-related differences and bipolar I disorder diagnosis affecting these changes was not fully understood. This study aimed to investigate the sex-by-diagnosis interactions concerning the structural and functional features of the brain in individuals with bipolar I disorder. METHODS Both structural and functional MRI data were obtained from 105 individuals with bipolar I disorder (36 males and 69 females) and 210 healthy controls (72 males and 138 females). Voxel-wise analyses of gray matter volume and functional connectivity were conducted using a general linear regression model. This model included age, sex, diagnosis, and a sex-by-diagnosis interaction as predictors to explore potential sex-related differences in the brain features of participants with bipolar I disorder. RESULTS The gray matter volume analysis revealed significant sex-by-diagnosis interactions in six brain regions: the left caudate (p < 0.001), left thalamus (p < 0.001), right caudate (p = 0.003), right thalamus (p < 0.001), left anterior cingulate gyrus (p = 0.022), and left middle/posterior cingulate gyrus (p = 0.015). Using these regions as seeds, we detected a significant sex-by-diagnosis interaction in the functional connectivity alteration between the left thalamus and right angular gyrus (p = 0.019). CONCLUSIONS Our findings revealed a noteworthy sex-by-diagnosis interaction, with male individuals with bipolar I disorder displaying larger gray matter volume and altered functional connectivity in the limbic system compared to female individuals with bipolar I disorder and healthy participants. These results hint at potential sex-related differences in the pathophysiology of the limbic system in bipolar I disorder, which may have significant implications for understanding the underlying mechanisms in bipolar I disorder. Our findings could contribute to developing more personalized treatment approaches for individuals with bipolar I disorder.
Collapse
Affiliation(s)
- Ming-Yang Lee
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jun-Ding Zhu
- Department of Occupational Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan
- Occupational Therapy Room, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsin-Jung Tsai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Albert C Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.
- Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
4
|
Muronaga M, Hirakawa H, Terao T, Izumi T, Satoh M, Kohno K. Association between irritable temperament and glucose metabolism in the left insula and the right cerebellum. J Psychiatr Res 2024; 177:228-233. [PMID: 39033668 DOI: 10.1016/j.jpsychires.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Affective temperaments are assumed to have biological and neural bases. In the present study, we analyzed 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) images of healthy participants to explore the neural basis of affective temperaments. METHOD We utilized data of affective temperament measured by the Temperament Evaluation of Memphis, Pisa, Paris, and San Diego-Autoquestionnaire and 18F-FDG PET images of healthy participants from two of our previous studies. A multiple regression analysis was performed to assess the association between 18F-FDG uptake and temperament scores using Statistical Parametric Mapping 12. RESULTS The final sample included 62 healthy participants. Whole-brain analysis revealed a cluster of 18F-FDG uptake that was significantly and positively associated with irritable temperament scores in the right cerebellum (Crus II, VIII, and IX). After further adjustment for the other four temperament scores, whole-brain analysis revealed a cluster of 18F-FDG uptake significantly and positively associated with irritable temperament scores in the left insula and right cerebellum (Crus II, VIII, and IX). However, no significant association was found between 18F-FDG uptake and the other four temperaments (depressive, cyclothymic, hyperthymic, and anxious). CONCLUSIONS The left insula and right cerebellum of the cerebrocerebellar circuit may be one of the neural bases of irritable temperament.
Collapse
Affiliation(s)
- Masaaki Muronaga
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan
| | - Hirofumi Hirakawa
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan.
| | - Takeshi Terao
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan
| | - Toshihiko Izumi
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan
| | - Moriaki Satoh
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan
| | - Kentaro Kohno
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan
| |
Collapse
|
5
|
Long Y, Pan N, Yu Y, Zhang S, Qin K, Chen Y, Sweeney JA, DelBello MP, Gong Q. Shared and Distinct Neurobiological Bases of Bipolar Disorder and Attention-Deficit/Hyperactivity Disorder in Children and Adolescents: A Comparative Meta-Analysis of Structural Abnormalities. J Am Acad Child Adolesc Psychiatry 2024; 63:586-604. [PMID: 38072245 DOI: 10.1016/j.jaac.2023.09.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
OBJECTIVE Pediatric bipolar disorder (PBD) and attention-deficit/hyperactivity disorder (ADHD) frequently co-occur and share dysfunctions in affective and cognitive domains. As the neural substrates underlying their overlapping and dissociable symptomatology have not been well delineated, a meta-analysis of whole-brain voxel-based morphometry studies in PBD and ADHD was conducted. METHOD A systematic literature search was performed in PubMed, Web of Science, and Embase. The seed-based d mapping toolbox was used to identify altered clusters of PBD or ADHD and obtain their conjunctive and comparative abnormalities. Suprathreshold patterns were subjected to large-scale network analysis to identify affected brain networks. RESULTS The search revealed 10 PBD studies (268 patients) and 32 ADHD studies (1,333 patients). Decreased gray matter volumes in the right insula and anterior cingulate cortex relative to typically developing individuals were conjunctive in PBD and ADHD. Reduced volumes in the right inferior frontal gyrus, left orbitofrontal cortex, and hippocampus were more substantial in PBD, while decreased volumes in the left precentral gyrus, left inferior frontal gyrus, and right superior frontal gyrus were more pronounced in ADHD. Neurodevelopmental effects modulated patterns of the left hippocampus in PBD and those of the left inferior frontal gyrus in ADHD. CONCLUSION These findings suggest that PBD and ADHD are characterized by both common and distinct patterns of gray matter volume alterations. Their overlapping abnormalities may represent a transdiagnostic problem of attention and emotion regulation shared by PBD and ADHD, whereas the disorder-differentiating substrates may contribute to the relative differences in cognitive and affective features that define the 2 disorders. PLAIN LANGUAGE SUMMARY Pediatric bipolar disorder (BD) and attention-deficit/hyperactivity disorder (ADHD) frequently co-occur, with overlapping changes in emotional and cognitive functioning. This meta-analysis summarizes findings from 10 articles on BD and 32 articles on ADHD to identify similarities and differences in brain structure between youth with BD and youth with ADHD. The authors found that both disorders share decreased gray matter volumes in the right insula and anterior cingulate cortex, which play important roles in emotion processing and attention, respectively. Youth with BD had decreased gray matter volume in the right inferior frontal gyrus, left orbitofrontal gyrus, and left hippocampus, while youth with ADHD had decreased volumes in the left precentral gyrus, left inferior frontal gyrus, and right superior frontal gyrus. STUDY PREREGISTRATION INFORMATION Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder in Children/Adolescents: An Overlapping Meta-analysis; https://osf.io; trg4m.
Collapse
Affiliation(s)
- Yajing Long
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; University of Cincinnati, Cincinnati, Ohio
| | - Yifan Yu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shufang Zhang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Kun Qin
- University of Cincinnati, Cincinnati, Ohio; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ying Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; University of Cincinnati, Cincinnati, Ohio
| | | | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Xiamen Hospital of Sichuan University, Xiamen, China.
| |
Collapse
|
6
|
He J, Antonyan L, Zhu H, Ardila K, Li Q, Enoma D, Zhang W, Liu A, Chekouo T, Cao B, MacDonald ME, Arnold PD, Long Q. A statistical method for image-mediated association studies discovers genes and pathways associated with four brain disorders. Am J Hum Genet 2024; 111:48-69. [PMID: 38118447 PMCID: PMC10806749 DOI: 10.1016/j.ajhg.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 12/22/2023] Open
Abstract
Brain imaging and genomics are critical tools enabling characterization of the genetic basis of brain disorders. However, imaging large cohorts is expensive and may be unavailable for legacy datasets used for genome-wide association studies (GWASs). Using an integrated feature selection/aggregation model, we developed an image-mediated association study (IMAS), which utilizes borrowed imaging/genomics data to conduct association mapping in legacy GWAS cohorts. By leveraging the UK Biobank image-derived phenotypes (IDPs), the IMAS discovered genetic bases underlying four neuropsychiatric disorders and verified them by analyzing annotations, pathways, and expression quantitative trait loci (eQTLs). A cerebellar-mediated mechanism was identified to be common to the four disorders. Simulations show that, if the goal is identifying genetic risk, our IMAS is more powerful than a hypothetical protocol in which the imaging results were available in the GWAS dataset. This implies the feasibility of reanalyzing legacy GWAS datasets without conducting additional imaging, yielding cost savings for integrated analysis of genetics and imaging.
Collapse
Affiliation(s)
- Jingni He
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lilit Antonyan
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Harold Zhu
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Karen Ardila
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Qing Li
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - David Enoma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Andy Liu
- Sir Winston Churchill High School, Calgary, AB, Canada; College of Letters and Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thierry Chekouo
- Department of Mathematics and Statistics, Faculty of Science, University of Calgary, Calgary, AB, Canada; Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - M Ethan MacDonald
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul D Arnold
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Quan Long
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Mathematics and Statistics, Faculty of Science, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Petruso F, Giff A, Milano B, De Rossi M, Saccaro L. Inflammation and emotion regulation: a narrative review of evidence and mechanisms in emotion dysregulation disorders. Neuronal Signal 2023; 7:NS20220077. [PMID: 38026703 PMCID: PMC10653990 DOI: 10.1042/ns20220077] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Emotion dysregulation (ED) describes a difficulty with the modulation of which emotions are felt, as well as when and how these emotions are experienced or expressed. It is a focal overarching symptom in many severe and prevalent neuropsychiatric diseases, including bipolar disorders (BD), attention deficit/hyperactivity disorder (ADHD), and borderline personality disorder (BPD). In all these disorders, ED can manifest through symptoms of depression, anxiety, or affective lability. Considering the many symptomatic similarities between BD, ADHD, and BPD, a transdiagnostic approach is a promising lens of investigation. Mounting evidence supports the role of peripheral inflammatory markers and stress in the multifactorial aetiology and physiopathology of BD, ADHD, and BPD. Of note, neural circuits that regulate emotions appear particularly vulnerable to inflammatory insults and peripheral inflammation, which can impact the neuroimmune milieu of the central nervous system. Thus far, few studies have examined the link between ED and inflammation in BD, ADHD, and BPD. To our knowledge, no specific work has provided a critical comparison of the results from these disorders. To fill this gap in the literature, we review the known associations and mechanisms linking ED and inflammation in general, and clinically, in BD, ADHD, and BD. Our narrative review begins with an examination of the routes linking ED and inflammation, followed by a discussion of disorder-specific results accounting for methodological limitations and relevant confounding factors. Finally, we critically discuss both correspondences and discrepancies in the results and comment on potential vulnerability markers and promising therapeutic interventions.
Collapse
Affiliation(s)
| | - Alexis E. Giff
- Department of Neuroscience, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Beatrice A. Milano
- Sant’Anna School of Advanced Studies, Pisa, Italy
- University of Pisa, Pisa, Italy
| | | | - Luigi Francesco Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, Switzerland
| |
Collapse
|
8
|
Förster K, Horstmann RH, Dannlowski U, Houenou J, Kanske P. Progressive grey matter alterations in bipolar disorder across the life span - A systematic review. Bipolar Disord 2023; 25:443-456. [PMID: 36872645 DOI: 10.1111/bdi.13318] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
OBJECTIVES To elucidate the relationship between the course of bipolar disorder (BD) and structural brain changes across the life span, we conducted a systematic review of longitudinal imaging studies in adolescent and adult BD patients. METHODS Eleven studies with 329 BD patients and 277 controls met our PICOS criteria (participants, intervention, comparison, outcome and study design): BD diagnosis based on DSM criteria, natural course of disease, comparison of grey matter changes in BD individuals over ≥1-year interval between scans. RESULTS The selected studies yielded heterogeneous findings, partly due to varying patient characteristics, data acquisition and statistical models. Mood episodes were associated with greater grey matter loss in frontal brain regions over time. Brain volume decreased or remained stable in adolescent patients, whereas it increased in healthy adolescents. Adult BD patients showed increased cortical thinning and brain structural decline. In particular, disease onset in adolescence was associated with amygdala volume reduction, which was not reported in adult BD. CONCLUSIONS The evidence collected suggests that the progression of BD impairs adolescent brain development and accelerates structural brain decline across the lifespan. Age-specific changes in amygdala volume in adolescent BD suggest that reduced amygdala volume is a correlate of early onset BD. Clarifying the role of BD in brain development across the lifespan promises a deeper understanding of the progression of BD patients through different developmental episodes.
Collapse
Affiliation(s)
- Katharina Förster
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Rosa H Horstmann
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Josselin Houenou
- Translational Neuropsychiatry, Fondation FondaMental, Université Paris Est Créteil, INSERM U955, IMRB, APHP, DMU IMPACT, Mondor University Hospitals, Créteil, France
- NeuroSpin, Psychiatry Team, UNIACT Lab, CEA, University Paris Saclay, Gif-sur-Yvette, France
| | - Philipp Kanske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
9
|
Jørgensen JL, Macoveanu J, Petersen JZ, Knudsen GM, Kessing LV, Jørgensen MB, Miskowiak KW. Association of childhood trauma with cognitive impairment and structural brain alterations in remitted patients with bipolar disorder. J Affect Disord 2023:S0165-0327(23)00719-X. [PMID: 37236273 DOI: 10.1016/j.jad.2023.05.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Cognitive impairment affects many patients with bipolar disorder (BD). No pro-cognitive treatment with robust efficacy exists partly due to limited insight into underlying neurobiological abnormalities. METHODS This magnetic resonance imaging (MRI) study investigates structural neuronal correlates of cognitive impairment in BD by comparing brain measures in a large sample of cognitively impaired versus cognitively intact patients with BD or cognitively impaired patients with major depressive disorder (MDD) and healthy controls (HC). Participants underwent neuropsychological assessments and MRI scans. The cognitively impaired and - intact BD and MDD patient groups were compared with each other and HC regarding prefrontal cortex measures, hippocampus shape/volume, and total cerebral white (WM) and grey matter (GM). RESULTS Cognitively impaired BD patients showed lower total cerebral WM volume than HC, which scaled with poorer global cognitive performance and more childhood trauma. Cognitively impaired BD patients also showed lower adjusted GM volume and thickness in the frontopolar cortex than HC but greater adjusted GM volume in the temporal cortex than cognitively normal BD patients. Cognitively impaired BD patients showed decreased cingulate volume than cognitively impaired MDD patients. Hippocampal measures were similar across all groups. LIMITATIONS The cross-sectional study design prevented insights into causal relationships. CONCLUSIONS Lower total cerebral WM and regional frontopolar and temporal GM abnormalities may constitute structural neuronal correlates of cognitive impairment in BD, of which the WM deficits scale with the degree of childhood trauma. The results deepen the understanding of cognitive impairment in BD and provide a neuronal target for pro-cognitive treatment development.
Collapse
Affiliation(s)
- Josefine Lærke Jørgensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Julian Macoveanu
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jeff Zarp Petersen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Martin Balslev Jørgensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Förster K, Grotegerd D, Dohm K, Lemke H, Enneking V, Meinert S, Redlich R, Heindel W, Bauer J, Kugel H, Suslow T, Ohrmann P, Carballedo A, O'Keane V, Fagan A, Doolin K, McCarthy H, Kanske P, Frodl T, Dannlowski U. Association of hospitalization with structural brain alterations in patients with affective disorders over nine years. Transl Psychiatry 2023; 13:170. [PMID: 37202406 DOI: 10.1038/s41398-023-02452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
Repeated hospitalizations are a characteristic of severe disease courses in patients with affective disorders (PAD). To elucidate how a hospitalization during a nine-year follow-up in PAD affects brain structure, a longitudinal case-control study (mean [SD] follow-up period 8.98 [2.20] years) was conducted using structural neuroimaging. We investigated PAD (N = 38) and healthy controls (N = 37) at two sites (University of Münster, Germany, Trinity College Dublin, Ireland). PAD were divided into two groups based on the experience of in-patient psychiatric treatment during follow-up. Since the Dublin-patients were outpatients at baseline, the re-hospitalization analysis was limited to the Münster site (N = 52). Voxel-based morphometry was employed to examine hippocampus, insula, dorsolateral prefrontal cortex and whole-brain gray matter in two models: (1) group (patients/controls)×time (baseline/follow-up) interaction; (2) group (hospitalized patients/not-hospitalized patients/controls)×time interaction. Patients lost significantly more whole-brain gray matter volume of superior temporal gyrus and temporal pole compared to HC (pFWE = 0.008). Patients hospitalized during follow-up lost significantly more insular volume than healthy controls (pFWE = 0.025) and more volume in their hippocampus compared to not-hospitalized patients (pFWE = 0.023), while patients without re-hospitalization did not differ from controls. These effects of hospitalization remained stable in a smaller sample excluding patients with bipolar disorder. PAD show gray matter volume decline in temporo-limbic regions over nine years. A hospitalization during follow-up comes with intensified gray matter volume decline in the insula and hippocampus. Since hospitalizations are a correlate of severity, this finding corroborates and extends the hypothesis that a severe course of disease has detrimental long-term effects on temporo-limbic brain structure in PAD.
Collapse
Affiliation(s)
- Katharina Förster
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychology, University of Halle, Halle, Germany
| | - Walter Heindel
- Department of Radiology, University of Münster and University Hospital Münster, Münster, Germany
| | - Jochen Bauer
- Department of Radiology, University of Münster and University Hospital Münster, Münster, Germany
| | - Harald Kugel
- Department of Radiology, University of Münster and University Hospital Münster, Münster, Germany
| | - Thomas Suslow
- Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Angela Carballedo
- Department of Psychiatry & Trinity College Institute of Neuroscience, University Dublin, Dublin, Ireland
| | - Veronica O'Keane
- Department of Psychiatry & Trinity College Institute of Neuroscience, University Dublin, Dublin, Ireland
| | - Andrew Fagan
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Kelly Doolin
- Department of Psychiatry & Trinity College Institute of Neuroscience, University Dublin, Dublin, Ireland
| | - Hazel McCarthy
- Department of Psychiatry & Trinity College Institute of Neuroscience, University Dublin, Dublin, Ireland
| | - Philipp Kanske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Thomas Frodl
- Department of Psychiatry & Trinity College Institute of Neuroscience, University Dublin, Dublin, Ireland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital Aachen, RWTH University Aachen, Aachen, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
11
|
Pinto D, Martins R, Macedo A, Castelo Branco M, Valente Duarte J, Madeira N. Brain Hemispheric Asymmetry in Schizophrenia and Bipolar Disorder. J Clin Med 2023; 12:jcm12103421. [PMID: 37240527 DOI: 10.3390/jcm12103421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND This study aimed to compare brain asymmetry in patients with schizophrenia (SCZ), bipolar disorder (BPD), and healthy controls to test whether asymmetry patterns could discriminate and set boundaries between two partially overlapping severe mental disorders. METHODS We applied a fully automated voxel-based morphometry (VBM) approach to assess structural brain hemispheric asymmetry in magnetic resonance imaging (MRI) anatomical scans in 60 participants (SCZ = 20; BP = 20; healthy controls = 20), all right-handed and matched for gender, age, and education. RESULTS Significant differences in gray matter asymmetry were found between patients with SCZ and BPD, between SCZ patients and healthy controls (HC), and between BPD patients and HC. We found a higher asymmetry index (AI) in BPD patients when compared to SCZ in Brodmann areas 6, 11, and 37 and anterior cingulate cortex and an AI higher in SCZ patients when compared to BPD in the cerebellum. CONCLUSION Our study found significant differences in brain asymmetry between patients with SCZ and BPD. These promising results could be translated to clinical practice, given that structural brain changes detected by MRI are good candidates for exploration as biological markers for differential diagnosis, besides helping to understand disease-specific abnormalities.
Collapse
Affiliation(s)
- Diogo Pinto
- Faculty of Medicine, University of Coimbra (UC), 3004-504 Coimbra, Portugal
| | - Ricardo Martins
- Faculty of Medicine, University of Coimbra (UC), 3004-504 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - António Macedo
- Faculty of Medicine, University of Coimbra (UC), 3004-504 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Psychiatry, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-075 Coimbra, Portugal
| | - Miguel Castelo Branco
- Faculty of Medicine, University of Coimbra (UC), 3004-504 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Valente Duarte
- Faculty of Medicine, University of Coimbra (UC), 3004-504 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Nuno Madeira
- Faculty of Medicine, University of Coimbra (UC), 3004-504 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Psychiatry, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-075 Coimbra, Portugal
| |
Collapse
|
12
|
Yang W, Jin S, Duan W, Yu H, Ping L, Shen Z, Cheng Y, Xu X, Zhou C. The effects of childhood maltreatment on cortical thickness and gray matter volume: a coordinate-based meta-analysis. Psychol Med 2023; 53:1681-1699. [PMID: 36946124 DOI: 10.1017/s0033291723000661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Childhood maltreatment has been suggested to have an adverse impact on neurodevelopment, including microstructural brain abnormalities. Existing neuroimaging findings remain inconsistent and heterogeneous. We aim to explore the most prominent and robust cortical thickness (CTh) and gray matter volume (GMV) alterations associated with childhood maltreatment. A systematic search on relevant studies was conducted through September 2022. The whole-brain coordinate-based meta-analysis (CBMA) on CTh and GMV studies were conducted using the seed-based d mapping (SDM) software. Meta-regression analysis was subsequently applied to investigate potential associations between clinical variables and structural changes. A total of 45 studies were eligible for inclusion, including 11 datasets on CTh and 39 datasets on GMV, consisting of 2550 participants exposed to childhood maltreatment and 3739 unexposed comparison subjects. Individuals with childhood maltreatment exhibited overlapped deficits in the median cingulate/paracingulate gyri simultaneously revealed by both CTh and GM studies. Regional cortical thinning in the right anterior cingulate/paracingulate gyri and the left middle frontal gyrus, as well as GMV reductions in the left supplementary motor area (SMA) was also identified. No greater regions were found for either CTh or GMV. In addition, several neural morphology changes were associated with the average age of the maltreated individuals. The median cingulate/paracingulate gyri morphology might serve as the most robust neuroimaging feature of childhood maltreatment. The effects of early-life trauma on the human brain predominantly involved in cognitive functions, socio-affective functioning and stress regulation. This current meta-analysis enhanced the understanding of neuropathological changes induced by childhood maltreatment.
Collapse
Affiliation(s)
- Wei Yang
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Shushu Jin
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Weiwei Duan
- School of Mental Health, Jining Medical University, Jining, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, Jining, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Zonglin Shen
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cong Zhou
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China
- School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
13
|
Campos-Ugaz WA, Palacios Garay JP, Rivera-Lozada O, Alarcón Diaz MA, Fuster-Guillén D, Tejada Arana AA. An Overview of Bipolar Disorder Diagnosis Using Machine Learning Approaches: Clinical Opportunities and Challenges. IRANIAN JOURNAL OF PSYCHIATRY 2023; 18:237-247. [PMID: 37383968 PMCID: PMC10293694 DOI: 10.18502/ijps.v18i2.12372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 08/15/2023]
Abstract
Objective: Automatic diagnosis of psychiatric disorders such as bipolar disorder (BD) through machine learning techniques has attracted substantial attention from psychiatric and artificial intelligence communities. These approaches mostly rely on various biomarkers extracted from electroencephalogram (EEG) or magnetic resonance imaging (MRI)/functional MRI (fMRI) data. In this paper, we provide an updated overview of existing machine learning-based methods for bipolar disorder (BD) diagnosis using MRI and EEG data. Method : This study is a short non-systematic review with the aim of describing the current situation in automatic diagnosis of BD using machine learning methods. Therefore, an appropriate literature search was conducted via relevant keywords for original EEG/MRI studies on distinguishing BD from other conditions, particularly from healthy peers, in PubMed, Web of Science, and Google Scholar databases. Results: We reviewed 26 studies, including 10 EEG studies and 16 MRI studies (including structural and functional MRI), that used traditional machine learning methods and deep learning algorithms to automatically detect BD. The reported accuracies for EEG studies is about 90%, while the reported accuracies for MRI studies remains below the minimum level for clinical relevance, i.e. about 80% of the classification outcome for traditional machine learning methods. However, deep learning techniques have generally achieved accuracies higher than 95%. Conclusion: Research utilizing machine learning applied to EEG signals and brain images has provided proof of concept for how this innovative technique can help psychiatrists distinguish BD patients from healthy people. However, the results have been somewhat contradictory and we must keep away from excessive optimistic interpretations of the findings. Much progress is still needed to reach the level of clinical practice in this field.
Collapse
|
14
|
Long X, Li L, Wang X, Cao Y, Wu B, Roberts N, Gong Q, Kemp GJ, Jia Z. Gray matter alterations in adolescent major depressive disorder and adolescent bipolar disorder. J Affect Disord 2023; 325:550-563. [PMID: 36669567 DOI: 10.1016/j.jad.2023.01.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/24/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Gray matter volume (GMV) alterations in several emotion-related brain areas are implicated in mood disorders, but findings have been inconsistent in adolescents with major depressive disorder (MDD) or bipolar disorder (BD). METHODS We conducted a comprehensive meta-analysis of 35 region-of-interest (ROI) and 18 whole-brain voxel-based morphometry (VBM) MRI studies in adolescent MDD and adolescent BD, and indirectly compared the results in the two groups. The effects of age, sex, and other demographic and clinical scale scores were explored using meta-regression analysis. RESULTS In the ROI meta-analysis, right putamen volume was decreased in adolescents with MDD, while bilateral amygdala volume was decreased in adolescents with BD compared to healthy controls (HC). In the whole-brain VBM meta-analysis, GMV was increased in right middle frontal gyrus and decreased in left caudate in adolescents with MDD compared to HC, while in adolescents with BD, GMV was increased in left superior frontal gyrus and decreased in limbic regions compared with HC. MDD vs BD comparison revealed volume alteration in the prefrontal-limbic system. LIMITATION Different clinical features limit the comparability of the samples, and small sample size and insufficient clinical details precluded subgroup analysis or meta-regression analyses of these variables. CONCLUSIONS Distinct patterns of GMV alterations in adolescent MDD and adolescent BD could help to differentiate these two populations and provide potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Xipeng Long
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Lei Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xiuli Wang
- Department of Clinical Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu 610041, Sichuan, PR China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu 610041, Sichuan, PR China
| | - Baolin Wu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Neil Roberts
- The Queens Medical Research Institute (QMRI), School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China; Department of Radiology, West China Xiamen Hospital of Sichuan University, 699Jinyuan Xi Road, Jimei District, 361021 Xiamen, Fujian, PR China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Center (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
15
|
Andreou D, Steen NE, Jørgensen KN, Smelror RE, Wedervang-Resell K, Nerland S, Westlye LT, Nærland T, Myhre AM, Joa I, Reitan SMK, Vaaler A, Morken G, Bøen E, Elvsåshagen T, Boye B, Malt UF, Aukrust P, Skrede S, Kroken RA, Johnsen E, Djurovic S, Andreassen OA, Ueland T, Agartz I. Lower circulating neuron-specific enolase concentrations in adults and adolescents with severe mental illness. Psychol Med 2023; 53:1479-1488. [PMID: 35387700 PMCID: PMC10009386 DOI: 10.1017/s0033291721003056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/05/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Both neurodegenerative and neurodevelopmental abnormalities have been suggested to be part of the etiopathology of severe mental illness (SMI). Neuron-specific enolase (NSE), mainly located in the neuronal cytoplasm, may indicate the process as it is upregulated after neuronal injury while a switch from non-neuronal enolase to NSE occurs during neuronal maturation. METHODS We included 1132 adult patients with SMI [schizophrenia (SZ) or bipolar spectrum disorders], 903 adult healthy controls (HC), 32 adolescent patients with SMI and 67 adolescent HC. Plasma NSE concentrations were measured by enzyme immunoassay. For 842 adults and 85 adolescents, we used total grey matter volume (TGMV) based on T1-weighted magnetic resonance images processed in FreeSurfer v6.0. We explored NSE case-control differences in adults and adolescents separately. To investigate whether putative case-control differences in NSE were TGMV-dependent we controlled for TGMV. RESULTS We found significantly lower NSE concentrations in both adult (p < 0.001) and adolescent patients with SMI (p = 0.007) compared to HC. The results remained significant after controlling for TGMV. Among adults, both patients with SZ spectrum (p < 0.001) and bipolar spectrum disorders (p = 0.005) had lower NSE than HC. In both patient subgroups, lower NSE levels were associated with increased symptom severity. Among adults (p < 0.001) and adolescents (p = 0.040), females had lower NSE concentrations than males. CONCLUSION We found lower NSE concentrations in adult and adolescent patients with SMI compared to HC. The results suggest the lack of progressive neuronal injury, and may reflect abnormal neuronal maturation. This provides further support of a neurodevelopmental rather than a neurodegenerative mechanism in SMI.
Collapse
Affiliation(s)
- Dimitrios Andreou
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway
| | - Kjetil Nordbø Jørgensen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Runar Elle Smelror
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Kirsten Wedervang-Resell
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Child and Adolescent Mental Health Research Unit, Division of Mental Health and Addiction, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Stener Nerland
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Lars T. Westlye
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Terje Nærland
- K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Anne Margrethe Myhre
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Inge Joa
- TIPS – Network for Clinical Research in Psychosis, Stavanger University Hospital, Stavanger, Norway
- Faculty of Health, Network for Medical Sciences, University of Stavanger, Stavanger, Norway
| | - Solveig Merete Klæbo Reitan
- Faculty of Medicine and Health Sciences, Department of Mental Health, NTNU, Trondheim, Norway
- St Olavs Hospital, Department of Mental Health, Trondheim, Norway
| | - Arne Vaaler
- Faculty of Medicine and Health Sciences, Department of Mental Health, NTNU, Trondheim, Norway
- St Olavs Hospital, Department of Mental Health, Trondheim, Norway
| | - Gunnar Morken
- Faculty of Medicine and Health Sciences, Department of Mental Health, NTNU, Trondheim, Norway
- St Olavs Hospital, Department of Mental Health, Trondheim, Norway
| | - Erlend Bøen
- Psychosomatic and C-L Psychiatry, Adult, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Torbjørn Elvsåshagen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway
- Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Birgitte Boye
- Psychosomatic and C-L Psychiatry, Adult, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Behavioural Medicine, University of Oslo, Oslo, Norway
| | - Ulrik Fredrik Malt
- Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Silje Skrede
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Rune Andreas Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Bergen, Norway
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Bergen, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, Norwegian Centre for Mental Disorders Research (NORMENT), University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
16
|
Xi C, Li A, Lai J, Huang X, Zhang P, Yan S, Jiao M, Huang H, Hu S. Brain-gut microbiota multimodal predictive model in patients with bipolar depression. J Affect Disord 2023; 323:140-152. [PMID: 36400152 DOI: 10.1016/j.jad.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND The "microbiota-gut-brain axis" which bridges the brain and gut microbiota is involved in the pathological mechanisms of bipolar disorder (BD), but rare is known about the exact association patterns and the potential for clinical diagnosis and treatment outcome prediction. METHODS At baseline, fecal samples and resting-state MRI data were collected from 103 BD depression patients and 39 healthy controls (HCs) for metagenomic sequencing and network-based functional connectivity (FC), grey matter volume (GMV) analyses. All patients then received 4-weeks quetiapine treatment and were further classified as responders and non-responders. Based on pre-treatment datasets, the correlation networks were established between gut microbiota and neuroimaging measures and the multimodal kernal combination support vector machine (SVM) classifiers were constructed to distinguish BD patients from HCs, and quetiapine responders from non-responders. RESULTS The multi-modal pre-treatment characteristics of quetiapine responders, were closer to the HCs compared to non-responders. And the correlation network analyses found the substantial correlations existed in HC between the Anaerotruncus_ unclassified,Porphyromonas_asaccharolytica,Actinomyces_graevenitzii et al. and the functional connectomes involved default mode network (DMN),somatomotor (SM), visual, limbic and basal ganglia networks were disrupted in BD. Moreover, in terms of the multimodal classifier, it reached optimized area under curve (AUC-ROC) at 0.9517 when classified BD from HC, and also acquired 0.8292 discriminating quetiapine responders from non-responders, which consistently better than even using the best unique modality. LIMITATIONS Lack post-treatment and external validation datasets; size of HCs is modest. CONCLUSIONS Multi-modalities of combining pre-treatment gut microbiota with neuroimaging endophenotypes might be a superior approach for accurate diagnosis and quetiapine efficacy prediction in BD.
Collapse
Affiliation(s)
- Caixi Xi
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorders' Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310003, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 310003, China
| | - Ang Li
- Gene Hospital of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorders' Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310003, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 310003, China
| | - Xiaojie Huang
- Polytechnic Institute of Zhejiang University, Hangzhou 310015, China
| | - Peifen Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorders' Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310003, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 310003, China
| | - Su Yan
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengfan Jiao
- Gene Hospital of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huimin Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorders' Management in Zhejiang Province, Hangzhou 310003, China; Brain Research Institute of Zhejiang University, China; Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310003, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 310003, China.
| |
Collapse
|
17
|
Common and distinct patterns of gray matter alterations in young adults with borderline personality disorder and major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2022; 272:1569-1582. [PMID: 35419633 DOI: 10.1007/s00406-022-01405-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/25/2022] [Indexed: 02/08/2023]
Abstract
Young adults with borderline personality disorder (BPD) and major depressive disorder (MDD) have a relatively high comorbidity rate; however, whether they share a neurobiological basis remains controversial. Although previous studies have reported respective brain alterations, the common and distinct gray matter changes between two disorders are still inconsistent. We conducted a meta-analysis using anisotropic effect size-based algorithms (ASE-SDM) to identify consistent findings from whole-brain voxel-based morphometry (VBM) studies of gray matter volume (GMV) in 274 young adults (< 45 years old) with BPD and 1576 with MDD. Compared with healthy controls, the young adults with BPD showed GMV reduction mainly in the prefrontal cortex including the inferior frontal gyrus and superior frontal gyrus, medial temporal network, and insula, whereas the MDD showed GMV alteration in the visual network (fusiform gyrus and inferior temporal gyrus), sensorimotor network (bilateral postcentral gyrus (PoCG) and right cerebellum) and left caudate nucleus. The GMV differences between these two disorders were concentrated in the left orbitofrontal cortex, cingulate cortex, right insula, and cerebellum. The meta-regression of the MDD group showed a negative association between disease duration and the right middle cingulate gyrus as well as negative associations between depressive symptoms and brain regions of the right cerebellum and the left PoCG. Our results identified common and distinct patterns of GMV alteration between BPD and MDD, which may provide neuroimage evidence for the disorder comorbidity mechanisms and partly indicate the similar and different biological features in emotion regulation of the two disorders. This study was registered with PROSPERO (CRD42020212758).
Collapse
|
18
|
Xie H, Cao Y, Long X, Xiao H, Wang X, Qiu C, Jia Z. A comparative study of gray matter volumetric alterations in adults with attention deficit hyperactivity disorder and bipolar disorder type I. J Psychiatr Res 2022; 155:410-419. [PMID: 36183596 DOI: 10.1016/j.jpsychires.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/29/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) and bipolar disorder type I (BD-Ι) share great overlapping symptoms and are highly comorbid. We aimed to compare and obtain the common and distinct gray matter volume (GMV) patterns in adult patients. METHOD We searched four databases to include whole-brain voxel-based morphometry studies and compared the GMV patterns between ADHD and healthy controls (HCs), between BD-I and HCs, and between ADHD and BD-I using anisotropic effect-size signed differential mapping software. RESULTS We included 677 ADHD and 452 BD-Ι patients. Compared with HCs, ADHD patients showed smaller GMV in the anterior cingulate cortex (ACC) and supramarginal gyrus but a larger caudate nucleus. Compared with HCs, BD-Ι patients showed smaller GMV in the orbitofrontal cortex, parahippocampal gyrus, and amygdala. No common GMV alterations were found, whereas ADHD showed the smaller ACC and larger amygdala relative to BD-Ι. Subgroup analyses revealed the larger insula in manic patients, which was positively associated with the Young Mania Rating Scale. The decreased median cingulate cortex (MCC) was positively associated with the ages in ADHD, whereas the MCC was negatively associated with the ages in BD-Ι. LIMITATIONS All included data were cross-sectional; Potential effects of medication and disease course were not analyzed due to the limited data. CONCLUSIONS ADHD showed altered GMV in the frontal-striatal frontal-parietal circuits, and BD-Ι showed altered GMV in the prefrontal-amygdala circuit. These findings could contribute to a better understanding of the neuropathology of the two disorders.
Collapse
Affiliation(s)
- Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xipeng Long
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hongqi Xiao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiuli Wang
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, 610041, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Chen G, Wang J, Gong J, Qi Z, Fu S, Tang G, Chen P, Huang L, Wang Y. Functional and structural brain differences in bipolar disorder: a multimodal meta-analysis of neuroimaging studies. Psychol Med 2022; 52:2861-2873. [PMID: 36093787 DOI: 10.1017/s0033291722002392] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Numerous studies of resting-state functional imaging and voxel-based morphometry (VBM) have revealed differences in specific brain regions of patients with bipolar disorder (BD), but the results have been inconsistent. METHODS A whole-brain voxel-wise meta-analysis was conducted on resting-state functional imaging and VBM studies that compared differences between patients with BD and healthy controls using Seed-based d Mapping with Permutation of Subject Images software. RESULTS A systematic literature search identified 51 functional imaging studies (1842 BD and 2190 controls) and 83 VBM studies (2790 BD and 3690 controls). Overall, patients with BD displayed increased resting-state functional activity in the left middle frontal gyrus, right inferior frontal gyrus (IFG) extending to the right insula, right superior frontal gyrus and bilateral striatum, as well as decreased resting-state functional activity in the left middle temporal gyrus extending to the left superior temporal gyrus and post-central gyrus, left cerebellum, and bilateral precuneus. The meta-analysis of VBM showed that patients with BD displayed decreased VBM in the right IFG extending to the right insula, temporal pole and superior temporal gyrus, left superior temporal gyrus extending to the left insula, temporal pole, and IFG, anterior cingulate cortex, left superior frontal gyrus (medial prefrontal cortex), left thalamus, and right fusiform gyrus. CONCLUSIONS The multimodal meta-analyses suggested that BD showed similar patterns of aberrant brain activity and structure in the insula extending to the temporal cortex, fronto-striatal-thalamic, and default-mode network regions, which provide useful insights for understanding the underlying pathophysiology of BD.
Collapse
Affiliation(s)
- Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Junjing Wang
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, 510006, China
| | - Jiaying Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
- Department of Radiology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Siying Fu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
20
|
Rajashekar N, Blumberg HP, Villa LM. Neuroimaging Studies of Brain Structure in Older Adults with Bipolar Disorder: A Review. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2022; 7:e220006. [PMID: 36092855 PMCID: PMC9453888 DOI: 10.20900/jpbs.20220006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bipolar disorder (BD) is a common mood disorder that can have severe consequences during later life, including suffering and impairment due to mood and cognitive symptoms, elevated risk for dementia and an especially high risk for suicide. Greater understanding of the brain circuitry differences involved in older adults with BD (OABD) in later life and their relationship to aging processes is required to improve outcomes of OABD. The current literature on gray and white matter findings, from high resolution structural and diffusion-weighted magnetic resonance imaging (MRI) studies, has shown that BD in younger age groups is associated with gray matter reductions within cortical and subcortical brain regions that subserve emotion processing and regulation, as well as reduced structural integrity of white matter tracts connecting these brain regions. While fewer neuroimaging studies have focused on OABD, it does appear that many of the structural brain differences found in younger samples are present in OABD. There is also initial suggestion that there are additional brain differences, for at least a subset of OABD, that may result from more pronounced gray and white matter declines with age that may contribute to adverse outcomes. Preclinical and clinical data supporting neuro-plastic and -protective effects of mood-stabilizing medications, suggest that treatments may reverse and/or prevent the progression of brain changes thereby reducing symptoms. Future neuroimaging research implementing longitudinal designs, and large-scale, multi-site initiatives with detailed clinical and treatment data, holds promise for reducing suffering, cognitive dysfunction and suicide in OABD.
Collapse
Affiliation(s)
- Niroop Rajashekar
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Hilary P. Blumberg
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
- Child Study Center, Yale School of Medicine, New Haven, CT 06519, USA
| | - Luca M. Villa
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Psychiatry, University of Oxford, Oxford, OX37JX, UK
| |
Collapse
|
21
|
Martins HC, Gilardi C, Sungur AÖ, Winterer J, Pelzl MA, Bicker S, Gross F, Kisko TM, Malikowska‐Racia N, Braun MD, Brosch K, Nenadic I, Stein F, Meinert S, Schwarting RKW, Dannlowski U, Kircher T, Wöhr M, Schratt G. Bipolar‐associated
miR
‐499‐5p controls neuroplasticity by downregulating the Cav1.2 subunit
CACNB2. EMBO Rep 2022; 23:e54420. [PMID: 35969184 PMCID: PMC9535808 DOI: 10.15252/embr.202154420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Bipolar disorder (BD) is a chronic mood disorder characterized by manic and depressive episodes. Dysregulation of neuroplasticity and calcium homeostasis are frequently observed in BD patients, but the underlying molecular mechanisms are largely unknown. Here, we show that miR‐499‐5p regulates dendritogenesis and cognitive function by downregulating the BD risk gene CACNB2. miR‐499‐5p expression is increased in peripheral blood of BD patients, as well as in the hippocampus of rats which underwent juvenile social isolation. In rat hippocampal neurons, miR‐499‐5p impairs dendritogenesis and reduces surface expression and activity of the L‐type calcium channel Cav1.2. We further identified CACNB2, which encodes a regulatory β‐subunit of Cav1.2, as a direct functional target of miR‐499‐5p in neurons. miR‐499‐5p overexpression in the hippocampus in vivo induces short‐term memory impairments selectively in rats haploinsufficient for the Cav1.2 pore forming subunit Cacna1c. In humans, miR‐499‐5p expression is negatively associated with gray matter volumes of the left superior temporal gyrus, a region implicated in auditory and emotional processing. We propose that stress‐induced miR‐499‐5p overexpression contributes to dendritic impairments, deregulated calcium homeostasis, and neurocognitive dysfunction in BD.
Collapse
Affiliation(s)
- Helena C Martins
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Carlotta Gilardi
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - A Özge Sungur
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Center for Mind, Brain, and Behavior Philipps‐University of Marburg Marburg Germany
| | - Jochen Winterer
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Michael A Pelzl
- Institute for Physiological Chemistry, Biochemical‐Pharmacological Center Marburg Philipps‐University of Marburg Marburg Germany
- Psychiatry and Psychotherapy University of Tübingen Tübingen Germany
| | - Silvia Bicker
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Fridolin Gross
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Theresa M Kisko
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
| | - Natalia Malikowska‐Racia
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences Krakow Poland
| | - Moria D Braun
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry University of Münster Münster Germany
| | - Rainer K W Schwarting
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Center for Mind, Brain, and Behavior Philipps‐University of Marburg Marburg Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry University of Münster Münster Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Markus Wöhr
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Center for Mind, Brain, and Behavior Philipps‐University of Marburg Marburg Germany
- Social and Affective Neuroscience Research Group, Laboratory of Biological Psychology, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences KU Leuven Leuven Belgium
- Leuven Brain Institute KU Leuven Leuven Belgium
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| |
Collapse
|
22
|
Sharma AL, Wang H, Zhang Z, Millien G, Tyagi M, Hongpaisan J. HIV Promotes Neurocognitive Impairment by Damaging the Hippocampal Microvessels. Mol Neurobiol 2022; 59:4966-4986. [PMID: 35665894 PMCID: PMC10071835 DOI: 10.1007/s12035-022-02890-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Current evidence suggests that mild cerebrovascular changes could induce neurodegeneration and contribute to HIV-associated neurocognitive disease (HAND) in HIV patients. We investigated both the quantitative and qualitative impact of HIV infection on brain microvessels, especially on hippocampal microvessels, which are crucial for optimal O2 supply, and thus for maintaining memory and cognitive abilities. The results obtained using cultured human brain microvascular endothelial cells (HBMEC) were reproduced using a suitable mouse model and autopsied human HIV hippocampus. In HBMEC, we found significantly higher oxidative stress-dependent apoptotic cell loss following 5 h of treatment of GST-Tat (1 µg/ml) compared to GST (1 µg/ml) control. We noticed complete recovery of HBMEC cells after 24 h of GST-Tat treatment, due to temporal degradation or inactivation of GST-Tat. Interestingly, we found a sustained increase in mitochondrial oxidative DNA damage marker 8-OHdG, as well as an increase in hypoxia-inducible factor hypoxia-inducible factor-1α (HIF-1α). In our mouse studies, upon short-term injection of GST-Tat, we found the loss of small microvessels (mostly capillaries) and vascular endothelial growth factor (VEGF), but not large microvessels (arterioles and venules) in the hippocampus. In addition to capillary loss, in the post-mortem HIV-infected human hippocampus, we observed large microvessels with increased wall cells and perivascular tissue degeneration. Together, our data show a crucial role of Tat in inducing HIF-1α-dependent inhibition of mitochondrial transcriptional factor A (TFAM) and dilated perivascular space. Thus, our results further define the underlying molecular mechanism promoting mild cerebrovascular disease, neuropathy, and HAND pathogenesis in HIV patients.
Collapse
Affiliation(s)
- Adhikarimayum Lakhikumar Sharma
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Huaixing Wang
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Zongxiu Zhang
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Guetchyn Millien
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Mudit Tyagi
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA.
| | - Jarin Hongpaisan
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA.
| |
Collapse
|
23
|
Andreou D, Jørgensen KN, Nerland S, Ueland T, Vaskinn A, Haukvik UK, Yolken RH, Andreassen OA, Agartz I. Herpes simplex virus 1 infection on grey matter and general intelligence in severe mental illness. Transl Psychiatry 2022; 12:276. [PMID: 35821107 PMCID: PMC9276804 DOI: 10.1038/s41398-022-02044-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Schizophrenia and bipolar disorder are severe mental illnesses (SMI) linked to both genetic and environmental factors. Herpes simplex virus 1 (HSV1) is a common neurotropic pathogen which after the primary infection establishes latency with periodic reactivations. We hypothesized that the latent HSV1 infection is associated with brain structural abnormalities and cognitive impairment, especially in SMI. We included 420 adult patients with SMI (schizophrenia or bipolar spectrum) and 481 healthy controls. Circulating HSV1 immunoglobulin G concentrations were measured with immunoassays. We measured the total grey matter volume (TGMV), cortical, subcortical, cerebellar and regional cortical volumes based on T1-weighted MRI scans processed in FreeSurfer v6.0.0. Intelligence quotient (IQ) was assessed with the Wechsler Abbreviated Scale of Intelligence. Seropositive patients had significantly smaller TGMV than seronegative patients (642 cm3 and 654 cm3, respectively; p = 0.019) and lower IQ (104 and 107, respectively; p = 0.018). No TGMV or IQ differences were found between seropositive and seronegative healthy controls. Post-hoc analysis showed that (a) in both schizophrenia and bipolar spectrum, seropositive patients had similarly smaller TGMV than seronegative patients, whereas the HSV1-IQ association was driven by the schizophrenia spectrum group, and (b) among all patients, seropositivity was associated with smaller total cortical (p = 0.016), but not subcortical or cerebellar grey matter volumes, and with smaller left caudal middle frontal, precentral, lingual, middle temporal and banks of superior temporal sulcus regional cortical grey matter volumes. The results of this cross-sectional study indicate that HSV1 may be an environmental factor associated with brain structural abnormalities and cognitive impairment in SMI.
Collapse
Affiliation(s)
- Dimitrios Andreou
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway. .,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden.
| | - Kjetil Nordbø Jørgensen
- grid.5510.10000 0004 1936 8921Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.413684.c0000 0004 0512 8628Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Stener Nerland
- grid.5510.10000 0004 1936 8921Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.413684.c0000 0004 0512 8628Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Torill Ueland
- grid.55325.340000 0004 0389 8485Psychosis Research Section, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway ,grid.55325.340000 0004 0389 8485Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Anja Vaskinn
- grid.5510.10000 0004 1936 8921Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.55325.340000 0004 0389 8485Centre for Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Unn K. Haukvik
- grid.5510.10000 0004 1936 8921Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.55325.340000 0004 0389 8485Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway ,grid.55325.340000 0004 0389 8485Centre for Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Robert H. Yolken
- grid.21107.350000 0001 2171 9311Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Ole A. Andreassen
- grid.5510.10000 0004 1936 8921Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.55325.340000 0004 0389 8485Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- grid.5510.10000 0004 1936 8921Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.413684.c0000 0004 0512 8628Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway ,grid.425979.40000 0001 2326 2191Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
24
|
Ulugut H, Trieu C, Groot C, van 't Hooft JJ, Tijms BM, Scheltens P, Ossenkoppele R, Barkhof F, van den Heuvel OA, Pijnenburg YAL. Overlap of Neuroanatomical Involvement in Frontotemporal Dementia and Primary Psychiatric Disorders: A Meta-analysis. Biol Psychiatry 2022; 93:820-828. [PMID: 35965106 DOI: 10.1016/j.biopsych.2022.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/05/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Despite significant symptomatic overlap between behavioral variant frontotemporal dementia (bvFTD) and primary psychiatric disorders (PPDs), a potential overlap in their structural anatomical changes has not been studied systematically. METHODS In this magnetic resonance imaging-based meta-analysis, we included studies on bvFTD, schizophrenia, bipolar disorder, and autism spectrum disorder that 1) used voxel-based morphometry analysis to assess regional gray matter volumes (GMVs) and 2) reported the coordinates of the regional GMV. Separate analyses were performed comparing clusters of coordinate-based changes in the GMVs (n = 24,183) between patients and control subjects, and overlapping brain regions between bvFTD and each PPD were examined. RESULTS We found that GMV alterations in the prefrontal and anterior cingulate cortices, temporal lobe, amygdala, and insula comprise the transdiagnostic brain alterations in bvFTD and PPD. CONCLUSIONS Our meta-analysis revealed significant anatomical overlap that paves the way for future investigations of shared pathophysiological pathways, and our cross-disorder approach would provide new insights to better understand the relationship between bvFTD and PPD.
Collapse
Affiliation(s)
- Hulya Ulugut
- Departments of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Calvin Trieu
- Departments of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Colin Groot
- Departments of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jochum J van 't Hooft
- Departments of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Betty M Tijms
- Departments of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Philip Scheltens
- Departments of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Departments of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Clinical Memory Research Unit, Lunds Universitet, Lund, Sweden
| | - Frederik Barkhof
- Radiology and Nuclear Medicine, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; University College London, Institutes of Neurology and Healthcare Engineering, London, United Kingdom
| | - Odile A van den Heuvel
- Department of Psychiatry, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Departments of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Kang Y, Kang W, Han KM, Tae WS, Ham BJ. Associations between cognitive impairment and cortical thickness alterations in patients with euthymic and depressive bipolar disorder. Psychiatry Res Neuroimaging 2022; 322:111462. [PMID: 35231679 DOI: 10.1016/j.pscychresns.2022.111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Korea University, Brain Convergence Research Center
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Alteration of cortical functional networks in mood disorders with resting-state electroencephalography. Sci Rep 2022; 12:5920. [PMID: 35396563 PMCID: PMC8993886 DOI: 10.1038/s41598-022-10038-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/24/2022] [Indexed: 01/10/2023] Open
Abstract
Studies comparing bipolar disorder (BD) and major depressive disorder (MDD) are scarce, and the neuropathology of these disorders is poorly understood. This study investigated source-level cortical functional networks using resting-state electroencephalography (EEG) in patients with BD and MDD. EEG was recorded in 35 patients with BD, 39 patients with MDD, and 42 healthy controls (HCs). Graph theory-based source-level weighted functional networks were assessed via strength, clustering coefficient (CC), and path length (PL) in six frequency bands. At the global level, patients with BD and MDD showed higher strength and CC, and lower PL in the high beta band, compared to HCs. At the nodal level, compared to HCs, patients with BD showed higher high beta band nodal CCs in the right precuneus, left isthmus cingulate, bilateral paracentral, and left superior frontal; however, patients with MDD showed higher nodal CC only in the right precuneus compared to HCs. Although both MDD and BD patients had similar global level network changes, they had different nodal level network changes compared to HCs. Our findings might suggest more altered cortical functional network in patients with BD than in those with MDD.
Collapse
|
27
|
Aggio V, Fabbella L, Finardi A, Mazza EB, Colombo C, Falini A, Benedetti F, Furlan R. Neurofilaments light: Possible biomarker of brain modifications in bipolar disorder. J Affect Disord 2022; 300:243-248. [PMID: 34979181 DOI: 10.1016/j.jad.2021.12.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Brain white matter (WM) abnormalities are biomarkers that seem to be involved in bipolar disorder (BD) aetiology and maintenance. Evidences suggest a possible association between neurodegeneration, neuroaxonal alterations and BD. A biomarker that is recently drawing attention is neurofilaments light (NfL) chain, a cytoskeletal intermediate filament protein expressed in neurons. To investigate neuroimaging alterations associated with BD, we studied the association between NfL levels and WM microstructure. METHODS NfL plasma quantification was performed in a sample of 45 depressed BD patients compared with 29 healthy controls (HC) using Quanterix SIMOA assay. Statistical analysis were conducted to evaluate NfL levels differences between BD patients and controls. Analyses of the diffusion data were performed using Tract Based Spatial Statistics (TBSS) on Diffusion Tensor images acquired using a 3.0 Tesla MR scanner. RESULTS Patients had higher NfL levels than HC (9.13 ± 4.78 vs 4.28 ± 2.39 pg/ml; p < 0.001). The separate-slopes analysis of variance showed a significant interaction of age with diagnosis (Likelihood-ratio test: χ2 = 27.52, p < 0.0001) with significant effects only in the BD sample (p = 0.023). The TBSS analysis, performed within the BD sample, showed a significant positive correlation between NfL levels and axial diffusivity (AD) in a wide single cluster encompassing several tracts. DISCUSSION Our results suggest that the physiological age-dependent increment of NfL level is augmented in BD, possibly because of increased remodelling and plasticity processes related to an accelerated ageing condition. The positive association between NfL levels and AD, may reflect a condition of remyelination and axonal regeneration.
Collapse
Affiliation(s)
- Veronica Aggio
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, Milan 20127, Italy.
| | - Lorena Fabbella
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Beatrice Mazza
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, Milan 20127, Italy
| | - Cristina Colombo
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, Milan 20127, Italy; Vita-Salute San Raffaele University Milan, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University Milan, Italy; Neuroradiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Stamira d'Ancona, 20, Milan 20127, Italy; Vita-Salute San Raffaele University Milan, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University Milan, Italy
| |
Collapse
|
28
|
Chaudhary S, Zhornitsky S, Chao HH, van Dyck CH, Li CSR. Cerebral Volumetric Correlates of Apathy in Alzheimer's Disease and Cognitively Normal Older Adults: Meta-Analysis, Label-Based Review, and Study of an Independent Cohort. J Alzheimers Dis 2022; 85:1251-1265. [PMID: 34924392 PMCID: PMC9215906 DOI: 10.3233/jad-215316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Affecting nearly half of the patients with Alzheimer's disease (AD), apathy is associated with higher morbidity and reduced quality of life. Basal ganglia and cortical atrophy have been implicated in apathy. However, the findings have varied across studies and left unclear whether subdomains of apathy may involve distinct neuroanatomical correlates. OBJECTIVE To identify neuroanatomical correlates of AD-associated apathy. METHODS We performed a meta-analysis and label-based review of the literature. Further, following published routines of voxel-based morphometry, we aimed to confirm the findings in an independent cohort of 19 patients with AD/mild cognitive impairment and 25 healthy controls assessed with the Apathy Evaluation Scale. RESULTS Meta-analysis of 167 AD and 56 healthy controls showed convergence toward smaller basal ganglia gray matter volume (GMV) in apathy. Label-based review showed anterior cingulate, putamen, insula, inferior frontal gyrus (IFG) and middle temporal gyrus (MTG) atrophy in AD apathy. In the independent cohort, with small-volume-correction, right putamen and MTG showed GMVs in negative correlation with Apathy Evaluation Scale total, behavioral, and emotional scores, and right IFG with emotional score (p < 0.05 family-wise error (FWE)-corrected), controlling for age, education, intracranial volume, and depression. With the Mini-Mental State Examination scores included as an additional covariate, the correlation of right putamen GMV with behavioral and emotional score, right MTG GMV with total and emotional score, and right IFG GMV with emotional score were significant. CONCLUSION The findings implicate putamen, MTG and IFG atrophy in AD associated apathy, potentially independent of cognitive impairment and depression, and suggest potentially distinct volumetric correlates of apathy.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Herta H Chao
- Comprehensive Cancer Center, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Cancer Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
29
|
Salminen LE, Tubi MA, Bright J, Thomopoulos SI, Wieand A, Thompson PM. Sex is a defining feature of neuroimaging phenotypes in major brain disorders. Hum Brain Mapp 2022; 43:500-542. [PMID: 33949018 PMCID: PMC8805690 DOI: 10.1002/hbm.25438] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Sex is a biological variable that contributes to individual variability in brain structure and behavior. Neuroimaging studies of population-based samples have identified normative differences in brain structure between males and females, many of which are exacerbated in psychiatric and neurological conditions. Still, sex differences in MRI outcomes are understudied, particularly in clinical samples with known sex differences in disease risk, prevalence, and expression of clinical symptoms. Here we review the existing literature on sex differences in adult brain structure in normative samples and in 14 distinct psychiatric and neurological disorders. We discuss commonalities and sources of variance in study designs, analysis procedures, disease subtype effects, and the impact of these factors on MRI interpretation. Lastly, we identify key problems in the neuroimaging literature on sex differences and offer potential recommendations to address current barriers and optimize rigor and reproducibility. In particular, we emphasize the importance of large-scale neuroimaging initiatives such as the Enhancing NeuroImaging Genetics through Meta-Analyses consortium, the UK Biobank, Human Connectome Project, and others to provide unprecedented power to evaluate sex-specific phenotypes in major brain diseases.
Collapse
Affiliation(s)
- Lauren E. Salminen
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Meral A. Tubi
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Joanna Bright
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Alyssa Wieand
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| |
Collapse
|
30
|
Gray matter volume covariance networks are associated with altered emotional processing in bipolar disorder: a source-based morphometry study. Brain Imaging Behav 2021; 16:738-747. [PMID: 34546520 PMCID: PMC9010334 DOI: 10.1007/s11682-021-00541-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 11/26/2022]
Abstract
Widespread regional gray matter volume (GMV) alterations have been reported in bipolar disorder (BD). Structural networks, which are thought to better reflect the complex multivariate organization of the brain, and their clinical and psychological function have not been investigated yet in BD. 24 patients with BD type-I (BD-I), and 30 with BD type-II (BD-II), and 45 controls underwent MRI scan. Voxel-based morphometry and source-based morphometry (SBM) were performed to extract structural covariation patterns of GMV. SBM components associated with morphometric differences were compared among diagnoses. Executive function and emotional processing correlated with morphometric characteristics. Compared to controls, BD-I showed reduced GMV in the temporo-insular-parieto-occipital cortex and in the culmen. An SBM component spanning the prefrontal-temporal-occipital network exhibited significantly lower GMV in BD-I compared to controls, but not between the other groups. The structural network covariance in BD-I was associated with the number of previous manic episodes and with worse executive performance. Compared to BD-II, BD-I showed a loss of GMV in the temporal-occipital regions, and this was correlated with impaired emotional processing. Altered prefrontal-temporal-occipital network structure could reflect a neural signature associated with visuospatial processing and problem-solving impairments as well as emotional processing and illness severity in BD-I.
Collapse
|
31
|
Zou Y, Kennedy KG, Grigorian A, Fiksenbaum L, Freeman N, Zai CC, Kennedy JL, MacIntosh BJ, Goldstein BI. Antioxidative Defense Genes and Brain Structure in Youth Bipolar Disorder. Int J Neuropsychopharmacol 2021; 25:89-98. [PMID: 34387669 PMCID: PMC8832218 DOI: 10.1093/ijnp/pyab056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/27/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Oxidative stress is implicated in the neuropathology of bipolar disorder (BD). We investigated the association of single-nucleotide polymorphisms (SNPs) in the antioxidative genes superoxide dismutase 2 (SOD2) and glutathione peroxidase 3 (GPX3) with structural neuroimaging phenotypes in youth BD. METHODS SOD2 rs4880 and GPX3 rs3792797 SNP genotypes, along with structural magnetic resonance imaging, were obtained from 147 youth (BD = 75; healthy controls = 72). Images were processed using FreeSurfer, yielding surface area, volume, and thickness values for regions of interest (prefrontal cortex [PFC], caudal anterior cingulate cortex, hippocampus) and for vertex-wise whole-brain analysis. Analyses controlled for age, sex, race, and intracranial volume for volume, area, and thickness analyses. RESULT Regions of interest analyses revealed diagnosis-by-SOD2 rs4880 interaction effects for caudal anterior cingulate cortex volume and surface area as well as PFC volume; in each case, there was lower volume/area in the BD GG genotype group vs the healthy controls GG genotype group. There was a significant BD diagnosis × GPX3 rs3793797 interaction effect for PFC surface area, where area was lower in the BD A-allele carrier group vs the other genotype groups. Vertex-wise analyses revealed significant interaction effects in frontal, temporal, and parietal regions related to smaller brain structure in the BD SOD2 rs4880 GG group and BD GPX3 rs3793797 A-allele carrier group. CONCLUSION We found preliminary evidence that SOD2 rs4880 and GPX3 rs3792797 are differentially associated with brain structures in youth with BD in regions that are relevant to BD. Further studies incorporating additional neuroimaging phenotypes and blood levels of oxidative stress markers are warranted.
Collapse
Affiliation(s)
- Yi Zou
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada,Correspondence: Benjamin I. Goldstein, MD, PhD, FRCPC, Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 100 Stokes St, Toronto, ON M6J 1H4, Canada ()
| | - Kody G Kennedy
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Anahit Grigorian
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Lisa Fiksenbaum
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Natalie Freeman
- Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Clement C Zai
- Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - James L Kennedy
- Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada,Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Sheffield JM, Huang AS, Rogers BP, Blackford JU, Heckers S, Woodward ND. Insula sub-regions across the psychosis spectrum: morphology and clinical correlates. Transl Psychiatry 2021; 11:346. [PMID: 34088895 PMCID: PMC8178380 DOI: 10.1038/s41398-021-01461-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 02/05/2023] Open
Abstract
The insula is a heterogeneous cortical region, comprised of three cytoarchitecturally distinct sub-regions (agranular, dysgranular, and granular), which traverse the anterior-posterior axis and are differentially involved in affective, cognitive, and somatosensory processing. Smaller insula volume is consistently reported in psychosis-spectrum disorders and is hypothesized to result, in part, from abnormal neurodevelopment. To better understand the regional and diagnostic specificity of insula abnormalities in psychosis, their developmental etiology, and clinical correlates, we characterized insula volume and morphology in a large group of adults with a psychotic disorder (schizophrenia spectrum, psychotic bipolar disorder) and a community-ascertained cohort of psychosis-spectrum youth (age 8-21). Insula volume and morphology (cortical thickness, gyrification, sulcal depth) were quantified from T1-weighted structural brain images using the Computational Anatomy Toolbox (CAT12). Healthy adults (n = 196), people with a psychotic disorder (n = 303), and 1368 individuals from the Philadelphia Neurodevelopmental Cohort (PNC) (381 typically developing (TD), 381 psychosis-spectrum (PS) youth, 606 youth with other psychopathology (OP)), were investigated. Insula volume was significantly reduced in adults with psychotic disorders and psychosis-spectrum youth, following an anterior-posterior gradient across granular sub-regions. Morphological abnormalities were limited to lower gyrification in psychotic disorders, which was specific to schizophrenia and associated with cognitive ability. Insula volume and thickness were associated with cognition, and positive and negative symptoms of psychosis. We conclude that smaller insula volume follows an anterior-posterior gradient in psychosis and confers a broad risk for psychosis-spectrum disorders. Reduced gyrification is specific to schizophrenia and may reflect altered prenatal development that contributes to cognitive impairment.
Collapse
Affiliation(s)
- Julia M Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Anna S Huang
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baxter P Rogers
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | | | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
33
|
Gray Matter Atrophy in the Cortico-Striatal-Thalamic Network and Sensorimotor Network in Relapsing-Remitting and Primary Progressive Multiple Sclerosis. Neuropsychol Rev 2021; 31:703-720. [PMID: 33582965 DOI: 10.1007/s11065-021-09479-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023]
Abstract
Gray matter atrophy in multiple sclerosis (MS) is thought to be associated with disability and cognitive impairment, but previous studies have sometimes had discordant results, and the atrophy patterns of relapsing-remitting multiple sclerosis (RRMS) and primary progressive multiple sclerosis (PPMS) remain to be clarified. We conducted a meta-analysis using anisotropic effect-size-based algorithms (AES-SDM) to identify consistent findings from whole-brain voxel-based morphometry (VBM) studies of gray matter volume (GMV) in 924 RRMS patients and 204 PPMS patients. This study is registered with PROSPERO (number CRD42019121319). Compared with healthy controls, RRMS and PPMS patients showed gray matter atrophy in the cortico-striatal-thalamic network, sensorimotor network, and bilateral insula. RRMS patients had a larger GMV in the left insula, cerebellum, right precentral gyrus, and bilateral putamen as well as a smaller GMV in the bilateral cingulate, caudate nucleus, right thalamus, superior temporal gyrus and left postcentral gyrus than PPMS patients. The disease duration, Expanded Disability Status Scale score, Paced Auditory Serial Addition Test z-score, and T2-weighted lesion load were associated with specific gray matter regions in RRMS or PPMS. Alterations in the cortico-striatal-thalamic networks, sensorimotor network, and insula may be involved in the common pathogenesis of RRMS and PPMS. The deficits in the cingulate gyrus and caudate nucleus are more apparent in RRMS than in PPMS. The more severe cerebellum atrophy in PPMS may be a brain feature associated with its neurological manifestations. These imaging biomarkers provide morphological evidence for the pathophysiology of MS and should be verified in future research.
Collapse
|
34
|
Chakrabarty T, Torres IJ, Su WW, Sawatzky R, Keramatian K, Yatham LN. Cognitive subgroups in first episode bipolar I disorder: Relation to clinical and brain volumetric variables. Acta Psychiatr Scand 2021; 143:151-161. [PMID: 33089491 DOI: 10.1111/acps.13245] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/17/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Distinct cognitive subgroups are seen in patients with long duration bipolar I disorder (BDI), possibly reflective of underlying pathophysiological differences. It is unknown whether such cognitive heterogeneity is present at illness onset. We applied latent class analysis (LCA) to cognitive test scores in first episode BDI patients. Exploratory analysis elucidated whether impaired subgroups were characterized by 'early neurodevelopmental' (low premorbid IQ and intracranial volume) versus 'later neurodevelopmental' (decline from premorbid to current IQ, changes in relative grey (GM)/white (WM) matter volumes) pathology. METHODS Recently recovered first manic episode BDI patients (n = 91) and healthy controls (HC, n = 63) comprised the study sample. LCA identified subgroups based on processing speed, verbal memory, non-verbal memory, executive functioning, attention and working memory scores. Subgroups were compared amongst each other and HC on premorbid/current IQ, intracranial (ICV), total brain and regional volumes. RESULTS Three cognitive subgroups emerged: (i) globally impaired (GI, n = 31), scoring 0.5-1 SD below demographically corrected norms across domains, (ii) selectively impaired (SI, n = 47), with predominant processing speed deficits and (iii) high performing (HP, n = 13), with above-average cognitive performance. GI patients showed a 'later neurodevelopmental' pattern, with normal ICV, significant decline from premorbid to current IQ, higher total GM and lower total WM (with respect to total brain volume) versus SI and HC (p = 0.003). GI patients had higher left frontal pole GM versus HC (p < 0.05, FWE corrected). CONCLUSIONS A globally impaired patient subgroup is identifiable in first episode BDI, possibly characterized by unique neurodevelopmental pathologic processes proximal to illness onset.
Collapse
Affiliation(s)
- Trisha Chakrabarty
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Ivan J Torres
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,British Columbia Mental Health and Substance Use Services, Vancouver, BC, Canada
| | - Weizhong W Su
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Richard Sawatzky
- School of Nursing, Trinity Western University, Langley, BC, Canada.,Centre for Health Evaluation and Outcome Sciences, Vancouver, BC, Canada
| | - Kamyar Keramatian
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Lakshmi N Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Abu-Hijleh FA, Prashar S, Joshi H, Sharma R, Frey BN, Mishra RK. Novel mechanism of action for the mood stabilizer lithium. Bipolar Disord 2021; 23:76-83. [PMID: 33037686 DOI: 10.1111/bdi.13019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Bipolar Disorder (BD) is associated with a decrease in cellular resilience. Despite the half a century old discovery of lithium's efficacy for the treatment of BD, its exact mechanisms remain elusive. Accumulating data suggest that lithium's cytoprotective properties involve the modulation of several UPR proteins, such as GRP78. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum resident protein that regulates proteostasis through directly interacting with GRP78. The purpose of this study was to determine whether lithium increases MANF expression using cellular and rodent models and, if so, to elucidate the cellular mechanisms of action. PROCEDURE Mouse striatal neuroblasts were treated with PBS, lithium, or lithium + Activator Protein-1 (AP-1) inhibitor for 24-72 hours. Once cells were harvested, mRNA was extracted. In vivo experiments included, intraperitoneal injections of lithium or saline to male Sprague Dawley rats twice daily for 14 consecutive days. Following drug treatment, brain tissue was isolated, and mRNA was extracted from various regions. MANF gene expression was measured using RT-qPCR. RESULTS In vitro studies showed lithium-treated cells displayed a significant increase in MANF mRNA expression compared to controls. In contrast, cells treated with lithium and AP-1 inhibitor showed no increase in expression. Similarly, in vivo studies revealed that lithium-treated rats compared to controls had a significant increase in MANF expression in the PFC and striatum. CONCLUSION Taken together, these data suggest that lithium's therapeutic mechanism involves the maintenance of ER homeostasis via increased MANF gene expression mediated by the AP-1 transcription factor.
Collapse
Affiliation(s)
- Fahed A Abu-Hijleh
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Shreya Prashar
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Hetshree Joshi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Roohie Sharma
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Ram K Mishra
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
36
|
Nani A, Manuello J, Mancuso L, Liloia D, Costa T, Vercelli A, Duca S, Cauda F. The pathoconnectivity network analysis of the insular cortex: A morphometric fingerprinting. Neuroimage 2021; 225:117481. [PMID: 33122115 DOI: 10.1016/j.neuroimage.2020.117481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
Brain disorders tend to impact on many different regions in a typical way: alterations do not spread randomly; rather, they seem to follow specific patterns of propagation that show a strong overlap between different pathologies. The insular cortex is one of the brain areas more involved in this phenomenon, as it seems to be altered by a wide range of brain diseases. On these grounds we thoroughly investigated the impact of brain disorders on the insular cortices analyzing the patterns of their structural co-alteration. We therefore investigated, applying a network analysis approach to meta-analytic data, 1) what pattern of gray matter alteration is associated with each of the insular cortex parcels; 2) whether or not this pattern correlates and overlaps with its functional meta-analytic connectivity; and, 3) the behavioral profile related to each insular co-alteration pattern. All the analyses were repeated considering two solutions: one with two clusters and another with three. Our study confirmed that the insular cortex is one of the most altered cerebral regions among the cortical areas, and exhibits a dense network of co-alteration including a prevalence of cortical rather than sub-cortical brain regions. Regions of the frontal lobe are the most involved, while occipital lobe is the less affected. Furthermore, the co-alteration and co-activation patterns greatly overlap each other. These findings provide significant evidence that alterations caused by brain disorders are likely to be distributed according to the logic of network architecture, in which brain hubs lie at the center of networks composed of co-altered areas. For the first time, we shed light on existing differences between insula sub-regions even in the pathoconnectivity domain.
Collapse
Affiliation(s)
- Andrea Nani
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy
| | - Jordi Manuello
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy
| | - Lorenzo Mancuso
- FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy
| | - Donato Liloia
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy
| | - Tommaso Costa
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy.
| | - Alessandro Vercelli
- Neuroscience Institute of Turin, Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy; Department of Neuroscience, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy
| | - Franco Cauda
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; FOCUS Lab, Department of Psychology, University of Turin, Via Verdi, 10, Turin 10124, Italy; Neuroscience Institute of Turin, Turin, Italy
| |
Collapse
|
37
|
Argyropoulos GD, Christidi F, Karavasilis E, Velonakis G, Antoniou A, Bede P, Seimenis I, Kelekis N, Douzenis A, Papakonstantinou O, Efstathopoulos E, Ferentinos P. Cerebro-cerebellar white matter connectivity in bipolar disorder and associated polarity subphenotypes. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110034. [PMID: 32710925 DOI: 10.1016/j.pnpbp.2020.110034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The cerebellum has a crucial role in mood regulation. While cerebellar grey matter (GM) alterations have been previously reported in bipolar disorder (BD), cerebro-cerebellar white matter (WM) connectivity alterations and cerebellar GM profiles have not been characterised in the context of predominant polarity (PP) and onset polarity (OP) subphenotypes of BD patients which is the aim of the present study. METHODS Forty-two euthymic BD patients stratified for PP and OP and 42 healthy controls (HC) were included in this quantitative neuroimaging study to evaluate cerebellar GM patterns and cerebro-cerebellar WM connections. Diffusion tensor tractography was used to characterise afferent and efferent cerebro-cerebellar tract integrity. False discovery rate corrections were applied in post-hoc comparisons. RESULTS BD patients exhibited higher fractional anisotropy (FA) in fronto-ponto-cerebellar tracts bilaterally compared to HC. Subphenotype-specific FA profiles were identified within the BD cohort. Regarding PP subgroups, we found FA changes in a) left contralateral fronto-ponto-cerebellar tract (depressive-PP > HC) and b) contralateral/ipsilateral fronto-ponto-cerebellar tracts bilaterally (manic-PP > HC). Regarding OP subgroups, we observed FA changes in a) left/right contralateral fronto-ponto-cerebellar tracts (depressive-OP > HC) and b) all fronto-ponto-cerebellar, most parieto-ponto-cerebellar and right contralateral occipito-ponto-cerebellar tracts (manic-OP>HC). In general, greater and more widespread cerebro-cerebellar changes were observed in manic-OP patients than in depressive-OP patients compared to HC. Manic-OP showed higher FA compared to depressive-OP patients in several afferent WM tracts. No GM differences were identified between BD and HC and across BD subgroups. CONCLUSIONS Our findings highlight fronto-ponto-cerebellar connectivity alterations in euthymic BD. Polarity-related subphenotypes have distinctive cerebro-cerebellar WM signatures with potential clinical and pathobiological implications.
Collapse
Affiliation(s)
- Georgios D Argyropoulos
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Christidi
- 2nd Department of Psychiatry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Efstratios Karavasilis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Antoniou
- 2nd Department of Psychiatry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter Bede
- Biomedical Imaging Laboratory, Sorbonne University, CNRS, INSERM, Paris, France; Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Ioannis Seimenis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Douzenis
- 2nd Department of Psychiatry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Olympia Papakonstantinou
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Efstathopoulos
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Ferentinos
- 2nd Department of Psychiatry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
38
|
Todeva-Radneva A, Paunova R, Kandilarova S, St Stoyanov D. The Value of Neuroimaging Techniques in the Translation and Transdiagnostic Validation of Psychiatric Diagnoses - Selective Review. Curr Top Med Chem 2021; 20:540-553. [PMID: 32003690 DOI: 10.2174/1568026620666200131095328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/05/2023]
Abstract
Psychiatric diagnosis has long been perceived as more of an art than a science since its foundations lie within the observation, and the self-report of the patients themselves and objective diagnostic biomarkers are lacking. Furthermore, the diagnostic tools in use not only stray away from the conventional medical framework but also remain invalidated with evidence-based concepts. However, neuroscience, as a source of valid objective knowledge has initiated the process of a paradigm shift underlined by the main concept of psychiatric disorders being "brain disorders". It is also a bridge closing the explanatory gap among the different fields of medicine via the translation of the knowledge within a multidisciplinary framework. The contemporary neuroimaging methods, such as fMRI provide researchers with an entirely new set of tools to reform the current status quo by creating an opportunity to define and validate objective biomarkers that can be translated into clinical practice. Combining multiple neuroimaging techniques with the knowledge of the role of genetic factors, neurochemical imbalance and neuroinflammatory processes in the etiopathophysiology of psychiatric disorders is a step towards a comprehensive biological explanation of psychiatric disorders and a final differentiation of psychiatry as a well-founded medical science. In addition, the neuroscientific knowledge gained thus far suggests a necessity for directional change to exploring multidisciplinary concepts, such as multiple causality and dimensionality of psychiatric symptoms and disorders. A concomitant viewpoint transition of the notion of validity in psychiatry with a focus on an integrative validatory approach may facilitate the building of a collaborative bridge above the wall existing between the scientific fields analyzing the mind and those studying the brain.
Collapse
Affiliation(s)
- Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Rositsa Paunova
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Drozdstoy St Stoyanov
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
39
|
Exploring brain insulin resistance in adults with bipolar depression using extracellular vesicles of neuronal origin. J Psychiatr Res 2021; 133:82-92. [PMID: 33316649 PMCID: PMC7855678 DOI: 10.1016/j.jpsychires.2020.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Accumulating evidence suggests that disrupted insulin signaling is involved in bipolar disorder (BD) pathogenesis. Herein, we aimed to directly explore the potential role of neuronal insulin signaling using an innovative technique based on biomarkers derived from plasma extracellular vesicles enriched for neuronal origin (NEVs). We leveraged plasma samples from a randomized, double-blind, placebo-controlled, 12-week clinical trial evaluating infliximab as a treatment of bipolar depression. We isolated NEVs using immunoprecipitation against neuronal marker L1CAM from samples collected at baseline and weeks 2, 6 and 12 (endpoint) and measured NEV biomarkers using immunoassays. We assessed neuronal insulin signaling at its first node (IRS-1) and along the canonical (Akt, GSK-3β, p70S6K) and alternative (ERK1/2, JNK and p38-MAPK) pathways. A subset of participants (n = 27) also underwent whole-brain magnetic resonance imaging (MRI) at baseline and endpoint. Pre-treatment, NEV biomarkers of insulin signaling were independently associated with cognitive function and MRI measures (i.e. hippocampal and ventromedial prefrontal cortex [vmPFC] volumes). In fact, the association between IRS-1 phosphorylation at serine site 312 (pS312-IRS-1), an indicator of insulin resistance, and cognitive dysfunction was mediated by vmPFC volume. In the longitudinal analysis, patients treated with infliximab, a tumor necrosis factor-alpha antagonist with known insulin sensitizing properties, compared to those treated with placebo, had augmented phosphorylation of proteins from the alternative pathway. Infliximab responders had significant increases in phosphorylated JNK levels, relative to infliximab non-responders and placebo responders. In addition, treatment with infliximab resulted in increase in MRI measures of brain volume; treatment-related changes in the dorsolateral prefrontal cortex volume were mediated by changes in biomarkers from the insulin alternative pathway. In conclusion, our findings support the idea that brain insulin signaling is a target for further mechanistic and therapeutic investigations.
Collapse
|
40
|
Distinct Associations of Cognitive Impairments and Reduced Gray Matter Volumes in Remitted Patients with Schizophrenia and Bipolar Disorder. Neural Plast 2020; 2020:8859388. [PMID: 33381163 PMCID: PMC7748913 DOI: 10.1155/2020/8859388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Cognitive impairments are documented in schizophrenia (SZ) and bipolar disorder (BD) and may be related to gray matter volumes (GMVs). Thus, this study is aimed at exploring whether the association between cognitive impairments and GMV alterations is similar in patients with SZ and BD and understanding the underlying neurobiological mechanisms. Methods A total of 137 adult subjects (46 with SZ, 35 with BD, and 56 age-, sex-, and education-matched healthy controls (HC)) completed the MATRICS Consensus Cognitive Battery (MCCB) and structural magnetic resonance imaging scanning. We performed group comparisons of the cognitive impairments, the GMV alterations, and the association between them. Results Compared with HC, the patients with SZ and BD showed shared deficits in 4 cognitive domains (i.e., processing speed, working memory, problem solving, and social cognition) and the composite. SZ and BD had commonly decreased GMVs, mainly in the insula, superior temporal pole, amygdala, anterior cingulate, and frontal cortices (superior, middle, opercular inferior, and orbital frontal gyrus). No correlation between MCCB scores and GMVs was detected in SZ. However, for BD, working memory was relevant to the right hemisphere (i.e., right insula, amygdala, superior temporal pole, and medial and dorsolateral superior frontal gyrus). Limitations. The major limitations were that not all patients were the first-episode status and no medication. Conclusions The association was mainly limited to the BD group. Thus, the underlying pathophysiology of the cognitive deficits, in terms of GMV alterations, may be diverse between two disorders.
Collapse
|
41
|
Macoveanu J, Kjaerstad HL, Chase HW, Frangou S, Knudsen GM, Vinberg M, Kessing LV, Miskowiak KW. Abnormal prefrontal cortex processing of reward prediction errors in recently diagnosed patients with bipolar disorder and their unaffected relatives. Bipolar Disord 2020; 22:849-859. [PMID: 32301215 DOI: 10.1111/bdi.12915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Bipolar disorder (BD) has been associated with abnormal reward functioning including pleasure-seeking and impulsivity. Here we sought to clarify whether these changes can be attributed to abnormalities in the neural processing of reward valuation or error prediction. Moreover, we tested whether abnormalities in these processes are associated with familial vulnerability to BD. METHODS We obtained functional magnetic resonance imaging data from patients with recently diagnosed BD (n = 85), their unaffected first-degree relatives (n = 44), and healthy control participants (n = 66) while they were performing a monetary card game. We used a region-of-interest approach to test for group differences in the activation of the midbrain, the ventral striatum, and the prefrontal cortex during reward valuation and error prediction. RESULTS Patients with BD showed decreased prediction error signal in ventrolateral prefrontal cortex and the unaffected relatives showed decreased prediction error signal in the supplementary motor area in comparison to healthy controls. There were no significant group differences in the activation of the ventral striatum during the task. In healthy controls, prediction error signal in dorsal anterior cingulate cortex correlated with an out-of-scanner measure of motor inhibition but this association was absent in patients and relatives. CONCLUSIONS The findings indicate that abnormal reward processing in BD is primarily related to deficits in the engagement of prefrontal regions involved in inhibitory control during error prediction. In contrast, deficient activation in supplementary motor cortex involved in planning of movement emerged as a familial vulnerability to BD.
Collapse
Affiliation(s)
- Julian Macoveanu
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hanne L Kjaerstad
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark.,Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Maj Vinberg
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars V Kessing
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Kamilla W Miskowiak
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Cattarinussi G, Delvecchio G, Prunas C, Brambilla P. Effects of pharmacological treatments on neuroimaging findings in first episode affective psychosis: A review of longitudinal studies. J Affect Disord 2020; 276:1046-1051. [PMID: 32763589 DOI: 10.1016/j.jad.2020.07.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/30/2020] [Accepted: 07/22/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Affective psychosis is a common mental disorder characterized by structural/functional brain abnormalities, which seem to occur also at the early stages of the disease. However, the role of psychotropic medications on brain structure and function in affective first episode psychosis (A-FEP) still remains uncertain. Therefore, with this review we aim to gain more robust understanding regarding the potential effect of pharmacological treatments on the brain in A-FEP patients also experiencing a first manic episode. METHODS A search on PuBMed and Web of Science of longitudinal structural and functional Magnetic Resonance Imaging (MRI) as well as Diffusion Tensor Imaging (DTI) studies, exploring the effect of medications on the brain in A-FEP, was conducted. We selected nine studies, three randomized or pseudo-randomized controlled trials and six observational studies. RESULTS Overall the studies showed that a) mood stabilizers (MS) have no effect on gray matter (GM) volumes and a protective role on white matter (WM) volumes, b) antipsychotics (AP) have an unclear effect on GM volumes and a less potent effect on WM volumes compared to MS and c) both MS and AP tend to normalize brain activation and connectivity. LIMITATIONS The small sample size, the observational design of the majority of the studies and the different methodological approaches limit the conclusion of this review. CONCLUSIONS Medications seem to have a minor role on structural changes occurring in A-FEP patients during the early stages of the disease, while their effect on brain activation and connectivity seems more pronounced, but far to be conclusive.
Collapse
Affiliation(s)
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Cecilia Prunas
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
43
|
Li H, Cui L, Cao L, Zhang Y, Liu Y, Deng W, Zhou W. Identification of bipolar disorder using a combination of multimodality magnetic resonance imaging and machine learning techniques. BMC Psychiatry 2020; 20:488. [PMID: 33023515 PMCID: PMC7542439 DOI: 10.1186/s12888-020-02886-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bipolar disorder (BPD) is a common mood disorder that is often goes misdiagnosed or undiagnosed. Recently, machine learning techniques have been combined with neuroimaging methods to aid in the diagnosis of BPD. However, most studies have focused on the construction of classifiers based on single-modality MRI. Hence, in this study, we aimed to construct a support vector machine (SVM) model using a combination of structural and functional MRI, which could be used to accurately identify patients with BPD. METHODS In total, 44 patients with BPD and 36 healthy controls were enrolled in the study. Clinical evaluation and MRI scans were performed for each subject. Next, image pre-processing, VBM and ReHo analyses were performed. The ReHo values of each subject in the clusters showing significant differences were extracted. Further, LASSO approach was recruited to screen features. Based on selected features, the SVM model was established, and discriminant analysis was performed. RESULTS After using the two-sample t-test with multiple comparisons, a total of 8 clusters were extracted from the data (VBM = 6; ReHo = 2). Next, we used both VBM and ReHo data to construct the new SVM classifier, which could effectively identify patients with BPD at an accuracy of 87.5% (95%CI: 72.5-95.3%), sensitivity of 86.4% (95%CI: 64.0-96.4%), and specificity of 88.9% (95%CI: 63.9-98.0%) in the test data (p = 0.0022). CONCLUSIONS A combination of structural and functional MRI can be of added value in the construction of SVM classifiers to aid in the accurate identification of BPD in the clinic.
Collapse
Affiliation(s)
- Hao Li
- grid.412615.5Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China ,grid.484195.5Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080 China
| | - Liqian Cui
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Liping Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong, China.
| | - Yizhi Zhang
- grid.452505.30000 0004 1757 6882Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong China
| | - Yueheng Liu
- grid.216417.70000 0001 0379 7164Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan China ,Chinese National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan China
| | - Wenhao Deng
- grid.452505.30000 0004 1757 6882Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong China
| | - Wenjin Zhou
- grid.452505.30000 0004 1757 6882Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong China
| |
Collapse
|
44
|
Zhao L, Luo Z, Qiu S, Jia Y, Zhong S, Chen G, Lai S, Qi Z, Luo X, Huang G, Huang L, Wang Y. Abnormalities of aquaporin-4 in the cerebellum in bipolar II disorder: An ultra-high b-values diffusion weighted imaging study. J Affect Disord 2020; 274:136-143. [PMID: 32469796 DOI: 10.1016/j.jad.2020.05.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/03/2020] [Accepted: 05/10/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cumulative evidence indicated the cerebellum is involved in the pathophysiology of bipolar disorder (BD). It was reported that the apparent diffusion coefficient from ultra-high b-values (ADCuh) could reflect the function of aquaporin-4 (AQP4) which was involved in neurological disorders. However, no studies have reported the AQP4 alteration in the cerebellum in BD. Therefore, this study aimed to investigate the ADCuh and AQP4 in the cerebellum in BD-II. METHODS Fifty patients with BD-II as well as 43 healthy controls underwent enhance diffusion weighted imaging (eDWI) with ultra-high b-values. The eDWI parameters including ADCuh , pure water diffusion (D) and pseudodiffusion (D*) was measured using regions-of-interest analysis in the superior cerebellar peduncles (SCP), middle cerebellar peduncles (MCP) , cerebellar hemisphere, dentate nuclei, tonsil and vermis of the cerebellum. RESULTS BD-II exhibited increased ADCuh values in the bilateral SCP, cerebellar hemisphere, tonsil and right dentate nuclei, and increased D* and D in the bilateral SCP, and decreased D* in the tonsil. Additionally, there were positive correlations between Hamilton Rating Scale for Depression-24 scores and bilateral ADCuh values in the SCP and cerebellar hemisphere. CONCLUSIONS The alteration of the ADCuh values in the cerebellum may reflect the changes of the AQP4, especially the abnormality of eDWI parameters in the SCP may be a key neurobiological feature of BD-II. The current results provide a novel insight to look into the pathophysiology mechanisms underlying BD-II.
Collapse
Affiliation(s)
- Lianping Zhao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Radiology, Gansu Provincial Hospital, Gansu 730000, China
| | - Zhenye Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shaojuan Qiu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaomei Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Gansu 730000, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
45
|
Tahmasian M, Sepehry AA, Samea F, Khodadadifar T, Soltaninejad Z, Javaheripour N, Khazaie H, Zarei M, Eickhoff SB, Eickhoff CR. Practical recommendations to conduct a neuroimaging meta-analysis for neuropsychiatric disorders. Hum Brain Mapp 2019; 40:5142-5154. [PMID: 31379049 PMCID: PMC6865620 DOI: 10.1002/hbm.24746] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 02/04/2023] Open
Abstract
Over the past decades, neuroimaging has become widely used to investigate structural and functional brain abnormality in neuropsychiatric disorders. The results of individual neuroimaging studies, however, are frequently inconsistent due to small and heterogeneous samples, analytical flexibility, and publication bias toward positive findings. To consolidate the emergent findings toward clinically useful insight, meta-analyses have been developed to integrate the results of studies and identify areas that are consistently involved in pathophysiology of particular neuropsychiatric disorders. However, it should be considered that the results of meta-analyses could also be divergent due to heterogeneity in search strategy, selection criteria, imaging modalities, behavioral tasks, number of experiments, data organization methods, and statistical analysis with different multiple comparison thresholds. Following an introduction to the problem and the concepts of quantitative summaries of neuroimaging findings, we propose practical recommendations for clinicians and researchers for conducting transparent and methodologically sound neuroimaging meta-analyses. This should help to consolidate the search for convergent regional brain abnormality in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Masoud Tahmasian
- Institute of Medical Science and TechnologyShahid Beheshti UniversityTehranIran
| | - Amir A. Sepehry
- Clinical and Counselling Psychology ProgramAdler UniversityVancouverBritish ColumbiaCanada
| | - Fateme Samea
- Institute of Cognitive and Brain SciencesShahid Beheshti UniversityTehranIran
| | - Tina Khodadadifar
- School of Cognitive SciencesInstitute for Research in Fundamental SciencesTehranIran
| | - Zahra Soltaninejad
- Institute of Cognitive and Brain SciencesShahid Beheshti UniversityTehranIran
| | | | - Habibolah Khazaie
- Sleep Disorders Research CenterKermanshah University of Medical SciencesKermanshahIran
| | - Mojtaba Zarei
- Institute of Medical Science and TechnologyShahid Beheshti UniversityTehranIran
| | - Simon B. Eickhoff
- Institute for Systems Neuroscience, Medical FacultyHeinrich‐Heine University DüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐1, INM‐7)Research Center JülichJülichGermany
| | - Claudia R. Eickhoff
- Institute of Neuroscience and Medicine (INM‐1, INM‐7)Research Center JülichJülichGermany
- Institute of Clinical Neuroscience and Medical PsychologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|