1
|
Tangedal S, Nielsen R, Aanerud M, Drengenes C, Husebø GR, Lehmann S, Knudsen KS, Hiemstra PS, Eagan TM. Lower airway microbiota in COPD and healthy controls. Thorax 2024:thorax-2023-220455. [PMID: 38331579 DOI: 10.1136/thorax-2023-220455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The lower airway microbiota in patients with chronic obstructive pulmonary disease (COPD) are likely altered compared with the microbiota in healthy individuals. Information on how the microbiota is affected by smoking, use of inhaled corticosteroids (ICS) and COPD severity is still scarce. METHODS In the MicroCOPD Study, participant characteristics were obtained through standardised questionnaires and clinical measurements at a single centre from 2012 to 2015. Protected bronchoalveolar lavage samples from 97 patients with COPD and 97 controls were paired-end sequenced with the Illumina MiSeq System. Data were analysed in QIIME 2 and R. RESULTS Alpha-diversity was lower in patients with COPD than controls (Pielou evenness: COPD=0.76, control=0.80, p=0.004; Shannon entropy: COPD=3.98, control=4.34, p=0.01). Beta-diversity differed with smoking only in the COPD cohort (weighted UniFrac: permutational analysis of variance R2=0.04, p=0.03). Nine genera were differentially abundant between COPD and controls. Genera enriched in COPD belonged to the Firmicutes phylum. Pack years were linked to differential abundance of taxa in controls only (ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) log-fold difference/q-values: Haemophilus -0.05/0.048; Lachnoanaerobaculum -0.04/0.03). Oribacterium was absent in smoking patients with COPD compared with non-smoking patients (ANCOM-BC log-fold difference/q-values: -1.46/0.03). We found no associations between the microbiota and COPD severity or ICS. CONCLUSION The lower airway microbiota is equal in richness in patients with COPD to controls, but less even. Genera from the Firmicutes phylum thrive particularly in COPD airways. Smoking has different effects on diversity and taxonomic abundance in patients with COPD compared with controls. COPD severity and ICS use were not linked to the lower airway microbiota.
Collapse
Affiliation(s)
- Solveig Tangedal
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Rune Nielsen
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Marianne Aanerud
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Christine Drengenes
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Gunnar R Husebø
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sverre Lehmann
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kristel S Knudsen
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tomas Ml Eagan
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Wei K, Zhang X, Yang J, Chen J. Tobacco introduced Perilla frutescens and Ocimum basilicum genes attenuates neutrophilic inflammation in lung tissues of COPD rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115956. [PMID: 38215665 DOI: 10.1016/j.ecoenv.2024.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/10/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
The new-type tobacco varieties "Zisu" and "Luole" were obtained by distant hybridization between N. tabacum L. var. HHY and Perilla frutescens and Ocimum basilicum, with obviously different chemical composition. Smoking is the major risk factor for COPD, characterized by neutrophil-dominant inflammation. In the present study, rat COPD model was established by cigarette exposure, and the health hazard of three varieties was compared by general condition observation, pathological and morphological evaluation, total and differential cell numeration, and characterization of major inflammatory mediators and MAPK/NF-κB pathway, etc. Rats in "HHY" group developed obvious symptoms such as cough, dyspnea, mental fatigue, etc., but these symptoms were obviously mitigated in "Zisu" and "Luole" groups. H&E staining analysis, including score, MLI, MAN, wt% and WA%, showed that "Zisu" and "Luole" significantly alleviated lung injury and the degree of airway remodeling and emphysema compared to "HHY". In BALF, the number of total leukocyte and the percent neutrophils in "Zisu" and "Luole" groups were evidently lower than "HHY" group. The levels of inflammatory mediators, such as IL-8, MPO, MIP-2, LTB4, TNF-α and neutrophil elastase, in "HHY" group were obviously higher than "Zisu" and "Luole" groups. The ROS-mediated NF-κB p65 and p38MAPK pathways may play an important role. Results indicated that tobacco introduced perilla and basil genes could remarkably attenuate recruitment, infiltration and activation of neutrophils and intervene in airway inflammation, retarding disease progression, especially "Zisu". Changes in chemical composition via breeding techniques may be a novel way for tobacco harm reduction.
Collapse
Affiliation(s)
- Keqiang Wei
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University (Shanxi Institute of Brewing Technology and Industry), Taiyuan 030006, China.
| | - Xuan Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jinwen Yang
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Jiayi Chen
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Anaev EK. [Eosinophilic chronic obstructive pulmonary disease: A review]. TERAPEVT ARKH 2023; 95:696-700. [PMID: 38158908 DOI: 10.26442/00403660.2023.08.202316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 01/03/2024]
Abstract
Over the past decades, chronic obstructive pulmonary disease (COPD) has become a major public health problem due to increasing morbidity and mortality. COPD is characterized by airflow limitation due to inflammation of the bronchial tree and remodeling of the small airways. In 20-40% of patients with COPD, eosinophilic inflammation of the airways is observed, as in bronchial asthma. Eosinophilic COPD has recently been shown to be a distinct disease and is associated with more pronounced airway remodeling. Although the role of eosinophils in the pathogenesis of COPD is not fully understood, the level of eosinophils can be used in the prognosis and administration of corticosteroids, and their effectiveness is higher in eosinophilia. Currently, monoclonal antibodies directed against interleukins (IL-5, IL-4 and IL-13) or their receptors are being tested in the T2 endotype of COPD. This review focuses on the mechanisms of eosinophilia in COPD, the use of blood and sputum eosinophils as a biomarker, and the advisability of using monoclonal antibodies in the treatment of eosinophilic COPD.
Collapse
Affiliation(s)
- E K Anaev
- Pirogov Russian National Research Medical University
| |
Collapse
|
4
|
Gilyazova I, Timasheva Y, Karunas A, Kazantseva A, Sufianov A, Mashkin A, Korytina G, Wang Y, Gareev I, Khusnutdinova E. COVID-19: Mechanisms, risk factors, genetics, non-coding RNAs and neurologic impairments. Noncoding RNA Res 2023; 8:240-254. [PMID: 36852336 PMCID: PMC9946734 DOI: 10.1016/j.ncrna.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The novel coronavirus infection (COVID-19) causes a severe acute illness with the development of respiratory distress syndrome in some cases. COVID-19 is a global problem of mankind to this day. Among its most important aspects that require in-depth study are pathogenesis and molecular changes in severe forms of the disease. A lot of literature data is devoted to the pathogenetic mechanisms of COVID-19. Without dwelling in detail on some paths of pathogenesis discussed, we note that at present there are many factors of development and progression. Among them, this is the direct role of both viral non-coding RNAs (ncRNAs) and host ncRNAs. One such class of ncRNAs that has been extensively studied in COVID-19 is microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Moreover, Initially, it was believed that this COVID-19 was limited to damage to the respiratory system. It has now become clear that COVID-19 affects not only the liver and kidneys, but also the nervous system. In this review, we summarized the current knowledge of mechanisms, risk factors, genetics and neurologic impairments in COVID-19. In addition, we discuss and evaluate evidence demonstrating the involvement of miRNAs and lnRNAs in COVID-19 and use this information to propose hypotheses for future research directions.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Bashkir State Medical University, 450008, Ufa, Russia
| | - Yanina Timasheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Alexandra Karunas
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Federal State Educational Institution of Higher Education, Ufa University of Science and Technology, 450076, Ufa, Russia
| | - Anastasiya Kazantseva
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Federal State Educational Institution of Higher Education, Ufa University of Science and Technology, 450076, Ufa, Russia
| | - Albert Sufianov
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Andrey Mashkin
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
| | - Gulnaz Korytina
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Yaolou Wang
- Harbin Medical University, 157 Baojian Rd, Nangang, Harbin, Heilongjiang, 150088, China
| | - Ilgiz Gareev
- Bashkir State Medical University, 450008, Ufa, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Federal State Educational Institution of Higher Education, Ufa University of Science and Technology, 450076, Ufa, Russia
| |
Collapse
|
5
|
Mormile M, Mormile I, Fuschillo S, Rossi FW, Lamagna L, Ambrosino P, de Paulis A, Maniscalco M. Eosinophilic Airway Diseases: From Pathophysiological Mechanisms to Clinical Practice. Int J Mol Sci 2023; 24:ijms24087254. [PMID: 37108417 PMCID: PMC10138384 DOI: 10.3390/ijms24087254] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Eosinophils play a key role in airway inflammation in many diseases, such as allergic and non-allergic asthma, chronic rhinosinusitis with nasal polyps, and chronic obstructive pulmonary disease. In these chronic disabling conditions, eosinophils contribute to tissue damage, repair, remodeling, and disease persistence through the production a variety of mediators. With the introduction of biological drugs for the treatment of these respiratory diseases, the classification of patients based on clinical characteristics (phenotype) and pathobiological mechanisms (endotype) has become mandatory. This need is particularly evident in severe asthma, where, despite the great scientific efforts to understand the immunological pathways underlying clinical phenotypes, the identification of specific biomarkers defining endotypes or predicting pharmacological response remains unsatisfied. In addition, a significant heterogeneity also exists among patients with other airway diseases. In this review, we describe some of the immunological differences in eosinophilic airway inflammation associated with severe asthma and other airway diseases and how these factors might influence the clinical presentation, with the aim of clarifying when eosinophils play a key pathogenic role and, therefore, represent the preferred therapeutic target.
Collapse
Affiliation(s)
- Mauro Mormile
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Ilaria Mormile
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Salvatore Fuschillo
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Laura Lamagna
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Directorate of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Mauro Maniscalco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy
| |
Collapse
|
6
|
Biological and Genetic Mechanisms of COPD, Its Diagnosis, Treatment, and Relationship with Lung Cancer. Biomedicines 2023; 11:biomedicines11020448. [PMID: 36830984 PMCID: PMC9953173 DOI: 10.3390/biomedicines11020448] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most prevalent chronic adult diseases, with significant worldwide morbidity and mortality. Although long-term tobacco smoking is a critical risk factor for this global health problem, its molecular mechanisms remain unclear. Several phenomena are thought to be involved in the evolution of emphysema, including airway inflammation, proteinase/anti-proteinase imbalance, oxidative stress, and genetic/epigenetic modifications. Furthermore, COPD is one main risk for lung cancer (LC), the deadliest form of human tumor; formation and chronic inflammation accompanying COPD can be a potential driver of malignancy maturation (0.8-1.7% of COPD cases develop cancer/per year). Recently, the development of more research based on COPD and lung cancer molecular analysis has provided new light for understanding their pathogenesis, improving the diagnosis and treatments, and elucidating many connections between these diseases. Our review emphasizes the biological factors involved in COPD and lung cancer, the advances in their molecular mechanisms' research, and the state of the art of diagnosis and treatments. This work combines many biological and genetic elements into a single whole and strongly links COPD with lung tumor features.
Collapse
|
7
|
Siraitia grosvenorii Extract Attenuates Airway Inflammation in a Murine Model of Chronic Obstructive Pulmonary Disease Induced by Cigarette Smoke and Lipopolysaccharide. Nutrients 2023; 15:nu15020468. [PMID: 36678340 PMCID: PMC9865488 DOI: 10.3390/nu15020468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
We studied the activities of Siraitia grosvenorii extracts (SGE) on airway inflammation in a mouse model of chronic obstructive pulmonary disease (COPD) stimulated by cigarette smoke extract (CSE) and lipopolysaccharide (LPS), as well as in LPS-treated human bronchial epithelial cell line (BEAS-2B). SGE improved the viability of LPS-incubated BEAS-2B cells and inhibited the expression and production of inflammatory cytokines. SGE also attenuated the mitogen-activated protein kinase (MAPK)-nuclear factor-kappa B (NF-κB) signaling activated by LPS stimulation in BEAS-2B cells. In mice stimulated by CSE and LPS, we observed the infiltration of immune cells into the airway after COPD induction. SGE reduced the number of activated T cells, B cells, and neutrophils in bronchoalveolar fluid (BALF), lung tissue, mesenteric lymph node, and peripheral blood mononuclear cells, as well as inhibited infiltration into organs and mucus production. The secretion of cytokines in BALF and the expression level of pro-inflammatory cytokines, mucin 5AC, Transient receptor potential vanilloid 1, and Transient receptor potential ankyrin 1 in lung tissue were alleviated by SGE. In addition, to investigate the activity of SGE on expectoration, we evaluated phenol red secretions in the trachea of mice. SGE administration showed the effect of improving expectoration through an increase in phenol red secretion. Consequently, SGE attenuates the airway inflammatory response in CSE/LPS-stimulated COPD. These findings indicate that SGE may be a potential herbal candidate for the therapy of COPD.
Collapse
|
8
|
Polosukhin VV, Gutor SS, Du RH, Richmond BW, Massion PP, Wu P, Cates JM, Sandler KL, Rennard SI, Blackwell TS. Small airway determinants of airflow limitation in chronic obstructive pulmonary disease. Thorax 2021; 76:1079-1088. [PMID: 33827979 PMCID: PMC8526883 DOI: 10.1136/thoraxjnl-2020-216037] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Although a variety of pathological changes have been described in small airways of patients with COPD, the critical anatomic features determining airflow limitation remain incompletely characterised. METHODS We examined lung tissue specimens from 18 non-smokers without chronic lung disease and 55 former smokers with COPD for pathological features of small airways that could contribute to airflow limitation. Morphometric evaluation was performed for epithelial and subepithelial tissue thickness, collagen and elastin content, luminal mucus and radial alveolar attachments. Immune/inflammatory cells were enumerated in airway walls. Quantitative emphysema scoring was performed on chest CT scans. RESULTS Small airways from patients with COPD showed thickening of epithelial and subepithelial tissue, mucus plugging and reduced collagen density in the airway wall (in severe COPD). In patients with COPD, we also observed a striking loss of alveolar attachments, which are connective tissue septa that insert radially into the small airway adventitia. While each of these parameters correlated with reduced airflow (FEV1), multivariable regression analysis indicated that loss of alveolar attachments was the major determinant of airflow limitation related to small airways. Neutrophilic infiltration of airway walls and collagen degradation in airway adventitia correlated with loss of alveolar attachments. In addition, quantitative analysis of CT scans identified an association between the extent of emphysema and loss of alveolar attachments. CONCLUSION In COPD, loss of radial alveolar attachments in small airways is the pathological feature most closely related to airflow limitation. Destruction of alveolar attachments may be mediated by neutrophilic inflammation.
Collapse
Affiliation(s)
| | - Sergey S Gutor
- Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rui-Hong Du
- Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bradley W Richmond
- Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Pierre P Massion
- Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Pingsheng Wu
- Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin M Cates
- Pathology, Vanderbilt University, Nashville, Tennessee, USA
| | - Kim L Sandler
- Radiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephen I Rennard
- Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | |
Collapse
|
9
|
Benjamin JT, Plosa EJ, Sucre JM, van der Meer R, Dave S, Gutor S, Nichols DS, Gulleman PM, Jetter CS, Han W, Xin M, Dinella PC, Catanzarite A, Kook S, Dolma K, Lal CV, Gaggar A, Blalock JE, Newcomb DC, Richmond BW, Kropski JA, Young LR, Guttentag SH, Blackwell TS. Neutrophilic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD. J Clin Invest 2021; 131:139481. [PMID: 33108351 PMCID: PMC7773387 DOI: 10.1172/jci139481] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence indicates that early life events can increase the risk for developing chronic obstructive pulmonary disease (COPD). Using an inducible transgenic mouse model for NF-κB activation in the airway epithelium, we found that a brief period of inflammation during the saccular stage (P3-P5) but not alveolar stage (P10-P12) of lung development disrupted elastic fiber assembly, resulting in permanent reduction in lung function and development of a COPD-like lung phenotype that progressed through 24 months of age. Neutrophil depletion prevented disruption of elastic fiber assembly and restored normal lung development. Mechanistic studies uncovered a role for neutrophil elastase (NE) in downregulating expression of critical elastic fiber assembly components, particularly fibulin-5 and elastin. Further, purified human NE and NE-containing exosomes from tracheal aspirates of premature infants with lung inflammation downregulated elastin and fibulin-5 expression by saccular-stage mouse lung fibroblasts. Together, our studies define a critical developmental window for assembling the elastin scaffold in the distal lung, which is required to support lung structure and function throughout the lifespan. Although neutrophils play a well-recognized role in COPD development in adults, neutrophilic inflammation may also contribute to early-life predisposition to COPD.
Collapse
Affiliation(s)
- John T Benjamin
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Erin J Plosa
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer Ms Sucre
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Riet van der Meer
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shivangi Dave
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sergey Gutor
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David S Nichols
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter M Gulleman
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christopher S Jetter
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wei Han
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew Xin
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter C Dinella
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ashley Catanzarite
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seunghyi Kook
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kalsang Dolma
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Charitharth V Lal
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amit Gaggar
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - J Edwin Blalock
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Dawn C Newcomb
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bradley W Richmond
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Jonathan A Kropski
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Lisa R Young
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Pediatrics, Division of Pulmonary Medicine, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan H Guttentag
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Timothy S Blackwell
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Pini L, Tiberio L, Arici M, Corda L, Giordani J, Bargagli E, Tantucci C. Z-alpha1-antitrypsin polymers and small airways disease: a new paradigm in alfa-1 anti-trypsin deficiency-related COPD development? Monaldi Arch Chest Dis 2021; 91. [PMID: 34468105 DOI: 10.4081/monaldi.2021.1883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022] Open
Abstract
The presence of Alpha1-Antitrypsin (AAT) polymers, known to promote a sustained pro-inflammatory activity, has been previously demonstrated in bronchial biopsies of subjects with Z-AAT deficiency (AATD) suggesting a possible role in the development of COPD through a small airway disease impairment. The study aimed to assess the presence of small airways dysfunction and the potential correlation with the presence of Z-AAT polymers obtained by Exhaled Breath Condensate (EBC) collection in PiZZ subjects, as compared with matched healthy PiMM subjects. We enrolled 19 asymptomatic, never smoker subjects: 9 PiZZ and 10 PiMM as controls, without obstructive ventilatory defect (i.e., normal FEV1/VC% ratio). All subjects underwent complete pulmonary function tests (PFT). EBC was collected in all subjects. ELISA test was applied to search for Z-AAT polymers. The PiZZ subjects showed normal lung volumes and DLCO values. However, in comparison with PiMM subjects, the single breath test N2 wash-out revealed significant differences regarding the phase III slope (1.45±0.35 N2/L vs. 0.96±0.40 N2/L) (p<0.02) in the PiZZ subjects, while the closing volume/vital capacity ratio (14.3±4.5 % vs. 11.3±6.3 %) was not significantly increased. The ELISA test detected the presence of Z-AAT polymers in 44% of PiZZ patients. Asymptomatic, never smoker PiZZ subjects with normal spirometry and lung diffusion capacity showed airways impairment when compared to PiMM subjects. Although Z-AAT polymers were found only in 44% of PiZZ subjects, these findings suggest the possibility that chronic bronchiolitis can develop as a result of the long-term pro-inflammatory activity of Z-AAT polymers in subjects with Z-related AATD.
Collapse
Affiliation(s)
- Laura Pini
- Respiratory Medicine Unit, ASST-Spedali Civili di Brescia; Department of Clinical and Experimental Sciences, University of Brescia.
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia.
| | - Marianna Arici
- Department of Clinical and Experimental Sciences, University of Brescia.
| | - Luciano Corda
- Respiratory Medicine Unit, ASST-Spedali Civili di Brescia.
| | - Jordan Giordani
- Department of Clinical and Experimental Sciences, University of Brescia.
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena.
| | - Claudio Tantucci
- Respiratory Medicine Unit, ASST-Spedali Civili di Brescia; Department of Clinical and Experimental Sciences, University of Brescia.
| |
Collapse
|
11
|
Guo R, Li J, Ma X, Pan L. The predictive value of neutrophil-to-lymphocyte ratio for chronic obstructive pulmonary disease: a systematic review and meta-analysis. Expert Rev Respir Med 2021; 14:929-936. [PMID: 32938249 DOI: 10.1080/17476348.2020.1776613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION There was inconsistent results regarding the associations of neutrophil to lymphocyte ratio (NLR) with the progression and prognosis of chronic obstructive pulmonary disease (COPD). AREAS COVERED This paper assess the role of NLR on the progression and prognosis of COPD using a meta-analytic approach. PubMed, EmBase, and the Cochrane library were systematically searched. The pooled weighted mean differences and odds ratios with 95% confidence intervals were applied for continuous and categorical variables using the random-effects model. EXPECT COMMENATRY NLR was significantly high when comparing COPD patients to healthy individuals, and acute exacerbation COPD to stable COPD. Moreover, elevated NLR were significantly associated with higher risk of mortality and exacerbation.
Collapse
Affiliation(s)
- Rui Guo
- Department of Respiratory and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University , Beijing, China
| | - Jia Li
- Department of Respiratory and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University , Beijing, China
| | - Xiaorong Ma
- Department of Respiratory and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University , Beijing, China
| | - Lei Pan
- Department of Respiratory and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University , Beijing, China
| |
Collapse
|
12
|
Vishnupriya S, Priya Dharshini LC, Sakthivel KM, Rasmi RR. Autophagy markers as mediators of lung injury-implication for therapeutic intervention. Life Sci 2020; 260:118308. [PMID: 32828942 PMCID: PMC7442051 DOI: 10.1016/j.lfs.2020.118308] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Lung injury is characterized by inflammatory processes demonstrated as loss of function of the pulmonary capillary endothelial and alveolar epithelial cells. Autophagy is an intracellular digestion system that work as an inducible adaptive response to lung injury which is a resultant of exposure to various stress agents like hypoxia, ischemia-reperfusion and xenobiotics which may be manifested as acute lung injury (ALI), acute respiratory distress syndrome (ARDS), chronic lung injury (CLI), bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), asthma, ventilator-induced lung injury (VILI), ventilator-associated lung injury (VALI), pulmonary fibrosis (PF), cystic fibrosis (CF) and radiation-induced lung injury (RILI). Numerous regulators like LC3B-II, Beclin 1, p62, HIF1/BNIP3 and mTOR play pivotal role in autophagy induction during lung injury possibly for progression/inhibition of the disease state. The present review focuses on the critical autophagic mediators and their potential cross talk with the lung injury pathophysiology thereby bringing to limelight the possible therapeutic interventions.
Collapse
Affiliation(s)
- Selvaraj Vishnupriya
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | | | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India.
| |
Collapse
|
13
|
Fong KM, Welte T. World Lung Day: what, why, and where to? Am J Physiol Lung Cell Mol Physiol 2020; 319:L527-L533. [PMID: 32783632 DOI: 10.1152/ajplung.00364.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Kwun M Fong
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Queensland, Australia.,University of Queensland Thoracic Research Centre, Brisbane, Queensland, Australia
| | - Tobias Welte
- Department of Pulmonary and Infectious Diseases at Hannover University School of Medicine, Member of the German Center of Lung Research, Hannover, Germany
| | -
- The Forum of International Respiratory Societies, Lausanne, Switzerland
| |
Collapse
|
14
|
Hou J, Sun Y. Role of Regulatory T Cells in Disturbed Immune Homeostasis in Patients With Chronic Obstructive Pulmonary Disease. Front Immunol 2020; 11:723. [PMID: 32411140 PMCID: PMC7198877 DOI: 10.3389/fimmu.2020.00723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex chronic disease in which T cell-mediated pulmonary inflammation has been shown to play a key role. Accumulating evidence shows that COPD has many of the characteristics of an autoimmune response. An adaptive immune response directed against lung self-antigens, which are released during the initial innate inflammatory response and are triggered by constant exposure to cigarette smoke and epithelial injury, drives the persistent inflammatory response found in smokers. The development and severity of adaptive inflammation depend on the level of tolerance to self-antigens. For these reasons, the effect of regulatory T (Treg) cells on adaptive immunity in COPD patients is of particular interest and could be targeted therapeutically. The disturbance in immune homeostasis caused by changes in the number or function of Treg cells, which is related to cigarette smoke exposure, may be of importance in understanding the development and progression of COPD.
Collapse
Affiliation(s)
- Jia Hou
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
15
|
Yang T, Wang H, Li Y, Zeng Z, Shen Y, Wan C, Wu Y, Dong J, Chen L, Wen F. Serotonin receptors 5-HTR2A and 5-HTR2B are involved in cigarette smoke-induced airway inflammation, mucus hypersecretion and airway remodeling in mice. Int Immunopharmacol 2020; 81:106036. [PMID: 31787571 DOI: 10.1016/j.intimp.2019.106036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cigarette smoke plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Recently, elevated serotonin (5-HT) levels were found in the plasma of COPD patients. The role of 5-HT and its receptors in airway inflammation and remodeling induced by cigarette smoke is unclear. METHODS BALB/c mice received the 5-HTR2A inhibitor ketanserin, the 5-HTR2B inhibitor RS-127445 or the natural 5-HTR2A/2B inhibitor quercetin intraperitoneally, then were exposed to cigarette smoke for 6 or 12 weeks. Control mice received placebo and were exposed to room air or cigarette smoke. Mice were sacrificed and bronchial alveolar lavage fluid (BALF) and lung tissue samples were collected. RESULTS Immunohistochemistry and western blot confirmed an increase in both 5-HTR2A and 5-HTR2B expression in mouse lungs after exposure to cigarette smoke for 6 and 12 weeks. Cigarette smoke induced accumulation of macrophages and neutrophils and increased levels of inflammatory cytokines, including IL-1β and TNF-ɑ, in BALF and lung tissue; these effects were inhibited by ketanserin, RS-127445 and quercetin. Pretreatment with 5-HT receptor antagonists suppressed the goblet cell hyperplasia induced by 6- or 12-week exposure to cigarette smoke, based on Alcian blue-periodic acid Schiff staining. After 12 weeks of cigarette smoke exposure, Masson's staining showed fibrosis surrounding the mouse airways, and inhibitor pretreatment significantly attenuated the thickening and collagen deposition around the small airways. CONCLUSIONS Our results suggest that cigarette smoke-induced airway inflammation and small airway remodeling are partially mediated by 5-HTR2A and 5-HTR2B, which could be a new therapeutic target for airway remodeling in COPD.
Collapse
Affiliation(s)
- Ting Yang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuhao Li
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zijian Zeng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Yongchun Shen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chun Wan
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanqiu Wu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiajia Dong
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lei Chen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Tang B, Huang D, Wang J, Luo LL, Li QG. Relationship of Blood Eosinophils with Fractional Exhaled Nitric Oxide and Pulmonary Function Parameters in Chronic Obstructive Pulmonary Disease (COPD) Exacerbation. Med Sci Monit 2020; 26:e921182. [PMID: 32161254 PMCID: PMC7083088 DOI: 10.12659/msm.921182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/27/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The 2018 Global Initiative for Chronic Obstructive Lung Disease Report reveals that the blood eosinophil count could forecast the risk of flare-ups. This study explored the correlations of blood eosinophils with fractional exhaled nitric oxide (FeNO) and pulmonary function parameters in acute exacerbation of chronic obstructive pulmonary disease (AECOPD). MATERIAL AND METHODS The data of patients with AECOPD at our hospital admitted between July 2018 and June 2019 were retrospectively analyzed. All patients were stratified into an eosinophilic group (≥2%) or a noneosinophilic group (<2%) based on the peripheral eosinophil count per centum. Cross-sectional analysis was performed to compare clinical characteristics, percentage of eosinophils, FeNO, and pulmonary function between the 2 groups. RESULTS After applying the inclusion/exclusion criteria, 247 patients were included. FeNO values were higher in eosinophilic group (n=97) than in noneosinophilic group (n=150) (P=0.005). The forced expiratory volume in 1 second% predicted (FEV1% predicted), FEV1, and forced vital capacity (FVC) were higher in the eosinophilic group than in the noneosinophilic group (P=0.043; P=0.040; and P=0.011, respectively). Blood eosinophilia showed positive correlations with FeNO (P=0.004) and spirometry variables (FEV₁ [% predicted], P=0.003; FEV₁, P<0.001; and FVC, P<0.001). An FeNO level of 22.5 ppb was the best cutoff value to predict blood eosinophilia (P=0.000). CONCLUSIONS Blood eosinophil count is a likely biomarker that can predict positive relationship with FeNO values and pulmonary function parameters.
Collapse
Affiliation(s)
- Bin Tang
- Department of Respiratory Medicine, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Dan Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Jun Wang
- Department of Respiratory Medicine, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Lin-lin Luo
- Department of Respiratory Medicine, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Qiu-gen Li
- Department of Respiratory Medicine, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
17
|
Canonical Transient Potential Receptor-3 Channels in Normal and Diseased Airway Smooth Muscle Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:471-487. [PMID: 31646521 DOI: 10.1007/978-3-030-12457-1_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
All seven canonical transient potential receptor (TRPC1-7) channel members are expressed in mammalian airway smooth muscle cells (ASMCs). Among this family, TRPC3 channel plays an important role in the control of the resting [Ca2+]i and agonist-induced increase in [Ca2+]i. This channel is significantly upregulated in molecular expression and functional activity in airway diseases. The upregulated channel significantly augments the resting [Ca2+]i and agonist-induced increase in [Ca2+]i, thereby exerting a direct and essential effect in airway hyperresponsiveness. The increased TRPC3 channel-mediated Ca2+ signaling also results in the transcription factor nuclear factor-κB (NF-κB) activation via protein kinase C-α (PKCα)-dependent inhibitor of NFκB-α (IκBα) and calcineurin-dependent IκBβ signaling pathways, which upregulates cyclin-D1 expression and causes cell proliferation, leading to airway remodeling. TRPC3 channel may further interact with intracellular release Ca2+ channels, Orai channels and Ca2+-sensing stromal interaction molecules, mediating important cellular responses in ASMCs and the development of airway diseases.
Collapse
|
18
|
Choi JY, Yoon HK, Shin KC, Park SY, Lee CY, Ra SW, Jung KS, Yoo KH, Lee CH, Rhee CK. CAT Score and SGRQ Definitions of Chronic Bronchitis as an Alternative to the Classical Definition. Int J Chron Obstruct Pulmon Dis 2019; 14:3043-3052. [PMID: 31920301 PMCID: PMC6941605 DOI: 10.2147/copd.s228307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose Previous studies have used various definitions to classify chronic obstructive pulmonary disease (COPD) patients into chronic bronchitis (CB) and non-CB patients. This study was performed to identify differences among three definitions of CB based on the classical method, St. George's Respiratory Questionnaire (SGRQ), and the CAT (COPD Assessment Test) score. Patients and methods We extracted data from the multicenter Korea COPD Subgroup Study (KOCOSS) cohort, for which patients recruited from among 47 medical centers in South Korea beginning in April 2012. Patients were classified according to three different definitions of CB: 1) classical definition; 2) SGRQ (using questions regarding cough and sputum); and 3) CAT score (comprising cough [CAT1] and sputum [CAT2] subscale scores). Results A total of 2694 patients were enrolled in this study. The proportions of CB were 10.8%, 35.8%, and 24.0% according to the classical, SGRQ, and CAT definitions, respectively. The three definitions yielded consistently significant differences between CB and non-CB patients in modified Medical Research Council dyspnea scale CAT score, SGRQ score, number of moderate-to-severe exacerbations per year and forced expiratory volume in 1 second. By three definitions, CB consistently predicted future risk of exacerbation. The kappa coefficient of agreement between the classical definition and SGRQ definition was 0.29, that of the classical definition and CAT definition was 0.32, and that of the SGRQ definition and CAT definition was 0.44. Conclusion Patients with CB according to the new definitions based on SGRQ or CAT score showed similar clinical characteristics to those defined according to the classical definition. The new CB definitions may be used as alternatives to the classical definition.
Collapse
Affiliation(s)
- Joon Young Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Republic of Korea
| | - Hyoung Kyu Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyeong-Cheol Shin
- Division of Pulmonology and Allergy, Regional Center for Respiratory Disease, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - So-Young Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Chang Youl Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical Center, Chuncheon, Republic of Korea
| | - Seung Won Ra
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Ki Suck Jung
- Division of Pulmonary Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University Medical School, Anyang, Republic of Korea
| | - Kwang Ha Yoo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chin Kook Rhee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
19
|
Seys LJM, Widagdo W, Verhamme FM, Kleinjan A, Janssens W, Joos GF, Bracke KR, Haagmans BL, Brusselle GG. DPP4, the Middle East Respiratory Syndrome Coronavirus Receptor, is Upregulated in Lungs of Smokers and Chronic Obstructive Pulmonary Disease Patients. Clin Infect Dis 2019; 66:45-53. [PMID: 29020176 PMCID: PMC7108100 DOI: 10.1093/cid/cix741] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/12/2017] [Indexed: 12/18/2022] Open
Abstract
Background Middle East respiratory syndrome coronavirus (MERS-CoV) causes pneumonia with a relatively high case fatality rate in humans. Smokers and chronic obstructive pulmonary disease (COPD) patients have been reported to be more susceptible to MERS-CoV infection. Here, we determined the expression of MERS-CoV receptor, dipeptidyl peptidase IV (DPP4), in lung tissues of smokers without airflow limitation and COPD patients in comparison to nonsmoking individuals (never-smokers). Methods DPP4 expression was measured in lung tissue of lung resection specimens of never-smokers, smokers without airflow limitation, COPD GOLD stage II patients and in lung explants of end-stage COPD patients. Both control subjects and COPD patients were well phenotyped and age-matched. The mRNA expression was determined using qRT-PCR and protein expression was quantified using immunohistochemistry. Results In smokers and subjects with COPD, both DPP4 mRNA and protein expression were significantly higher compared to never-smokers. Additionally, we found that both DPP4 mRNA and protein expression were inversely correlated with lung function and diffusing capacity parameters. Conclusions We provide evidence that DPP4 is upregulated in the lungs of smokers and COPD patients, which could partially explain why these individuals are more susceptible to MERS-CoV infection. These data also highlight a possible role of DPP4 in COPD pathogenesis.
Collapse
Affiliation(s)
- Leen J M Seys
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - W Widagdo
- Departments of Viroscience, Rotterdam, The Netherlands
| | - Fien M Verhamme
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium
| | - Alex Kleinjan
- Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Wim Janssens
- University Hospital Leuven, Respiratory Division and Rehabilitation, Leuven, Belgium
| | - Guy F Joos
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium
| | | | - Guy G Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium
| |
Collapse
|
20
|
Huang J, Jiang W, Tong X, Zhang L, Zhang Y, Fan H. Identification of gene and microRNA changes in response to smoking in human airway epithelium by bioinformatics analyses. Medicine (Baltimore) 2019; 98:e17267. [PMID: 31568004 PMCID: PMC6756728 DOI: 10.1097/md.0000000000017267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Smoking is a substantial risk factor for many respiratory diseases. This study aimed to identify the gene and microRNA changes related to smoking in human airway epithelium by bioinformatics analysis.From the Gene Expression Omnibus (GEO) database, the mRNA datasets GSE11906, GSE22047, GSE63127, and microRNA dataset GSE14634 were downloaded, and were analyzed using GEO2R. Functional enrichment analysis of the differentially expressed genes (DEGs) was enforced using DAVID. The protein-protein interaction (PPI) network and differentially expressed miRNAs (DEMs)- DEGs network were executed by Cytoscape.In total, 107 DEGs and 10 DEMs were determined. Gene Ontology (GO) analysis revealed that DEGs principally enriched in oxidation-reduction process, extracellular space and oxidoreductase activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway demonstrated that DEGs were principally enriched in metabolism of xenobiotics by cytochrome P450 and chemical carcinogenesis. The PPI network revealed 15 hub genes, including NQO1, CYP1B1, AKR1C1, CYP1A1, AKR1C3, CEACAM5, MUCL1, B3GNT6, MUC5AC, MUC12, PTGER4, CALCA, CBR1, TXNRD1, and CBR3. Cluster analysis showed that these hub genes were associated with adenocarcinoma in situ, squamous cell carcinoma, cell differentiation, inflammatory response, oxidative DNA damage, oxidative stress response and tumor necrosis factor. Hsa-miR-627-5p might have the most target genes, including ITLN1, TIMP3, PPP4R4, SLC1A2, NOVA1, RNFT2, CLDN10, TMCC3, EPHA7, SRPX2, PPP1R16B, GRM1, HS3ST3A1, SFRP2, SLC7A11, and KLHDC8A.We identified several molecular changes induced by smoking in human airway epithelium. This study may provide some candidate genes and microRNAs for assessing the risk of lung diseases caused by smoking.
Collapse
Affiliation(s)
- Jizhen Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan
| | - Wanli Jiang
- Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan
| | - Yuan Zhang
- Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, Sichuan
| |
Collapse
|
21
|
Ye Z, Ai X, Liao Z, You C, Cheng Y. The prognostic values of neutrophil to lymphocyte ratio for outcomes in chronic obstructive pulmonary disease. Medicine (Baltimore) 2019; 98:e16371. [PMID: 31305434 PMCID: PMC6641779 DOI: 10.1097/md.0000000000016371] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Neutrophil to lymphocyte ratio (NLR) is considered as an inflammatory biomarker for clinical outcomes in patients with chronic obstructive pulmonary disease (COPD). We aimed to conduct a meta-analysis to evaluate the prognostic values of NLR for the exacerbation and mortality in patients with COPD. METHODS We searched the database of Cochrane Central Register of Controlled Trials, EMBASE, and PubMed, before September 2017. The eligible studies were retrieved by 2 authors independently following the criteria. The pooled odds ratios (ORs) of included studies were used to evaluate the prognostic values of NLR. Subgroup analyses were conducted to make the results more accurate. RESULTS Nine studies with 5140 patients were enrolled in this analysis. The high NLR was associated with higher risk of exacerbation (OR: 3.81, 95% confidence interval [CI]: 1.20-12.13, P = .02) and mortality (OR: 2.60, 95% CI: 1.48-4.57, P < .01). By subgroup analysis, high NLR could predict the mortality in patients >70 years (OR: 2.16, 95% CI: 1.17-3.98, P = .01) but not in patients <70 years (OR: 4.08, 95% CI: 0.91-18.24, P = .07), and had a higher predictive ability in Asian group (OR: 3.64, 95% CI: 1.87-7.08, P < .01) than Eurasia group (OR: 1.82, 95% CI: 1.43-2.32, P < .01). In addition, high NLR could predict the short-term mortality (OR: 2.70, 95% CI: 1.10-6.63, P = .03) and the long-term mortality (OR: 2.61, 95% CI: 1.20-5.65, P = .02). CONCLUSIONS The NLR may be an independent predictor for incidence of exacerbation in patients with COPD. In addition, high NLR may be associated with higher mortality in patients with COPD, especially for Asian and the patients with higher mean NLR.
Collapse
Affiliation(s)
| | | | - Zenglin Liao
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | |
Collapse
|
22
|
Chan SMH, Selemidis S, Bozinovski S, Vlahos R. Pathobiological mechanisms underlying metabolic syndrome (MetS) in chronic obstructive pulmonary disease (COPD): clinical significance and therapeutic strategies. Pharmacol Ther 2019; 198:160-188. [PMID: 30822464 PMCID: PMC7112632 DOI: 10.1016/j.pharmthera.2019.02.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major incurable global health burden and is currently the 4th largest cause of death in the world. Importantly, much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities (e.g. skeletal muscle wasting, ischemic heart disease, cognitive dysfunction) and infective viral and bacterial acute exacerbations (AECOPD). Current pharmacological treatments for COPD are relatively ineffective and the development of effective therapies has been severely hampered by the lack of understanding of the mechanisms and mediators underlying COPD. Since comorbidities have a tremendous impact on the prognosis and severity of COPD, the 2015 American Thoracic Society/European Respiratory Society (ATS/ERS) Research Statement on COPD urgently called for studies to elucidate the pathobiological mechanisms linking COPD to its comorbidities. It is now emerging that up to 50% of COPD patients have metabolic syndrome (MetS) as a comorbidity. It is currently not clear whether metabolic syndrome is an independent co-existing condition or a direct consequence of the progressive lung pathology in COPD patients. As MetS has important clinical implications on COPD outcomes, identification of disease mechanisms linking COPD to MetS is the key to effective therapy. In this comprehensive review, we discuss the potential mechanisms linking MetS to COPD and hence plausible therapeutic strategies to treat this debilitating comorbidity of COPD.
Collapse
Affiliation(s)
- Stanley M H Chan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
23
|
Azevedo PO, Paiva AE, Santos GSP, Lousado L, Andreotti JP, Sena IFG, Tagliati CA, Mintz A, Birbrair A. Cross-talk between lung cancer and bones results in neutrophils that promote tumor progression. Cancer Metastasis Rev 2019; 37:779-790. [PMID: 30203108 DOI: 10.1007/s10555-018-9759-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer is the leading cause of cancer mortality around the world. The lack of detailed understanding of the cellular and molecular mechanisms participating in the lung tumor progression restrains the development of efficient treatments. Recently, by using state-of-the-art technologies, including in vivo sophisticated Cre/loxP technologies in combination with lung tumor models, it was revealed that osteoblasts activate neutrophils that promote tumor growth in the lung. Strikingly, genetic ablation of osteoblasts abolished lung tumor progression via interruption of SiglecFhigh-expressing neutrophils supply to the tumor microenvironment. Interestingly, SiglecFhigh neutrophil signature was associated with worse lung adenocarcinoma patients outcome. This study identifies novel cellular targets for lung cancer treatment. Here, we summarize and evaluate recent advances in our understanding of lung tumor microenvironment.
Collapse
Affiliation(s)
- Patrick O Azevedo
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana E Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiza Lousado
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia P Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isadora F G Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos A Tagliati
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
24
|
Karataş M, Gündüzöz M, Öziş TN, Özakıncı OG, Ergün D. Neutrophil to lymphocyte ratio and platelet to lymphocyte ratio as haematological indices of inflammatory response in ceramic workers' silicosis. CLINICAL RESPIRATORY JOURNAL 2019; 13:159-165. [PMID: 30664328 DOI: 10.1111/crj.12997] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/28/2018] [Accepted: 01/15/2019] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Occupational exposure to crystalline silica over time may result in silicosis: a fatal, irreversible occupational disease leading to lung function impairment. A complex inflammatory process, excessive accumulation of mesenchymal cells and collagen production are the primary mechanisms underlying silicosis. Neutrophil to lymphocyte ratio (NLR) and the platelet to lymphocyte ratio (PLR) have emerged as representative indices of systemic inflammation. OBJECTIVES The purpose of the present study was to investigate the relationship between NLR, PLR and silicosis. METHODS We retrospectively analysed the demographic and laboratory data of ceramic workers who were referred to our Hospital between 2010 and 2018. Five hundred and seventy-three patients with silicosis and 222 ceramic workers without silicosis (controls) were included in the study. RESULTS The radiographic ILO classification of silicosis patients was as follows: category 1 (71.5%), category 2 (19.2%), category 3 (7.5%). NLR and PLR in categories 2 and 3 were significantly higher when compared with the control group (P < .005). FEV1 , FEV1 %, FVC, FVC % and PEF were significantly lower in all silicosis patients and also in patients with subcategories (all P < .005). NLR showed a poor positive correlation with CRP (r = 0.095, P < .05) and ESR (r = 0.207, P = .000) while PLR only with ESR (r = 0.317, P = .000) in patients with silicosis. NLR and PLR showed negative correlations with FEV1 , FVC and PEF (all P < .005). CONCLUSION We conclude that NLR and PLR have significant but poor correlations with pulmonary functions and severity of silicosis, especially in late radiographic profusion categories.
Collapse
Affiliation(s)
- Mevlüt Karataş
- Department of Chest Diseases, Occupational and Environmental Diseases Hospital, Ankara, Turkey
| | - Meşide Gündüzöz
- Department of Family Medicine, Occupational and Environmental Diseases Hospital, Ankara, Turkey
| | - Türkan Nadir Öziş
- Department of Chest Diseases, Occupational and Environmental Diseases Hospital, Ankara, Turkey
| | - Osman Gökhan Özakıncı
- Department of Public Health, Occupational and Environmental Diseases Hospital, Ankara, Turkey
| | - Dilek Ergün
- Department of Chest Diseases, Occupational and Environmental Diseases Hospital, Ankara, Turkey
| |
Collapse
|
25
|
Stamatiou R, Paraskeva E, Vasilaki A, Hatziefthimiou A. The muscarinic antagonist gallamine induces proliferation of airway smooth muscle cells regardless of the cell phenotype. Pharmacol Rep 2018; 71:225-232. [PMID: 30785060 DOI: 10.1016/j.pharep.2018.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 10/04/2018] [Accepted: 10/19/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Muscarinic receptor antagonists are a usual treatment for chronic airway diseases, with increased bronchoconstriction, like asthma and chronic obstructive pulmonary disease. These diseases are usually accompanied by airway remodeling, involving airway smooth muscle cell (ASMC) proliferation. The purpose of this study was to examine the effect of the muscarinic receptor modulator gallamine on rabbit tracheal ASMC proliferation. METHODS ASMCs were incubated with gallamine (1 nM-10 mM), atropine (1 fM-10 mM), and/or acetylcholine (1 nM-1 mM), in the presence or absence of FBS (1% or 10%). Cell proliferation was estimated by incorporation of radioactive thymidine, the Cell Titer AQueous One Solution method and cell number counting after Trypan blue exclusion. The mechanisms mediating cell proliferation were studied using the PI3K and MAPK inhibitors LY294002 (20 μM) and PD98059 (100 μM), respectively. Cell phenotype was studied by indirect immunofluorescence for α-actin, Myosin Heavy Chain and desmin. RESULTS ASMC incubation with the muscarinic receptor allosteric modulator gallamine or the muscarinic receptor antagonist atropine increased methyl-[3H]thymidine incorporation and cell number in a dose-dependent manner. ASMC proliferation was mediated via PI3K and MAPK activation and was transient. Gallamine antagonized the mitogenic effect of 1% FBS. Furthermore, gallamine had a similar effect on contractile ASMCs, without synergizing with or affecting acetylcholine induced proliferation, or altering the percentage of ASMCs expressing contractile phenotype marker proteins. CONCLUSIONS Gallamine, in the absence of any agonist, has a transient mitogenic effect on ASMCs, regardless of the cell phenotype, mediated by the PI3K and the MAPK signaling pathways.
Collapse
Affiliation(s)
- Rodopi Stamatiou
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece.
| | - Efrosini Paraskeva
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece.
| | - Anna Vasilaki
- Laboratory of Pharmacology, Department of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece.
| | - Apostolia Hatziefthimiou
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece.
| |
Collapse
|
26
|
Leigh NJ, Tran PL, O'Connor RJ, Goniewicz ML. Cytotoxic effects of heated tobacco products (HTP) on human bronchial epithelial cells. Tob Control 2018; 27:s26-s29. [PMID: 30185530 PMCID: PMC6252481 DOI: 10.1136/tobaccocontrol-2018-054317] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/01/2018] [Accepted: 08/13/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Heated tobacco product(s) (HTP), also called heat-not-burn products, are a re-emerging class of tobacco products that purport to reduce health risk compared with smoking combustible tobacco products. This study examined the potential toxic effects of inhaling emissions from an HTP in comparison with electronic and combustible tobacco cigarettes. METHODS Inhalation toxicity of HTP (IQOS; tobacco flavour), e-cigarette (MarkTen; tobacco flavour) and tobacco cigarette (Marlboro Red) was examined in vitro using an air-liquid interface with human bronchial epithelial cells (H292). Cells were exposed directly to 55 puffs from the e-cigarette, 12 puffs from the HTP and 8 puffs from the tobacco cigarette to equilibrate nicotine delivery to the cells across products. Cytotoxicity was measured using neutral red uptake and trypan blue assays. Cytotoxic effects of each tested product (HTP, e-cigarette and tobacco cigarette) were compared with an air control. Release of inflammatory markers (cytokines) was measured using ELISA. RESULTS The HTP showed higher cytotoxicity compared with the air controls using the neutral red assay. The HTP also showed higher cytotoxicity than the e-cigarette, but lower cytotoxicity than the combustible cigarettes using the same assay. A significant increase in cytokines levels, compared with air controls, was observed postexposure to tobacco smoke but not to emissions from HTP or e-cigarette aerosol. DISCUSSION Using limited cytotoxic measures, the HTP showed reduced cytotoxicity relative to a combustible cigarette but higher toxicity than an e-cigarette. More comprehensive testing is needed to determine long-term effects of inhaling emissions from HTP.
Collapse
Affiliation(s)
- Noel J Leigh
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Phillip L Tran
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Richard J O'Connor
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Maciej Lukasz Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
27
|
Hong M, Hong C, Chen H, Ke G, Huang J, Huang X, Liu Y, Li F, Li C. Effects of the Chinese herb formula Yufeining on stable chronic obstructive pulmonary disease: A randomized, double-blind, placebo-controlled trial. Medicine (Baltimore) 2018; 97:e12461. [PMID: 30278529 PMCID: PMC6181551 DOI: 10.1097/md.0000000000012461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/28/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND A Chinese herb formula Yufeining (YFN) has showed promise in the treatment of stable chronic obstructive pulmonary disease (COPD), less is known that the impact of YFN in combination with standard Western treatments on lung inflammation. This study evaluated the safety and efficacy of YFN as a treatment for stable COPD and as an anti-inflammatory agent. METHODS Sixty patients with stable COPD were randomly assigned to two treatment groups (YFN treatment, N = 30; placebo treatment, N = 30). Both groups received inhaled steroids and bronchodilators during an 8-week intervention, and patient status was assessed at 8 weeks later and 4 months after treatment. The primary outcome included clinical efficacy. The secondary outcomes involved CAT score, mMRC grade, six-minute walking distance (6MWD). IL-8, TNF-α, IL-17A, LTB4, TGF-β1 and CRP were also detection in peripheral serum, as well as adverse reaction conditions. RESULTS The YFN group demonstrated a significant improvement in clinical efficacy (compare 89.3% to 63.3% in the placebo group; P < 0.05). CAT scores and mMRC grades significantly decreased (P < 0.05, P < 0.01), and 6MWD significantly increased (P<0.05), after YFN treatment. The levels of IL-8, TNF-α, LTB4 and CRP decreased significantly after 8 weeks of treatment compared to baseline levels in both groups. Only in the YFN treatment group, the levels of IL-17A decreased significantly after treatment compared to baseline levels (P < 0.05). No changes were observed inTGF-β1 from pre-to post-treatment in either group (P > 0.05). Serum levels of IL-8, TNF-α, IL-17A, LTB4 and CRP decreased significantly after YFN treatment compared to the placebo group (P < 0.05). CONCLUSION A combinatorial treatment approach with YFN, inhaled steroids and bronchodilators produced a clinically effective treatment for stable COPD, leading to a significant decrease in circulating inflammatory mediators. The study appeared YFN was safety. CLINICAL TRIAL REGISTRATION NUMBER No. ChiCTR-IOR-17013577.
Collapse
Affiliation(s)
- Minli Hong
- Fujian University of Traditional Chinese Medicine, Fuzhou
- Fujian Province Zhangzhou Municipal TCM Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Zhangzhou
| | - Chunlin Hong
- Fujian Province Zhangzhou Municipal TCM Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Zhangzhou
| | - Huinuan Chen
- Fujian Province Zhangzhou Municipal TCM Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Zhangzhou
| | - Gengshen Ke
- Fujian Province Zhangzhou Municipal TCM Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Zhangzhou
| | - Jinrong Huang
- Fujian Province Zhangzhou Municipal TCM Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Zhangzhou
| | - Xiaohua Huang
- Fujian Province Zhangzhou Municipal TCM Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Zhangzhou
| | - Yanhong Liu
- Fujian Province Zhangzhou Municipal TCM Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Zhangzhou
| | - Fengsen Li
- Traditional Chinese Medicine Hospital, Affiliated to Xinjiang Medical University & National Clinical Research Base of Traditional Chinese Medicine, Wulumuqi, Xinjiang, China
| | - Candong Li
- Fujian University of Traditional Chinese Medicine, Fuzhou
| |
Collapse
|
28
|
Tang F, Ling C, Liu J. Reduced expression of growth differentiation factor 11 promoted the progression of chronic obstructive pulmonary disease by activating the AKT signaling pathway. Biomed Pharmacother 2018; 103:691-698. [DOI: 10.1016/j.biopha.2018.04.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/29/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022] Open
|
29
|
Mebratu YA, Tesfaigzi Y. IL-17 Plays a Role in Respiratory Syncytial Virus-induced Lung Inflammation and Emphysema in Elastase and LPS-injured Mice. Am J Respir Cell Mol Biol 2018; 58:717-726. [PMID: 29314865 PMCID: PMC6002655 DOI: 10.1165/rcmb.2017-0265oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/09/2018] [Indexed: 01/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) is associated with enhanced progression of chronic obstructive pulmonary disease (COPD) and COPD exacerbations. However, little is known about the role of IL-17 in RSV-induced lung injury. We first investigated the role of RSV infection in enhancing mucous cell hyperplasia (MCH) and airspace enlargement in the lungs of mice injured with elastase and LPS (E/LPS). Mice injured with E/LPS had an enhanced and prolonged neutrophilic response to RSV that was associated with decreased levels of type I IFN and increased levels of IL-17, IL-23, CXCL-1, granulocyte colony stimulating factor (GCSF), CXCL-5, and matrix metalloproteinase (MMP)-9. In addition, extent of MCH and mean weighted alveolar space were increased significantly in the lungs of E/LPS-injured mice infected with RSV compared with E/LPS-only or RSV-only controls. Interestingly, immunodepletion of IL-17 before viral infection diminished the RSV-driven MCH and airspace enlargement in the E/LPS-injured animals, suggesting that IL-17 may be a therapeutic target for MCH and airspace enlargement when enhanced by RSV infection.
Collapse
Affiliation(s)
- Yohannes A Mebratu
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Yohannes Tesfaigzi
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
30
|
Abstract
BACKGROUND Bronchiectasis is being increasingly diagnosed and recognised as an important contributor to chronic lung disease in both adults and children in high- and low-income countries. It is characterised by irreversible dilatation of airways and is generally associated with airway inflammation and chronic bacterial infection. Medical management largely aims to reduce morbidity by controlling the symptoms, reduce exacerbation frequency, improve quality of life and prevent the progression of bronchiectasis. This is an update of a review first published in 2000. OBJECTIVES To evaluate the efficacy and safety of inhaled corticosteroids (ICS) in children and adults with stable state bronchiectasis, specifically to assess whether the use of ICS: (1) reduces the severity and frequency of acute respiratory exacerbations; or (2) affects long-term pulmonary function decline. SEARCH METHODS We searched the Cochrane Register of Controlled Trials (CENTRAL), the Cochrane Airways Group Register of trials, MEDLINE and Embase databases. We ran the latest literature search in June 2017. SELECTION CRITERIA All randomised controlled trials (RCTs) comparing ICS with a placebo or no medication. We included children and adults with clinical or radiographic evidence of bronchiectasis, but excluded people with cystic fibrosis. DATA COLLECTION AND ANALYSIS We reviewed search results against predetermined criteria for inclusion. In this update, two independent review authors assessed methodological quality and risk of bias in trials using established criteria and extracted data using standard pro forma. We analysed treatment as 'treatment received' and performed sensitivity analyses. MAIN RESULTS The review included seven studies, involving 380 adults. Of the 380 randomised participants, 348 completed the studies.Due to differences in outcomes reported among the seven studies, we could only perform limited meta-analysis for both the short-term ICS use (6 months or less) and the longer-term ICS use (> 6 months).During stable state in the short-term group (ICS for 6 months or less), based on the two studies from which data could be included, there were no significant differences from baseline values in the forced expiratory volume in the first second (FEV1) at the end of the study (mean difference (MD) -0.09, 95% confidence interval (CI) -0.26 to 0.09) and forced vital capacity (FVC) (MD 0.01 L, 95% CI -0.16 to 0.17) in adults on ICS (compared to no ICS). Similarly, we did not find any significant difference in the average exacerbation frequency (MD 0.09, 95% CI -0.61 to 0.79) or health-related quality of life (HRQoL) total scores in adults on ICS when compared with no ICS, though data available were limited. Based on a single non-placebo controlled study from which we could not extract clinical data, there was marginal, though statistically significant improvement in sputum volume and dyspnoea scores on ICS.The single study on long-term outcomes (over 6 months) that examined lung function and other clinical outcomes, showed no significant effect of ICS on any of the outcomes. We could not draw any conclusion on adverse effects due to limited available data.Despite the authors of all seven studies stating they were double-blind, we judged one study (in the short duration ICS) as having a high risk of bias based on blinding, attrition and reporting of outcomes. The GRADE quality of evidence was low for all outcomes (due to non-placebo controlled trial, indirectness and imprecision with small numbers of participants and studies). AUTHORS' CONCLUSIONS This updated review indicates that there is insufficient evidence to support the routine use of ICS in adults with stable state bronchiectasis. Further, we cannot draw any conclusion for the use of ICS in adults during an acute exacerbation or in children (for any state), as there were no studies.
Collapse
Affiliation(s)
- Nitin Kapur
- Children's Health Queensland, Lady Cilento Children's HospitalDepartment of Respiratory and Sleep MedicineBrisbaneQueenslandAustralia
- The University of QueenslandSchool of Clinical MedicineBrisbaneAustralia
| | - Helen L Petsky
- Griffith UniversitySchool of Nursing and Midwifery, Griffith University and Menzies Health Institute QueenslandBrisbaneQueenslandAustralia
| | - Scott Bell
- The Prince Charles HospitalRode RoadChermsideBrisbaneQueenslandAustralia4032
| | - John Kolbe
- The University of AucklandDepartment of Medicine, Faculty of Medical and Health SciencesPrivate Bag 92019AucklandNew Zealand1142
| | - Anne B Chang
- Menzies School of Health Research, Charles Darwin UniversityChild Health DivisionPO Box 41096DarwinNorthern TerritoriesAustralia0811
- Queensland University of TechnologyInstitute of Health and Biomedical InnovationBrisbaneAustralia
| | | |
Collapse
|
31
|
Tashkin DP, Wechsler ME. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2018; 13:335-349. [PMID: 29403271 PMCID: PMC5777380 DOI: 10.2147/copd.s152291] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
COPD is a significant cause of morbidity and mortality. In some patients with COPD, eosinophils contribute to inflammation that promotes airway obstruction; approximately a third of stable COPD patients have evidence of eosinophilic inflammation. Although the eosinophil threshold associated with clinical relevance in patients with COPD is currently subject to debate, eosinophil counts hold potential as biomarkers to guide therapy. In particular, eosinophil counts may be useful in assessing which patients may benefit from inhaled corticosteroid therapy, particularly regarding exacerbation prevention. In addition, several therapies targeting eosinophilic inflammation are available or in development, including monoclonal antibodies targeting the IL5 ligand, the IL5 receptor, IL4, and IL13. The goal of this review was to describe the biologic characteristics of eosinophils, their role in COPD during exacerbations and stable disease, and their use as biomarkers to aid treatment decisions. We also propose an algorithm for inhaled corticosteroid use, taking into consideration eosinophil counts and pneumonia history, and emerging eosinophil-targeted therapies in COPD.
Collapse
Affiliation(s)
- Donald P Tashkin
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
32
|
So JY, Dhungana S, Beros JJ, Criner GJ. Statins in the treatment of COPD and asthma-where do we stand? Curr Opin Pharmacol 2018; 40:26-33. [PMID: 29334676 DOI: 10.1016/j.coph.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/01/2018] [Indexed: 01/26/2023]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are the two most prevalent obstructive lung diseases that account for tremendous morbidity and mortality throughout the world. These diseases have strong inflammatory components, with multiple prior studies showing elevated levels of various inflammatory markers and cells in those with COPD and asthma. Therefore, efforts to target inflammation in management of these diseases are of great interest. Statins, which define a class of drugs that are HMG-CoA inhibitors, are used to decrease cholesterol levels and have also been described to have many pleotropic effects that include anti-inflammatory and anti-oxidative properties. These properties have led to multiple studies looking at the potential use of statins in decreasing inflammation in many diseases, including COPD and asthma. This review aims to address the current evidence behind the potential use of statins in the treatment of asthma and COPD.
Collapse
Affiliation(s)
- Jennifer Y So
- Department of Thoracic Medicine and Surgery at the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| | - Santosh Dhungana
- Department of Thoracic Medicine and Surgery at the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Joanna J Beros
- Department of Thoracic Medicine and Surgery at the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery at the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
33
|
Iseme RA, Mcevoy M, Kelly B, Agnew L, Walker FR, Attia J. Is osteoporosis an autoimmune mediated disorder? Bone Rep 2017; 7:121-131. [PMID: 29124082 PMCID: PMC5671387 DOI: 10.1016/j.bonr.2017.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/01/2017] [Accepted: 10/15/2017] [Indexed: 12/12/2022] Open
Abstract
The last two decades have marked a growing understanding of the interaction occurring between bone and immune cells. The chronic inflammation and immune system dysfunction commonly observed to occur during the ageing process and as part of a range of other pathological conditions, commonly associated with osteoporosis has led to the recognition of these processes as important determinants of bone disease. This is further supported by the recognition that the immune and bone systems in fact share regulatory mechanisms and progenitor molecules. Research into this complex synergy has provided a better understanding of the immunopathogenesis underlying bone diseases such as osteoporosis. However, existing research has largely focussed on delineating the role played by inflammation in pathogenic bone destruction, despite increasing evidence implicating autoantibodies as important drivers of osteoporosis. This review shall attempt to provide a comprehensive overview of existing research examining the role played by autoantibodies in osteoporosis in order to determine the potential for further research in this area. Autoantibodies represent promising targets for the improved treatment and diagnosis of inflammatory bone loss.
Collapse
Affiliation(s)
- Rosebella A. Iseme
- Department of Population and Reproductive Health, School of Public Health, Kenyatta University, P.O. Box 43844 –, 00100, Nairobi, Kenya
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mark Mcevoy
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Brian Kelly
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Centre for Brain and Mental Health Research, The University of Newcastle, Callaghan, NSW, Australia
| | - Linda Agnew
- Brain Behaviour Research Group, School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Frederick R. Walker
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Laboratory of Affective Neuroscience, The University of Newcastle, Callaghan, NSW, Australia
- University of Newcastle, Medical Sciences MS413, University Drive, Callaghan, NSW 2308, Australia
| | - John Attia
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
- Department of General Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia
| |
Collapse
|
34
|
Brüggemann TR, Fernandes P, Oliveira LDM, Sato MN, Martins MDA, Arantes-Costa FM. Cigarette Smoke Increases CD8α + Dendritic Cells in an Ovalbumin-Induced Airway Inflammation. Front Immunol 2017; 8:718. [PMID: 28670318 PMCID: PMC5472682 DOI: 10.3389/fimmu.2017.00718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/02/2017] [Indexed: 12/22/2022] Open
Abstract
Asthma is an allergic lung disease and, when associated to cigarette smoke exposition, some patients show controversial signs about lung function and other inflammatory mediators. Epidemiologic and experimental studies have shown both increasing and decreasing inflammation in lungs of subjects with asthma and exposed to cigarette smoke. Therefore, in this study, we analyzed how cigarette smoke affects pro-inflammatory and anti-inflammatory mediators in a murine model of allergic pulmonary inflammation. We sensitized Balb/c mice to ovalbumin (OVA) with two intraperitoneal injections. After sensitization, the animals were exposed to cigarette smoke twice a day, 30 min per exposition, for 12 consecutive days. In order to drive the cell to the lungs, four aerosol challenges were performed every 48 h with the same allergen of sensitization. OVA sensitization and challenge developed pulmonary Th2 characteristic response with increased airway responsiveness, remodeling, increased levels of IgE, interleukin (IL)-4, and IL-13. Cigarette smoke, unexpectedly, reduced the levels of IL-4 and IL-13 and simultaneously decreased anti-inflammatory cytokines as IL-10 and transforming growth factor (TGF)-β in sensitized and challenged animals. OVA combined with cigarette smoke exposition decreased the number of eosinophils in bronchoalveolar lavage and increased the number of neutrophils in lung. The combination of cigarette smoke and lung allergy increased recruitment of lymphoid dendritic cells (DCs) into lymph nodes, which may be the leading cause to an increase in number and activation of CD8+ T cells in lungs. In addition, lung allergy and cigarette smoke exposure decreased an important regulatory subtype of DC such as plasmacytoid DC as well as its activation by expression of CD86, PDL2, and ICOSL, and it was sufficient to decrease T regs influx and anti-inflammatory cytokines release such as IL-10 and TGF-β but not enough to diminish the structural changes. In conclusion, we observed, in this model, that OVA sensitization and challenge combined with cigarette smoke exposure leads to mischaracterization of the Th2 response of asthma by decreasing the number of eosinophils, IL-4, and IL-13 and increasing number of neutrophils, which is related to the increased number of CD8ɑ+ DCs and CD8+ T cells as well as reduction of the regulatory cells and its released cytokines.
Collapse
Affiliation(s)
- Thayse Regina Brüggemann
- Laboratory of Experimental Therapeutics LIM20, Department of Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.,Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Paula Fernandes
- Laboratory of Experimental Therapeutics LIM20, Department of Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Luana de Mendonça Oliveira
- Laboratory of Medical Investigation LIM56, School of Medicine, Division of Clinical Dermatology, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Notomi Sato
- Laboratory of Medical Investigation LIM56, School of Medicine, Division of Clinical Dermatology, University of Sao Paulo, Sao Paulo, Brazil
| | - Mílton de Arruda Martins
- Laboratory of Experimental Therapeutics LIM20, Department of Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernanda Magalhães Arantes-Costa
- Laboratory of Experimental Therapeutics LIM20, Department of Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
35
|
Fossum SL, Mutolo MJ, Tugores A, Ghosh S, Randell SH, Jones LC, Leir SH, Harris A. Ets homologous factor (EHF) has critical roles in epithelial dysfunction in airway disease. J Biol Chem 2017; 292:10938-10949. [PMID: 28461336 DOI: 10.1074/jbc.m117.775304] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/27/2017] [Indexed: 12/16/2022] Open
Abstract
The airway epithelium forms a barrier between the internal and external environments. Epithelial dysfunction is critical in the pathology of many respiratory diseases, including cystic fibrosis. Ets homologous factor (EHF) is a key member of the transcription factor network that regulates gene expression in the airway epithelium in response to endogenous and exogenous stimuli. EHF, which has altered expression in inflammatory states, maps to the 5' end of an intergenic region on Chr11p13 that is implicated as a modifier of cystic fibrosis airway disease. Here we determine the functions of EHF in primary human bronchial epithelial (HBE) cells and relevant airway cell lines. Using EHF ChIP followed by deep sequencing (ChIP-seq) and RNA sequencing after EHF depletion, we show that EHF targets in HBE cells are enriched for genes involved in inflammation and wound repair. Furthermore, changes in gene expression impact cell phenotype because EHF depletion alters epithelial secretion of a neutrophil chemokine and slows wound closure in HBE cells. EHF activates expression of the SAM pointed domain-containing ETS transcription factor, which contributes to goblet cell hyperplasia. Our data reveal a critical role for EHF in regulating epithelial function in lung disease.
Collapse
Affiliation(s)
- Sara L Fossum
- From the Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, Illinois 60614.,the Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Michael J Mutolo
- From the Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, Illinois 60614.,the Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Antonio Tugores
- the Unidad de Investigación, Complejo Hospitalario Universitario Insular Materno Infantil, 35016 Las Palmas de Gran Canaria, Spain
| | - Sujana Ghosh
- From the Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, Illinois 60614.,the Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Scott H Randell
- the Marsico Lung Institute, University of North Carolina Cystic Fibrosis Center, University of North Carolina, Chapel Hill, North Carolina 27599, and
| | - Lisa C Jones
- the Marsico Lung Institute, University of North Carolina Cystic Fibrosis Center, University of North Carolina, Chapel Hill, North Carolina 27599, and
| | - Shih-Hsing Leir
- From the Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, Illinois 60614.,the Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611.,the Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44016
| | - Ann Harris
- From the Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, Illinois 60614, .,the Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611.,the Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44016
| |
Collapse
|
36
|
Plausible Roles for RAGE in Conditions Exacerbated by Direct and Indirect (Secondhand) Smoke Exposure. Int J Mol Sci 2017; 18:ijms18030652. [PMID: 28304347 PMCID: PMC5372664 DOI: 10.3390/ijms18030652] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/07/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Approximately 1 billion people smoke worldwide, and the burden placed on society by primary and secondhand smokers is expected to increase. Smoking is the leading risk factor for myriad health complications stemming from diverse pathogenic programs. First- and second-hand cigarette smoke contains thousands of constituents, including several carcinogens and cytotoxic chemicals that orchestrate chronic inflammatory responses and destructive remodeling events. In the current review, we outline details related to compromised pulmonary and systemic conditions related to smoke exposure. Specifically, data are discussed relative to impaired lung physiology, cancer mechanisms, maternal-fetal complications, cardiometabolic, and joint disorders in the context of smoke exposure exacerbations. As a general unifying mechanism, the receptor for advanced glycation end-products (RAGE) and its signaling axis is increasingly considered central to smoke-related pathogenesis. RAGE is a multi-ligand cell surface receptor whose expression increases following cigarette smoke exposure. RAGE signaling participates in the underpinning of inflammatory mechanisms mediated by requisite cytokines, chemokines, and remodeling enzymes. Understanding the biological contributions of RAGE during cigarette smoke-induced inflammation may provide critically important insight into the pathology of lung disease and systemic complications that combine during the demise of those exposed.
Collapse
|
37
|
van Agteren JEM, Hnin K, Grosser D, Carson KV, Smith BJ. Bronchoscopic lung volume reduction procedures for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2017; 2:CD012158. [PMID: 28230230 PMCID: PMC6464526 DOI: 10.1002/14651858.cd012158.pub2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND In the recent years, a variety of bronchoscopic lung volume reduction (BLVR) procedures have emerged that may provide a treatment option to participants suffering from moderate to severe chronic obstructive pulmonary disease (COPD). OBJECTIVES To assess the effects of BLVR on the short- and long-term health outcomes in participants with moderate to severe COPD and determine the effectiveness and cost-effectiveness of each individual technique. SEARCH METHODS Studies were identified from the Cochrane Airways Group Specialised Register (CAGR) and by handsearching of respiratory journals and meeting abstracts. All searches are current until 07 December 2016. SELECTION CRITERIA We included randomized controlled trials (RCTs). We included studies reported as full text, those published as abstract only and unpublished data, if available. DATA COLLECTION AND ANALYSIS Two independent review authors assessed studies for inclusion and extracted data. Where possible, data from more than one study were combined in a meta-analysis using RevMan 5 software. MAIN RESULTS AeriSealOne RCT of 95 participants found that AeriSeal compared to control led to a significant median improvement in forced expiratory volume in one second (FEV1) (18.9%, interquartile range (IQR) -0.7% to 41.9% versus 1.3%, IQR -8.2% to 12.9%), and higher quality of life, as measured by the St Georges Respiratory Questionnaire (SGRQ) (-12 units, IQR -22 units to -5 units, versus -3 units, IQR -5 units to 1 units), P = 0.043 and P = 0.0072 respectively. Although there was no significant difference in mortality (Odds Ratio (OR) 2.90, 95% CI 0.14 to 62.15), adverse events were more common for participants treated with AeriSeal (OR 3.71, 95% CI 1.34 to 10.24). The quality of evidence found in this prematurely terminated study was rated low to moderate. Airway bypass stentsTreatment with airway bypass stents compared to control did not lead to significant between-group changes in FEV1 (0.95%, 95% CI -0.16% to 2.06%) or SGRQ scores (-2.00 units, 95% CI -5.58 units to 1.58 units), as found by one study comprising 315 participants. There was no significant difference in mortality (OR 0.76, 95% CI 0.21 to 2.77), nor were there significant differences in adverse events (OR 1.33, 95% CI 0.65 to 2.73) between the two groups. The quality of evidence was rated moderate to high. Endobronchial coilsThree studies comprising 461 participants showed that treatment with endobronchial coils compared to control led to a significant between-group mean difference in FEV1 (10.88%, 95% CI 5.20% to 16.55%) and SGRQ (-9.14 units, 95% CI -11.59 units to -6.70 units). There were no significant differences in mortality (OR 1.49, 95% CI 0.67 to 3.29), but adverse events were significantly more common for participants treated with coils (OR 2.14, 95% CI 1.41 to 3.23). The quality of evidence ranged from low to high. Endobronchial valvesFive studies comprising 703 participants found that endobronchial valves versus control led to significant improvements in FEV1 (standardized mean difference (SMD) 0.48, 95% CI 0.32 to 0.64) and scores on the SGRQ (-7.29 units, 95% CI -11.12 units to -3.45 units). There were no significant differences in mortality between the two groups (OR 1.07, 95% CI 0.47 to 2.43) but adverse events were more common in the endobronchial valve group (OR 5.85, 95% CI 2.16 to 15.84). Participant selection plays an important role as absence of collateral ventilation was associated with superior clinically significant improvements in health outcomes. The quality of evidence ranged from low to high. Intrabronchial valvesIn the comparison of partial bilateral placement of intrabronchial valves to control, one trial favoured control in FEV1 (-2.11% versus 0.04%, P = 0.001) and one trial found no difference between the groups (0.9 L versus 0.87 L, P = 0.065). There were no significant differences in SGRQ scores (MD 2.64 units, 95% CI -0.28 units to 5.56 units) or mortality rates (OR 4.95, 95% CI 0.85 to 28.94), but adverse events were more frequent (OR 3.41, 95% CI 1.48 to 7.84) in participants treated with intrabronchial valves. The lack of functional benefits may be explained by the procedural strategy used, as another study (22 participants) compared unilateral versus partial bilateral placement, finding significant improvements in FEV1 and SGRQ when using the unilateral approach. The quality of evidence ranged between moderate to high. Vapour ablationOne study of 69 participants found significant mean between-group differences in FEV1 (14.70%, 95% CI 7.98% to 21.42%) and SGRQ (-9.70 units, 95% CI -15.62 units to -3.78 units), favouring vapour ablation over control. There was no significant between-group difference in mortality (OR 2.82, 95% CI 0.13 to 61.06), but vapour ablation led to significantly more adverse events (OR 3.86, 95% CI 1.00 to 14.97). The quality of evidence ranged from low to moderate. AUTHORS' CONCLUSIONS Results for selected BLVR procedures indicate they can provide significant and clinically meaningful short-term (up to one year) improvements in health outcomes, but this was at the expense of increased adverse events. The currently available evidence is not sufficient to assess the effect of BLVR procedures on mortality. These findings are limited by the lack of long-term follow-up data, limited availability of cost-effectiveness data, significant heterogeneity in results, presence of skew and high CIs, and the open-label character of a number of the studies.
Collapse
Affiliation(s)
| | - Khin Hnin
- Flinders UniversityAdelaideAustralia
| | | | | | - Brian J Smith
- The University of AdelaideSchool of MedicineAdelaideAustralia
| |
Collapse
|
38
|
Kim SW, Rhee CK, Kim KU, Lee SH, Hwang HG, Kim YI, Kim DK, Lee SD, Oh YM, Yoon HK. Factors associated with plasma IL-33 levels in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2017; 12:395-402. [PMID: 28176939 PMCID: PMC5268328 DOI: 10.2147/copd.s120445] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Interleukin (IL)-33 promotes T helper (Th)2 immunity and systemic inflammation. The role of IL-33 in asthma has been widely investigated. IL-33 has also been suggested to play an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). This study investigated the clinical significance and usefulness of plasma IL-33 level in patients with COPD. METHODS A total of 307 patients with stable COPD from 15 centers, who were in the Korean Obstructive Lung Disease cohort, were enrolled in this study. Plasma IL-33 levels were measured by enzyme-linked immunosorbent assay. We analyzed the association between IL-33 level and other clinical characteristics related to COPD. We also examined the features of patients with COPD who exhibited high IL-33 levels. RESULTS IL-33 levels varied, but were very low in most patients. Eosinophil count was significantly correlated with a plasma IL-33 level. In addition, old age and current smoking were related to a low IL-33 level. Significantly more patients with a higher IL-33 level had chronic bronchitis compared with those with a low IL-33 level. CONCLUSION Plasma IL-33 level in patients with stable COPD was related to eosinophil count and chronic bronchitis phenotype. Further studies are needed to identify the precise mechanisms of IL-33/ST2 pathway in patients with COPD.
Collapse
Affiliation(s)
- Sei Won Kim
- Division of Pulmonary, Department of Internal Medicine, Yeouido St Mary’s Hospital
| | - Chin Kook Rhee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul
| | - Ki Uk Kim
- Department of Internal Medicine, Pusan National University, School of Medicine, Busan
| | - Sang Haak Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, St Paul’s Hospital, College of Medicine, The Catholic University of Korea, Seoul
| | - Hun Gyu Hwang
- Department of Internal Medicine, Soonchunhyang University Gumi Hospital, Gumi
| | - Yu Il Kim
- Division of Pulmonology, Department of Internal Medicine, Chonnam National University Hospital, Gwangju
| | - Deog Kyeom Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine
| | - Sang Do Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyoung Kyu Yoon
- Division of Pulmonary, Department of Internal Medicine, Yeouido St Mary’s Hospital
| |
Collapse
|
39
|
Zhao XK, Che P, Cheng ML, Zhang Q, Mu M, Li H, Luo Y, Liang YD, Luo XH, Gao CQ, Jackson PL, Wells JM, Zhou Y, Hu M, Cai G, Thannickal VJ, Steele C, Blalock JE, Han X, Chen CY, Ding Q. Tristetraprolin Down-Regulation Contributes to Persistent TNF-Alpha Expression Induced by Cigarette Smoke Extract through a Post-Transcriptional Mechanism. PLoS One 2016; 11:e0167451. [PMID: 27911957 PMCID: PMC5135108 DOI: 10.1371/journal.pone.0167451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022] Open
Abstract
Rationale Tumor necrosis factor-alpha (TNF-α) is a potent pro-inflammatory mediator and its expression is up-regulated in chronic obstructive pulmonary disease (COPD). Tristetraprolin (TTP) is implicated in regulation of TNF-α expression; however, whether TTP is involved in cigarette smoke-induced TNF-α expression has not been determined. Methods TTP expression was examined by western blot analysis in murine alveolar macrophages and alveolar epithelial cells challenged without or with cigarette smoke extract (CSE). TNF-α mRNA stability, and the decay of TNF-α mRNA, were determined by real-time quantitative RT-PCR. TNF-α protein levels were examined at the same time in these cells. To identify the molecular mechanism involved, a construct expressing the human beta-globin reporter mRNA containing the TNF-α 3’-untranslated region was generated to characterize the TTP targeted site within TNF-α mRNA. Results CSE induced TTP down-regulation in alveolar macrophages and alveolar epithelial cells. Reduced TTP expression resulted in significantly increased TNF-α mRNA stability. Importantly, increased TNF-α mRNA stability due to impaired TTP function resulted in significantly increased TNF-α levels in these cells. Forced TTP expression abrogated the increased TNF-α mRNA stability and expression induced by CSE. By using the globin reporter construct containing TNF-α mRNA 3’-untranslated region, the data indicate that TTP directly targets the adenine- and uridine-rich region (ARE) of TNF-α mRNA and negatively regulates TNF-α expression at the post-transcriptional level. Conclusion The data demonstrate that cigarette smoke exposure reduces TTP expression and impairs TTP function, resulting in significantly increased TNF-α mRNA stability and excessive TNF-α expression in alveolar macrophages and epithelial cells. The data suggest that TTP is a novel post-transcriptional regulator and limits excessive TNF-α expression and inflammatory response induced by cigarette smoke.
Collapse
Affiliation(s)
- Xue-Ke Zhao
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Pulin Che
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ming-Liang Cheng
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
- * E-mail: (MLC); (QD)
| | - Quan Zhang
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Mao Mu
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Hong Li
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuan Luo
- Department of Oral Surgery, Shanghai Stomatology Hospital, Fudan University, Shanghai, China
| | - Yue-Dong Liang
- Department of Infectious Diseases, Public Health Center of Guiyang, Guiyang, Guizhou, China
| | - Xin-Hua Luo
- Department of Infectious Diseases, People's Hospital of Guizhou Province, Guiyang, Guizhou, China
| | - Chang-Qing Gao
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Patricia L. Jackson
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - J. Michael Wells
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yong Zhou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Meng Hu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Guoqiang Cai
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Victor J. Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Chad Steele
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - J. Edwin Blalock
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xiaosi Han
- Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ching-Yi Chen
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Qiang Ding
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (MLC); (QD)
| |
Collapse
|
40
|
Mannam P, Rauniyar N, Lam TT, Luo R, Lee PJ, Srivastava A. MKK3 influences mitophagy and is involved in cigarette smoke-induced inflammation. Free Radic Biol Med 2016; 101:102-115. [PMID: 27717867 DOI: 10.1016/j.freeradbiomed.2016.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/16/2016] [Accepted: 10/02/2016] [Indexed: 11/26/2022]
Abstract
Cigarette smoking is the primary risk factor for COPD which is characterized by excessive inflammation and airflow obstruction of the lung. While inflammation is causally related to initiation and progression of COPD, the mitochondrial mechanisms that underlie the associated inflammatory responses are poorly understood. In this context, we have studied the role played by Mitogen activated protein (MAP) kinase kinase 3 (MKK3), a dual-specificity protein kinase, in cigarette smoke induced-inflammation and mitochondrial dysfunction. Serum pro-inflammatory cytokines were significantly elevated in WT but not in MKK3-/- mice exposed to Cigarette smoke (CS) for 2 months. To study the cellular mechanisms of inflammation, bone marrow derived macrophages (BMDMs), wild type (WT) and MKK3-/-, were exposed to cigarette smoke extract (CSE) and inflammatory cytokine production and mitochondrial function assessed. The levels of IL-1β, IL-6, and TNFα were increased along with higher reactive oxygen species (ROS) and P-NFκB after CSE treatment in WT but not in MKK3-/- BMDMs. CSE treatment adversely affected basal mitochondrial respiration, ATP production, maximum respiratory capacity, and spare respiratory capacity in WT BMDMs only. Mitophagy, clearance of dysfunctional mitochondria, was up regulated in CS exposed WT mice lung tissue and CSE exposed WT BMDMs, respectively. The proteomic analysis of BMDMs by iTRAQ (isobaric tags for relative and absolute quantitation) showed up regulation of mitochondrial dysfunction associated proteins in WT and higher OXPHOS (Oxidative phosphorylation) and IL-10 signaling proteins in MKK3-/- BMDMs after CSE exposure, confirming the critical role of mitochondrial homeostasis. Interestingly, we found increased levels of p-MKK3 by immunohistochemistry in COPD patient lung tissues that could be responsible for insufficient mitophagy and disease progression. This study identifies MKK3 as a negative regulator of mitochondrial function and inflammatory responses to CS and suggests that MKK3 could be a therapeutic target.
Collapse
Affiliation(s)
- Praveen Mannam
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8057, USA.
| | - Navin Rauniyar
- MS & Proteomics Resource at Yale University, WM Keck Foundation Biotechnology Resource Laboratory, Department of Molecular Biophysics and Biochemistry, New Haven, CT 06520-8057, USA
| | - TuKiet T Lam
- MS & Proteomics Resource at Yale University, WM Keck Foundation Biotechnology Resource Laboratory, Department of Molecular Biophysics and Biochemistry, New Haven, CT 06520-8057, USA
| | - Ruiyan Luo
- Department of Epidemiology & Biostatistics, School of Public Health, Georgia State University, Atlanta, GA, USA
| | - Patty J Lee
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8057, USA
| | - Anup Srivastava
- Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8057, USA.
| |
Collapse
|
41
|
Fujii U, Miyahara N, Taniguchi A, Waseda K, Morichika D, Kurimoto E, Koga H, Kataoka M, Gelfand EW, Cua DJ, Yoshimura A, Tanimoto M, Kanehiro A. IL-23 Is Essential for the Development of Elastase-Induced Pulmonary Inflammation and Emphysema. Am J Respir Cell Mol Biol 2016; 55:697-707. [DOI: 10.1165/rcmb.2016-0015oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
42
|
Abstract
Inflammatory cells and mediators are essential components in tumor microenvironment and play decisive roles in the initiation, proliferation, survival, promotion, invasion, or metastasis of lung cancer. Clinical and epidemiologic studies suggested a strong association between inflammation and lung cancer and an influence of immune surveillances and tumor responses to chemotherapeutic drugs, although roles of inflammation in lung cancer remain unclear. The present review outlined roles of inflammation in lung cancer, with particular focus on inflammatory components, types, biomarkers, or principal mechanisms by which the inflammation contributes to the development of lung cancer. The cancer-associated inflammatory cells (CICs) should be furthermore defined and include cancer-specific and interacted cells with inflammatory or inflammation-like characteristics, e.g., innate or adaptive immune cells and cancer tissue cells. We also discuss targeting potentials of inflammation in the prevention and treatment of lung cancer. The diversity of cancer-related inflammatory microenvironment is instrumental to design novel therapeutic approaches for lung cancer.
Collapse
|
43
|
Abstract
BACKGROUND Lung volume reduction surgery (LVRS) performed to treat patients with severe diffuse emphysema was reintroduced in the nineties. Lung volume reduction surgery aims to resect damaged emphysematous lung tissue, thereby increasing elastic properties of the lung. This treatment is hypothesised to improve long-term daily functioning and quality of life, although it may be costly and may be associated with risks of morbidity and mortality. Ten years have passed since the last version of this review was prepared, prompting us to perform an update. OBJECTIVES The objective of this review was to gather all available evidence from randomised controlled trials comparing the effectiveness of lung volume reduction surgery (LVRS) versus non-surgical standard therapy in improving health outcomes for patients with severe diffuse emphysema. Secondary objectives included determining which subgroup of patients benefit from LVRS and for which patients LVRS is contraindicated, to establish the postoperative complications of LVRS and its morbidity and mortality, to determine which surgical approaches for LVRS are most effective and to calculate the cost-effectiveness of LVRS. SEARCH METHODS We identified RCTs by using the Cochrane Airways Group Chronic Obstructive Pulmonary Disease (COPD) register, in addition to the online clinical trials registers. Searches are current to April 2016. SELECTION CRITERIA We included RCTs that studied the safety and efficacy of LVRS in participants with diffuse emphysema. We excluded studies that investigated giant or bullous emphysema. DATA COLLECTION AND ANALYSIS Two independent review authors assessed trials for inclusion and extracted data. When possible, we combined data from more than one study in a meta-analysis using RevMan 5 software. MAIN RESULTS We identified two new studies (89 participants) in this updated review. A total of 11 studies (1760 participants) met the entry criteria of the review, one of which accounted for 68% of recruited participants. The quality of evidence ranged from low to moderate owing to an unclear risk of bias across many studies, lack of blinding and low participant numbers for some outcomes. Eight of the studies compared LVRS versus standard medical care, one compared two closure techniques (stapling vs laser ablation), one looked at the effect of buttressing the staple line on the effectiveness of LVRS and one compared traditional 'resectional' LVRS with a non-resectional surgical approach. Participants completed a mandatory course of pulmonary rehabilitation/physical training before the procedure commenced. Short-term mortality was higher for LVRS (odds ratio (OR) 6.16, 95% confidence interval (CI) 3.22 to 11.79; 1489 participants; five studies; moderate-quality evidence) than for control, but long-term mortality favoured LVRS (OR 0.76, 95% CI 0.61 to 0.95; 1280 participants; two studies; moderate-quality evidence). Participants identified post hoc as being at high risk of death from surgery were those with particularly impaired lung function, poor diffusing capacity and/or homogenous emphysema. Participants with upper lobe-predominant emphysema and low baseline exercise capacity showed the most favourable outcomes related to mortality, as investigators reported no significant differences in early mortality between participants treated with LVRS and those in the control group (OR 0.87, 95% CI 0.23 to 3.29; 290 participants; one study), as well as significantly lower mortality at the end of follow-up for LVRS compared with control (OR 0.45, 95% CI 0.26 to 0.78; 290 participants; one study). Trials in this review furthermore provided evidence of low to moderate quality showing that improvements in lung function parameters other than forced expiratory volume in one second (FEV1), quality of life and exercise capacity were more likely with LVRS than with usual follow-up. Adverse events were more common with LVRS than with control, specifically the occurrence of (persistent) air leaks, pulmonary morbidity (e.g. pneumonia) and cardiovascular morbidity. Although LVRS leads to an increase in quality-adjusted life-years (QALYs), the procedure is relatively costly overall. AUTHORS' CONCLUSIONS Lung volume reduction surgery, an effective treatment for selected patients with severe emphysema, may lead to better health status and lung function outcomes, specifically for patients who have upper lobe-predominant emphysema with low exercise capacity, but the procedure is associated with risks of early mortality and adverse events.
Collapse
Affiliation(s)
| | | | - Leong Ung Tiong
- The Queen Elizabeth HospitalDepartment of SurgeryAdelaideAustralia
| | - Brian J Smith
- The University of AdelaideSchool of MedicineAdelaideAustralia
| | | |
Collapse
|
44
|
Duan Y, Zhou M, Xiao J, Wu C, Zhou L, Zhou F, Du C, Song Y. Prediction of key genes and miRNAs responsible for loss of muscle force in patients during an acute exacerbation of chronic obstructive pulmonary disease. Int J Mol Med 2016; 38:1450-1462. [PMID: 28025995 PMCID: PMC5065306 DOI: 10.3892/ijmm.2016.2761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 08/30/2016] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to identify genes and microRNAs (miRNAs or miRs) that were abnormally expressed in the vastus lateralis muscle of patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD). The gene expression profile of GSE10828 was downloaded from the Gene Expression Omnibus database, and this dataset was comprised of 4 samples from patients with AECOPD and 5 samples from patients with stable COPD. Differentially expressed genes (DEGs) were screened using the Limma package in R. A protein-protein interaction (PPI) network of DEGs was built based on the STRING database. Module analysis of the PPI network was performed using the ClusterONE plugin and functional analysis of DEGs was conducted using DAVID. Additionally, key miRNAs were enriched using gene set enrichment analysis (GSEA) software and a miR-gene regulatory network was constructed using Cytoscape software. In total, 166 up- and 129 downregulated DEGs associated with muscle weakness in AECOPD were screened. Among them, NCL, GOT1, TMOD1, TSPO, SOD2, NCL and PA2G4 were observed in the modules consisting of upregulated or downregulated genes. The upregulated DEGs in modules (including KLF6 and XRCC5) were enriched in GO terms associated with immune system development, whereas the downregulated DEGs were enriched in GO terms associated with cell death and muscle contraction. Additionally, 39 key AECOPD-related miRNAs were also predicted, including miR-1, miR-9 and miR-23a, miR-16 and miR-15a. In conclusion, DEGs (NCL, GOT1, SOD2, KLF6, XRCC5, TSPO and TMOD1) and miRNAs (such as miR-1, miR-9 and miR-23a) may be associated with the loss of muscle force in patients during an acute exacerbation of COPD which also may act as therapeutic targets in the treatment of AECOPD.
Collapse
Affiliation(s)
- Yanhong Duan
- Department of Respiratory Medicine, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Min Zhou
- Department of Respiratory Medicine, Jinshan Branch of The Sixth People's Hospital of Shanghai, Shanghai 201599, P.R. China
| | - Jian Xiao
- Department of Respiratory Medicine, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Chaomin Wu
- Department of Respiratory Medicine, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Lei Zhou
- Department of Respiratory Medicine, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Feng Zhou
- Department of Respiratory Medicine, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Chunling Du
- Department of Respiratory Medicine, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Yuanlin Song
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| |
Collapse
|
45
|
Kalbe B, Knobloch J, Schulz VM, Wecker C, Schlimm M, Scholz P, Jansen F, Stoelben E, Philippou S, Hecker E, Lübbert H, Koch A, Hatt H, Osterloh S. Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells. Front Physiol 2016; 7:339. [PMID: 27540365 PMCID: PMC4972829 DOI: 10.3389/fphys.2016.00339] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/21/2016] [Indexed: 12/31/2022] Open
Abstract
Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca2+ increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Benjamin Kalbe
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Jürgen Knobloch
- Department of Internal Medicine III for Pneumology, Allergology, Sleep- and Respiratory Medicine, University Hospital Bergmannsheil Bochum, Germany
| | - Viola M Schulz
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Christine Wecker
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Marian Schlimm
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Paul Scholz
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Fabian Jansen
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Erich Stoelben
- Department of Thoracic Surgery, Lungenklinik Merheim, Kliniken der Stadt Köln Cologne, Germany
| | - Stathis Philippou
- Department of Pathology and Cytology, Augusta-Kranken-Anstalt Bochum, Germany
| | - Erich Hecker
- Thoraxzentrum Ruhrgebiet, Department of Thoracic Surgery, Evangelisches Krankenhaus Herne Herne, Germany
| | - Hermann Lübbert
- Department of Animal Physiology, Ruhr-University Bochum Bochum, Germany
| | - Andrea Koch
- Department of Internal Medicine III for Pneumology, Allergology, Sleep- and Respiratory Medicine, University Hospital Bergmannsheil Bochum, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Sabrina Osterloh
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
46
|
Fujita T, Yoshioka K, Umezawa H, Tanaka K, Naito Y, Nakayama T, Hatano M, Tatsumi K, Kasuya Y. Role of CD69 in the pathogenesis of elastase-induced pulmonary inflammation and emphysema. Biochem Biophys Rep 2016; 7:400-407. [PMID: 28955931 PMCID: PMC5613653 DOI: 10.1016/j.bbrep.2016.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 06/19/2016] [Accepted: 07/13/2016] [Indexed: 01/04/2023] Open
Abstract
Cluster of differentiation 69 (CD69), known as an early activation marker of lymphocytes, has been demonstrated to regulate inflammatory events in various disease models. Although the increased number of CD69-expressed T lymphocytes in the lungs of patients with chronic obstructive pulmonary disease (COPD) has been reported, a functional role of CD69 in the pathogenesis of COPD remains unknown. To address to this question, CD69-deficient (CD69KO) mice and wild-type (WT) mice were subjected to a mouse model of porcine pancreatic elastase (PPE)-induced pulmonary inflammation and emphysema. In the two genotypes, PPE increased counts of macrophages, neutrophils and lymphocytes in bronchoalveolar lavage fluid (BALF) and induced emphysematous changes in the lung, whereas those two pathological signs were significantly enhanced in CD69KO mice compared to WT mice. Moreover, the PPE-induced levels of IL-17 and IL-6 in BALF were significantly higher in CD69KO mice than in WT mice at the acute inflammatory phase. Immunofluorescent studies showed that IL-17 and IL-6 were predominantly expressed in CD4+ and γδ T cells and macrophages, respectively. Concomitant administration of IL-17- and IL-6-neutralizing antibodies significantly attenuated the PPE-induced emphysematous changes in the two genotypes. These findings suggest that CD69 negatively regulates the development of PPE-induced emphysema in part at least through modulating function of IL-17-producing T cells.
Collapse
Affiliation(s)
- Tetsuo Fujita
- Department of Respirology, Chiba University, Chiba 260-8670, Japan.,Department of Biochemistry and Molecular Pharmacology, Chiba University, Chiba 260-8670, Japan
| | - Kento Yoshioka
- Department of Biochemistry and Molecular Pharmacology, Chiba University, Chiba 260-8670, Japan.,Department of Biomedical Science, Chiba University, Chiba 260-8670, Japan
| | - Hiroki Umezawa
- Department of Respirology, Chiba University, Chiba 260-8670, Japan.,Department of Biochemistry and Molecular Pharmacology, Chiba University, Chiba 260-8670, Japan
| | - Kensuke Tanaka
- Department of Respirology, Chiba University, Chiba 260-8670, Japan.,Department of Biochemistry and Molecular Pharmacology, Chiba University, Chiba 260-8670, Japan
| | - Yusuke Naito
- Department of Respirology, Chiba University, Chiba 260-8670, Japan.,Department of Biochemistry and Molecular Pharmacology, Chiba University, Chiba 260-8670, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masahiko Hatano
- Department of Biomedical Science, Chiba University, Chiba 260-8670, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Chiba University, Chiba 260-8670, Japan
| | - Yoshitoshi Kasuya
- Department of Biochemistry and Molecular Pharmacology, Chiba University, Chiba 260-8670, Japan.,Department of Biomedical Science, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
47
|
Knobloch J, Yanik SD, Körber S, Stoelben E, Jungck D, Koch A. TNFα-induced airway smooth muscle cell proliferation depends on endothelin receptor signaling, GM-CSF and IL-6. Biochem Pharmacol 2016; 116:188-99. [PMID: 27422754 DOI: 10.1016/j.bcp.2016.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/11/2016] [Indexed: 02/02/2023]
Abstract
UNLABELLED Pathological proliferation of human airway smooth muscle cells (HASMCs) causes hyperplasia in chronic lung diseases. Signaling pathways that link airway inflammation to HASMC proliferation might provide therapeutic targets for the prevention of airway remodeling and chronic lung diseases. Endothelin-1 (ET-1) signals via endothelin-A- and B-receptors (ETAR, ETBR) to perpetuate HASMC-associated and TNFα-dependent inflammatory processes. HYPOTHESIS endothelin receptor antagonists (ERAs) suppress HASMC proliferation induced by inflammatory cytokines. HASMCs were stimulated ex vivo with cytokines in the presence or absence of ERAs (ETAR-specific/selective: BQ123, ambrisentan; ETBR-specific: BQ788; non-selective: bosentan, macitentan, ACT-132577) or cytokine-blocking antibodies. Cell counts, DNA-synthesis (BrdU-incorporation assay), cytokine production (ELISA) and ETBR expression (whole-genome microarray data, western blot) were analyzed. ET-1-induced HASMC proliferation and DNA-synthesis were reduced by protein kinase inhibitors and ETAR-specific/selective ERAs but not by BQ788. TNFα-induced HASMC proliferation and DNA-synthesis were reduced by all ERAs. TNFα induced ET-1 and ETBR expression. TNFα- and ET-1-induced GM-CSF releases were both reduced by BQ123 and BQ788. TNFα- and ET-1-induced IL-6 releases were both reduced by BQ123 but not by BQ788. Combined but not single blockade of GM-CSF-receptor-α-chain and IL-6 reduced TNFα- and ET-1-induced HASMC proliferation and DNA-synthesis. Combined but not single treatment with GM-CSF and IL-6 induced HASMC proliferation and DNA-synthesis in the presence of ET-1. In conclusion, TNFα induces HASMC proliferation via ET-1/GM-CSF/IL-6. ETBR requires up-regulation by TNFα to mediate ET-1 effects on HASMC proliferation. This signaling cascade links airway inflammation to HASMC-associated remodeling processes and is sensitive to ERAs. Therefore, ERAs could prevent inflammation-induced airway smooth muscle hyperplasia.
Collapse
Affiliation(s)
- Jürgen Knobloch
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany.
| | - Sarah Derya Yanik
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany
| | - Sandra Körber
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany
| | - Erich Stoelben
- Thoracic Surgery, Lungenklinik, Hospital of Cologne, University Witten/Herdecke, Germany
| | - David Jungck
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany
| | - Andrea Koch
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany
| |
Collapse
|
48
|
Antuni JD, Barnes PJ. Evaluation of Individuals at Risk for COPD: Beyond the Scope of the Global Initiative for Chronic Obstructive Lung Disease. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2016; 3:653-667. [PMID: 28848890 DOI: 10.15326/jcopdf.3.3.2016.0129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Global initiative for chronic Obstructive Lung Disease (GOLD) Strategy is a valuable tool for clinicians in the diagnosis and management of patients with established chronic obstructive pulmonary disease (COPD). However, there are no recommendations for the evaluation of individuals, exposed to risk factors, who are most likely to develop COPD. Consequently, it is necessary to consider all of the factors that may play a role in the pathogenesis of COPD: genetic factors, gender, socioeconomic status, disadvantageous factors in childhood, lung diseases and exposure to risk factors such as smoking, biomass fuel smoke, occupational hazards and air pollution. Along with the clinical assessment, periodic spirometry should be performed to evaluate lung function and make possible early detection of individuals who will develop the disease through the rate of forced expiratory volume in 1 second (FEV1) decline. The first spirometry, periodicity, and clinically significant decline in FEV1 will encompass the cornerstones of clinical follow up. This approach allows the implementation of important interventions in order to help individuals to cease contact with risk factors and prevent progressive respiratory impairment with the consequent deterioration of quality of life and increased morbidity and mortality.
Collapse
Affiliation(s)
- Julio D Antuni
- Corporación Médica de General San Martín, Buenos Aires, Argentina
| | - Peter J Barnes
- National Heart and Lung Institute, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
49
|
Kreiss K. Recognizing occupational effects of diacetyl: What can we learn from this history? Toxicology 2016; 388:48-54. [PMID: 27326900 DOI: 10.1016/j.tox.2016.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
Abstract
For half of the 30-odd years that diacetyl-exposed workers have developed disabling lung disease, obliterative bronchiolitis was unrecognized as an occupational risk. Delays in its recognition as an occupational lung disease are attributable to the absence of a work-related temporal pattern of symptoms; failure to recognize clusters of cases; complexity of exposure environments; and absence of epidemiologic characterization of workforces giving rise to case clusters. Few physicians are familiar with this rare disease, and motivation to investigate the unknown requires familiarity with what is known and what is anomalous. In pursuit of the previously undescribed risk, investigators benefited greatly from multi-disciplinary collaboration, in this case including physicians, epidemiologists, environmental scientists, toxicologists, industry representatives, and worker advocates. In the 15 years since obliterative bronchiolitis was described in microwave popcorn workers, α-dicarbonyl-related lung disease has been found in flavoring manufacturing workers, other food production workers, diacetyl manufacturing workers, and coffee production workers, alongside case reports in other industries. Within the field of occupational health, impacts include new ventures in public health surveillance, attention to spirometry quality for serial measurements, identifying other indolent causes of obliterative bronchiolitis apart from accidental over-exposures, and broadening the spectrum of diagnostic abnormalities in the disease. Within toxicology, impacts include new attention to appropriate animal models of obliterative bronchiolitis, pertinence of computational fluid dynamic-physiologically based pharmacokinetic modeling, and contributions to mechanistic understanding of respiratory epithelial necrosis, airway fibrosis, and central nervous system effects. In these continuing efforts, collaboration between laboratory scientists, clinicians, occupational public health practitioners in government and industry, and employers remains critical for improving the health of workers inhaling volatile α-dicarbonyl compounds.
Collapse
Affiliation(s)
- Kathleen Kreiss
- Division of Respiratory Health, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown WV, United States.
| |
Collapse
|
50
|
Lee H, Um SJ, Kim YS, Kim DK, Jang AS, Choi HS, Kim YH, Kim TE, Yoo KH, Jung KS. Association of the Neutrophil-to-Lymphocyte Ratio with Lung Function and Exacerbations in Patients with Chronic Obstructive Pulmonary Disease. PLoS One 2016; 11:e0156511. [PMID: 27258044 PMCID: PMC4892618 DOI: 10.1371/journal.pone.0156511] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/16/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The ratio of neutrophils to lymphocytes (NLR) is a widely available marker of inflammation. Several types of inflammatory cells and mediators have been found to be involved in the progression of chronic obstructive pulmonary disease (COPD). We sought to evaluate the association of the NLR with severity of airflow limitation and disease exacerbations in a COPD population. METHODS We analyzed 885 patients from the Korean COPD Subtype Study cohort that recruited subjects with COPD from 44 referral hospitals. We determined the relationship of NLR levels to severity of lung function using a linear regression model. In addition, we analyzed the experiences of COPD exacerbation according to the NLR quartiles. RESULTS NLR levels were inversely associated with severity of airflow limitation as measured by FEV1% predicted and absolute values after adjustments for age, gender, body mass index, pack-years of smoking, and the use of inhaled corticosteroid (P<0.001, respectively). In the multivariate binary regression model, the NLR 4th quartile (vs. 1st quartile) was found to be a significant predictor of exacerbations during 1-year follow-up (OR = 2.05, 95% CI = 1.03 to 4.06, P = 0.041). Adding an NLR to FEV1 significantly improved prediction for exacerbations during 1-year follow-up as measured by the net reclassification improvement (NRI = 7.8%, P = 0.032) and the integrated discrimination improvement (IDI = 0.014, P = 0.021). CONCLUSIONS The NLR showed a significant inverse relationship to airflow limitation and was a prognostic marker for future exacerbations in patients with COPD.
Collapse
Affiliation(s)
- Heock Lee
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Soo-Jung Um
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Yun Seong Kim
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Republic of Korea
| | - Deog Kyeom Kim
- Department of Internal Medicine, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - An Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Hye Sook Choi
- Department of Internal Medicine, Dongguk University Gyeongju Hospital, Gyeongju, Republic of Korea
| | - Yee Hyung Kim
- Department of Internal Medicine, Kyung Hee University Gangdong Hospital, Seoul, Republic of Korea
| | - Tae Eun Kim
- Department of Internal Medicine, Konkuk University College of Medicine, Seoul, Republic of Korea
| | - Kwang Ha Yoo
- Department of Clinical Pharmacology, Konkuk University College of Medicine, Seoul, Republic of Korea
| | - Ki-Suck Jung
- Department of Internal Medicine, Hallym University College of Medicine, Anyang, Republic of Korea
| |
Collapse
|