1
|
Mutlu T, Ozoran E, Trabulus DC, Talu CK, Erhan D, Mete M, Guven M. Expression of genes related to iron homeostasis in breast cancer. Mol Biol Rep 2023; 50:5157-5163. [PMID: 37119411 DOI: 10.1007/s11033-023-08433-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND The dysfunctions in the metabolism of iron have an important role in many pathological conditions, ranging from disease with iron deposition to cancer. Studies on malignant diseases of the breast reported irregular expression in genes associated with iron metabolism. The variations are related to findings that have prognostic significance. This study evaluated the relationship of the expression levels of transferrin receptor 1 (TFRC), iron regulatory protein 1 (IRP1), hepcidin (HAMP), ferroportin 1 (FPN1), hemojuvelin (HFE2), matriptase 2 (TMPRSS6), and miR-122 genes in the normal and malignant tissues of breast cancer patients. METHODS & RESULTS The normal and malignant tissues from 75 women with breast malignancies were used in this study. The patients did not receive any treatment previously. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used in figuring the levels of gene expression associated with iron metabolism. When the malignant and normal tissues gene expression levels were analyzed, expression of TFRC increased (1.586-fold); IRP1 (0.594 fold) and miR-122 (0.320 fold) expression decreased; HAMP, FPN1, HFE2, and TMPRSS6 expressions did not change. FPN1 and IRP1 had a positive association, and this association was statistically significant (r = 0.266; p = 0.022). IRP1 and miR-122 had a positive association, and this association had statistical significance (r = 0.231; p = 0.048). CONCLUSIONS Our study portrayed the important association between genes involved in iron hemostasis and breast malignancy. The results could be used to establish new diagnostic techniques in the management of breast malignancies. The alterations in the metabolism of malignant breast cells with normal breast cells could be utilized to achieve advantages in treatment.
Collapse
Affiliation(s)
- Tuba Mutlu
- Medical Biology and Genetics, Faculty of Medicine, Istanbul Arel University, Istanbul, 34010, Turkey
| | - Emre Ozoran
- Department of General Surgery, Koc University Hospital, 34365, Istanbul, Turkey
| | - Didem Can Trabulus
- Department of General Surgery, Istanbul Education Research Hospital, 34098, Istanbul, Turkey
| | - Canan Kelten Talu
- Department of Pathology, Istanbul Education Research Hospital, 34098, Istanbul, Turkey
| | - Duygu Erhan
- Department of Medical Biology, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, 34098, Istanbul, Turkey
| | - Meltem Mete
- Department of Medical Biology, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, 34098, Istanbul, Turkey
| | - Mehmet Guven
- Department of Medical Biology, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, 34098, Istanbul, Turkey.
| |
Collapse
|
2
|
Martiáñez-Vendrell X, Kikkert M. Proteomics approaches for the identification of protease substrates during virus infection. Adv Virus Res 2021; 109:135-161. [PMID: 33934826 DOI: 10.1016/bs.aivir.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Proteases precisely and irreversibly catalyze the hydrolysis of peptide bonds, regulating the fate, localization, and activity of many proteins. Consequently, proteolytic activity plays an important role in fundamental cellular processes such as differentiation and migration, immunological and inflammatory reactions, apoptosis and survival. During virus infection, host proteases are involved in several processes, from cell entry to initiation, progression and resolution of inflammation. On the other hand, many viruses encode their own highly specific proteases, responsible for the proteolytic processing of viral proteins, but, at the same time, to cleave host proteins to corrupt antiviral host responses and adjust protein activity to favor viral replication. Traditionally, protease substrate identification has been addressed by means of hypothesis-driven approaches, but recent advances in proteomics have made a toolkit available to uncover the extensive repertoire of host proteins cleaved during infection, either by viral or host proteases. Here, we review the currently available proteomics-based methods that can and have contributed to the systematic and unbiased identification of new protease substrates in the context of virus-host interactions. The role of specific proteases during the course of virus infections will also be highlighted.
Collapse
Affiliation(s)
- Xavier Martiáñez-Vendrell
- Molecular Virology Laboratory, Department of Medical Microbiology, LUMC Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Laboratory, Department of Medical Microbiology, LUMC Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
3
|
An investigation of the relationship between TMPRSS6 gene expression, genetic variants and clinical findings in breast cancer. Mol Biol Rep 2020; 47:4225-4231. [PMID: 32385772 DOI: 10.1007/s11033-020-05498-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/03/2020] [Indexed: 10/24/2022]
Abstract
Breast cancer is one of the most common types of cancer among women worldwide. The TMPRSS6 (Transmembrane Serine Protease 6) gene encodes matriptase-2, which plays an important role in iron hemostasis as the hepcidin regulator and may play a role in breast cancer susceptibility. In this study, we examined the expression levels of the TMPRSS6 gene in healthy tissues and tumor tissues of breast cancer patients; and the relationship between these levels and pathological findings. The relationship between TMPRSS6 polymorphisms (rs733655, rs5756506, rs2413450, rs855791, rs2235324, rs4820268) and patients' hematological parameters. The gene expression study encompassed 47 breast cancer patients and the gene polymorphism study consisted of 181 breast cancer patients and 100 healthy controls. Gene expression analysis was performed by qRT-PCR. The genotyping of TMPRSS6 polymorphisms was performed by RT-PCR. TMPRSS6 gene expression levels in tumor tissues were found to be 1.88 times higher than the expression levels in the control tissues. We examined the relationship between TMPRSS6 gene expression levels and pathological data, statistically significant relationship was found between patient's estrogen receptor (ER) and HER2 findings and TMPRSS6 gene expression (respectively p = 0.02, p = 0.002). When the relationship between TMPRSS6 gene polymorphisms related genotypes distributions and hematological findings was investigated, a significant relationship was identified between mean corpuscular hemoglobin concentration (MCHC) parameter and the polymorphism of only the rs733655. According to our findings, the increase in TMPRSS6 gene expression in cancerous tissues shows that matriptase-2 may be effective in the cancer process. Thus TMPRSS6 gene polymorphisms may affect the disease process by affecting the blood parameters of patients.
Collapse
|
4
|
The Role of Matrix Metalloproteinases (MMP-2 and MMP-9) in Ageing and Longevity: Focus on Sicilian Long-Living Individuals (LLIs). Mediators Inflamm 2020; 2020:8635158. [PMID: 32454796 PMCID: PMC7222606 DOI: 10.1155/2020/8635158] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/29/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular matrix metalloproteinases (MMPs) are a group of proteins that activate substrates by enzymatic cleavage and, on the basis of their activities, have been demonstrated to play a role in ageing. Thus, in order to gain insight into the pathophysiology of ageing and to identify new markers of longevity, we analysed the activity levels of MMP-2 and MMP-9 in association with some relevant haematochemical parameters in a Sicilian population, including long-living individuals (LLIs, ≥95 years old). A cohort of 154 healthy subjects (72 men and 82 women) of different ages (age range 20-112) was recruited. The cohort was divided into five subgroups: the first group with subjects less than 40 years old, the second group ranging from 40 to 64 years old, the third group ranging from 65 to 89 years old, the fourth group ranging from 90 to 94 years old, and the fifth group with subjects more than 95 years old. A relationship was observed between LLIs and MMP-2, but not between LLIs and MMP-9. However, in the LLI group, MMP-2 and MMP-9 values were significantly correlated. Furthermore, in LLIs, we found a positive correlation of MMP-2 with the antioxidant catabolite uric acid and a negative correlation with the inflammatory marker C-reactive protein. Finally, in LLIs MMP-9 values correlated directly both with cholesterol and with low-density lipoproteins. On the whole, our data suggest that the observed increase of MMP-2 in LLIs might play a positive role in the attainment of longevity. This is the first study that shows that serum activity of MMP-2 is increased in LLIs as compared to younger subjects. As far as we are concerned, it is difficult to make wide-ranging conclusions/assumptions based on these observations in view of the relatively small sample size of LLIs. However, this is an important starting point. Larger-scale future studies will be required to clarify these findings including the link with other systemic inflammatory and antioxidant markers.
Collapse
|
5
|
Abstract
Human immunodeficiency virus (HIV), a type of lentivirus (a subgroup of retrovirus), causes acquired immunodeficiency syndrome (AIDS). This pathophysiologic state destroys the immune system allowing opportunistic infections, cancer and other life-threatening diseases to thrive. Although many analytic tools including enzyme-linked immunoassay (ELISA), indirect and line immunoassay, Western blotting, radio-immunoprecipitation, nucleic acid amplification testing (NAAT) have been developed to detect HIV, recent developments in nanosensor technology have prompted its use as a novel diagnostic approach. Nanosensors provide analytical information about behavior and characteristics of particles by using biochemical reactions mediated by enzymes, immune components, cells and tissues. These reactions are transformed into decipherable signals, i.e., electrical, thermal, optical, using nano to micro scale technology. Nanosensors are capable of both quantitative and qualitative detection of HIV, are highly specific and sensitive and provide rapid reproducible results. Nanosensor technology can trace infant infection during mother-to-child transmission, the latent HIV pool and monitor anti-HIV therapy. In this chapter, we review nanosensor analytics including electrochemical, optical, piezoelectric, SERS-based lateral flow assay, microfluidic channel-based biosensors in the detection of HIV. Other techniques in combination with different biorecognition elements (aptamers, antibodies, oligonucleotides) are also discussed.
Collapse
Affiliation(s)
- Sarthak Nandi
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad, Telangana, India
| | - Ayusi Mondal
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad, Telangana, India
| | - Akanksha Roberts
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad, Telangana, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad, Telangana, India.
| |
Collapse
|
6
|
García-González L, Pilat D, Baranger K, Rivera S. Emerging Alternative Proteinases in APP Metabolism and Alzheimer's Disease Pathogenesis: A Focus on MT1-MMP and MT5-MMP. Front Aging Neurosci 2019; 11:244. [PMID: 31607898 PMCID: PMC6769103 DOI: 10.3389/fnagi.2019.00244] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Processing of amyloid beta precursor protein (APP) into amyloid-beta peptide (Aβ) by β-secretase and γ-secretase complex is at the heart of the pathogenesis of Alzheimer’s disease (AD). Targeting this proteolytic pathway effectively reduces/prevents pathology and cognitive decline in preclinical experimental models of the disease, but therapeutic strategies based on secretase activity modifying drugs have so far failed in clinical trials. Although this may raise some doubts on the relevance of β- and γ-secretases as targets, new APP-cleaving enzymes, including meprin-β, legumain (δ-secretase), rhomboid-like protein-4 (RHBDL4), caspases and membrane-type matrix metalloproteinases (MT-MMPs/η-secretases) have confirmed that APP processing remains a solid mechanism in AD pathophysiology. This review will discuss recent findings on the roles of all these proteinases in the nervous system, and in particular on the roles of MT-MMPs, which are at the crossroads of pathological events involving not only amyloidogenesis, but also inflammation and synaptic dysfunctions. Assessing the potential of these emerging proteinases in the Alzheimer’s field opens up new research prospects to improve our knowledge of fundamental mechanisms of the disease and help us establish new therapeutic strategies.
Collapse
Affiliation(s)
| | - Dominika Pilat
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
7
|
Hussain AA, Lee Y, Marshall J. Understanding the complexity of the matrix metalloproteinase system and its relevance to age-related diseases: Age-related macular degeneration and Alzheimer's disease. Prog Retin Eye Res 2019; 74:100775. [PMID: 31473329 DOI: 10.1016/j.preteyeres.2019.100775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/26/2023]
Abstract
Extracellular matrices (ECMs) are maintained by tightly coupled processes of continuous synthesis and degradation. The degradative arm is mediated by a family of proteolytic enzymes called the matrix metalloproteinases (MMPs). These enzymes are released as latent proteins (pro-MMPs) and on activation are capable of degrading most components of an ECM. Activity of these enzymes is checked by the presence of tissue inhibitors of MMPs (TIMPs) and current opinion holds that the ratio of TIMPs/MMPs determines the relative rate of degradation. Thus, elevated ratios are thought to compromise degradation leading to the accumulation of abnormal ECM material, whilst diminished ratios are thought to lead to excessive ECM degradation (facilitating angiogenesis and the spread of cancer cells). Our recent work has shown this system to be far more complex. MMP species tend to undergo covalent modification leading to homo- and hetero-dimerization and aggregation resulting in the formation of very large macromolecular weight MMP complexes (LMMCs). In addition, the various MMP species also show a bound-free compartmentalisation. The net result of these changes is to reduce the availability of the latent forms of MMPs for the activation process. An assessment of the degradation potential of the MMP system in any tissue must therefore take into account the degree of sequestration of the latent MMP species, a protocol that has not previously been addressed. Taking into consideration the complexities already described, we will present an analysis of the MMP system in two common neurodegenerative disorders, namely age-related macular degeneration (AMD) and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Ali A Hussain
- Department of Genetics, UCL Institute of Ophthalmology, London, UK.
| | - Yunhee Lee
- Alt-Regen Co., Ltd, Heungdeok IT Valley, Yongin, Republic of Korea.
| | - John Marshall
- Department of Genetics, UCL Institute of Ophthalmology, London, UK.
| |
Collapse
|
8
|
Rivera S, García-González L, Khrestchatisky M, Baranger K. Metalloproteinases and their tissue inhibitors in Alzheimer's disease and other neurodegenerative disorders. Cell Mol Life Sci 2019; 76:3167-3191. [PMID: 31197405 PMCID: PMC11105182 DOI: 10.1007/s00018-019-03178-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
As life expectancy increases worldwide, age-related neurodegenerative diseases will increase in parallel. The lack of effective treatment strategies may soon lead to an unprecedented health, social and economic crisis. Any attempt to halt the progression of these diseases requires a thorough knowledge of the pathophysiological mechanisms involved to facilitate the identification of new targets and the application of innovative therapeutic strategies. The metzincin superfamily of metalloproteinases includes matrix metalloproteinases (MMP), a disintegrin and metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS). These multigenic and multifunctional proteinase families regulate the functions of an increasing number of signalling and scaffolding molecules involved in neuroinflammation, blood-brain barrier disruption, protein misfolding, synaptic dysfunction or neuronal death. Metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), are therefore, at the crossroads of molecular and cellular mechanisms that support neurodegenerative processes, and emerge as potential new therapeutic targets. We provide an overview of current knowledge on the role and regulation of metalloproteinases and TIMPs in four major neurodegenerative diseases: Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease.
Collapse
Affiliation(s)
- Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France.
| | | | | | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
9
|
Zhou J, Zheng X, Feng M, Mo Z, Shan Y, Wang Y, Jin J. Upregulated MMP28 in Hepatocellular Carcinoma Promotes Metastasis via Notch3 Signaling and Predicts Unfavorable Prognosis. Int J Biol Sci 2019; 15:812-825. [PMID: 30906212 PMCID: PMC6429011 DOI: 10.7150/ijbs.31335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/23/2019] [Indexed: 01/12/2023] Open
Abstract
MMP28 belongs to the matrix metalloproteinases (MMPs) family and functions in tissue homeostasis and development. Although many other MMPs have been reported to regulate tumor progression, the roles of MMP28 in cancer remain largely elusive. In this study, we investigated the potential roles of MMP28 in hepatocellular carcinoma (HCC). The upregulation of MMP28 was first determined by the analysis on different public datasets. Further quantitative real-time PCR (qPCR) analysis, western blot (WB) assay and immunohistochemistry (IHC) assay on tumor and tumor-adjacent samples from HCC patients confirmed the aberrant elevation of MMP28 in HCC. Pathological analysis showed that increased MMP28 was associated with tumor size, vascular invasion, TNM stage and overall survival in HCC patients. Meanwhile, upregulated MMP28 was identified as an independent prognosis factor in multivariate analysis, and the incorporation of MMP28 expression with TNM staging system established a novel model to improve the accuracy of the predictions. In vivo and in vitro data revealed that MMP28 promoted migration and invasion of HCC cells, and enhanced epithelial-mesenchymal transition (EMT) via elevating zinc finger E-box binding homeobox (ZEB) homologues levels. Furthermore, we determined that Notch3 signaling was critical for the functions of MMP28 in HCC. In conclusion, upregulated MMP28 in HCC promoted migration and invasion and predicted poor prognosis for HCC patients, and the effects of MMP28 depended on Notch3 signaling.
Collapse
Affiliation(s)
- Jiangfan Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325030, China
| | - Xixi Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Mei Feng
- Department of Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Zhichao Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325030, China
| | - Yunfeng Shan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325030, China
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jing Jin
- Institute of Glycobiological Engineering, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
10
|
Abstract
Matriptase-2 (MT2) is a membrane-anchored proteolytic enzyme. It acts as the proteolytic key regulator in human iron homeostasis. A high expression level can lead to iron overload diseases, whereas mutations in the gene encoding MT2, TMPRSS6, may result in various forms of iron deficiency anemia. Recently, MT2 has been reported as a positive prognostic factor in breast and prostate cancers. However, the exact functions of MT2 in various pathophysiological conditions are still not fully understood. In this review, we describe the synthetic tools designed and synthesized to regulate or monitor MT2 proteolytic activity and present the latest knowledge about the role of MT2 in iron homeostasis and cancer.
Collapse
|
11
|
Kappelhoff R, Puente XS, Wilson CH, Seth A, López-Otín C, Overall CM. Overview of transcriptomic analysis of all human proteases, non-proteolytic homologs and inhibitors: Organ, tissue and ovarian cancer cell line expression profiling of the human protease degradome by the CLIP-CHIP™ DNA microarray. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2210-2219. [PMID: 28797648 DOI: 10.1016/j.bbamcr.2017.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 01/10/2023]
Abstract
The protease degradome is defined as the complete repertoire of proteases and inhibitors, and their nonfunctional homologs present in a cell, tissue or organism at any given time. We review the tissue distribution of virtually the entire degradome in 23 different human tissues and 6 ovarian cancer cell lines. To do so, we developed the CLIP-CHIP™, a custom microarray based on a 70-mer oligonucleotide platform, to specifically profile the transcripts of the entire repertoire of 473 active human proteases, 156 protease inhibitors and 92 non-proteolytically active homologs known at the design date using one specific 70-mer oligonucleotide per transcript. Using the CLIP-CHIP™ we mapped the expression profile of proteases and their inhibitors in 23 different human tissues and 6 ovarian cancer cell lines in 104 sample datasets. Hierarchical cluster analysis showed that expression profiles clustered according to their anatomic locations, cellular composition, physiologic functions, and the germ layer from which they are derived. The human ovarian cancer cell lines cluster according to malignant grade. 110 proteases and 42 inhibitors were tissue specific (1 to 3 tissues). Of these 110 proteases 69% (74) are mainly extracellular, 30% (34) intracellular and 1% intramembrane. Notably, 35% (197/565) of human proteases and 30% (47/156) of inhibitors were ubiquitously expressed in all 23 tissues; 27% (155) of proteases and 21% (32) of inhibitors were broadly expressed in 4-20 tissues. Our datasets provide a valuable resource for the community of baseline protease and inhibitor relative expression in normal human tissues and can be used for comparison with diseased tissue, e.g. ovarian cancer, to decipher pathogenesis, and to aid drug development. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Reinhild Kappelhoff
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xose S Puente
- Departamento de Bioquimica y Biologia Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Claire H Wilson
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arun Seth
- Sunnybrook Research Institute, Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Carlos López-Otín
- Departamento de Bioquimica y Biologia Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Christopher M Overall
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
12
|
Freitas-Rodríguez S, Folgueras AR, López-Otín C. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2015-2025. [PMID: 28499917 DOI: 10.1016/j.bbamcr.2017.05.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/28/2022]
Abstract
Proteases are a set of enzymes that have been involved in multiple biological processes throughout evolution. Among them, extracellular matrix (ECM) remodeling has emerged as one of the most relevant functions exerted by these proteins, being essential in the regulation of critical events such as embryonic development or tissue homeostasis. Hence, it is not surprising that dysregulation in any protease function that affects ECM homeostasis may contribute to the aging process. Matrix metalloproteinases (MMPs) are one of the most important families of proteases involved in the tight control of ECM remodeling over time. In this review, we will discuss how MMPs and other proteases alter ECM composition and mechanical properties in aging, thereby affecting stem cell niches and the development of senescent phenotypes. Finally, we will summarize recent findings that associate MMPs with the development of age-related diseases, such as neurodegenerative disorders.
Collapse
Affiliation(s)
- Sandra Freitas-Rodríguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Alicia R Folgueras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer, Spain.
| |
Collapse
|
13
|
Unusual life cycle and impact on microfibril assembly of ADAMTS17, a secreted metalloprotease mutated in genetic eye disease. Sci Rep 2017; 7:41871. [PMID: 28176809 PMCID: PMC5296908 DOI: 10.1038/srep41871] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/28/2016] [Indexed: 01/30/2023] Open
Abstract
Secreted metalloproteases have diverse roles in the formation, remodeling, and the destruction of extracellular matrix. Recessive mutations in the secreted metalloprotease ADAMTS17 cause ectopia lentis and short stature in humans with Weill-Marchesani-like syndrome and primary open angle glaucoma and ectopia lentis in dogs. Little is known about this protease or its connection to fibrillin microfibrils, whose major component, fibrillin-1, is genetically associated with ectopia lentis and alterations in height. Fibrillin microfibrils form the ocular zonule and are present in the drainage apparatus of the eye. We show that recombinant ADAMTS17 has unique characteristics and an unusual life cycle. It undergoes rapid autocatalytic processing in trans after its secretion from cells. Secretion of ADAMTS17 requires O-fucosylation and its autocatalytic activity does not depend on propeptide processing by furin. ADAMTS17 binds recombinant fibrillin-2 but not fibrillin-1 and does not cleave either. It colocalizes to fibrillin-1 containing microfibrils in cultured fibroblasts and suppresses fibrillin-2 (FBN2) incorporation in microfibrils, in part by transcriptional downregulation of Fbn2 mRNA expression. RNA in situ hybridization detected Adamts17 expression in specific structures in the eye, skeleton and other organs, where it may regulate the fibrillin isoform composition of microfibrils.
Collapse
|
14
|
Abou-El-Hassan H, Sukhon F, Assaf EJ, Bahmad H, Abou-Abbass H, Jourdi H, Kobeissy FH. Degradomics in Neurotrauma: Profiling Traumatic Brain Injury. Methods Mol Biol 2017; 1598:65-99. [PMID: 28508358 DOI: 10.1007/978-1-4939-6952-4_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Degradomics has recently emerged as a subdiscipline in the omics era with a focus on characterizing signature breakdown products implicated in various disease processes. Driven by promising experimental findings in cancer, neuroscience, and metabolomic disorders, degradomics has significantly promoted the notion of disease-specific "degradome." A degradome arises from the activation of several proteases that target specific substrates and generate signature protein fragments. Several proteases such as calpains, caspases, cathepsins, and matrix metalloproteinases (MMPs) are involved in the pathogenesis of numerous diseases that disturb the physiologic balance between protein synthesis and protein degradation. While regulated proteolytic activities are needed for development, growth, and regeneration, uncontrolled proteolysis initiated under pathological conditions ultimately culminates into apoptotic and necrotic processes. In this chapter, we aim to review the protease-substrate repertoires in neural injury concentrating on traumatic brain injury. A striking diversity of protease substrates, essential for neuronal and brain structural and functional integrity, namely, encryptic biomarker neoproteins, have been characterized in brain injury. These include cytoskeletal proteins, transcription factors, cell cycle regulatory proteins, synaptic proteins, and cell junction proteins. As these substrates are subject to proteolytic fragmentation, they are ceaselessly exposed to activated proteases. Characterization of these molecules allows for a surge of "possible" therapeutic approaches of intervention at various levels of the proteolytic cascade.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Fares Sukhon
- Faculty of Medicine, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Edwyn Jeremy Assaf
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hisham Bahmad
- Faculty of Medical, Neuroscience Research Center, Beirut Arab University, Beirut, Lebanon
- Faculty of Medicine, Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Hussein Abou-Abbass
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Beirut, Lebanon
- Faculty of Medicine, Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Hussam Jourdi
- Faculty of Science¸ Department of Biology, University of Balamand, Souk-el-Gharb Campus, Aley, Lebanon
| | - Firas H Kobeissy
- Faculty of Medicine, Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon.
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
Ugarte-Berzal E, Vandooren J, Bailón E, Opdenakker G, García-Pardo A. Inhibition of MMP-9-dependent Degradation of Gelatin, but Not Other MMP-9 Substrates, by the MMP-9 Hemopexin Domain Blades 1 and 4. J Biol Chem 2016; 291:11751-60. [PMID: 27044750 DOI: 10.1074/jbc.m115.708438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 11/06/2022] Open
Abstract
Degradation and remodeling of the extracellular matrix by matrix metalloproteinases (MMPs) plays important roles in normal development, inflammation, and cancer. MMP-9 efficiently degrades the extracellular matrix component gelatin, and the hemopexin domain of MMP-9 (PEX9) inhibits this degradation. To study the molecular basis of this inhibition, we generated GST fusion proteins containing PEX9 or truncated forms corresponding to specific structural blades (B1-B4) of PEX9. GST-PEX9 inhibited MMP-9-driven gelatin proteolysis, measured by gelatin zymography, FITC-gelatin conversion, and DQ-gelatin degradation assays. However, GST-PEX9 did not prevent the degradation of other MMP-9 substrates, such as a fluorogenic peptide, αB crystalline, or nonmuscular actin. Therefore, PEX9 may inhibit gelatin degradation by shielding gelatin and specifically preventing its binding to MMP-9. Accordingly, GST-PEX9 also abolished the degradation of gelatin by MMP-2, confirming that PEX9 is not an MMP-9 antagonist. Moreover, GST-B4 and, to a lesser extent, GST-B1 also inhibited gelatin degradation by MMP-9, indicating that these regions are responsible for the inhibitory activity of PEX9. Accordingly, ELISAs demonstrated that GST-B4 and GST-B1 specifically bound to gelatin. Our results establish new functions of PEX9 attributed to blades B4 and B1 and should help in designing specific inhibitors of gelatin degradation.
Collapse
Affiliation(s)
- Estefanía Ugarte-Berzal
- From the Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain and the Department of Microbiology and Immunology, KULeuven-University of Leuven, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| | - Jennifer Vandooren
- the Department of Microbiology and Immunology, KULeuven-University of Leuven, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| | - Elvira Bailón
- From the Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain and
| | - Ghislain Opdenakker
- the Department of Microbiology and Immunology, KULeuven-University of Leuven, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| | - Angeles García-Pardo
- From the Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain and
| |
Collapse
|
16
|
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97:4-27. [PMID: 26562801 DOI: 10.1016/j.addr.2015.11.001] [Citation(s) in RCA: 1466] [Impact Index Per Article: 162.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Chrysostomi Gialeli
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece; Division of Medical Protein Chemistry, Department of Translational Medicine Malmö, Lund University, S-20502 Malmö, Sweden
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
17
|
Valizadeh A. Nanomaterials and Optical Diagnosis of HIV. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1383-90. [PMID: 26099718 DOI: 10.3109/21691401.2015.1052469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The investigators had previously shown that the risk of AIDS/HIV-related illness and transmission reduced (by 96%) with early antiretroviral treatment. Nanomaterials could be applied in early diagnosis of HIV by improving the ability to detect serum biomarkers of the blood-borne infectious diseases, with low sample volume, rapidity, and more sensitivity than currently available FDA-approved methods such as ELISA, particle agglutination assay, and Western Blotting assay. We have demonstrated several experimental studies for optical HIV diagnosis based on nanomaterials in three categories (e.g., the fluorescence-, the SPR-, and the SERS- based biosensors), and have explained each assay.
Collapse
Affiliation(s)
- Alireza Valizadeh
- a Department of Medical Nanotechnology , Faculty of Advanced Medical Sciences & Student Research Committee, Tabriz, University of Medical Sciences , Tabriz , Iran.,b Department of Medical Nanotechnology , School of Advanced Technologies inMedicine, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
18
|
Jia Z, Gao S, M'Rabet N, De Geyter C, Zhang H. Sp1 is necessary for gene activation of Adamts17 by estrogen. J Cell Biochem 2014; 115:1829-39. [PMID: 24906090 DOI: 10.1002/jcb.24855] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/30/2014] [Indexed: 12/21/2022]
Abstract
Adamts17 is a member of a family of secreted metalloproteinases. In this report, we show that knockdown of Adamts17 expression induces apoptosis and inhibits breast cancer cell growth. Adamts17 expression can rapidly be induced by estrogens. siRNA knockdown of Sp1 or Myc demonstrated that Sp1 is required to induce Adamts17 gene expression in response to estrogen. Moreover, reporter assays showed that the proximal promoter and the upstream sequences were not capable of conferring estrogen responsiveness, suggesting that Sp1 elements may be located in the downstream intronic region. We further demonstrated that Sp1 and Myc binding in the proximal promoter region contributed to the Adamts17 basal expression. Furthermore, histone deacetylase (HDAC) and methylase inhibitors also induced Adamts17 expression, indicating that epigenetic alterations, such as aberrant HDAC and/or methylation are associated with dysregulated Adamts17 expression. By meta-analysis using Oncomine microarray data, we found that higher Adamts17 expression is found in several human cancer cell subtypes, especially in breast ductal carcinoma. Moreover, we found that there is an inverse correlation between higher Adamts17 expression and patients' survival. Our study suggests that Adamts17 may support breast cancer cell growth and survival.
Collapse
Affiliation(s)
- Zanhui Jia
- Clinic of Gynecological Endocrinology and Reproductive Medicine, University of Basel, Spitalstrasse 21, CH-4031, Basel, Switzerland; Department of Biomedicine, University of Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland; Department of Gynecology and Obstetrics, Second Hospital of Jilin University, Changchun City, Jilin Province, P.R. China
| | | | | | | | | |
Collapse
|
19
|
Shahinian H, Tholen S, Schilling O. Proteomic identification of protease cleavage sites: cell-biological and biomedical applications. Expert Rev Proteomics 2014; 10:421-33. [DOI: 10.1586/14789450.2013.841547] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proc Natl Acad Sci U S A 2013; 110:18722-7. [PMID: 24170858 DOI: 10.1073/pnas.1315520110] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Plant and animal pathogenic bacteria can suppress host immunity by injecting type III secreted effector (T3SE) proteins into host cells. However, T3SEs can also elicit host immunity if the host has evolved a means to recognize the presence or activity of specific T3SEs. The diverse YopJ/HopZ/AvrRxv T3SE superfamily, which is found in both animal and plant pathogens, provides examples of T3SEs playing this dual role. The T3SE HopZ1a is an acetyltransferase carried by the phytopathogen Pseudomonas syringae that elicits effector-triggered immunity (ETI) when recognized in Arabidopsis thaliana by the nucleotide-binding leucine-rich repeat (NB-LRR) protein ZAR1. However, recognition of HopZ1a does not require any known ETI-related genes. Using a forward genetics approach, we identify a unique ETI-associated gene that is essential for ZAR1-mediated immunity. The hopZ-ETI-deficient1 (zed1) mutant is specifically impaired in the recognition of HopZ1a, but not the recognition of other unrelated T3SEs or in pattern recognition receptor (PRR)-triggered immunity. ZED1 directly interacts with both HopZ1a and ZAR1 and is acetylated on threonines 125 and 177 by HopZ1a. ZED1 is a nonfunctional kinase that forms part of small genomic cluster of kinases in Arabidopsis. We hypothesize that ZED1 acts as a decoy to lure HopZ1a to the ZAR1-resistance complex, resulting in ETI activation.
Collapse
|
21
|
Tsiatsiani L, Timmerman E, De Bock PJ, Vercammen D, Stael S, van de Cotte B, Staes A, Goethals M, Beunens T, Van Damme P, Gevaert K, Van Breusegem F. The Arabidopsis metacaspase9 degradome. THE PLANT CELL 2013; 25:2831-47. [PMID: 23964026 PMCID: PMC3784583 DOI: 10.1105/tpc.113.115287] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Metacaspases are distant relatives of the metazoan caspases, found in plants, fungi, and protists. However, in contrast with caspases, information about the physiological substrates of metacaspases is still scarce. By means of N-terminal combined fractional diagonal chromatography, the physiological substrates of metacaspase9 (MC9; AT5G04200) were identified in young seedlings of Arabidopsis thaliana on the proteome-wide level, providing additional insight into MC9 cleavage specificity and revealing a previously unknown preference for acidic residues at the substrate prime site position P1'. The functionalities of the identified MC9 substrates hinted at metacaspase functions other than those related to cell death. These results allowed us to resolve the substrate specificity of MC9 in more detail and indicated that the activity of phosphoenolpyruvate carboxykinase 1 (AT4G37870), a key enzyme in gluconeogenesis, is enhanced upon MC9-dependent proteolysis.
Collapse
Affiliation(s)
- Liana Tsiatsiani
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Evy Timmerman
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Pieter-Jan De Bock
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Dominique Vercammen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Simon Stael
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Brigitte van de Cotte
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - An Staes
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Marc Goethals
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Tine Beunens
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Petra Van Damme
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Address correspondence to
| |
Collapse
|
22
|
Tuhkanen H, Hartikainen JM, Soini Y, Velasco G, Sironen R, Nykopp TK, Kataja V, Eskelinen M, Kosma VM, Mannermaa A. Matriptase-2 gene (TMPRSS6) variants associate with breast cancer survival, and reduced expression is related to triple-negative breast cancer. Int J Cancer 2013; 133:2334-40. [PMID: 23649491 DOI: 10.1002/ijc.28254] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/17/2013] [Indexed: 12/26/2022]
Abstract
Matriptase-2 (TMPRSS6) has been identified as a breast cancer risk factor. Here, we examined relationships between TMPRSS6 genetic variations and breast cancer risk and survival, and determined the gene and protein expressions in breast tumors and assessed their clinical importance. Thirteen TMPRSS6 polymorphisms were genotyped in 462 invasive breast cancer cases and 458 controls. Gene expression was analyzed from 83 tumors and protein expression from 370 tumors. We then assessed the statistical significance of associations among genotypes, clinicopathological characteristics and survival. The TMPRSS6 variant rs2543519 was associated with breast cancer risk (p = 0.032). Multivariate analysis showed that four variants had effects on survival-rs2543519 (p = 0.017), rs2235324 (p = 0.038), rs14213212 (p = 0.044) and rs733655 (p = 0.021)-which were used to create a group variable that was associated with poorer prognosis correlating with more alleles related to reduced survival (p = 0.006; risk ratio, 2.375; 95% confidence interval, 1.287-4.382). Low gene expression was related to triple-negative breast cancer (p = 0.0001), and lower protein expression was detected in undifferentiated (p = 0.019), large (p = 0.014) and ductal or lobular tumors (p = 0.036). These results confirm the association of TMRRSS6 variants with breast cancer risk and survival. Matriptase-2 levels decrease with tumor progression, and lower gene expression is seen in poor-prognosis-related triple-negative breast cancers. Our study is the first to show that matriptase-2 gene variants are related to breast cancer prognosis, supporting matriptase-2 involvement in tumor development.
Collapse
Affiliation(s)
- Hanna Tuhkanen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland; Biocenter Kuopio and Cancer Center of Easter Finland, University of Eastern Finland, Kuopio, Finland; Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kurono S, Kaneko Y, Niwayama S. Quantitative protein analysis using (13)C7-labeled iodoacetanilide and d5-labeled N-ethylmaleimide by nano liquid chromatography/nanoelectrospray ionization ion trap mass spectrometry. Bioorg Med Chem Lett 2013; 23:3111-8. [PMID: 23562245 DOI: 10.1016/j.bmcl.2013.02.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
Abstract
We have developed a methodology for quantitative analysis and concurrent identification of proteins by the modification of cysteine residues with a combination of iodoacetanilide (IAA, 1) and (13)C7-labeled iodoacetanilide ((13)C7-IAA, 2), or N-ethylmaleimide (NEM, 3) and d5-labeled N-ethylmaleimide (d5-NEM, 4), followed by mass spectrometric analysis using nano liquid chromatography/nanoelectrospray ionization ion trap mass spectrometry (nano LC/nano-ESI-IT-MS). The combinations of these stable isotope-labeled and unlabeled modifiers coupled with LC separation and ESI mass spectrometric analysis allow accurate quantitative analysis and identification of proteins, and therefore are expected to be a useful tool for proteomics research.
Collapse
Affiliation(s)
- Sadamu Kurono
- Joint Research Laboratory of Molecular Signature Analysis, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
24
|
Zymography methods for visualizing hydrolytic enzymes. Nat Methods 2013; 10:211-20. [PMID: 23443633 DOI: 10.1038/nmeth.2371] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/11/2013] [Indexed: 12/12/2022]
Abstract
Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful, but often misinterpreted, tool yielding information on potential hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tissue sections with in situ zymography. In vivo zymography can pinpoint proteolytic activity to sites in an intact organism. Future development of novel substrate probes and improvement in detection and imaging methods will increase the applicability of zymography for (reverse) degradomics studies.
Collapse
|
25
|
Korpos É, Kadri N, Kappelhoff R, Wegner J, Overall CM, Weber E, Holmberg D, Cardell S, Sorokin L. The peri-islet basement membrane, a barrier to infiltrating leukocytes in type 1 diabetes in mouse and human. Diabetes 2013; 62:531-42. [PMID: 23139348 PMCID: PMC3554379 DOI: 10.2337/db12-0432] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We provide the first comprehensive analysis of the extracellular matrix (ECM) composition of peri-islet capsules, composed of the peri-islet basement membrane (BM) and subjacent interstitial matrix (IM), in development of type 1 diabetes in NOD mice and in human type 1 diabetes. Our data demonstrate global loss of peri-islet BM and IM components only at sites of leukocyte infiltration into the islet. Stereological analyses reveal a correlation between incidence of insulitis and the number of islets showing loss of peri-islet BM versus islets with intact BMs, suggesting that leukocyte penetration of the peri-islet BM is a critical step. Protease- and protease inhibitor-specific microarray analyses (CLIP-CHIP) of laser-dissected leukocyte infiltrated and noninfiltrated pancreatic islets and confirmatory quantitative real time PCR and protein analyses identified cathepsin S, W, and C activity at sites of leukocyte penetration of the peri-islet BM in association with a macrophage subpopulation in NOD mice and human type 1 diabetic samples and, hence, potentially a novel therapeutic target specifically acting at the islet penetration stage. Interestingly, the peri-islet BM and underlying IM are reconstituted once inflammation subsides, indicating that the peri-islet BM-producing cells are not lost due to the inflammation, which has important ramifications to islet transplantation studies.
Collapse
Affiliation(s)
- Éva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Webb SL, Sanders AJ, Mason MD, Jiang WG. Matriptase-2 inhibits HECV motility and tubule formation in vitro and tumour angiogenesis in vivo. Mol Cell Biochem 2012; 375:207-17. [PMID: 23238872 DOI: 10.1007/s11010-012-1544-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 12/06/2012] [Indexed: 12/12/2022]
Abstract
The type II transmembrane serine proteases (TTSP) are cell surface proteolytic enzymes that mediate a diverse range of cellular functions, including tumour invasion and metastasis. Matriptase-2 is a member of the TTSP family and has been shown to have a key role in cancer progression. The role of matriptase-2 in angiogenesis and angiogenesis-related cancer progression is currently poorly understood. This study aims to elucidate the role of matriptase-2 in tumour angiogenesis. Matriptase-2 was over-expressed in human vascular endothelial cells, HECV, using a mammalian expression plasmid. The altered cells were used in a number of in vitro and in vivo assays designed to investigate the involvement of matriptase-2 in angiogenesis. Over-expression had no significant effect on the growth and adhesion of HECV cells. However, there was a significant reduction in the motility of the cells and their ability to form tubules in an artificial basement membrane (p < 0.01 for both). HECV(mat2 exp) cells inoculated into CD-1 athymic mice along with either PC-3 prostate cancer cells or MDA-MB-231 breast cancer cells showed a dramatic decrease in tumour development and growth in the prostate tumours (p < 0.01) and a lesser, non-significant, decrease in the breast tumours (p = 0.08). Over-expression of matriptase-2 also decreased urokinase type plasminogen activator total protein levels in HECV and prostate cells. The study concludes that matriptase-2 has the ability to suppress the angiogenic nature of HECV cells in vitro and in vivo. It also suggests that matriptase-2 could have a potential role in prostate and breast tumour suppression through its anti-angiogenic properties.
Collapse
Affiliation(s)
- Siobhan L Webb
- Metastasis & Angiogenesis Research Group, Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | | | | | | |
Collapse
|
27
|
Abstract
This review covers carboxypeptidase M (CPM) research that appeared in the literature since 2009. The focus is on aspects that are new or interesting from a clinical perspective. Available research tools are discussed as well as their pitfalls and limitations. Evidence is provided to suggest the potential involvement of CPM in apoptosis, adipogenesis and cancer. This evidence derives from the expression pattern of CPM and its putative substrates in cells and tissues. In recent years CPM emerged as a potential cancer biomarker, in well differentiated liposarcoma where the CPM gene is co-amplified with the oncogene MDM2; and in lung adenocarcinoma where coexpression with EGFR correlates with poor prognosis. The available data call for extended investigation of the function of CPM in tumor cells, tumor-associated macrophages, stromal cells and tumor neovascularisation. Such experiments could be instrumental to validate CPM as a therapeutic target.
Collapse
|
28
|
Kassa R, Monterroso V, Wentzell J, Ramos A, Couchi E, Lecomte MC, Iordanov M, Kretzschmar D, Nicolas G, Tshala-Katumbay D. Proximal giant neurofilamentous axonopathy in mice genetically engineered to resist calpain and caspase cleavage of α-II spectrin. J Mol Neurosci 2012; 47:631-8. [PMID: 22212489 PMCID: PMC3360998 DOI: 10.1007/s12031-011-9699-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/21/2011] [Indexed: 11/27/2022]
Abstract
We use 1,2-diacetylbenzene (1,2-DAB) to probe molecular mechanisms of proximal giant neurofilamentous axonopathy (PGNA), a pathological hallmark of amyotrophic lateral sclerosis. The spinal cord proteome of rodents displaying 1,2-DAB PGNA suggests a reduction in the abundance of α-II spectrin (Spna2), a key protein in the maintenance of axonal integrity. Protein immunoblotting indicates that this reduction is due to Spna2 degradation. We investigated the importance of such degradation in 1,2-DAB PGNA. Spna2 mutant mice lacking a calpain- and/or caspase-sensitive domain (CSD), thus hypothetically resistant to 1,2-DAB, and wild-type littermates, were treated with 1,2-DAB, 35 mg/kg/day, or saline control, for 3 weeks. 1,2-DAB induced motor weakness and PGNA, irrespective of the genotype. Spna2-calpain breakdown products were not detected in mutant mice, which displayed a normal structure of the nervous system under saline treatment. Intriguingly, treatment with 1,2-DAB reduced the abundance of the caspase-specific 120-kDa Spna2 breakdown products. Our findings indicate that degradation of Spna2 by calpain- and/or caspase is not central to the pathogenesis of 1,2-DAB axonopathy. In addition, the Spna2-CSD seems to be not required for the maintenance of the cytoskeleton integrity. Our conceptual framework offers opportunities to study the role of calpain-caspase cross talk, including that of the protease degradomics, in models of axonal degeneration.
Collapse
Affiliation(s)
- R. Kassa
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - V. Monterroso
- Department of Comparative Medicine, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - J. Wentzell
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - A.L. Ramos
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - E. Couchi
- UFR de Médecine site Bichat, Institut Claude Bernard, Université Paris Diderot, Paris 7, France
| | - MC Lecomte
- INSERM, U665, Paris; Institut National de la Transfusion Sanguine, Paris, F-75015; Université Denis Diderot, Paris 7, France
| | - M Iordanov
- Department of Cell and Developmental Biology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - D. Kretzschmar
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - G. Nicolas
- Institut Cochin, Université Paris-Descartes, CNRS (UMR 8104) & INSERM, U1016, Paris, France
| | - D. Tshala-Katumbay
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Neurology, Oregon Health & Science University (OHSU), Portland, OR, USA
| |
Collapse
|
29
|
Thibodeau PH, Butterworth MB. Proteases, cystic fibrosis and the epithelial sodium channel (ENaC). Cell Tissue Res 2012; 351:309-23. [PMID: 22729487 DOI: 10.1007/s00441-012-1439-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/20/2012] [Indexed: 02/06/2023]
Abstract
Proteases perform a diverse array of biological functions. From simple peptide digestion for nutrient absorption to complex signaling cascades, proteases are found in organisms from prokaryotes to humans. In the human airway, proteases are associated with the regulation of the airway surface liquid layer, tissue remodeling, host defense and pathogenic infection and inflammation. A number of proteases are released in the airways under both physiological and pathophysiological states by both the host and invading pathogens. In airway diseases such as cystic fibrosis, proteases have been shown to be associated with increased morbidity and airway disease progression. In this review, we focus on the regulation of proteases and discuss specifically those proteases found in human airways. Attention then shifts to the epithelial sodium channel (ENaC), which is regulated by proteolytic cleavage and that is considered to be an important component of cystic fibrosis disease. Finally, we discuss bacterial proteases, in particular, those of the most prevalent bacterial pathogen found in cystic fibrosis, Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- P H Thibodeau
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S327 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
30
|
Jakoby T, van den Berg BHJ, Tholey A. Quantitative Protease Cleavage Site Profiling using Tandem-Mass-Tag Labeling and LC–MALDI-TOF/TOF MS/MS Analysis. J Proteome Res 2012; 11:1812-20. [DOI: 10.1021/pr201051e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Thomas Jakoby
- AG Systematische Proteomforschung, Institut für
Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel, Germany
| | - Bart HJ van den Berg
- AG Systematische Proteomforschung, Institut für
Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel, Germany
| | - Andreas Tholey
- AG Systematische Proteomforschung, Institut für
Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel, Germany
| |
Collapse
|
31
|
Kim GB, Kim YP. Analysis of protease activity using quantum dots and resonance energy transfer. Am J Cancer Res 2012; 2:127-38. [PMID: 22375154 PMCID: PMC3287427 DOI: 10.7150/thno.3476] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/04/2011] [Indexed: 01/08/2023] Open
Abstract
This review demonstrates the detection of protease activity based on the energy transfer of quantum dots (QDs). By incorporation of varying protease substrates into designed QD probes both in fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) system, proteolytic activity led to changes in the energy transfer efficiency. Especially due to the superior properties of QDs, it can be served as an excellent probe for a multiplexed and high-throughput protease assay with high sensitivity. It is anticipated that the QD-based FRET/BRET probes will have a great potential for dissecting the fundamental roles of proteases and designing potential protease inhibitors as therapeutic drugs in biology and nanomedicine.
Collapse
|
32
|
Ma Y, Chiao YA, Zhang J, Manicone AM, Jin YF, Lindsey ML. Matrix metalloproteinase-28 deletion amplifies inflammatory and extracellular matrix responses to cardiac aging. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:81-90. [PMID: 22153350 PMCID: PMC3972008 DOI: 10.1017/s1431927611012220] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To determine if matrix metalloproteinase (MMP)-28 mediates cardiac aging, wild-type (WT) and MMP-28-/- young (7 ± 1 months, n = 9 each) and old (20 ± 2 months, n = 7 each) female mice were evaluated. MMP-28 expression in the left ventricle (LV) increased 42% in old WT mice compared to young controls (p < 0.05). By Doppler echocardiography, LV function declined at 20 ± 2 months of age for both groups. However, dobutamine stress responses were similar, indicating that cardiac reserve was maintained. Plasma proteomic profiling revealed that macrophage inflammatory protein (MIP)-1 α, MIP-1β and MMP-9 plasma levels did not change in WT old mice but were significantly elevated in MMP-28-/- old mice (all p < 0.05), suggestive of a higher inflammatory status when MMP-28 is deleted. RT2-PCR gene array and immunoblotting analyses demonstrated that MIP-1α and MMP-9 gene and protein levels in the LV were also higher in MMP-28-/- old mice (all p < 0.05). Macrophage numbers in the LV increased similarly in WT and MMP-28-/- old mice, compared to respective young controls (both p < 0.05). Collagen content was not different among the WT and MMP-28-/- young and old mice. In conclusion, LV inflammation increases with age, and MMP-28 deletion further elevates inflammation and extracellular matrix responses, without altering macrophage numbers or collagen content.
Collapse
Affiliation(s)
- Yonggang Ma
- Barshop Institute of Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
- Division of Geriatrics, Gerontology and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Ying Ann Chiao
- Barshop Institute of Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
- Division of Geriatrics, Gerontology and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Jianhua Zhang
- Barshop Institute of Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
- Division of Geriatrics, Gerontology and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Anne M. Manicone
- Center for Lung Biology and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA 98109, USA
| | - Yu-Fang Jin
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX 78245, USA
| | - Merry L. Lindsey
- Barshop Institute of Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
- Division of Geriatrics, Gerontology and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| |
Collapse
|
33
|
van den Berg BHJ, Tholey A. Mass spectrometry-based proteomics strategies for protease cleavage site identification. Proteomics 2012; 12:516-29. [PMID: 22246699 DOI: 10.1002/pmic.201100379] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/14/2011] [Accepted: 09/17/2011] [Indexed: 01/22/2023]
Abstract
Protease-catalyzed hydrolysis of peptide bonds is one of the most pivotal post-translational modifications fulfilling manifold functions in the regulation of cellular processes. Therefore, dysregulation of proteolytic reactions plays a central role in many pathophysiological events. For this reason, understanding the molecular mechanisms in proteolytic reactions, in particular the knowledge of proteases involved in complex processes, expression levels and activity of protease and knowledge of the targeted substrates are an indispensable prerequisite for targeted drug development. The present review focuses on mass spectrometry-based proteomic methods for the analysis of protease cleavage sites, including the identification of the hydrolyzed bonds as well as of the surrounding sequence. Peptide- and protein-centric approaches and bioinformatic tools for experimental data interpretation will be presented and the major advantages and drawbacks of the different approaches will be addressed. The recent applications of these approaches for the analysis of biological function of different protease classes and potential future directions will be discussed.
Collapse
Affiliation(s)
- Bart H J van den Berg
- AG Systematische Proteomforschung, Institut für Experimentelle Medizin, Christian-Albrechts-Universität, Kiel, Germany.
| | | |
Collapse
|
34
|
Lewis JD, Wan J, Ford R, Gong Y, Fung P, Nahal H, Wang PW, Desveaux D, Guttman DS. Quantitative Interactor Screening with next-generation Sequencing (QIS-Seq) identifies Arabidopsis thaliana MLO2 as a target of the Pseudomonas syringae type III effector HopZ2. BMC Genomics 2012; 13:8. [PMID: 22230763 PMCID: PMC3320541 DOI: 10.1186/1471-2164-13-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/09/2012] [Indexed: 11/10/2022] Open
Abstract
Background Identification of protein-protein interactions is a fundamental aspect of understanding protein function. A commonly used method for identifying protein interactions is the yeast two-hybrid system. Results Here we describe the application of next-generation sequencing to yeast two-hybrid interaction screens and develop Quantitative Interactor Screen Sequencing (QIS-Seq). QIS-Seq provides a quantitative measurement of enrichment for each interactor relative to its frequency in the library as well as its general stickiness (non-specific binding). The QIS-Seq approach is scalable and can be used with any yeast two-hybrid screen and with any next-generation sequencing platform. The quantitative nature of QIS-Seq data make it amenable to statistical evaluation, and importantly, facilitates the standardization of experimental design, data collection, and data analysis. We applied QIS-Seq to identify the Arabidopsis thaliana MLO2 protein as a target of the Pseudomonas syringae type III secreted effector protein HopZ2. We validate the interaction between HopZ2 and MLO2 in planta and show that the interaction is required for HopZ2-associated virulence. Conclusions We demonstrate that QIS-Seq is a high-throughput quantitative interactor screen and validate MLO2 as an interactor and novel virulence target of the P. syringae type III secreted effector HopZ2.
Collapse
Affiliation(s)
- Jennifer D Lewis
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Starr AE, Dufour A, Maier J, Overall CM. Biochemical analysis of matrix metalloproteinase activation of chemokines CCL15 and CCL23 and increased glycosaminoglycan binding of CCL16. J Biol Chem 2011; 287:5848-60. [PMID: 22147696 PMCID: PMC3285354 DOI: 10.1074/jbc.m111.314609] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Leukocyte migration and activation is orchestrated by chemokines, the cleavage of which modulates their activity and glycosaminoglycan binding and thus their roles in inflammation and immunity. Early research identified proteolysis as a means of both activating or inactivating CXC chemokines and inactivating CC chemokines. Recent evidence has shown activating cleavages of the monocyte chemoattractants CCL15 and CCL23 by incubation with synovial fluid, although the responsible proteases could not be identified. Herein we show that CCL15 is processed in human synovial fluid by matrix metalloproteinases (MMPs) and serine proteases. Furthermore, a family-wide investigation of MMP processing of all 14 monocyte-directed CC chemokines revealed that each is precisely cleaved by one or more MMPs. By MALDI-TOF-MS, 149 cleavage sites were sequenced including the first reported instance of CCL1, CCL16, and CCL17 proteolysis. Full-length CCL15-(1–92) and CCL23-(1–99) were cleaved within their unique 31 and 32-amino acid residue extended amino termini, respectively. Unlike other CCL chemokines that lose activity and become receptor antagonists upon MMP cleavage, the prominent MMP-processed products CCL15-(25–92, 28–92) and CCL23-(26–99) are stronger agonists in calcium flux and Transwell CC receptor transfectant and monocytic THP-1 migration assays. MMP processing of CCL16-(1–97) in its extended carboxyl terminus yields two products, CCL16-(8–77) and CCL16-(8–85), with both showing unexpected enhanced glycosaminoglycan binding. Hence, our study reveals for the first time that MMPs activate the long amino-terminal chemokines CCL15 and CCL23 to potent forms that have potential to increase monocyte recruitment during inflammation.
Collapse
Affiliation(s)
- Amanda E Starr
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
36
|
Mehaffy MC, Kruh-Garcia NA, Dobos KM. Prospective on Mycobacterium tuberculosis proteomics. J Proteome Res 2011; 11:17-25. [PMID: 21988637 DOI: 10.1021/pr2008658] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, remains one of the most prevalent human pathogens in the world. Knowledge regarding the bacilli's physiology as well as its mechanisms of virulence, immunogenicity, and pathogenesis has increased greatly in the last three decades. However, the function of about one-quarter of the Mtb coding genome and the precise activity and protein networks of most of the Mtb proteins are still unknown. Protein mass spectrometry and a new interest in research toward the field of functional proteomics have given a new light to the study of this bacillus and will be the focus of this review. We will also discuss new perspectives in the proteomics field, in particular targeted mass spectrometry methods and their potential applications in TB research and discovery.
Collapse
Affiliation(s)
- M Carolina Mehaffy
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, Colorado 80523, United States
| | | | | |
Collapse
|
37
|
Maurer E, Sisay MT, Stirnberg M, Steinmetzer T, Bajorath J, Gütschow M. Insights into matriptase-2 substrate binding and inhibition mechanisms by analyzing active-site-mutated variants. ChemMedChem 2011; 7:68-72. [PMID: 21919209 DOI: 10.1002/cmdc.201100350] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Indexed: 02/04/2023]
Affiliation(s)
- Eva Maurer
- Pharmazeutisches Institut, Universität Bonn, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Ruehl M, Muche M, Freise C, Erben U, Neumann U, Schuppan D, Popov Y, Dieterich W, Zeitz M, Farndale RW, Somasundaram R. Hydroxyproline-containing collagen analogs trigger the release and activation of collagen-sequestered proMMP-2 by competition with prodomain-derived peptide P33-42. FIBROGENESIS & TISSUE REPAIR 2011; 4:1. [PMID: 21211003 PMCID: PMC3024946 DOI: 10.1186/1755-1536-4-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 01/06/2011] [Indexed: 11/14/2022]
Abstract
Background Fibrolytic and profibrotic activities of the matrix metalloproteinases (MMPs)-2 and -9 play a central role in liver fibrosis. Since binding to the extracellular matrix influences the activity of both gelatinases, here the role of fibrillar collagens as the most abundant matrix components in fibrotic tissue was investigated. Results In situ zymography and immunohistology showed association of enzymatically inactive prodomain-containing proMMP-2 and proMMP-9 but not of their activated forms to fibrillar collagen structures, which are not substrates of these gelatinases. In solid-phase binding studies with human collagens and collagen fragments, up to 45% of [125I]-labeled proMMP-2 and proMMP-9 but not of active (act)MMP-2 and actMMP-9 were retained by natural collagenous molecules and by synthetic analogs containing repeated Gly-Pro-Hyp triplets (GPO). Surface plasmon resonance yielded binding constants for the interaction of collagen type I (CI) with proMMP-2 and proMMP-9 in a nanomolar range. Values for actMMP-2 and actMMP-9 were 30-40 times higher. Tenfold molar excesses of (GPO)10 reduced the interaction of CI with pro- and actMMP-2 by 22- or 380-fold and resulted in prodomain release accompanied by high enzymatic activation and activity. Pointing to gelatine substrate displacement, higher (GPO)10 concentrations blocked the enzymatic activity. The MMP-2 prodomain-derived collagen-binding domain peptide (P33-42) binds to the collagen-binding domain of MMP-2, thereby preserving enzymatic inactivity. Synthetic P33-42 peptide competed with proMMP-2 binding to CI and prevented (GPO)10-mediated proMMP-2 activation. In contrast to (GPO)10, P33-42 did not activate proMMP-2, making triple helical and hydroxyproline-containing (GPO)10 unique in modulating gelatinase availability and activity. Conclusions These findings suggest novel strategies using collagen analogs for the resolution of liver fibrosis via fibrotic matrix-sequestered gelatinases.
Collapse
Affiliation(s)
- Martin Ruehl
- Department of Gastroenterology and Hepatology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | - Marion Muche
- Department of Gastroenterology and Hepatology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | - Christian Freise
- Department of Gastroenterology and Hepatology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | - Ulrike Erben
- Department of Gastroenterology and Hepatology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | - Ulf Neumann
- Department of Surgery, Charité Campus Virchow, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Detlef Schuppan
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Yury Popov
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Walburga Dieterich
- Department of Medicine I, Friedrich-Alexander-University Erlangen-Nuernberg, Glücksstrasse 10, D-91054 Erlangen, Germany
| | - Martin Zeitz
- Department of Gastroenterology and Hepatology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Rajan Somasundaram
- Department of Gastroenterology and Hepatology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| |
Collapse
|
39
|
Doucet A, Overall CM. Broad coverage identification of multiple proteolytic cleavage site sequences in complex high molecular weight proteins using quantitative proteomics as a complement to edman sequencing. Mol Cell Proteomics 2010; 10:M110.003533. [PMID: 20876890 PMCID: PMC3098582 DOI: 10.1074/mcp.m110.003533] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteolytic processing modifies the pleiotropic functions of many large, complex, and modular proteins and can generate cleavage products with new biological activity. The identification of exact proteolytic cleavage sites in the extracellular matrix laminins, fibronectin, and other extracellular matrix proteins is not only important for understanding protein turnover but is needed for the identification of new bioactive cleavage products. Several such products have recently been recognized that are suggested to play important cellular regulatory roles in processes, including angiogenesis. However, identifying multiple cleavage sites in extracellular matrix proteins and other large proteins is challenging as N-terminal Edman sequencing of multiple and often closely spaced cleavage fragments on SDS-PAGE gels is difficult, thus limiting throughput and coverage. We developed a new liquid chromatography-mass spectrometry approach we call amino-terminal oriented mass spectrometry of substrates (ATOMS) for the N-terminal identification of protein cleavage fragments in solution. ATOMS utilizes efficient and low cost dimethylation isotopic labeling of original N-terminal and proteolytically generated N termini of protein cleavage fragments followed by quantitative tandem mass spectrometry analysis. Being a peptide-centric approach, ATOMS is not dependent on the SDS-PAGE resolution limits for protein fragments of similar mass. We demonstrate that ATOMS reliably identifies multiple proteolytic sites per reaction in complex proteins. Fifty-five neutrophil elastase cleavage sites were identified in laminin-1 and fibronectin-1 with 34 more identified by matrix metalloproteinase cleavage. Hence, our degradomics approach offers a complimentary alternative to Edman sequencing with broad applicability in identifying N termini such as cleavage sites in complex high molecular weight extracellular matrix proteins after in vitro cleavage assays. ATOMS can therefore be useful in identifying new cleavage products of extracellular matrix proteins cleaved by proteases in pathology for bioactivity screening.
Collapse
Affiliation(s)
- Alain Doucet
- Department of Biochemistry and Oral Biological and Medical Sciences, Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
40
|
Cauwe B, Opdenakker G. Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol 2010; 45:351-423. [DOI: 10.3109/10409238.2010.501783] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Proteolytic processing of the serine protease matriptase-2: identification of the cleavage sites required for its autocatalytic release from the cell surface. Biochem J 2010; 430:87-95. [PMID: 20518742 DOI: 10.1042/bj20091565] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Matriptase-2 is a member of the TTSPs (type II transmembrane serine proteases), an emerging class of cell surface proteases involved in tissue homoeostasis and several human disorders. Matriptase-2 exhibits a domain organization similar to other TTSPs, with a cytoplasmic N-terminus, a transmembrane domain and an extracellular C-terminus containing the non-catalytic stem region and the protease domain. To gain further insight into the biochemical functions of matriptase-2, we characterized the subcellular localization of the monomeric and multimeric form and identified cell surface shedding as a defining point in its proteolytic processing. Using HEK (human embryonic kidney)-293 cells, stably transfected with cDNA encoding human matriptase-2, we demonstrate a cell membrane localization for the inactive single-chain zymogen. Membrane-associated matriptase-2 is highly N-glycosylated and occurs in monomeric, as well as multimeric, forms covalently linked by disulfide bonds. Furthermore, matriptase-2 undergoes shedding into the conditioned medium as an activated two-chain form containing the catalytic domain, which is cleaved at the canonical activation motif, but is linked to a released portion of the stem region via a conserved disulfide bond. Cleavage sites were identified by MS, sequencing and mutational analysis. Interestingly, cell surface shedding and activation of a matriptase-2 variant bearing a mutation at the active-site serine residue is dependent on the catalytic activity of co-expressed or co-incubated wild-type matriptase-2, indicating a transactivation and trans-shedding mechanism.
Collapse
|
42
|
Schulte S, Sun J, Libby P, Macfarlane L, Sun C, Lopez-Ilasaca M, Shi GP, Sukhova GK. Cystatin C deficiency promotes inflammation in angiotensin II-induced abdominal aortic aneurisms in atherosclerotic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:456-63. [PMID: 20472891 PMCID: PMC2893687 DOI: 10.2353/ajpath.2010.090381] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/09/2010] [Indexed: 01/21/2023]
Abstract
An imbalance between cysteinyl cathepsins and their principal endogenous inhibitor cystatin C (CystC) may favor proteolysis in the pathogenesis of human abdominal aortic aneurysms (AAA), yet a direct role of CystC in AAA remains unproven. This study used CystC and apolipoprotein E (ApoE) compound mutant (CystC(-/-)ApoE(-/-)) mice to examine directly the role of cysteine protease/protease inhibitor imbalance in AAA formation in angiotensin II-induced AAA. CystC-deficiency increased lumenal diameter and lesion size compared with control mice. CystC(-/-) ApoE(-/-) lesions also demonstrated enhanced inflammatory cell accumulation, more severe elastin fragmentation, and fewer smooth muscle cells in the tunica media. Macrophage content, measured as percent positive area (23.2 +/- 1.4% versus 11.2 +/- 1.4%; P = 0.0003) and number of the CD4(+) T cells (ninefold; P = 0.048), increased significantly in CystC(-/-)ApoE(-/-) lesions. CystC deficiency increased cathepsin activity (5.5 fold; P = 0.001) in AAA, yielding greater elastin degradation and proangiogenic laminin-5 gamma2 peptide production, which may account for increased microvascularization in CystC(-/-)ApoE(-/-) compared with ApoE(-/-) lesions. Increased leukocyte adhesion molecule VCAM-1 expression and leukocyte proliferation might also promote inflammation in CystC-deficient AAA. These data indicate that CystC contributes to experimental AAA pathogenesis and that enhanced cysteine protease activity, due to the lack of CystC, favors inflammation in AAA lesions induced in atherosclerotic mice by promoting microvascularization and smooth muscle cell apoptosis as well as leukocytes adhesion and proliferation.
Collapse
Affiliation(s)
- Stephanie Schulte
- Cardiovascular Medicine, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB-730J, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Li X, Quon G, Lipshitz HD, Morris Q. Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure. RNA (NEW YORK, N.Y.) 2010; 16:1096-107. [PMID: 20418358 PMCID: PMC2874161 DOI: 10.1261/rna.2017210] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
While many RNA-binding proteins (RBPs) bind RNA in a sequence-specific manner, their sequence preferences alone do not distinguish known target RNAs from other potential targets that are coexpressed and contain the same sequence motifs. Recently, the mRNA targets of dozens of RNA-binding proteins have been identified, facilitating a systematic study of the features of target transcripts. Using these data, we demonstrate that calculating the predicted structural accessibility of a putative RBP binding site allows one to significantly improve the accuracy of predicting in vivo binding for the majority of sequence-specific RBPs. In our new in silico approach, accessibility is predicted based solely on the mRNA sequence without consideration of the locations of bound trans-factors; as such, our results suggest a greater than previously anticipated role for intrinsic mRNA secondary structure in determining RBP binding target preference. Target site accessibility aids in predicting target transcripts and the binding sites for RBPs with a range of RNA-binding domains and subcellular functions. Based on this work, we introduce a new motif-finding algorithm that identifies accessible sequence-specific RBP motifs from in vivo binding data.
Collapse
Affiliation(s)
- Xiao Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1E3, Canada
| | | | | | | |
Collapse
|
44
|
Kappelhoff R, Auf dem Keller U, Overall CM. Analysis of the degradome with the CLIP-CHIP microarray. Methods Mol Biol 2010; 622:175-93. [PMID: 20135282 DOI: 10.1007/978-1-60327-299-5_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The degradome microarray - CLIP-CHIP - is a dedicated and focused array that allows the analysis of all proteases, non-proteolytic homologs, and protease inhibitor gene transcripts in the human and murine genomes at the mRNA transcript level.Based on unique 70-mer oligonucleotides, designed to match parts of the sequence of known or predicted protease and inhibitor mRNAs in both species and printed on a glass-matrix surface, the CLIP-CHIP microarray can be used to analyze differentially expressed protease and inhibitor gene products and give expression profiles for any analyzed sample.
Collapse
Affiliation(s)
- Reinhild Kappelhoff
- Department of Oral Biological and Medical Sciences, Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
45
|
Butler GS, Overall CM. Updated biological roles for matrix metalloproteinases and new "intracellular" substrates revealed by degradomics. Biochemistry 2009; 48:10830-45. [PMID: 19817485 DOI: 10.1021/bi901656f] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Shotgun proteomics techniques are conceptually unbiased, but data interpretation and follow-up experiments are often constrained by dogma, established beliefs that are accepted without question, that can dilute the power of proteomics and hinder scientific progress. Proteomics and degradomics, the characterization of all proteases, inhibitors, and protease substrates by genomic and proteomic techniques, have exponentially expanded the known substrate repertoire of the matrix metalloproteinases (MMPs), even to include intracellular proteins with newly recognized extracellular functions. Thus, the dogma that MMPs are dowdy degraders of extracellular matrix has been resolutely overturned, and the metamorphosis of MMPs into modulators of multiple signaling pathways has been facilitated. Here we review progress made in the field of degradomics and present a current view of the MMP degradome.
Collapse
Affiliation(s)
- Georgina S Butler
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
46
|
Mesotrypsin promotes malignant growth of breast cancer cells through shedding of CD109. Breast Cancer Res Treat 2009; 124:27-38. [PMID: 20035377 DOI: 10.1007/s10549-009-0699-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
Serine proteases have been implicated in many stages of cancer development, facilitating tumor cell growth, invasion, and metastasis, and naturally occurring serine protease inhibitors have shown promise as potential anticancer therapeutics. Optimal design of inhibitors as potential therapeutics requires the identification of the specific serine proteases involved in disease progression and the functional targets responsible for the tumor-promoting properties. Here, we use the HMT-3522 breast cancer progression series grown in 3D organotypic culture conditions to find that serine protease inhibitors cause morphological reversion of the malignant T4-2 cells, assessed by inhibition of proliferation and formation of acinar structures with polarization of basal markers, implicating serine protease activity in their malignant growth behavior. We identify PRSS3/mesotrypsin upregulation in T4-2 cells as compared to their nonmalignant progenitors, and show that knockdown of PRSS3 attenuates, and treatment with recombinant purified mesotrypsin enhances, the malignant growth phenotype. Using proteomic methods, we identify CD109 as the functional proteolytic target of mesotrypsin. Our study identifies a new mediator and effector of breast cancer growth and progression.
Collapse
|
47
|
Kappelhoff R, Overall C. The CLIP-CHIP oligonucleotide microarray: dedicated array for analysis of all protease, nonproteolytic homolog, and inhibitor gene transcripts in human and mouse. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2009; Chapter 21:21.19.1-21.19.16. [PMID: 19365791 DOI: 10.1002/0471140864.ps2119s56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The CLIP-CHIP oligonucleotide microarray allows the analysis of mRNA transcript levels in a tissue sample for all proteases, nonproteolytic homologs, and protease inhibitors of the human and mouse genome. In the protocol presented in this unit, total RNA is extracted from a tissue, and the resulting mRNA is reverse transcribed into cDNA and dsDNA and then amplified in an in vitro transcription reaction. The amplified antisense RNA is labeled with a fluorescent dye and hybridized to the CLIP-CHIP, which contains unique oligonucleotides that are specifically designed for the protease, nonproteolytic homologs, protease inhibitors, and control samples. After hybridization, the fluorescence intensity of each spot is measured, thus identifying mRNA transcripts that are expressed and allowing basic quantification of expressed transcripts.
Collapse
Affiliation(s)
| | - Chris Overall
- University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
48
|
Abstract
OTUB (otubain) 1 is a human deubiquitinating enzyme that is implicated in mediating lymphocyte antigen responsiveness, but whose molecular function is generally not well defined. A structural analysis of OTUB1 shows differences in accessibility to the active site and in surface properties of the substrate-binding regions when compared with its close homologue, OTUB2, suggesting variations in regulatory mechanisms and substrate specificity. Biochemical analysis reveals that OTUB1 has a preference for cleaving Lys(48)-linked polyubiquitin chains over Lys(63)-linked polyubiquitin chains, and it is capable of cleaving NEDD8 (neural-precursor-cell-expressed developmentally down-regulated 8), but not SUMO (small ubiquitin-related modifier) 1/2/3 and ISG15 (interferon-stimulated gene 15) conjugates. A functional comparison of OTUB1 and OTUB2 indicated a differential reactivity towards ubiquitin-based active-site probes carrying a vinyl methyl ester, a 2-chloroethyl or a 2-bromoethyl group at the C-terminus. Mutational analysis suggested that a narrow P1' site, as observed in OTUB1, correlates with its ability to preferentially cleave Lys(48)-linked ubiquitin chains. Analysis of cellular interaction partners of OTUB1 by co-immunoprecipitation and MS/MS (tandem mass spectrometry) experiments demonstrated that FUS [fusion involved in t(12;6) in malignant liposarcoma; also known as TLS (translocation in liposarcoma) or CHOP (CCAAT/enhancer-binding protein homologous protein)] and RACK1 [receptor for activated kinase 1; also known as GNB2L1 (guanine-nucleotide-binding protein beta polypeptide 2-like 1)] are part of OTUB1-containing complexes, pointing towards a molecular function of this deubiquitinating enzyme in RNA processing and cell adhesion/morphology.
Collapse
|
49
|
Epilysin (MMP-28) is deposited to the basolateral extracellular matrix of epithelial cells. Matrix Biol 2009; 28:74-83. [DOI: 10.1016/j.matbio.2008.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 12/22/2008] [Accepted: 12/22/2008] [Indexed: 11/20/2022]
|
50
|
Burrows JF, Kelvin AA, McFarlane C, Burden RE, McGrattan MJ, De la Vega M, Govender U, Quinn DJ, Dib K, Gadina M, Scott CJ, Johnston JA. USP17 regulates Ras activation and cell proliferation by blocking RCE1 activity. J Biol Chem 2009; 284:9587-95. [PMID: 19188362 DOI: 10.1074/jbc.m807216200] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The proto-oncogene Ras undergoes a series of post-translational modifications at its carboxyl-terminal CAAX motif that are essential for its proper membrane localization and function. One step in this process is the cleavage of the CAAX motif by the enzyme Ras-converting enzyme 1 (RCE1). Here we show that the deubiquitinating enzyme USP17 negatively regulates the activity of RCE1. We demonstrate that USP17 expression blocks Ras membrane localization and activation, thereby inhibiting phosphorylation of the downstream kinases MEK and ERK. Furthermore, we show that this effect is caused by the loss of RCE1 catalytic activity as a result of its deubiquitination by USP17. We also show that USP17 and RCE1 co-localize at the endoplasmic reticulum and that USP17 cannot block proliferation or Ras membrane localization in RCE1 null cells. These studies demonstrate that USP17 modulates Ras processing and activation, at least in part, by regulating RCE1 activity.
Collapse
Affiliation(s)
- James F Burrows
- Division of Infection and Immunity, Centre for Cancer Research and Cell Biology, School of Biomedical Sciences, Queen's University Belfast, University Road, Belfast BT7 1NN, Northern Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|