1
|
Zarei MH, Pourahmad J. Toxicity of Dibutyl phthalate (DBP) toward isolated human blood lymphocytes: Apoptosis initiated from intracellular calcium enhancement and mitochondrial/lysosomal cross talk. Toxicol Rep 2024; 13:101729. [PMID: 39295952 PMCID: PMC11409181 DOI: 10.1016/j.toxrep.2024.101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
Dibutyl phthalate (DBP) is a phthalate ester with wide application in industrial products, so human exposure can happen in workplaces and environment. Conflicting results have been acquired in researches which measured the influences of phthalates contact on immune responses in laboratory animals. Nevertheless, the straight influence of DBP on human lymphocytes and entire mechanisms of its effect against these cells continue to be unexplored. The major purpose of present research was to evaluate the mechanisms which lead to the DBP toxicity on human lymphocytes using accelerated cytotoxicity mechanisms screening (ACMS) technique. Cell viability was determined following12h incubation of lymphocytes with 0.05-1 mM DBP, and mechanistic parameters were assessed after 2, 4 and 6 h of lymphocyte treatment with ½ the IC5012h (0.3 mM), the IC5012h (0.6 mM) and twice the IC5012h (1.2 mM) of DBP. The IC5012 h of a chemical/toxicant is defined as concentration that kills 50 % of cells after 12 h of exposure. The results indicate that DBP exerts toxic effects on isolated human lymphocytes, probably through mitochondrial and lysosomal damage induced by glutathione depletion and oxidative stress. In this study, suppression of cytokines (IL2, INF-gamma and TNF-alpha) production and increase in intracellular calcium were also related to DBP induced lymphocyte toxicity.
Collapse
Affiliation(s)
- Mohammad Hadi Zarei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Jalal Pourahmad
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Yang R, Di Y, Song X, Zhao H, Cheng Y, Lu C, Yang Y, Sun M, Zhou Z. Michael Addition-Based Neoadjuvant for Enhanced Cancer Immunotherapy. ACS NANO 2024. [PMID: 39052870 DOI: 10.1021/acsnano.4c08014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Cancer immunotherapy suffers from inefficient antigen presentation owing to the limited endocytosis of antigen by dendritic cells (DCs) and dysfunction of DCs in the immunosuppressive tumor microenvironment (ITME). Here, we revealed that cinnamaldehyde-grafted polyethylenimine (PC) held the potential to serve as a neoadjuvant to modulate the above processes and thus potentiate immune responses. The PC neoadjuvant could capture the tumor antigen generated during chemotherapy to enhance the crosstalk between the antigen and DCs. Then, it depleted the intracellular glutathione by the in situ Michael addition reaction, which not only activated the NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) pathway to promote DCs maturation but also triggered the antigen release. As a result, it significantly augmented antigen presentation with a 46% ratio of DCs maturation and a 53% ratio of CD8+ T cell infiltration in low immunogenic murine breast cancer.
Collapse
Affiliation(s)
- Ruoxi Yang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 TongJiaXiang, Nanjing 210009, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511455, China
| | - Yongxiang Di
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 TongJiaXiang, Nanjing 210009, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511455, China
| | - Xiaoning Song
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 TongJiaXiang, Nanjing 210009, China
| | - Huimin Zhao
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 TongJiaXiang, Nanjing 210009, China
| | - Yide Cheng
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 TongJiaXiang, Nanjing 210009, China
| | - Cunzhen Lu
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 TongJiaXiang, Nanjing 210009, China
| | - Ying Yang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 TongJiaXiang, Nanjing 210009, China
| | - Minjie Sun
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 TongJiaXiang, Nanjing 210009, China
| | - Zhanwei Zhou
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 TongJiaXiang, Nanjing 210009, China
| |
Collapse
|
3
|
Wu E, Li X, Ma Q, Wang H, Han X, Feng B. Comparative Multi-Omics Analysis of Broomcorn Millet in Response to Anthracocystis destruens Infection. PHYTOPATHOLOGY 2024; 114:1215-1225. [PMID: 38281141 DOI: 10.1094/phyto-08-23-0269-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Anthracocystis destruens is the causal agent of broomcorn millet (Panicum miliaceum) smut disease, which results in serious yield losses in broomcorn millet production. However, the molecular basis underlying broomcorn millet defense against A. destruens is less understood. In this study, we investigated how broomcorn millet responds to infection by A. destruens by employing a comprehensive multi-omics approach. We examined the responses of broomcorn millet across transcriptome, metabolome, and microbiome levels. Infected leaves exhibited an upregulation of genes related to photosynthesis, accompanied by a higher accumulation of photosynthesis-related compounds and alterations in hormonal levels. However, broomcorn millet genes involved in immune response were downregulated post A. destruens infection, suggesting that A. destruens may suppress broomcorn millet immunity. In addition, we show that the immune suppression and altered host metabolism induced by A. destruens have no significant effect on the microbial community structure of broomcorn millet leaf, thus providing a new perspective for understanding the tripartite interaction between plant, pathogen, and microbiota.
Collapse
Affiliation(s)
- Enguo Wu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuepei Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Ma
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Honglu Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Xiaowei Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
4
|
Jramne-Saleem Y, Danilenko M. Roles of Glutathione and AP-1 in the Enhancement of Vitamin D-Induced Differentiation by Activators of the Nrf2 Signaling Pathway in Acute Myeloid Leukemia Cells. Int J Mol Sci 2024; 25:2284. [PMID: 38396960 PMCID: PMC10889780 DOI: 10.3390/ijms25042284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Active vitamin D derivatives (VDDs)-1α,25-dihydroxyvitamin D3/D2 and their synthetic analogs-are well-known inducers of cell maturation with the potential for differentiation therapy of acute myeloid leukemia (AML). However, their dose-limiting calcemic activity is a significant obstacle to using VDDs as an anticancer treatment. We have shown that different activators of the NF-E2-related factor-2/Antioxidant Response Element (Nrf2/ARE) signaling pathway, such as the phenolic antioxidant carnosic acid (CA) or the multiple sclerosis drug monomethyl fumarate (MMF), synergistically enhance the antileukemic effects of various VDDs applied at low concentrations in vitro and in vivo. This study aimed to investigate whether glutathione, the major cellular antioxidant and the product of the Nrf2/ARE pathway, can mediate the Nrf2-dependent differentiation-enhancing activity of CA and MMF in HL60 human AML cells. We report that glutathione depletion using L-buthionine sulfoximine attenuated the enhancing effects of both Nrf2 activators concomitant with downregulating vitamin D receptor (VDR) target genes and the activator protein-1 (AP-1) family protein c-Jun levels and phosphorylation. On the other hand, adding reduced glutathione ethyl ester to dominant negative Nrf2-expressing cells restored both the suppressed differentiation responses and the downregulated expression of VDR protein, VDR target genes, as well as c-Jun and P-c-Jun levels. Finally, using the transcription factor decoy strategy, we demonstrated that AP-1 is necessary for the enhancement by CA and MMF of 1α,25-dihydroxyvitamin D3-induced VDR and RXRα protein expression, transactivation of the vitamin D response element, and cell differentiation. Collectively, our findings suggest that glutathione mediates, at least in part, the potentiating effect of Nrf2 activators on VDDs-induced differentiation of AML cells, likely through the positive regulation of AP-1.
Collapse
Affiliation(s)
| | - Michael Danilenko
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
| |
Collapse
|
5
|
Fraternale A, Green KA, Schiavano GF, Bruschi M, Retini M, Magnani M, Green WR. Inhibition of myeloid-derived suppressor cell (MDSC) activity by redox-modulating agents restores T and B cell proliferative responses in murine AIDS. Int Immunopharmacol 2023; 124:110882. [PMID: 37659111 DOI: 10.1016/j.intimp.2023.110882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
The mechanisms by which myeloid-derived suppressor cells (MDSCs) mediate inhibition prominently include the production of reactive nitrogen species, in particular those generated by inducible nitric oxide synthase (iNOS), and reactive oxygen species. LP-BM5 murine retroviral infection results in a profound immunodeficiency, known as murine AIDS, as well as in increased numbers and activity of monocytic-type MDSCs (M-MDSCs) that suppress both T and B cell responses. While M-MDSCs suppress T cells ex vivo in a fully iNOS/NO-dependent manner, M-MDSC suppression of B cell responses is only partially due to iNOS/NO. This study preliminarily explored the role of two redox-modulating compounds in inhibiting the M-MDSC suppressive activity in LP-BM5 infection. The tested molecules were: I-152 consisting in a conjugate of N-acetyl-cysteine (NAC) and S-acetyl-cysteamine (SMEA) and C4-GSH that is the n-butanoyl glutathione (GSH) derivative. The results show that both molecules, tested in a concentration range between 3 and 20 mM, blocked the M-MDSC suppression of activated B and T cells ex vivo and restored their proliferative capacity in vivo. Ex vivo I-152 blockade of M-MDSC suppressiveness was more significant for T cell (about 70%) while M-MDSC blockade by C4-GSH was preferential for B cell responsiveness (about 60%), which was also confirmed by in vivo investigation. Beyond insights into redox-dependent suppressive effector mechanism(s) of M-MDSCs in LP-BM5 infection, these findings may ultimately be important to identify new immunotherapeutics against infectious diseases.
Collapse
Affiliation(s)
- Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy.
| | - Kathy A Green
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, NH, United States
| | | | - Michela Bruschi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Michele Retini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - William R Green
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, NH, United States
| |
Collapse
|
6
|
Pak U, Cheng H, Liu X, Wang Y, Ho C, Ri H, Xu J, Qi X, Yu H. Structural characterization and anti-oxidation activity of pectic polysaccharides from Swertia mileensis. Int J Biol Macromol 2023; 248:125896. [PMID: 37481190 DOI: 10.1016/j.ijbiomac.2023.125896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/13/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
In this study, we isolated the pectic polysaccharide WSMP-A2b (37 kDa) from the stems and leaves of Swertia mileensis, and we investigated its compositional/structural features and antioxidant activity. FT-IR, NMR, monosaccharide composition, enzymatic hydrolysis and methylation analyses indicated that WSMP-A2b is composed of rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II) and homogalacturonan (HG) domains with mass ratios of 2.1:1.0:2.2. The RG-I domain is primarily substituted with α-L-1,5-arabinan and type II arabinogalactan (AG-II) side chains, as well as minor contributions of β-D-1,4-galactan and/or type I arabinogalactan (AG-I) side chains. The HG domain was released in the form of un-esterified and partly methyl-esterified and/or acetyl-esterified oligogalacturonides with a 1 to 7 degree of polymerization after endo-polygalacturonase degradation. WSMP-A2b showed stronger antioxidant activity in vitro, in part this might due to the presence of galacturonic acid (GalA). In addition, WSMP-A2b exerted a protective effect on tert-butyl hydroperoxide (tBHP)-induced oxidative stress in INS-1 cells by reducing reactive oxygen species (ROS) production and increasing the glutathione/oxidized glutathione (GSH/GSSG) ratio. Our results provide crucial structural information on this pectic polysaccharide from Swertia mileensis, thus prompting further investigation into its structure-activity relationship.
Collapse
Affiliation(s)
- UnHak Pak
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Hao Cheng
- Department of Clinics, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China
| | - Xianbin Liu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yuwen Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - ChungHyok Ho
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - HyonIl Ri
- Department of Chemistry, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Jing Xu
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China
| | - Xiaodan Qi
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China; Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Haitao Yu
- Department of Biology Genetics, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China.
| |
Collapse
|
7
|
Wróblewska J, Wróblewski M, Hołyńska-Iwan I, Modrzejewska M, Nuszkiewicz J, Wróblewska W, Woźniak A. The Role of Glutathione in Selected Viral Diseases. Antioxidants (Basel) 2023; 12:1325. [PMID: 37507865 PMCID: PMC10376684 DOI: 10.3390/antiox12071325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
During inflammatory processes, immunocompetent cells are exposed to substantial amounts of free radicals and toxic compounds. Glutathione is a cysteine-containing tripeptide that is an important and ubiquitous antioxidant molecule produced in human organs. The intracellular content of GSH regulates the detoxifying capacity of cells, as well as the inflammatory and immune response. GSH is particularly important in the liver, where it serves as the major non-protein thiol involved in cellular antioxidant defense. There are numerous causes of hepatitis. The inflammation of the liver can be caused by a variety of infectious viruses. The relationship between oxidative stress and the hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), and hepatitis E virus (HEV) infection is not fully known. The aim of this study was to examine the relationship between hepatotropic viruses and glutathione status, including reduced glutathione (GSH) and oxidized glutathione (GSSG), as well as antioxidant enzymes, e.g., glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) in liver diseases.
Collapse
Affiliation(s)
- Joanna Wróblewska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Marcin Wróblewski
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Iga Hołyńska-Iwan
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Weronika Wróblewska
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
8
|
Xue XL, Wang Y, Zhang H, Chen S, Niu SY, Cui L, Wang KP, Hu ZQ. A coumarin-based fluorescent probe: single-wavelength excitation, discrimination of Cys/Hcy and GSH by naked eyes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122410. [PMID: 36736049 DOI: 10.1016/j.saa.2023.122410] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Biothiols mainly include cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), which play an important role in life activities and abnormal changes in their concentrations are closely related to certain diseases. Therefore, the quantitative tracking and analysis of biothiols in living organisms has become a hot research topic in recent years. In this work, a coumarin-based fluorescent probe COUN was designed and synthesized for the comparable color recognition of Cys/Hcy and GSH by introducing the phenylethynyl group as the recognition site of biothiols, which showed significant fluorescence enhancement and green fluorescence under the UV light at 365 nm. The probe specifically recognized Hcy, showing 40-fold fluorescence enhancement and strong green fluorescence at 492 nm. Moreover, there was a good linear relationship between the fluorescence intensity of the probe and certain concentrations of Cys/Hcy and GSH, with detection limits of 36.6 nM, 86.4 nM, and 174 nM, respectively. The recognition mechanism of COUN to distinguish Cys/Hcy and GSH was studied by TDDFT calculations. More importantly, COUN was successfully used for imaging biothiols in living cells. The results showed that this probe could provide an effective contribution to the understanding of the role of biothiols, especially Hcy.
Collapse
Affiliation(s)
- Xiao-Lei Xue
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hao Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shaojin Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shu-Yan Niu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Lingyun Cui
- Beijing City University, Beijing 100083, China.
| | - Kun-Peng Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
9
|
Jing N, Liu F, Wang R, Zhang Y, Yang J, Hou Y, Zhang H, Xie Y, Liu H, Ge S, Jin J. Both live and heat-killed Bifidobacterium animalis J-12 alleviated oral ulcers in LVG golden Syrian hamsters by gavage by directly intervening in the intestinal flora structure. Food Funct 2023; 14:2045-2058. [PMID: 36723265 DOI: 10.1039/d2fo03751c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Live and heat-killed Bifidobacterium has been proven to have anti-inflammatory and antioxidant effects. In this study, we evaluated the effects of live and heat-killed Bifidobacterium animalis J-12 (J-12) on the oral ulceration of LVG golden Syrian hamsters after buccal membrane injection with methyl viologen dichloride. Results showed that interleukin-1β, glutathione, and malondialdehyde in serum were downregulated by the gavage of live and heat-killed J-12 bacteria. The J-12 live and heat-killed bacteria can reduce the expression of matrix metalloproteinase-9 by reducing the expression of nuclear factor kappa-B, thus reducing the expression of anti-inflammatory factors lipoxin A4 and prostaglandin E2. Reducing the expression of caspase-3 and adenosine diphosphate ribose polymerase resulted in a reduction of ulcer tissue DNA damage. In addition, regulating the structure of the intestinal flora prevented the process of oral ulcer formation. This study shows that J-12 can reduce the risk of oral ulcer formation while also having a positive effect on inhibiting existing oral ulcer growth.
Collapse
Affiliation(s)
- Nanqing Jing
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Fudong Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China.,Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100190, China
| | - Yan Zhang
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Jianjun Yang
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yubing Hou
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Hongxing Zhang
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Yuanhong Xie
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Hui Liu
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Shaoyang Ge
- BEIJING HEYIYUAN BIOTECHNOLOGY Co, Ltd., Beijing 100088, China
| | - Junhua Jin
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| |
Collapse
|
10
|
Tavassolifar MJ, Aghdaei HA, Sadatpour O, Maleknia S, Fayazzadeh S, Mohebbi SR, Montazer F, Rabbani A, Zali MR, Izad M, Meyfour A. New insights into extracellular and intracellular redox status in COVID-19 patients. Redox Biol 2023; 59:102563. [PMID: 36493512 PMCID: PMC9715463 DOI: 10.1016/j.redox.2022.102563] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The imbalance of redox homeostasis induces hyper-inflammation in viral infections. In this study, we explored the redox system signature in response to SARS-COV-2 infection and examined the status of these extracellular and intracellular signatures in COVID-19 patients. METHOD The multi-level network was constructed using multi-level data of oxidative stress-related biological processes, protein-protein interactions, transcription factors, and co-expression coefficients obtained from GSE164805, which included gene expression profiles of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients and healthy controls. Top genes were designated based on the degree and closeness centralities. The expression of high-ranked genes was evaluated in PBMCs and nasopharyngeal (NP) samples of 30 COVID-19 patients and 30 healthy controls. The intracellular levels of GSH and ROS/O2• - and extracellular oxidative stress markers were assayed in PBMCs and plasma samples by flow cytometry and ELISA. ELISA results were applied to construct a classification model using logistic regression to differentiate COVID-19 patients from healthy controls. RESULTS CAT, NFE2L2, SOD1, SOD2 and CYBB were 5 top genes in the network analysis. The expression of these genes and intracellular levels of ROS/O2• - were increased in PBMCs of COVID-19 patients while the GSH level decreased. The expression of high-ranked genes was lower in NP samples of COVID-19 patients compared to control group. The activity of extracellular enzymes CAT and SOD, and the total oxidant status (TOS) level were increased in plasma samples of COVID-19 patients. Also, the 2-marker panel of CAT and TOS and 3-marker panel showed the best performance. CONCLUSION SARS-COV-2 disrupts the redox equilibrium in immune cells and the upper respiratory tract, leading to exacerbated inflammation and increased replication and entrance of SARS-COV-2 into host cells. Furthermore, utilizing markers of oxidative stress as a complementary validation to discriminate COVID-19 from healthy controls, seems promising.
Collapse
Affiliation(s)
- Mohammad Javad Tavassolifar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Sadatpour
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Maleknia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fayazzadeh
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Montazer
- Department of Pathology, Firoozabadi Hospital, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Amirhassan Rabbani
- Department of Transplant & Hepatobiliary Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Izad
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Stress-Related Immune Response and Selenium Status in Autoimmune Thyroid Disease Patients. Int J Mol Sci 2023; 24:ijms24032440. [PMID: 36768762 PMCID: PMC9917185 DOI: 10.3390/ijms24032440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Autoimmune thyroid disease (AITD), including Graves' disease (GD) or Hashimoto's thyroiditis (HT), occurs due to genetic susceptibility and environmental factors, among which the role of stressful events remains controversial. This study investigated the relationship between the number and impact of stressful life events in AITD patients with selenium status, and the Th1/Th2/Th17 immune response. The study population included three groups: HT (n = 47), GD (n = 13), and a control group (n = 49). Thyroid function parameters, autoantibody levels, and the plasma levels of cytokines, selenium, selenoprotein P (SeP), and glutathione peroxidase 3 (GPx) activity were measured. Participants filled out the Life Experiences Survey. No significant differences in the number of stressful life events were found among the patients with HT, GD, and the controls. A higher (median (interquartile range)) negative stress level (8 (4-12)) than a positive stress level (3 (1-9)) was found in the HT group. The HT group showed a correlation between SeP and the positive stress level: rs = -0.296, p = 0.048, and the GD group between GPx and the negative stress level (rs = -0.702, p = 0.011). Significant positive correlations between thyroid peroxidase antibody level and the total number of major life events (p = 0.023), the number of major life events in the last 7-12 months, and the number of major life events with no impact and a negative stress level were found. We suggest that the measurements of Th2-related cytokines and selenoproteins could be used as biomarkers for the development of AITD in cases where stress is considered a component cause of the pathogenic mechanism of the disease.
Collapse
|
12
|
Nguyen HD, Do LH. Taming glutathione potentiates metallodrug action. Curr Opin Chem Biol 2022; 71:102213. [PMID: 36206677 PMCID: PMC9759795 DOI: 10.1016/j.cbpa.2022.102213] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 01/27/2023]
Abstract
Metallodrugs that are redox sensitive or have labile coordination sites are particularly susceptible to inhibition by glutathione (GSH) and other endogenous thiols. Because GSH is an essential antioxidant, strategies to prevent thiol deactivation must consider their potential effects on normal cellular functions. In this short review, we describe general approaches for taming glutathione in metallodrug therapy and discuss their strengths and limitations. We also offer our perspectives on developing practical solutions that are effective and clinically relevant.
Collapse
|
13
|
Clove bud (Syzygium aromaticum L.) polyphenol helps to mitigate metabolic syndrome by establishing intracellular redox homeostasis and glucose metabolism: A randomized, double-blinded, active-controlled comparative study. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Chakraborty S, Mallick D, Goswami M, Guengerich FP, Chakrabarty A, Chowdhury G. The Natural Products Withaferin A and Withanone from the Medicinal Herb Withania somnifera Are Covalent Inhibitors of the SARS-CoV-2 Main Protease. JOURNAL OF NATURAL PRODUCTS 2022; 85:2340-2350. [PMID: 36098617 PMCID: PMC9491402 DOI: 10.1021/acs.jnatprod.2c00521] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 05/14/2023]
Abstract
The current COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) created a global health crisis. The ability of vaccines to protect immunocompromised individuals and from emerging new strains are major concerns. Hence antiviral drugs against SARS-CoV-2 are essential. The SARS-CoV-2 main protease Mpro is vital for replication and an important target for antivirals. Using CMap analysis and docking studies, withaferin A (wifA) and withanone (win), two natural products from the medicinal herb Withania somnifera (ashwagandha), were identified as promising candidates that can covalently inhibit the viral protease Mpro. Cell culture, enzymatic, LC-MS/MS, computational, and equilibrium dialysis based assays were performed. DFT calculations indicated that wifA and win can form stable adducts with thiols. The cytotoxicity of Mpro was significantly reduced by wifA and win. Both wifA and win were found to irreversibly inhibit 0.5 μM Mpro with IC50 values of 0.54 and 1.8 μM, respectively. LC-MS/MS analysis revealed covalent adduct formation with wifA at cysteines 145 and 300 of Mpro. The natural products wifA and win can irreversibly inhibit the SARS-CoV-2 main protease Mpro. Based on the work presented here we propose that both wifA and win have the potential to be safely used as preventative and therapeutic interventions for COVID-19.
Collapse
Affiliation(s)
| | - Dibyendu Mallick
- Department of Chemistry, Presidency University, Kolkata 700073, India
| | - Mausumi Goswami
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, TN 632014, India
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37235, United States
| | - Anindita Chakrabarty
- Department of Life Science, Shiv Nadar University, Greater Noida, UP 201314, India
| | | |
Collapse
|
15
|
Labarrere CA, Kassab GS. Glutathione deficiency in the pathogenesis of SARS-CoV-2 infection and its effects upon the host immune response in severe COVID-19 disease. Front Microbiol 2022; 13:979719. [PMID: 36274722 PMCID: PMC9582773 DOI: 10.3389/fmicb.2022.979719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/14/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 19 (COVID-19) has numerous risk factors leading to severe disease with high mortality rate. Oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels seems to be a common pathway associated with the high COVID-19 mortality. GSH is a unique small but powerful molecule paramount for life. It sustains adequate redox cell signaling since a physiologic level of oxidative stress is fundamental for controlling life processes via redox signaling, but excessive oxidation causes cell and tissue damage. The water-soluble GSH tripeptide (γ-L-glutamyl-L-cysteinyl-glycine) is present in the cytoplasm of all cells. GSH is at 1-10 mM concentrations in all mammalian tissues (highest concentration in liver) as the most abundant non-protein thiol that protects against excessive oxidative stress. Oxidative stress also activates the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 to regulate the expression of genes that control antioxidant, inflammatory and immune system responses, facilitating GSH activity. GSH exists in the thiol-reduced and disulfide-oxidized (GSSG) forms. Reduced GSH is the prevailing form accounting for >98% of total GSH. The concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell and its alteration is related to various human pathological processes including COVID-19. Oxidative stress plays a prominent role in SARS-CoV-2 infection following recognition of the viral S-protein by angiotensin converting enzyme-2 receptor and pattern recognition receptors like toll-like receptors 2 and 4, and activation of transcription factors like nuclear factor kappa B, that subsequently activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) expression succeeded by ROS production. GSH depletion may have a fundamental role in COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of COVID-19 disease and increasing GSH levels may prevent and subdue the disease. The life value of GSH makes for a paramount research field in biology and medicine and may be key against SARS-CoV-2 infection and COVID-19 disease.
Collapse
|
16
|
Chang D, Li Y, Chen Y, Wang X, Zang D, Liu T. Polyoxometalate-based nanocomposites for antitumor and antibacterial applications. NANOSCALE ADVANCES 2022; 4:3689-3706. [PMID: 36133327 PMCID: PMC9470027 DOI: 10.1039/d2na00391k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/17/2022] [Indexed: 06/07/2023]
Abstract
Polyoxometalates (POMs), as emerging inorganic metal oxides, have been shown to have significant biological activity and great medicinal value. Nowadays, biologically active POM-based organic-inorganic hybrid materials have become the next generation of antibacterial and anticancer drugs because of their customizable molecular structures related to their highly enhanced antitumor activity and reduced toxicity to healthy cells. In this review, the current developed strategies with POM-based materials for the purpose of antibacterial and anticancer activities from different action principles inducing cell death and hyperpolarization, cell plasma membrane destruction, interference with bacterial respiratory chain and inhibiting bacterial growth are overviewed. Moreover, specific interactions between POM-based materials and biomolecules are highlighted for a better understanding of their antibacterial and anticancer mechanisms. POMs have great promise as next-generation antibacterial and anticancer drugs, and this review will provide a valuable systematic reference for the further development of POM-based nanomaterials.
Collapse
Affiliation(s)
- Dening Chang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Yanda Li
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Yuxuan Chen
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Xiaojing Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Dejin Zang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| | - Teng Liu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 PR China
| |
Collapse
|
17
|
The Role of SLC7A11 in Cancer: Friend or Foe? Cancers (Basel) 2022; 14:cancers14133059. [PMID: 35804831 PMCID: PMC9264807 DOI: 10.3390/cancers14133059] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
SLC7A11 controls the uptake of extracellular cystine in exchange for glutamate at a ratio of 1:1, and it is overexpressed in a variety of tumours. Accumulating evidence has shown that the expression of SLC7A11 is fine-tuned at multiple levels, and plays diverse functional and pharmacological roles in tumours, such as cellular redox homeostasis, cell growth and death, and cell metabolism. Many reports have suggested that the inhibition of SLC7A11 expression and activity is favourable for tumour therapy; thus, SLC7A11 is regarded as a potential therapeutic target. However, emerging evidence also suggests that on some occasions, the inhibition of SLC7A11 is beneficial to the survival of cancer cells, and confers the development of drug resistance. In this review, we first briefly introduce the biological properties of SLC7A11, including its structure and physiological functions, and further summarise its regulatory network and potential regulators. Then, focusing on its role in cancer, we describe the relationships of SLC7A11 with tumourigenesis, survival, proliferation, metastasis, and therapeutic resistance in more detail. Finally, since SLC7A11 has been linked to cancer through multiple approaches, we propose that its contribution and regulatory mechanism require further elucidation. Thus, more personalised therapeutic strategies should be adapted when targeting SLC7A11.
Collapse
|
18
|
Rode J, Edebol Carlman HMT, König J, Repsilber D, Hutchinson AN, Thunberg P, Andersson P, Persson J, Kiselev A, Lathrop Stern L, Salomon B, Mohammed AA, Labus JS, Brummer RJ. Probiotic Mixture Containing Lactobacillus helveticus, Bifidobacterium longum and Lactiplantibacillus plantarum Affects Brain Responses Toward an Emotional Task in Healthy Subjects: A Randomized Clinical Trial. Front Nutr 2022; 9:827182. [PMID: 35571902 PMCID: PMC9104811 DOI: 10.3389/fnut.2022.827182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/05/2022] [Indexed: 01/04/2023] Open
Abstract
Background Evidence from preclinical studies suggests that probiotics affect brain function via the microbiome-gut-brain axis, but evidence in humans remains limited. Objective The present proof-of-concept study investigated if a probiotic product containing a mixture of Bifidobacterium longum R0175, Lactobacillus helveticus R0052 and Lactiplantibacillus plantarum R1012 (in total 3 × 109 CFU/day) affected functional brain responses in healthy subjects during an emotional attention task. Design In this double-blinded, randomized, placebo-controlled crossover study (Clinicaltrials.gov, NCT03615651), 22 healthy subjects (24.2 ± 3.4 years, 6 males/16 females) were exposed to a probiotic intervention and a placebo for 4 weeks each, separated by a 4-week washout period. Subjects underwent functional magnetic resonance imaging while performing an emotional attention task after each intervention period. Differential brain activity and functional connectivity were assessed. Results Altered brain responses were observed in brain regions implicated in emotional, cognitive and face processing. Increased activation in the orbitofrontal cortex, a region that receives extensive sensory input and in turn projects to regions implicated in emotional processing, was found after probiotic intervention compared to placebo using a cluster-based analysis of functionally defined areas. Significantly reduced task-related functional connectivity was observed after the probiotic intervention compared to placebo. Fecal microbiota composition was not majorly affected by probiotic intervention. Conclusion The probiotic intervention resulted in subtly altered brain activity and functional connectivity in healthy subjects performing an emotional task without major effects on the fecal microbiota composition. This indicates that the probiotic effects occurred via microbe-host interactions on other levels. Further analysis of signaling molecules could give possible insights into the modes of action of the probiotic intervention on the gut-brain axis in general and brain function specifically. The presented findings further support the growing consensus that probiotic supplementation influences brain function and emotional regulation, even in healthy subjects. Future studies including patients with altered emotional processing, such as anxiety or depression symptoms are of great interest. Clinical Trial Registration [http://clinicaltrials.gov/], identifier [NCT03615651].
Collapse
Affiliation(s)
- Julia Rode
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
- *Correspondence: Julia Rode,
| | - Hanna M. T. Edebol Carlman
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Julia König
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Dirk Repsilber
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ashley N. Hutchinson
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Per Thunberg
- Department of Radiology and Medical Physics, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Pernilla Andersson
- Center for Lifespan Developmental Research (LEADER), Faculty of Humanities and Social Sciences, School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden
| | - Jonas Persson
- Center for Lifespan Developmental Research (LEADER), Faculty of Humanities and Social Sciences, School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden
| | - Andrey Kiselev
- Center for Applied Autonomous Sensor Systems, Faculty for Business, Science and Engineering, School of Natural Science and Technology, Örebro University, Örebro, Sweden
| | - Lori Lathrop Stern
- Global Medical Innovation, Pfizer Consumer Healthcare, Madison, NJ, United States
| | - Benita Salomon
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ahmed Abdulilah Mohammed
- Department of Radiology and Medical Physics, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Jennifer S. Labus
- Integrative Bioinformatics and Biostatistics Core, Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Robert J. Brummer
- Nutrition-Gut-Brain Interactions Research Center, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
19
|
Zhang T, Tsutsuki H, Li X, Sawa T. New insights into the regulatory roles of glutathione in NLRP3-inflammasome-mediated immune and inflammatory responses. J Biochem 2022; 171:367-377. [PMID: 34981119 DOI: 10.1093/jb/mvab158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Glutathione (GSH) is the most abundant non-protein thiol (-SH) in mammalian cells. Its synthesis and metabolism serve to maintain cellular reduction-oxidation (redox) homeostasis, which is important for multiple cellular processes including proliferation, differentiation, and death. An accumulating body of evidence suggests that the essential roles of GSH extended far beyond its oxidant and electrophile scavenger activities and regulatory role in the lifespan of cells. Recent findings revealed that altered GSH levels are closely associated with a wide range of pathologies including bacterial and viral infections, neurodegenerative diseases, and autoimmune disorders, all of which are also characterized by aberrant activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. As a result of these findings, GSH was assigned a central role in influencing the activation of the NLRP3 inflammasome. To expand on our recent advances in understanding this process, we discuss here the emerging roles of GSH in activation of the NLRP3 inflammasome, and the therapeutic potential of GSH in its associated pathologies.
Collapse
Affiliation(s)
- Tianli Zhang
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto 860-8556, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto 860-8556, Japan
| | - Xiaoyan Li
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto 860-8556, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto 860-8556, Japan
| |
Collapse
|
20
|
Zhang G, Yao C, Li YL, Guan Y, Hu R, Yang Y. Target-induced inner-filter effect-based ratiometric sensing platform by fluorescence modulation of persistent luminescent nanoparticles and 2, 3-diaminophenazine. NEW J CHEM 2022. [DOI: 10.1039/d2nj02056d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ratiometric fluorescence sensing platform with smartphone was designed for highly sensitive detection of glutathione (GSH), ascorbic acid (AA), and alkaline phosphatase (ALP) activity by modulation the inner filter effect...
Collapse
|
21
|
Li S, Lu Z, Jiao L, Zhang R, Hong Y, Aa J, Wang G. Quantitative determination of D 4-cystine in mice using LC-MS/MS and its application to the assessment of pharmacokinetics and bioavailability. J Pharm Anal 2021; 11:580-587. [PMID: 34765270 PMCID: PMC8572678 DOI: 10.1016/j.jpha.2020.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 12/01/2022] Open
Abstract
Cystine is the primary source material for the synthesis of glutathione. However, the pharmacokinetics and tissue distribution of cystine are largely unknown. A surrogate analyte D4-cystine was employed to generate calibration curves for the determination of levels of D4-cystine and endogenous cystine in mice by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Validation assessments proved the sensitivity, specificity and reproducibility of the method with a lower limit of quantification (LLOQ) of 5 ng/mL over 5–5000 ng/mL in plasma. The pharmacokinetics of D4-cystine were evaluated after administering injections and oral solutions, both of which minimally impacted endogenous cystine levels. The absolute bioavailability of cystine was 18.6%, 15.1% and 25.6% at doses of 25, 50 and 100 mg/kg, respectively. Intravenously injected D4-cystine resulted in dramatically high plasma levels with reduced levels in the brain and liver. Intragastrically administered D4-cystine resulted in high levels in the plasma and stomach with relatively low levels in the lung, kidney, heart and brain. An LC-MS/MS method was developed to determine exogenous and endogenous cystine with an isotope-labelled surrogate analyte. The pharmacokinetics of D4-cystine were assessed after i.v./i.g. administration and the absolute bioavailability was evaluated. For the first time, the distribution of D4-cystine was profiled in diverse tissues/organs after i.v./i.g. administration.
Collapse
Affiliation(s)
- Shuning Li
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Zhenyao Lu
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Li Jiao
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Ran Zhang
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Yu Hong
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Jiye Aa
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Guangji Wang
- Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
22
|
Bichiou H, Rabhi S, Ben Hamda C, Bouabid C, Belghith M, Piquemal D, Trentin B, Rabhi I, Guizani-Tabbane L. Leishmania Parasites Differently Regulate Antioxidant Genes in Macrophages Derived From Resistant and Susceptible Mice. Front Cell Infect Microbiol 2021; 11:748738. [PMID: 34722338 PMCID: PMC8554229 DOI: 10.3389/fcimb.2021.748738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Abstract
Macrophage-Leishmania interactions are central to parasite growth and disease outcome. Macrophages have developed various strategies to fight invaders, including oxidative burst. While some microorganisms seem to survive and even thrive in an oxidative environment, others are susceptible and get killed. To counter oxidative stress, macrophages switch the expressions of cytoprotective and detoxifying enzymes, which are downstream targets of the nuclear factor erythroid 2-related factor 2 (Nrf2), to enhance cell survival. We have explored the transcription of NRF2 and of its target genes and compared the effect of the parasite on their transcription in bone marrow-derived macrophages (BMdMs) from Leishmania-resistant and Leishmania-susceptible mice. While heme oxygenase 1 (HO-1) transcription is independent of the genetic background, the transcription of glutathione reductase (Gsr) and of cysteine/glutamate exchange transporter (Slc7a11), involved in glutathione accumulation, was differentially regulated in BMdMs from both mouse strains. We also show that, except for HO-1, known to favor the survival of the parasite, the transcription of the selected genes, including Gsr, CD36, and catalase (CAT), was actively repressed, if not at all time points at least at the later ones, by the parasite, especially in Balb/c BMdMs. Consistent with these results, we found that the silencing of NRF2 in this study increases the survival and multiplication of the parasite.
Collapse
Affiliation(s)
- Haifa Bichiou
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia.,Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Sameh Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia
| | - Cherif Ben Hamda
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia
| | - Cyrine Bouabid
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia.,Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Meriam Belghith
- Department of Immunology, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia
| | | | | | - Imen Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia.,Higher Institute of Biotechnology at Sidi-Thabet, Biotechpole Sidi-Thabet, University of Manouba, Sidi-Thabet, Tunisia
| | - Lamia Guizani-Tabbane
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia
| |
Collapse
|
23
|
Saeed H, Osama H, Abdelrahman MA, Madney YM, Harb HS, Abdelrahim MEA, Ali F. Vitamins and other immune-supportive elements as cofactors for passing the COVID-19 pandemic. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021; 10:71. [PMID: 34729372 PMCID: PMC8554510 DOI: 10.1186/s43088-021-00163-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a viral disease that causes a respiratory disorder, started in December of 2019 in China. Several vitamins and trace elements could help in enhancing host immunity producing antioxidant or anti-inflammatory action. This work aimed to identify the role of different nutrition, vitamins, and trace elements on the immunity status of the infected subject and the possibility of the beneficial role of these elements in the management of COVID-19. MAIN BODY After collecting (PubMed, scholar, OVID, Embase, Cochrane Library) and investigating published articles, testing the effect of these elements on viral infection, it was found that most of these elements have a significant role during viral infection through a different mechanism, like antioxidant, anti-inflammatory, and immunomodulation. Nutritional interventions in COVID-19 infections are very important currently, and it was reported that vitamin C and D reduce the risk of acute respiratory infections. In addition, low vitamin A diets compromise the effectiveness of inactivated bovine coronavirus vaccines. Administration of N-acetyl cysteine showed a beneficial inhibitory effect in viral infections and enhanced glutathione production. The deficiency of selenium on COVID-19 subjects has a significant impact on the clinical outcome of the subjects. In addition, supplementation with vitamins proved to enhance immune response during viral infection. Vitamins and trace elements not only showed a beneficial effect but also Omega 3 fatty acids showed an immunomodulating effect during infections. SHORT CONCLUSIONS Assessment of levels for these trace elements at the baseline and providing supplementation containing different vitamins and elements could result in better control and clinical outcomes in the case of COVID-19.
Collapse
Affiliation(s)
- Haitham Saeed
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hasnaa Osama
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mona A. Abdelrahman
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yasmin M. Madney
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hadeer S. Harb
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | | - Fatma Ali
- Food Hygiene, Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
24
|
Ahn E, Lee J, Han J, Lee SM, Kwon KS, Hwang GS. Glutathione is an aging-related metabolic signature in the mouse kidney. Aging (Albany NY) 2021; 13:21009-21028. [PMID: 34492635 PMCID: PMC8457589 DOI: 10.18632/aging.203509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
The ability to maintain systemic metabolic homeostasis through various mechanisms represents a crucial strength of kidneys in the study of metabolic syndrome or aging. Moreover, age-associated kidney failure has been widely accepted. However, efforts to demonstrate aging-dependent renal metabolic rewiring have been limited. In the present study, we investigated aging-related renal metabolic determinants by integrating metabolomic and transcriptomic data sets from kidneys of young (3 months, n = 7 and 3 for respectively) and old (24 months, n = 8 and 3 for respectively) naive C57BL/6 male mice. Metabolite profiling analysis was conducted, followed by data processing via network and pathway analyses, to identify differential metabolites. In the aged group, the levels of glutathione and oxidized glutathione were significantly increased, but the levels of gamma-glutamyl amino acids, amino acids combined with the gamma-glutamyl moiety from glutathione by membrane transpeptidases, and circulating glutathione levels were decreased. In transcriptomic analysis, differential expression of metabolic enzymes is consistent with the hypothesis of aging-dependent rewiring in renal glutathione metabolism; pathway and network analyses further revealed the increased expression of immune-related genes in the aged group. Collectively, our integrative analysis results revealed that defective renal glutathione metabolism is a signature of renal aging. Therefore, we hypothesize that restraining renal glutathione metabolism might alleviate or delay age-associated renal metabolic deterioration, and aberrant activation of the renal immune system.
Collapse
Affiliation(s)
- Eunyong Ahn
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
| | - Jisu Han
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
| | - Seung-Min Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-Gu, Daejeon 34141, Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-Gu, Daejeon 34141, Korea
- Aventi Inc., Yuseong-Gu, Daejeon 34141, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seodaemun-Gu, Seoul 03760, Korea
| |
Collapse
|
25
|
Dolmatova LS, Ulanova OA, Timchenko NF. Effect of a Heat-Stable Toxin of Yersinia pseudotuberculosis on the Functional and Phenotypic Traits of Two Types of Phagocytes in the Holothurian Eupentacta fraudatrix. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021040051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Waili Y, Gahafu Y, Aobulitalifu A, Chang Z, Xie X, Kawuli G. Isolation, purification, and characterization of antioxidant peptides from fresh mare's milk. Food Sci Nutr 2021; 9:4018-4027. [PMID: 34262755 PMCID: PMC8269580 DOI: 10.1002/fsn3.2292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/27/2021] [Accepted: 04/01/2021] [Indexed: 11/26/2022] Open
Abstract
In this study, the whey protein of fresh mare's milk was used as raw material. The antioxidant peptide liquid XMNDT was extracted from fresh mare's milk solution and purified. The peptide had a molecular weight of 1594.89 kDa and was mainly composed of VAPFPQPVVPYPQR. Antioxidant peptide XMNDT could inhibit the proliferation of A549 lung cancer cells in the G1 phase, accelerate cell apoptosis, increase the activity of SOD and the amount of GSH, and reduce the secretion of MDA. It also exhibited certain antioxidant capacity and free radical scavenging. These data can provide a basis for research on new antioxidant properties by reducing the inflammation caused by aging.
Collapse
Affiliation(s)
- Yizaitiguli Waili
- Department of Pharmaceutics and Physical ChemistryCollege of Pharmacy, Xinjiang Medical UniversityUrumqiChina
| | - Yiming Gahafu
- Department of Natural MedicineCollege of Pharmacy, Xinjiang Medical UniversityUrumqiChina
| | - Alimijiang Aobulitalifu
- Department of Pharmaceutics and Physical ChemistryCollege of Pharmacy, Xinjiang Medical UniversityUrumqiChina
| | - Zhanying Chang
- Department of Pharmaceutics and Physical ChemistryCollege of Pharmacy, Xinjiang Medical UniversityUrumqiChina
| | - Xiangyun Xie
- Department of Pharmaceutics and Physical ChemistryCollege of Pharmacy, Xinjiang Medical UniversityUrumqiChina
| | - Gulibahaer Kawuli
- Department of Pharmaceutics and Physical ChemistryCollege of Pharmacy, Xinjiang Medical UniversityUrumqiChina
| |
Collapse
|
27
|
Zhang GL, Gadi MR, Cui X, Liu D, Zhang J, Saikam V, Gibbons C, Wang PG, Li L. Protecting-group-free S-glycosylation towards thioglycosides and thioglycopeptides in water. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:2907-2912. [PMID: 34497476 PMCID: PMC8423405 DOI: 10.1039/d1gc00098e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A facile and green S-glycosylation method has been developed featuring protecting-group-free and proceeding-in-water like enzymatic synthesis. Glycosylation of fluoride donors with thiol sugar acceptors using Ca(OH)2 as a promoter afforded various thioglycosides in good yields with exclusive stereoselectivity. This method also enabled the successful production of S-linked oligosaccharides and S-linked glycopeptides.
Collapse
Affiliation(s)
- Gao-Lan Zhang
- Department of Chemistry, Georgia State University, 50 Decatur ST SE, Atlanta, Georgia, 30303, USA
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Georgia State University, 50 Decatur ST SE, Atlanta, Georgia, 30303, USA
| | - Xikai Cui
- Department of Chemistry, Georgia State University, 50 Decatur ST SE, Atlanta, Georgia, 30303, USA
| | - Ding Liu
- Department of Chemistry, Georgia State University, 50 Decatur ST SE, Atlanta, Georgia, 30303, USA
| | - Jiabin Zhang
- Department of Chemistry, Georgia State University, 50 Decatur ST SE, Atlanta, Georgia, 30303, USA
| | - Varma Saikam
- Department of Chemistry, Georgia State University, 50 Decatur ST SE, Atlanta, Georgia, 30303, USA
| | - Christopher Gibbons
- Department of Chemistry, Georgia State University, 50 Decatur ST SE, Atlanta, Georgia, 30303, USA
| | - Peng G Wang
- Department of Chemistry, Georgia State University, 50 Decatur ST SE, Atlanta, Georgia, 30303, USA
| | - Lei Li
- Department of Chemistry, Georgia State University, 50 Decatur ST SE, Atlanta, Georgia, 30303, USA
| |
Collapse
|
28
|
Intracellular Redox-Modulated Pathways as Targets for Effective Approaches in the Treatment of Viral Infection. Int J Mol Sci 2021; 22:ijms22073603. [PMID: 33808471 PMCID: PMC8036776 DOI: 10.3390/ijms22073603] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Host-directed therapy using drugs that target cellular pathways required for virus lifecycle or its clearance might represent an effective approach for treating infectious diseases. Changes in redox homeostasis, including intracellular glutathione (GSH) depletion, are one of the key events that favor virus replication and contribute to the pathogenesis of virus-induced disease. Redox homeostasis has an important role in maintaining an appropriate Th1/Th2 balance, which is necessary to mount an effective immune response against viral infection and to avoid excessive inflammatory responses. It is known that excessive production of reactive oxygen species (ROS) induced by viral infection activates nuclear factor (NF)-kB, which orchestrates the expression of viral and host genes involved in the viral replication and inflammatory response. Moreover, redox-regulated protein disulfide isomerase (PDI) chaperones have an essential role in catalyzing formation of disulfide bonds in viral proteins. This review aims at describing the role of GSH in modulating redox sensitive pathways, in particular that mediated by NF-kB, and PDI activity. The second part of the review discusses the effectiveness of GSH-boosting molecules as broad-spectrum antivirals acting in a multifaceted way that includes the modulation of immune and inflammatory responses.
Collapse
|
29
|
Zhang S, Wang C, Zhong W, Kemp AH, Guo M, Killpartrick A. Polymerized Whey Protein Concentrate-Based Glutathione Delivery System: Physicochemical Characterization, Bioavailability and Sub-Chronic Toxicity Evaluation. Molecules 2021; 26:1824. [PMID: 33805036 PMCID: PMC8037743 DOI: 10.3390/molecules26071824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022] Open
Abstract
Glutathione (GSH) is a powerful antioxidant, but its application is limited due to poor storage stability and low bioavailability. A novel nutrient encapsulation and delivery system, consisting of polymerized whey protein concentrate and GSH, was prepared and in vivo bioavailability, antioxidant capacity and toxicity were evaluated. Polymerized whey protein concentrate encapsulated GSH (PWPC-GSH) showed a diameter of roughly 1115 ± 7.07 nm (D50) and zeta potential of 30.37 ± 0.75 mV. Differential scanning calorimetry (DSC) confirmed that GSH was successfully dispersed in PWPC particles. In vivo pharmacokinetics study suggested that PWPC-GSH displayed 2.5-times and 2.6-fold enhancement in maximum concentration (Cmax) and area under the concentration-time curve (AUC) as compared to free GSH. Additionally, compared with plasma of mice gavage with free GSH, significantly increased antioxidant capacity of plasma in mice with PWPC-GSH was observed (p < 0.05). Sub-chronic toxicity evaluation indicated that no adverse toxicological reactions related to oral administration of PWPC-GSH were observed on male and female rats with a diet containing PWPC-GSH up to 4% (w/w). Data indicated that PWPC may be an effective carrier for GSH to improve bioavailability and antioxidant capacity.
Collapse
Affiliation(s)
- Siyu Zhang
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (S.Z.); (M.G.)
| | - Cuina Wang
- Department of Food Science, Jilin University, Changchun 130000, China; (C.W.); (W.Z.)
| | - Weigang Zhong
- Department of Food Science, Jilin University, Changchun 130000, China; (C.W.); (W.Z.)
| | - Alyssa H. Kemp
- Department of Nutrition and Food Sciences, University of Vermont, Burlington, VT 05403, USA;
| | - Mingruo Guo
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (S.Z.); (M.G.)
- Department of Nutrition and Food Sciences, University of Vermont, Burlington, VT 05403, USA;
| | - Adam Killpartrick
- Department of Nutrition and Food Sciences, University of Vermont, Burlington, VT 05403, USA;
| |
Collapse
|
30
|
Ana Y, Rojas Marquez JD, Fozzatti L, Baigorrí RE, Marin C, Maletto BA, Cerbán FM, Radi R, Piacenza L, Stempin CC. An exacerbated metabolism and mitochondrial reactive oxygen species contribute to mitochondrial alterations and apoptosis in CD4 T cells during the acute phase of Trypanosoma cruzi infection. Free Radic Biol Med 2021; 163:268-280. [PMID: 33359261 DOI: 10.1016/j.freeradbiomed.2020.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
Chagas disease caused by Trypanosoma cruzi parasite is an endemic infection in America. It is well known that T. cruzi causes a strong immunosuppression during the acute phase of infection. However, it is not clear whether T. cruzi infection is related to metabolic alterations in CD4 T cells that prevent downstream effector function. Here, we evaluated the CD4 T cell metabolic and mitochondrial profiles from non-infected (NI), acute phase (AP) and chronic phase (CP) T. cruzi infected mice. CD4 T cells from all groups showed increased glucose uptake after stimulation. Moreover, the bioenergetic analysis revealed a rise in glycolysis and a higher oxidative metabolism in CD4 T cells from the AP. These cells showed increased proton leak and uncoupling protein 3 (UCP3) expression that correlated with mitochondrial ROS (mROS) accumulation, mitochondrial membrane potential (MMP) depolarization and expression of PD-1. In addition, CD4 T cells with mitochondrial alteration displayed an activated phenotype, and were less functional and more prone to apoptosis. In contrast, mitochondrial alterations were not observed during in vivo activation of CD4 T cells in a model of OVA-immunization. The Mn-superoxide dismutase (SOD2) expression, which is involved in mROS detoxification, was increased during the AP and CP of infection. Remarkably, the apoptosis observed in CD4 T cells with MMP depolarization was prevented by incubation with N-acetyl cysteine (NAC). Thus, our results showed that infection triggered an exacerbated metabolism together with mROS production in CD4 T cells from the AP of infection. However, antioxidant availability may not be sufficient to avoid mitochondrial alterations rendering these cells more susceptible to apoptosis. Our investigation is the first to demonstrate an association between a disturbed metabolism and an impaired CD4 T cell response during T. cruzi infection.
Collapse
Affiliation(s)
- Y Ana
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - J D Rojas Marquez
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - L Fozzatti
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - R E Baigorrí
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - C Marin
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - B A Maletto
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - F M Cerbán
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - R Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay
| | - L Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay
| | - C C Stempin
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina.
| |
Collapse
|
31
|
Dall'Oglio F, Puviani M, Milani M, Micali G. Efficacy and tolerability of a cream containing modified glutathione (GSH-C4), beta-Glycyrrhetic, and azelaic acids in mild-to-moderate rosacea: A pilot, assessor-blinded, VISIA and ANTERA 3-D analysis, two-center study (The "Rosazel" Trial). J Cosmet Dermatol 2020; 20:1197-1203. [PMID: 32885541 DOI: 10.1111/jocd.13707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Rosacea is a very common, chronic inflammatory disease characterized by flushing, erythema and inflammatory lesions. Increased oxidative stress plays a relevant pathogenetic role in Rosacea. Intracellular Glutathione (GSH) is the main scavenger protective mechanism against increased oxidative stress. An altered GSH metabolism in Rosacea has been described. GSH-C4 is a modified GSH molecule characterized by a better intracellular bioavailability and longer half-life. A daily cream (E-AR) containing GSH-C4 (0.1%) with beta-Glycyrrhetic (0.5%) and azelaic acids (10%), with an SPF of 30, is available. AIM In a pilot, prospective, two-center, assessor-blinded study we evaluate the efficacy and the tolerability of E-AR cream in subjects with mild to moderate Rosacea treated for 8 weeks. PATIENTS AND METHODS The main outcomes were the Investigator Global Assessment (IGA) 7-point score (from 0, completely clear; to 6, severe) and the clinical and instrumental erythema severity score (ESS) (from 0 to 4) evaluated in a blinded fashion (randomly coded photographs) at baseline, after 4 (only clinical) and 8 weeks (clinical and instrumental). VISIA evaluation for erythema and lesion counts and ANTERA 3D analysis for skin haemoglobin concentration (a parameter associated with inflammation) were also performed at the same time points. Analysis of primary outcomes was performed on an intention-to-treat basis. Tolerability was evaluated at week 4 and 8 recording spontaneously reported side effects. RESULTS Thirty subjects (22 women and 8 men; mean age 38 years) were enrolled after their written informed consent. Twenty-six (87%) subjects completed the study phases. Four subjects stopped prematurely the trial due to low skin tolerability (n=3) or lost to follow-up (n=1). At baseline, mean (SD) IGA score was 2.6 (0.9). At week 4, IGA score decreased (NS) to 2.3 (1.2). IGA score decreased significantly (p=0.0001) at week 8 to 1.2 (1) (mean difference 1.3; 95% CI of the difference from 0.9 to 1.7) in comparison with the baseline. The inflammatory mean (SD) lesion count, evaluated clinically, were 5.1(2.5) at baseline, 2.8 (1.9) at week 4, and 1.9 (1.7) at week 8 (P=0.0001; ANOVA Test), representing a 63% reduction. This reduction was confirmed by inflammatory lesions count performed on VISIA pictures (from 4.5 at baseline to 1.7 lesions at week 8). Similar evolution was observed for the clinical and instrumental ESS with a reduction of 56% (clinical) and 48% (VISIA), respectively, at week 8 in comparison with the baseline. ANTERA 3D photographs confirmed the positive evolution observed clinically with a significant reduction (-24%) in hemoglobin content: from 1.88 at baseline to 1.44 at week 8. CONCLUSION This new GSH-C4, beta-glycyrrethic and azelaic acids cream has shown to be efficacious in mild to moderate rosacea subjects. Local tolerability is in line with other anti-rosacea treatments.
Collapse
Affiliation(s)
| | - Mario Puviani
- Dermatology Service Medica Plus Modena, Modena, Italy
| | - Massimo Milani
- Cantabria Labs Difa Cooper Medical Department, Catania, Italy
| | | |
Collapse
|
32
|
Singh M, Vaughn C, Sasaninia K, Yeh C, Mehta D, Khieran I, Venketaraman V. Understanding the Relationship between Glutathione, TGF-β, and Vitamin D in Combating Mycobacterium tuberculosis Infections. J Clin Med 2020; 9:jcm9092757. [PMID: 32858837 PMCID: PMC7563738 DOI: 10.3390/jcm9092757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) remains a pervasive global health threat. A significant proportion of the world's population that is affected by latent tuberculosis infection (LTBI) is at risk for reactivation and subsequent transmission to close contacts. Despite sustained efforts in eradication, the rise of multidrug-resistant strains of Mycobacteriumtuberculosis (M. tb) has rendered traditional antibiotic therapy less effective at mitigating the morbidity and mortality of the disease. Management of TB is further complicated by medications with various off-target effects and poor compliance. Immunocompromised patients are the most at-risk in reactivation of a LTBI, due to impairment in effector immune responses. Our laboratory has previously reported that individuals suffering from Type 2 Diabetes Mellitus (T2DM) and HIV exhibited compromised levels of the antioxidant glutathione (GSH). Restoring the levels of GSH resulted in improved control of M. tb infection. The goal of this review is to provide insights on the diverse roles of TGF- β and vitamin D in altering the levels of GSH, granuloma formation, and clearance of M. tb infection. We propose that these pathways represent a potential avenue for future investigation and development of new TB treatment modalities.
Collapse
Affiliation(s)
- Mohkam Singh
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
| | - Charles Vaughn
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
| | - Kayvan Sasaninia
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
| | - Christopher Yeh
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
| | - Devanshi Mehta
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
| | - Ibrahim Khieran
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
| | - Vishwanath Venketaraman
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (M.S.); (C.V.); (K.S.)
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (C.Y.); (D.M.); (I.K.)
- Correspondence: ; Tel.: +1-909-706-3736
| |
Collapse
|
33
|
Checconi P, De Angelis M, Marcocci ME, Fraternale A, Magnani M, Palamara AT, Nencioni L. Redox-Modulating Agents in the Treatment of Viral Infections. Int J Mol Sci 2020; 21:E4084. [PMID: 32521619 PMCID: PMC7312898 DOI: 10.3390/ijms21114084] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022] Open
Abstract
Viruses use cell machinery to replicate their genome and produce viral proteins. For this reason, several intracellular factors, including the redox state, might directly or indirectly affect the progression and outcome of viral infection. In physiological conditions, the redox balance between oxidant and antioxidant species is maintained by enzymatic and non-enzymatic systems, and it finely regulates several cell functions. Different viruses break this equilibrium and induce an oxidative stress that in turn facilitates specific steps of the virus lifecycle and activates an inflammatory response. In this context, many studies highlighted the importance of redox-sensitive pathways as novel cell-based targets for therapies aimed at blocking both viral replication and virus-induced inflammation. In the review, we discuss the most recent findings in this field. In particular, we describe the effects of natural or synthetic redox-modulating molecules in inhibiting DNA or RNA virus replication as well as inflammatory pathways. The importance of the antioxidant transcription factor Nrf2 is also discussed. Most of the data reported here are on influenza virus infection. We believe that this approach could be usefully applied to fight other acute respiratory viral infections characterized by a strong inflammatory response, like COVID-19.
Collapse
Affiliation(s)
- Paola Checconi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (P.C.); (A.T.P.)
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy; (A.F.); (M.M.)
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy; (A.F.); (M.M.)
| | - Anna Teresa Palamara
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (P.C.); (A.T.P.)
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| |
Collapse
|
34
|
Griffiths HR, Rooney MCO, Perrie Y. Does Dysregulation of Redox State Underpin the Decline of Innate Immunity with Aging? Antioxid Redox Signal 2020; 32:1014-1030. [PMID: 31989832 DOI: 10.1089/ars.2020.8021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Antibacterial defense invokes the innate immune system as a first responder, with neutrophils phagocytozing and forming neutrophil extracellular traps around pathogens in a reactive oxygen species (ROS)-dependent manner. Increased NOX2 activity and mitochondrial ROS production in phagocytic, antigen-presenting cells (APCs) affect local cytokine secretion and proteolysis of antigens for presentation to T cells at the immune synapse. Uncontrolled oxidative post-translational modifications to surface and cytoplasmic proteins in APCs during aging can impair innate immunity. Recent Advances: NOX2 plays a role in the maturation of dendritic cells, but paradoxically NOX2 activity has also been shown to promote viral pathogenicity. Accumulating evidence suggests that a reducing environment is essential to inhibit pathogen proliferation, facilitate antigenic processing in the endosomal lumen, and enable an effective immune synapse between APCs and T cells. This suggests that the kinetics and location of ROS production and reducing potential are important for effective innate immunity. Critical Issues: During aging, innate immune cells are less well able to phagocytoze, kill bacteria/viruses, and process proteins into antigenic peptides-three key steps that are necessary for developing a specific targeted response to protect against future exposure. Aberrant control of ROS production and impaired Nrf2-dependent reducing potential may contribute to age-associated immune decline. Future Directions: Local changes in redox potential may be achieved through adjuvant formulations to improve innate immunity. Further work is needed to understand the timing of delivery for redox modulators to facilitate innate immune cell recruitment, survival, antigen processing and presentation activity without disrupting essential ROS-dependent bacterial killing.
Collapse
Affiliation(s)
- Helen R Griffiths
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Matthew C O Rooney
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Yvonne Perrie
- Department of Pharmacy, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
35
|
Wrotek S, Sobocińska J, Kozłowski HM, Pawlikowska M, Jędrzejewski T, Dzialuk A. New Insights into the Role of Glutathione in the Mechanism of Fever. Int J Mol Sci 2020; 21:ijms21041393. [PMID: 32092904 PMCID: PMC7073131 DOI: 10.3390/ijms21041393] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Glutathione is one of the most important and potent antioxidants. The development of pharmacological compounds that can either increase or decrease glutathione concentrations has allowed investigation into the role of glutathione in various biological processes, including immune responses. Recent findings have shown that glutathione not only affects certain factors involved in immunological processes but also modifies complex immune reactions such as fever. Until recently, it was not known why some patients do not develop fever during infection. Data suggest that fever induction is associated with oxidative stress; therefore, antioxidants such as glutathione can reduce pyrexia. Surprisingly, new studies have shown that low glutathione levels can also inhibit fever. In this review, we focus on recent advances in this area, with an emphasis on the role of glutathione in immune responses accompanied by fever. We describe evidence showing that disturbed glutathione homeostasis may be responsible for the lack of fever during infections. We also discuss the biological significance of the antipyretic effects produced by pharmacological glutathione modulators.
Collapse
Affiliation(s)
- Sylwia Wrotek
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Str., 87-100 Torun, Poland; (J.S.); (H.M.K.); (M.P.); (T.J.)
- Correspondence: (S.W.); (A.D.)
| | - Justyna Sobocińska
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Str., 87-100 Torun, Poland; (J.S.); (H.M.K.); (M.P.); (T.J.)
| | - Henryk M. Kozłowski
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Str., 87-100 Torun, Poland; (J.S.); (H.M.K.); (M.P.); (T.J.)
| | - Małgorzata Pawlikowska
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Str., 87-100 Torun, Poland; (J.S.); (H.M.K.); (M.P.); (T.J.)
| | - Tomasz Jędrzejewski
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Str., 87-100 Torun, Poland; (J.S.); (H.M.K.); (M.P.); (T.J.)
| | - Artur Dzialuk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, 10 Powstańców Wielkopolskich Ave., 85-090 Bydgoszcz, Poland
- Correspondence: (S.W.); (A.D.)
| |
Collapse
|
36
|
Huang G, Lin Y, Zhang L, Yan Z, Wang Y, Liu Y. Synthesis of Sulfur-Selenium Doped Carbon Quantum Dots for Biological Imaging and Scavenging Reactive Oxygen Species. Sci Rep 2019; 9:19651. [PMID: 31873130 PMCID: PMC6928214 DOI: 10.1038/s41598-019-55996-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
The sulfur-selenium doped carbon quantum dots (S,Se-CQDs) were synthesized by one-step through hydrothermal method in this study, which have high fluorescence quantum yield (43%) and advanced ability to scavenge reactive oxygen species (ROS). They were characterized by transmission electron microscope (TEM), nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), fourier transform infrared spectroscopy (FTIR). The results showed that the clearance rate of free radical reached to 40% with 200 μg/mL of S,Se-CQDs. The antioxidant activity of S,Se-CQDs is related to -SH and Se-SH on carbon quantum dots. S,Se-CQDs were able to access to cells which is beneficial to enhance the removal efficiency to ROS. In the biocompatibility experiment, the cell survival rate exceeded 95%, there was little effect on hatching rate, survival rate and heart rate of zebrafish which demonstrated that S,Se-CQDs have an excellent biocompatibility. It prompts that S,Se-CQDs will has proud application prospects in the field of biomedicine.
Collapse
Affiliation(s)
- Guojie Huang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangdong, China
| | - Yaqi Lin
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong, China
| | - Linxiu Zhang
- School of Chemistry and Chemical Engineering,Guangdong Pharmaceutical University, Guangdong, China
| | - Zhihong Yan
- College of Pharmacy, Guangdong Pharmaceutical University, Guangdong, China.
| | - Yudong Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong, China.
| | - Yi Liu
- School of Chemistry and Chemical Engineering,Guangdong Pharmaceutical University, Guangdong, China
| |
Collapse
|
37
|
Corrêa da Silva F, Aguiar C, Pereira JAS, de Brito Monteiro L, Davanzo GG, Codo AC, Pimentel de Freitas L, Berti AS, Lopes Ferrucci D, Castelucci BG, Consonni SR, Carvalho HF, Moraes-Vieira PMM. Ghrelin effects on mitochondrial fitness modulates macrophage function. Free Radic Biol Med 2019; 145:61-66. [PMID: 31525456 DOI: 10.1016/j.freeradbiomed.2019.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
Abstract
Over the past years, systemic derived cues that regulate cellular metabolism have been implicated in the regulation of immune responses. Ghrelin is an orexigenic hormone produced by enteroendocrine cells in the gastric mucosa with known immunoregulatory roles. The mechanism behind the function of ghrelin in immune cells, such as macrophages, is still poorly understood. Here, we explored the hypothesis that ghrelin leads to alterations in macrophage metabolism thus modulating macrophage function. We demonstrated that ghrelin exerts an immunomodulatory effect over LPS-activated peritoneal macrophages, as evidenced by inhibition of TNF-α and IL-1β secretion and increased IL-12 production. Concomitantly, ghrelin increased mitochondrial membrane potential and increased respiratory rate. In agreement, ghrelin prevented LPS-induced ultrastructural damage in the mitochondria. Ghrelin also blunted LPS-induced glycolysis. In LPS-activated macrophages, glucose deprivation did not affect ghrelin-induced IL-12 secretion, whereas the inhibition of pyruvate transport and mitochondria-derived ATP abolished ghrelin-induced IL-12 secretion, indicating a dependence on mitochondrial function. Ghrelin pre-treatment of metabolic activated macrophages inhibited the secretion of TNF-α and enhanced IL-12 levels. Moreover, ghrelin effects on IL-12, and not on TNF-α, are dependent on mitochondria elongation, since ghrelin did not enhance IL-12 secretion in metabolic activated mitofusin-2 deficient macrophages. Thus, ghrelin affects macrophage mitochondrial metabolism and the subsequent macrophage function.
Collapse
Affiliation(s)
- Felipe Corrêa da Silva
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Brazil
| | - Cristhiane Aguiar
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Brazil
| | - Jéssica A S Pereira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Lauar de Brito Monteiro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Brazil
| | - Gustavo Gastão Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Brazil
| | - Ana Campos Codo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Brazil
| | - Leonardo Pimentel de Freitas
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Brazil
| | - Aline Siqueira Berti
- Laboratory of Extracellular Matrix, Department of Structural and Functional Biology, University of Campinas, Brazil
| | - Danilo Lopes Ferrucci
- Laboratory of Extracellular Matrix, Department of Structural and Functional Biology, University of Campinas, Brazil
| | - Bianca Gazieri Castelucci
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, University of Campinas, Brazil
| | - Sílvio Roberto Consonni
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, University of Campinas, Brazil
| | - Hernandes F Carvalho
- Laboratory of Extracellular Matrix, Department of Structural and Functional Biology, University of Campinas, Brazil
| | - Pedro M M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
38
|
Bartoccini F, Mari M, Retini M, Fraternale A, Piersanti G. Large-Scale Preparation of N-Butanoyl- l-glutathione (C4-GSH). Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
- Gluos s.r.l., Piazza Brancaleoni, 1, 61049 Urbania, Italy
| | - Michele Mari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
- Gluos s.r.l., Piazza Brancaleoni, 1, 61049 Urbania, Italy
| | - Michele Retini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
- Gluos s.r.l., Piazza Brancaleoni, 1, 61049 Urbania, Italy
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
- Gluos s.r.l., Piazza Brancaleoni, 1, 61049 Urbania, Italy
| |
Collapse
|
39
|
Xiao Y, Meierhofer D. Glutathione Metabolism in Renal Cell Carcinoma Progression and Implications for Therapies. Int J Mol Sci 2019; 20:E3672. [PMID: 31357507 PMCID: PMC6696504 DOI: 10.3390/ijms20153672] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
A significantly increased level of the reactive oxygen species (ROS) scavenger glutathione (GSH) has been identified as a hallmark of renal cell carcinoma (RCC). The proposed mechanism for increased GSH levels is to counteract damaging ROS to sustain the viability and growth of the malignancy. Here, we review the current knowledge about the three main RCC subtypes, namely clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe RCC (chRCC), at the genetic, transcript, protein, and metabolite level and highlight their mutual influence on GSH metabolism. A further discussion addresses the question of how the manipulation of GSH levels can be exploited as a potential treatment strategy for RCC.
Collapse
Affiliation(s)
- Yi Xiao
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Takustraße 3, 14195 Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany.
| |
Collapse
|
40
|
Boosting GSH Using the Co-Drug Approach: I-152, a Conjugate of N-acetyl-cysteine and β-mercaptoethylamine. Nutrients 2019; 11:nu11061291. [PMID: 31181621 PMCID: PMC6627109 DOI: 10.3390/nu11061291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
Glutathione (GSH) has poor pharmacokinetic properties; thus, several derivatives and biosynthetic precursors have been proposed as GSH-boosting drugs. I-152 is a conjugate of N-acetyl-cysteine (NAC) and S-acetyl-β-mercaptoethylamine (SMEA) designed to release the parent drugs (i.e., NAC and β-mercaptoethylamine or cysteamine, MEA). NAC is a precursor of L-cysteine, while MEA is an aminothiol able to increase GSH content; thus, I-152 represents the very first attempt to combine two pro-GSH molecules. In this review, the in-vitro and in-vivo metabolism, pro-GSH activity and antiviral and immunomodulatory properties of I-152 are discussed. Under physiological GSH conditions, low I-152 doses increase cellular GSH content; by contrast, high doses cause GSH depletion but yield a high content of NAC, MEA and I-152, which can be used to resynthesize GSH. Preliminary in-vivo studies suggest that the molecule reaches mouse organs, including the brain, where its metabolites, NAC and MEA, are detected. In cell cultures, I-152 replenishes experimentally depleted GSH levels. Moreover, administration of I-152 to C57BL/6 mice infected with the retroviral complex LP-BM5 is effective in contrasting virus-induced GSH depletion, exerting at the same time antiviral and immunomodulatory functions. I-152 acts as a pro-GSH agent; however, GSH derivatives and NAC cannot completely replicate its effects. The co-delivery of different thiol species may lead to unpredictable outcomes, which warrant further investigation.
Collapse
|
41
|
Amatore D, Celestino I, Brundu S, Galluzzi L, Coluccio P, Checconi P, Magnani M, Palamara AT, Fraternale A, Nencioni L. Glutathione increase by the n-butanoyl glutathione derivative (GSH-C4) inhibits viral replication and induces a predominant Th1 immune profile in old mice infected with influenza virus. FASEB Bioadv 2019; 1:296-305. [PMID: 32123833 PMCID: PMC6996388 DOI: 10.1096/fba.2018-00066] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
During aging, glutathione (GSH) content declines and the immune system undergoes a deficiency in the induction of Th1 response. Reduced secretion of Th1 cytokines, which is associated with GSH depletion, could weaken the host defenses against viral infections. We first evaluated the concentration of GSH and cysteine in organs of old mice; then, the effect of the administration of the N-butanoyl GSH derivative (GSH-C4) on the response of aged mice infected with influenza A PR8/H1N1 virus was studied through the determination of GSH concentration in organs, lung viral titer, IgA and IgG1/IgG2a production, and Th1/Th2 cytokine profile. Old mice had lower GSH than young mice in organs. Also the gene expression of endoplasmic reticulum (ER) stress markers involved in GSH metabolism and folding of proteins, that is, Nrf2 and PDI, was reduced. Following infection, GSH content remained low and neither infection nor GSH-C4 treatment affected Nrf2 expression. In contrast, PDI expression was upregulated during infection and appeared counterbalanced by GSH-C4. Moreover, the treatment with GSH-C4 increased GSH content in organs, reduced viral replication and induced a predominant Th1 response. In conclusion, GSH-C4 treatment could be used in the elderly to contrast influenza virus infection by inducing immune response, in particular the Th1 profile.
Collapse
Affiliation(s)
- Donatella Amatore
- Deparment of Public Health and Infectious DiseasesIstituto Pasteur Italia‐Fondazione Cenci‐Bolognetti, Sapienza University of RomeRomeItaly
| | - Ignacio Celestino
- Deparment of Public Health and Infectious DiseasesIstituto Pasteur Italia‐Fondazione Cenci‐Bolognetti, Sapienza University of RomeRomeItaly
| | - Serena Brundu
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbino (PU)Italy
| | - Luca Galluzzi
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbino (PU)Italy
| | - Paolo Coluccio
- Deparment of Public Health and Infectious DiseasesIstituto Pasteur Italia‐Fondazione Cenci‐Bolognetti, Sapienza University of RomeRomeItaly
| | - Paola Checconi
- Department of Human Sciences and Promotion of the Quality of LifeIRCCS San Raffaele Pisana, San Raffaele Roma Open UniversityRomeItaly
| | - Mauro Magnani
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbino (PU)Italy
| | - Anna Teresa Palamara
- Deparment of Public Health and Infectious DiseasesIstituto Pasteur Italia‐Fondazione Cenci‐Bolognetti, Sapienza University of RomeRomeItaly
- Department of Human Sciences and Promotion of the Quality of LifeIRCCS San Raffaele Pisana, San Raffaele Roma Open UniversityRomeItaly
| | | | - Lucia Nencioni
- Deparment of Public Health and Infectious DiseasesIstituto Pasteur Italia‐Fondazione Cenci‐Bolognetti, Sapienza University of RomeRomeItaly
| |
Collapse
|
42
|
Celestino I, Checconi P, Amatore D, De Angelis M, Coluccio P, Dattilo R, Alunni Fegatelli D, Clemente AM, Matarrese P, Torcia MG, Mancinelli R, Mammola CL, Garaci E, Vestri AR, Malorni W, Palamara AT, Nencioni L. Differential Redox State Contributes to Sex Disparities in the Response to Influenza Virus Infection in Male and Female Mice. Front Immunol 2018; 9:1747. [PMID: 30105026 PMCID: PMC6077261 DOI: 10.3389/fimmu.2018.01747] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022] Open
Abstract
Influenza virus replicates intracellularly exploiting several pathways involved in the regulation of host responses. The outcome and the severity of the infection are thus strongly conditioned by multiple host factors, including age, sex, metabolic, and redox conditions of the target cells. Hormones are also important determinants of host immune responses to influenza and are recently proposed in the prophylaxis and treatment. This study shows that female mice are less susceptible than males to mouse-adapted influenza virus (A/PR8/H1N1). Compared with males, PR8-infected females display higher survival rate (+36%), milder clinical disease, and less weight loss. They also have milder histopathological signs, especially free alveolar area is higher than that in males, even if pro-inflammatory cytokine production shows slight differences between sexes; hormone levels, moreover, do not vary significantly with infection in our model. Importantly, viral loads (both in terms of viral M1 RNA copies and tissue culture infectious dose 50%) are lower in PR8-infected females. An analysis of the mechanisms contributing to sex disparities observed during infection reveals that the female animals have higher total antioxidant power in serum and their lungs are characterized by increase in (i) the content and biosynthesis of glutathione, (ii) the expression and activity of antioxidant enzymes (peroxiredoxin 1, catalase, and glutathione peroxidase), and (iii) the expression of the anti-apoptotic protein Bcl-2. By contrast, infected males are characterized by high expression of NADPH oxidase 4 oxidase and phosphorylation of p38 MAPK, both enzymes promoting viral replication. All these factors are critical for cell homeostasis and susceptibility to infection. Reappraisal of the importance of the host cell redox state and sex-related effects may be useful in the attempt to develop more tailored therapeutic interventions in the fight against influenza.
Collapse
Affiliation(s)
- Ignacio Celestino
- Department of Public Health and Infectious Diseases, Pasteur Institute Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Paola Checconi
- San Raffaele Pisana, IRCCS, Telematic University, Rome, Italy
| | - Donatella Amatore
- Department of Public Health and Infectious Diseases, Pasteur Institute Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Pasteur Institute Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Paolo Coluccio
- Department of Public Health and Infectious Diseases, Pasteur Institute Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Rosanna Dattilo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Danilo Alunni Fegatelli
- Department of Public Health and Infectious Diseases, Pasteur Institute Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Ann Maria Clemente
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Gabriella Torcia
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Caterina Loredana Mammola
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Enrico Garaci
- San Raffaele Pisana, IRCCS, Telematic University, Rome, Italy
| | - Anna Rita Vestri
- Department of Public Health and Infectious Diseases, Pasteur Institute Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Walter Malorni
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Pasteur Institute Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
- San Raffaele Pisana, IRCCS, Telematic University, Rome, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Pasteur Institute Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
43
|
Angajala A, Lim S, Phillips JB, Kim JH, Yates C, You Z, Tan M. Diverse Roles of Mitochondria in Immune Responses: Novel Insights Into Immuno-Metabolism. Front Immunol 2018; 9:1605. [PMID: 30050539 PMCID: PMC6052888 DOI: 10.3389/fimmu.2018.01605] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
Lack of immune system cells or impairment in differentiation of immune cells is the basis for many chronic diseases. Metabolic changes could be the root cause for this immune cell impairment. These changes could be a result of altered transcription, cytokine production from surrounding cells, and changes in metabolic pathways. Immunity and mitochondria are interlinked with each other. An important feature of mitochondria is it can regulate activation, differentiation, and survival of immune cells. In addition, it can also release signals such as mitochondrial DNA (mtDNA) and mitochondrial ROS (mtROS) to regulate transcription of immune cells. From current literature, we found that mitochondria can regulate immunity in different ways. First, alterations in metabolic pathways (TCA cycle, oxidative phosphorylation, and FAO) and mitochondria induced transcriptional changes can lead to entirely different outcomes in immune cells. For example, M1 macrophages exhibit a broken TCA cycle and have a pro-inflammatory role. By contrast, M2 macrophages undergo β-oxidation to produce anti-inflammatory responses. In addition, amino acid metabolism, especially arginine, glutamine, serine, glycine, and tryptophan, is critical for T cell differentiation and macrophage polarization. Second, mitochondria can activate the inflammatory response. For instance, mitochondrial antiviral signaling and NLRP3 can be activated by mitochondria. Third, mitochondrial mass and mobility can be influenced by fission and fusion. Fission and fusion can influence immune functions. Finally, mitochondria are placed near the endoplasmic reticulum (ER) in immune cells. Therefore, mitochondria and ER junction signaling can also influence immune cell metabolism. Mitochondrial machinery such as metabolic pathways, amino acid metabolism, antioxidant systems, mitochondrial dynamics, mtDNA, mitophagy, and mtROS are crucial for immune functions. Here, we have demonstrated how mitochondria coordinate to alter immune responses and how changes in mitochondrial machinery contribute to alterations in immune responses. A better understanding of the molecular components of mitochondria is necessary. This can help in the development of safe and effective immune therapy or prevention of chronic diseases. In this review, we have presented an updated prospective of the mitochondrial machinery that drives various immune responses.
Collapse
Affiliation(s)
- Anusha Angajala
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States.,Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Sangbin Lim
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Joshua B Phillips
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Jin-Hwan Kim
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Clayton Yates
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Zongbing You
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Ming Tan
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
44
|
Paschalis V, Theodorou AA, Margaritelis NV, Kyparos A, Nikolaidis MG. N-acetylcysteine supplementation increases exercise performance and reduces oxidative stress only in individuals with low levels of glutathione. Free Radic Biol Med 2018; 115:288-297. [PMID: 29233792 DOI: 10.1016/j.freeradbiomed.2017.12.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023]
Abstract
Most of the evidence indicates that chronic antioxidant supplementation induces negative effects in healthy individuals. However, it is currently unknown whether specific redox deficiencies exist and whether targeted antioxidant interventions in deficient individuals can induce positive effects. We hypothesized that the effectiveness of antioxidant supplements to decrease oxidative stress and promote exercise performance depends on the redox status of the individuals that receive the antioxidant treatment. To this aim, we investigated whether N-acetylcysteine (NAC) supplementation would enhance exercise performance by increasing glutathione concentration and by reducing oxidative stress only in individuals with low resting levels of glutathione. We screened 100 individuals for glutathione levels and formed three groups with low, moderate and high levels (N = 36, 12 per group). After by-passing the regression to the mean artifact, by performing a second glutathione measurement, the individuals were supplemented with NAC (2 × 600mg, twice daily, for 30 days) or placebo using a double-blind cross-over design. We performed three whole-body performance tests (VO2max, time trial and Wingate), measured two systemic oxidative stress biomarkers (F2-isoprostanes and protein carbonyls) and assessed glutathione-dependent redox metabolism in erythrocytes (glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase and NADPH). The low glutathione group improved after NAC supplementation in VO2max, time trial and Wingate by 13.6%, 15.4% and 11.4%, respectively. Thirty days of NAC supplementation were sufficient to restore baseline glutathione concentration, reduce systemic oxidative stress and improve erythrocyte glutathione metabolism in the low glutathione group. On the contrary, the 30-day supplementation period did not affect performance and redox state of the moderate and high glutathione groups, although few both beneficial and detrimental effects in performance were observed. In conclusion, individuals with low glutathione levels were linked with decreased physical performance, increased oxidative stress and impaired redox metabolism of erythrocytes. NAC supplementation restored both performance and redox homeostasis.
Collapse
Affiliation(s)
- Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Greece
| | - Anastasios A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Nikos V Margaritelis
- Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece; Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| |
Collapse
|
45
|
Pohanka M, Martinkova P, Brtnicky M, Kynicky J. Changes in the oxidative stress/anti-oxidant system after exposure to sulfur mustard and antioxidant strategies in the therapy, a review. Toxicol Mech Methods 2017; 27:408-416. [DOI: 10.1080/15376516.2017.1320695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic
- Department of Geology and Pedology, Mendel University in Brno, Brno, Czech Republic
| | - Pavla Martinkova
- Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Martin Brtnicky
- Department of Geology and Pedology, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jindrich Kynicky
- Department of Geology and Pedology, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|