1
|
Lusta KA, Churov AV, Beloyartsev DF, Golovyuk AL, Lee AA, Sukhorukov VN, Orekhov AN. The two coin sides of bacterial extracellular membrane nanovesicles: atherosclerosis trigger or remedy. DISCOVER NANO 2024; 19:179. [PMID: 39532781 PMCID: PMC11557815 DOI: 10.1186/s11671-024-04149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Among the numerous driving forces that cause the atherosclerotic cardiovascular disease (ASCVD), pathogenic bacterial extracellular membrane nanovesicles (BEMNs) containing toxins and virulence factors appear to be the key trigger of inflammation and atherogenesis, the major processes involved in the pathogenesis of ASCVD. Since BEMNs are the carriers of nanosized biomolecules to distant sites, they are now being considered as a novel drug delivery system. Nowadays, many therapeutic strategies are used to treat ASCVD. However, the conventional anti-atherosclerotic therapies are not effective enough. This primarily due to the inefficiency of non-targeted drug delivery systems to tissue affected areas, which, in turn, leads to numerous side effects, as well as faulty pharmacokinetics. In this regard, nanomedicine methods using nanoparticles (NPs) as targeted drug delivery vehicles proved to be extremely useful. Bioengineered BEMNs equipped with disease-specific ligand moieties and loaded with corresponding drugs represent a promising tool in nanomedicine, which can be used as a novel drug delivery system for a successful therapy of ASCVD. In this review, we outline the involvement of pathogenic BEMNs in the triggering of ASCVD, the conventional therapeutic strategies for the treatment of ASCVD, and the recent trends in nanomedicine using BEMNs and NPs as a vehicle for targeted drug delivery.
Collapse
Affiliation(s)
- Konstantin A Lusta
- Institute for Atherosclerosis Research, Ltd, Osennyaya Street 4-1-207, Moscow, Russia, 121609.
| | - Alexey V Churov
- Institute on Aging Research, Russian Gerontology Clinical Research Center, Pirogov Russian National Research Medical University, Moscow, Russia, 129226
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315
| | - Dmitry F Beloyartsev
- Vascular Surgery Department, A.V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, Moscow, Russia, 117997
| | - Alexander L Golovyuk
- Vascular Surgery Department, A.V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, Moscow, Russia, 117997
| | - Arthur A Lee
- Insitute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, Moscow, Russia, 119991
| | - Vasily N Sukhorukov
- Insitute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, Moscow, Russia, 119991
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315
| | - Alexander N Orekhov
- Insitute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, Moscow, Russia, 119991
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315
| |
Collapse
|
2
|
Yan X, Liu Y, Zhang X, Zhang Q, Liu Y, Guo Y, Shi Z, Xu L, Xiong Z, Ouyang J, Chen Y, Ostrikov KK. Atmospheric pressure plasma preconditioning reduces oxygen and glucose deprivation induced human neuronal SH-SY5Y cells apoptosis by activating protective autophagy and ROS/AMPK/mTOR pathway. Cell Signal 2024; 123:111350. [PMID: 39168260 DOI: 10.1016/j.cellsig.2024.111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Reactive oxygen species (ROS)/reactive nitrogen species (RNS) exert a "double edged" effect on the occurrence and development of ischemic stroke. We previously indicate that atmospheric pressure plasma (APP) shows a neuroprotective effect in vitro based on the ROS/RNS generations. However, the mechanism is still unknown. In this work, SH-SY5Y cells were treated with oxygen and glucose deprivation (OGD) injuries for stimulating the ischemic stroke pathological injury process. A helium APP was used for SH-SY5Y cell treatment for evaluating the neuroprotective impacts of APP preconditioning against OGD injuries with the optimized parameters. During the preconditioning, APP significantly raised the extracellular and intracellular ROS/RNS production. As a result, APP preconditioning increased SH-SY5Y cell autophagy by elevating LC3-II/LC3-I ratio and autophagosome formation. Meanwhile, APP preconditioning reduced cell apoptosis caused by OGD with the increased APP treatment time, which was abolished by pretreatment with autophagy inhibitor 3-methyladenine (3-MA). The ROS scavenger N-acetyl-L-cysteine (NAC) alone or combined with NO scavenger carboxy-PTIO abolished the APP preconditioning induced SH-SY5Y autophagy and the cytoprotection, whereas the NO scavenger alone did not. In addition, we observed the elevated phosphorylation of AMP-activated protein kinase (AMPK) and decreased phosphorylation of mammalian target of rapamycin (mTOR) in APP treated SH-SY5Y cells. This effect was attenuated by AMPK inhibitor Compound C (CC), the ROS scavenger NAC and autophagy inhibitor 3-MA. Furthermore, the cytoprotective effect of APP was preliminarily confirmed in the rats of middle cerebral artery occlusion (MCAO) model. Results showed that APP inhalation by rats during MCAO process could improve neurological functions, reduce cell apoptosis in brain tissues and decrease cerebral infarct volume. Our data suggested that ROS produced by APP preconditioning played a vital role in the neuroprotective effect of SH-SY5Y cells against OGD injuries by activating autophagy and ROS/AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Xu Yan
- Department of Pathophysiology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China.
| | - Yuqing Liu
- School of Physics, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Xi Zhang
- Department of Pathophysiology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Qi Zhang
- Ultrastructural pathology department, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Yixiao Liu
- Department of Pathophysiology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Yuqi Guo
- Department of Pathophysiology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Zhongfang Shi
- Department of Pathophysiology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Lixin Xu
- Department of Pathophysiology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Zilan Xiong
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China.
| | - Jiting Ouyang
- School of Physics, Beijing Institute of Technology, Beijing, People's Republic of China.
| | - Ye Chen
- Department of Pathophysiology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China; Department of Pathology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing 100050, China.
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| |
Collapse
|
3
|
Pandey R, Pinon V, Garren M, Maffe P, Mondal A, Brisbois EJ, Handa H. N-Acetyl Cysteine-Decorated Nitric Oxide-Releasing Interface for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:24248-24260. [PMID: 38693878 PMCID: PMC11103652 DOI: 10.1021/acsami.4c02369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Biomedical devices are vulnerable to infections and biofilm formation, leading to extended hospital stays, high expenditure, and increased mortality. Infections are clinically treated via the administration of systemic antibiotics, leading to the development of antibiotic resistance. A multimechanistic strategy is needed to design an effective biomaterial with broad-spectrum antibacterial potential. Recent approaches have investigated the fabrication of innately antimicrobial biomedical device surfaces in the hope of making the antibiotic treatment obsolete. Herein, we report a novel fabrication strategy combining antibacterial nitric oxide (NO) with an antibiofilm agent N-acetyl cysteine (NAC) on a polyvinyl chloride surface using polycationic polyethylenimine (PEI) as a linker. The designed biomaterial could release NO for at least 7 days with minimal NO donor leaching under physiological conditions. The proposed surface technology significantly reduced the viability of Gram-negative Escherichia coli (>97%) and Gram-positive Staphylococcus aureus (>99%) bacteria in both adhered and planktonic forms in a 24 h antibacterial assay. The composites also exhibited a significant reduction in biomass and extra polymeric substance accumulation in a dynamic environment over 72 h. Overall, these results indicate that the proposed combination of the NO donor with mucolytic NAC on a polymer surface efficiently resists microbial adhesion and can be used to prevent device-associated biofilm formation.
Collapse
Affiliation(s)
- Rashmi Pandey
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Vicente Pinon
- Pharmaceutical
and Biomedical Science Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Mark Garren
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Patrick Maffe
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Arnab Mondal
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
- Pharmaceutical
and Biomedical Science Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
4
|
Yan Y, Kamenshchikov N, Zheng Z, Lei C. Inhaled nitric oxide and postoperative outcomes in cardiac surgery with cardiopulmonary bypass: A systematic review and meta-analysis. Nitric Oxide 2024; 146:64-74. [PMID: 38556145 DOI: 10.1016/j.niox.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Cardiac surgeries under cardiopulmonary bypass (CPB) are complex procedures with high incidence of complications, morbidity and mortality. The inhaled nitric oxide (iNO) has been frequently used as an important composite of perioperative management during cardiac surgery under CPB. We conducted a meta-analysis of published randomized clinical trials (RCTs) to assess the effects of iNO on reducing postoperative complications, including the duration of postoperative mechanical ventilation, length of intensive care unit (ICU) stay, length of hospital stay, mortality, hemodynamic improvement (the composite right ventricular failure, low cardiac output syndrome, pulmonary arterial pressure, and vasoactive inotropic score) and myocardial injury biomarker (postoperative troponin I levels). Subgroup analyses were performed to assess the effect of modification and interaction. These included iNO dosage, the timing and duration of iNO therapy, different populations (children and adults), and comparators (other vasodilators and placebo or standard care). A comprehensive search for iNO and cardiac surgery was performed on online databases. Twenty-seven studies were included after removing the duplicates and irrelevant articles. The results suggested that iNO could reduce the duration of mechanical ventilation, but had no significance in the ICU stay, hospital stay, and mortality. This may be attributed to the small sample size of the most included studies and heterogeneity in timing, dosage and duration of iNO administration. Well-designed, large-scale, multicenter clinical trials are needed to further explore the effect of iNO in improving postoperative prognosis in cardiovascular surgical patients.
Collapse
Affiliation(s)
- Yun Yan
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China; Department of Anesthesiology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
| | - Nikolay Kamenshchikov
- Laboratory of Critical Care Medicine, Department of Anesthesiology and Intensive Care, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk, 634012, Russian Federation
| | - Ziyu Zheng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chong Lei
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Pang B, Zheng H, Ma S, Tian J, Wen Y. Nitric oxide sensor NsrR is the key direct regulator of magnetosome formation and nitrogen metabolism in Magnetospirillum. Nucleic Acids Res 2024; 52:2924-2941. [PMID: 38197240 PMCID: PMC11014258 DOI: 10.1093/nar/gkad1230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Nitric oxide (NO) plays an essential role as signaling molecule in regulation of eukaryotic biomineralization, but its role in prokaryotic biomineralization is unknown. Magnetospirillum gryphiswaldense MSR-1, a model strain for studies of prokaryotic biomineralization, has the unique ability to form magnetosomes (magnetic organelles). We demonstrate here that magnetosome biomineralization in MSR-1 requires the presence of NsrRMg (an NO sensor) and a certain level of NO. MSR-1 synthesizes endogenous NO via nitrification-denitrification pathway to activate magnetosome formation. NsrRMg was identified as a global transcriptional regulator that acts as a direct activator of magnetosome gene cluster (MGC) and nitrification genes but as a repressor of denitrification genes. Specific levels of NO modulate DNA-binding ability of NsrRMg to various target promoters, leading to enhancing expression of MGC genes, derepressing denitrification genes, and repressing nitrification genes. These regulatory functions help maintain appropriate endogenous NO level. This study identifies for the first time the key transcriptional regulator of major MGC genes, clarifies the molecular mechanisms underlying NsrR-mediated NO signal transduction in magnetosome formation, and provides a basis for a proposed model of the role of NO in the evolutionary origin of prokaryotic biomineralization processes.
Collapse
Affiliation(s)
- Bo Pang
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haolan Zheng
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shijia Ma
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiesheng Tian
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wen
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Mirzababaei A, Mahmoodi M, Abaj F, Barkhidarian B, Dehghani A, Khalili P, Roumi Z, Mirzaei K. The association of dietary nitrates/nitrites intake and the gut microbial metabolite trimethylamine N-oxide and kynurenine in adults: a population-based study. Front Nutr 2024; 11:1346074. [PMID: 38450240 PMCID: PMC10915207 DOI: 10.3389/fnut.2024.1346074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Background Dietary nitrate and nitrite may affect the gut microbiota and its metabolites, such as trimethylamine N-oxide (TMAO) and kynurenine (KYN). However, this association and the exact mechanism are still unclear. Therefore, this study aimed to assess the association between dietary consumption of nitrite and nitrate on TMAO and KYN levels in adults. Methods This cross-sectional study was employed on a subsample baseline phase of the Tehran University of Medical Sciences (TUMS) Employee's Cohort Study (TEC). A total of 250 adults aged 18 years or older were included in the current analysis. Data on the dietary intakes were collected using a validated dish-based food frequency questionnaire (FFQ), and dietary intakes of nitrite and nitrate were estimated using the FFQ with 144 items. Serum profiles and TMAO and KYN were measured using a standard protocol. Results The findings of this study demonstrate a significant association between the intake of animal sources of nitrate and nitrite and the likelihood of having elevated levels of TMAO and KYN. Specifically, after adjustment, individuals with the highest intake adherence to nitrates from animal sources exhibited increased odds of having the highest level of TMAO (≥51.02 pg/ml) (OR = 1.51, 95% CI = 0.59-3.88, P = 0.03) and KYN (≥417.41 pg/ml) (OR = 1.75, 95% CI = 0.73-4.17, P = 0.02). Additionally, subjects with the highest animal intake from nitrite sources have 1.73 and 1.45 times higher odds of having the highest levels of TMAO and KYN. These results emphasize the potential implications of animal-derived nitrate and nitrite consumption on the levels of TMAO and KYN. Conclusion The present evidence indicates that a high level of nitrate and nitrite intake from animal sources can increase the odds of high levels of TMAO and KYN. Further studies suggest that we should better evaluate and understand this association.
Collapse
Affiliation(s)
- Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahmoodi
- Department of Cellular and Molecular Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Abaj
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Bahareh Barkhidarian
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Dehghani
- Department of Community Nutrition, Faculty of Nutrition and Food Science, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pardis Khalili
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Roumi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Coavoy-Sanchez SA, da Costa Marques LA, Costa SKP, Muscara MN. Role of Gasotransmitters in Inflammatory Edema. Antioxid Redox Signal 2024; 40:272-291. [PMID: 36974358 DOI: 10.1089/ars.2022.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Significance: Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are, to date, the identified members of the gasotransmitter family, which consists of gaseous signaling molecules that play central roles in the regulation of a wide variety of physiological and pathophysiological processes, including inflammatory edema. Recent Advances: Recent studies show the potential anti-inflammatory and antiedematogenic effects of NO-, CO-, and H2S-donors in vivo. In general, it has been observed that the therapeutical effects of NO-donors are more relevant when administered at low doses at the onset of the inflammatory process. Regarding CO-donors, their antiedematogenic effects are mainly associated with inhibition of proinflammatory mediators (such as inducible NO synthase [iNOS]-derived NO), and the observed protective effects of H2S-donors seem to be mediated by reducing some proinflammatory enzyme activities. Critical Issues: The most recent investigations focus on the interactions among the gasotransmitters under different pathophysiological conditions. However, the biochemical/pharmacological nature of these interactions is neither general nor fully understood, although specifically dependent on the site where the inflammatory edema occurs. Future Directions: Considering the nature of the involved mechanisms, a deeper knowledge of the interactions among the gasotransmitters is mandatory. In addition, the development of new pharmacological tools, either donors or synthesis inhibitors of the three gasotransmitters, will certainly aid the basic investigations and open new strategies for the therapeutic treatment of inflammatory edema. Antioxid. Redox Signal. 40, 272-291.
Collapse
Affiliation(s)
| | | | - Soraia Katia Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Marcelo Nicolas Muscara
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
8
|
Baquero F, Rodríguez-Beltrán J, Coque TM, del Campo R. Boosting Fitness Costs Associated with Antibiotic Resistance in the Gut: On the Way to Biorestoration of Susceptible Populations. Biomolecules 2024; 14:76. [PMID: 38254676 PMCID: PMC10812938 DOI: 10.3390/biom14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The acquisition and expression of antibiotic resistance implies changes in bacterial cell physiology, imposing fitness costs. Many human opportunistic pathogenic bacteria, such as those causing urinary tract or bloodstream infections, colonize the gut. In this opinionated review, we will examine the various types of stress that these bacteria might suffer during their intestinal stay. These stresses, and their compensatory responses, probably have a fitness cost, which might be additive to the cost of expressing antibiotic resistance. Such an effect could result in a disadvantage relative to antibiotic susceptible populations that might replace the resistant ones. The opinion proposed in this paper is that the effect of these combinations of fitness costs should be tested in antibiotic resistant bacteria with susceptible ones as controls. This testing might provide opportunities to increase the bacterial gut stress boosting physiological biomolecules or using dietary interventions. This approach to reduce the burden of antibiotic-resistant populations certainly must be answered empirically. In the end, the battle against antibiotic resistance should be won by antibiotic-susceptible organisms. Let us help them prevail.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Epidemiology and Public Health (CIBER-ESP), 28029 Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Infectious Diseases (CIBER-INFEC), 28034 Madrid, Spain
| | - Teresa M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Infectious Diseases (CIBER-INFEC), 28034 Madrid, Spain
| | - Rosa del Campo
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Infectious Diseases (CIBER-INFEC), 28034 Madrid, Spain
| |
Collapse
|
9
|
Richie TG, Heeren L, Kamke A, Monk K, Pogranichniy S, Summers T, Wiechman H, Ran Q, Sarkar S, Plattner BL, Lee STM. Limitation of amino acid availability by bacterial populations during enhanced colitis in IBD mouse model. mSystems 2023; 8:e0070323. [PMID: 37909786 PMCID: PMC10746178 DOI: 10.1128/msystems.00703-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Inflammatory bowel disease is associated with an increase in Enterobacteriaceae and Enterococcus species; however, the specific mechanisms are unclear. Previous research has reported the associations between microbiota and inflammation, here we investigate potential pathways that specific bacteria populations use to drive gut inflammation. Richie et al. show that these bacterial populations utilize an alternate sulfur metabolism and are tolerant of host-derived immune-response products. These metabolic pathways drive host gut inflammation and fuel over colonization of these pathobionts in the dysbiotic colon. Cultured isolates from dysbiotic mice indicated faster growth supplemented with L-cysteine, showing these microbes can utilize essential host nutrients.
Collapse
Affiliation(s)
- Tanner G. Richie
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Leah Heeren
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Abigail Kamke
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Kourtney Monk
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | | | - Trey Summers
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Hallie Wiechman
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Qinghong Ran
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Soumyadev Sarkar
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Brandon L. Plattner
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Sonny T. M. Lee
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
10
|
Li C, Zhang Y, Zhao C, Fu X. Physicochemical characterization, antioxidative and immunoregulatory activity of polysaccharides from the flower of Hylocereus undatus (Haw.) Britton et Rose. Int J Biol Macromol 2023; 251:126408. [PMID: 37598818 DOI: 10.1016/j.ijbiomac.2023.126408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
The flower of Hylocereus undatus (Haw.) Britton et Rose is widely recognized as a kind of medicine-food homologous resource due to its high nutritional value. However, there is a lack of in-depth studies on the purification, structure, antioxidative and immunoregulatory activities of polysaccharides from H. undatus flowers (FHRP). The objective of this study was to investigate the primary structure, antioxidative and immunoregulatory activities of the polysaccharides extracted from Hylocereus undatus flower using water extraction and chromatogram purification. Three polysaccharide fractions named FHRP-1, FHRP-2 and FHRP-3 were obtained. The results showed that FHRP-1, FHRP-2 and FHRP-3 (200-800 μg/mL) treatment for 24 h significantly increased the activities of superoxide dismutase (SOD) and catalase (CAT), and reduced the malondialdehyde (MDA) production in RAW 246.7 cells under H2O2-induced oxidative stress. Additionally, all three fractions exhibited immunoregulatory activities by enhancing the pinocytosis of RAW 264.7 cells and promoting the production of nitric oxide (NO), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α). Among three polysaccharide fractions, FHRP-3 exhibited the most promising antioxidative and immunoregulatory properties, which was attributed to its higher content of uronic acid, moderate molecular weight, and triple-helix conformation. These findings provide preliminary insights into the primary structural information and biological activities of FHRP.
Collapse
Affiliation(s)
- Chao Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yue Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chuhua Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
11
|
Sinha BK. Can Nitric Oxide-Based Therapy Be Improved for the Treatment of Cancers? A Perspective. Int J Mol Sci 2023; 24:13611. [PMID: 37686417 PMCID: PMC10487592 DOI: 10.3390/ijms241713611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Since the early observations that nitric oxide (•NO) at high concentrations is cytotoxic to cancer cells and that it may play an important role in the treatment of human cancers, a significant number of compounds (NO-donors) have been prepared to deliver •NO to tumors. •NO also sensitizes various clinically active anticancer drugs and has been shown to induce the reversal of multi-drug resistance in tumor cells expressing ATP-binding cassette-transporter proteins. For the successful treatment of cancers, •NO needs to be delivered precisely to tumors, and its adverse toxicity must be limited. Like other chemotherapeutics, the precise delivery of drugs has been a problem and various attempts have been made, such as the encapsulation of drugs in lipid polymers, to overcome this. This prospective study examines the use of various strategies for delivering •NO (using NO-donors) for the treatment of cancers. Finding and utilizing such a delivery system is an important step in delivering cytotoxic concentrations of •NO to tumors without adverse reactions, leading to a successful clinical outcome for patient management.
Collapse
Affiliation(s)
- Birandra K Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
12
|
Lahooti B, Akwii RG, Zahra FT, Sajib MS, Lamprou M, Alobaida A, Lionakis MS, Mattheolabakis G, Mikelis CM. Targeting endothelial permeability in the EPR effect. J Control Release 2023; 361:212-235. [PMID: 37517543 DOI: 10.1016/j.jconrel.2023.07.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
The characteristics of the primary tumor blood vessels and the tumor microenvironment drive the enhanced permeability and retention (EPR) effect, which confers an advantage towards enhanced delivery of anti-cancer nanomedicine and has shown beneficial effects in preclinical models. Increased vascular permeability is a landmark feature of the tumor vessels and an important driver of the EPR. The main focus of this review is the endothelial regulation of vascular permeability. We discuss current challenges of targeting vascular permeability towards clinical translation and summarize the structural components and mechanisms of endothelial permeability, the principal mediators and signaling players, the targeted approaches that have been used and their outcomes to date. We also critically discuss the effects of the tumor-infiltrating immune cells, their interplay with the tumor vessels and the impact of immune responses on nanomedicine delivery, the impact of anti-angiogenic and tumor-stroma targeting approaches, and desirable nanoparticle design approaches for greater translational benefit.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Fatema Tuz Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Margarita Lamprou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece.
| |
Collapse
|
13
|
Newman G, Leclerc A, Arditi W, Calzuola ST, Feaugas T, Roy E, Perrault CM, Porrini C, Bechelany M. Challenge of material haemocompatibility for microfluidic blood-contacting applications. Front Bioeng Biotechnol 2023; 11:1249753. [PMID: 37662438 PMCID: PMC10469978 DOI: 10.3389/fbioe.2023.1249753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Biological applications of microfluidics technology is beginning to expand beyond the original focus of diagnostics, analytics and organ-on-chip devices. There is a growing interest in the development of microfluidic devices for therapeutic treatments, such as extra-corporeal haemodialysis and oxygenation. However, the great potential in this area comes with great challenges. Haemocompatibility of materials has long been a concern for blood-contacting medical devices, and microfluidic devices are no exception. The small channel size, high surface area to volume ratio and dynamic conditions integral to microchannels contribute to the blood-material interactions. This review will begin by describing features of microfluidic technology with a focus on blood-contacting applications. Material haemocompatibility will be discussed in the context of interactions with blood components, from the initial absorption of plasma proteins to the activation of cells and factors, and the contribution of these interactions to the coagulation cascade and thrombogenesis. Reference will be made to the testing requirements for medical devices in contact with blood, set out by International Standards in ISO 10993-4. Finally, we will review the techniques for improving microfluidic channel haemocompatibility through material surface modifications-including bioactive and biopassive coatings-and future directions.
Collapse
Affiliation(s)
- Gwenyth Newman
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
- Eden Tech, Paris, France
| | - Audrey Leclerc
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, Montpellier, France
- École Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques, Université de Toulouse, Toulouse, France
| | - William Arditi
- Eden Tech, Paris, France
- Centrale Supélec, Gif-sur-Yvette, France
| | - Silvia Tea Calzuola
- Eden Tech, Paris, France
- UMR7648—LadHyx, Ecole Polytechnique, Palaiseau, France
| | - Thomas Feaugas
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
- Eden Tech, Paris, France
| | | | | | | | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, Montpellier, France
- Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah, Kuwait
| |
Collapse
|
14
|
Ambwani S, Dolma R, Sharma R, Kaur A, Singh H, Ruj A, Ambwani TK. Modulation of inflammatory and oxidative stress biomarkers due to dexamethasone exposure in chicken splenocytes. Vet Immunol Immunopathol 2023; 262:110632. [PMID: 37517103 DOI: 10.1016/j.vetimm.2023.110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Dexamethasone (DEXA) is a potent corticosteroid, commonly used for treating inflammatory, hypersensitive and allergic conditions. It is administered to birds with tumours. Many studies were conducted on its immunosuppressive effects; however none of the similar study is available employing chicken splenocytes culture system. The present study was conducted to assess DEXA induced alterations in inflammatory and oxidative stress biomarkers in chicken splenocytes due to its in vitro exposure. The maximum non-cytotoxic dose (MNCD) was evaluated and was further used for conducting lymphocytes proliferation assay (LPA), antioxidant assays (lipid peroxidation, GSH, superoxide dismutase and nitric oxide assays) and assessment of mRNA levels of various genes (IL-1β, IL-6, IL-10, LITAF, iNOS, NF-κB1, Nrf-2, Caspase-3 and -9) through qPCR. The MNCD was determined to be 30 ng/ml in chicken splenocytes culture system. DEXA caused reduction in B and T lymphocytes proliferation indicating its immunosuppressive effects, however improved the antioxidant status of the exposed splenocytes. The expression levels of IL-1β, IL-6, iNOS, LITAF and NF-κB1 were significantly reduced while IL-10 was enhanced, which signify potent anti-inflammatory potential of DEXA. NF-κB is a major transcription factor that regulates genes responsible for both, innate and adaptive immune responses and elicits inflammation. The nuclear factor erythroid 2-related factor 2 (Nrf-2) level was found to be up-regulated. Nrf-2 plays important role in combating the oxidant stress and its increased expression could be the reason of improved antioxidant status of DEXA exposed cells. Present findings indicated that DEXA exhibited modulation in anti-inflammatory, immunomodulatory and antioxidant mediators in chicken splenocytes.
Collapse
Affiliation(s)
- Sonu Ambwani
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India.
| | - Rigzin Dolma
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Raunak Sharma
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Amandip Kaur
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Himani Singh
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Anamitra Ruj
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Tanuj Kumar Ambwani
- Department of Veterinary Physiology and Biochemistry, C.V.A.S., Govind Ballabh Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| |
Collapse
|
15
|
Bright LME, Wu Y, Brisbois EJ, Handa H. Advances in Nitric Oxide-Releasing Hydrogels for Biomedical Applications. Curr Opin Colloid Interface Sci 2023; 66:101704. [PMID: 37694274 PMCID: PMC10489397 DOI: 10.1016/j.cocis.2023.101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Hydrogels provide a plethora of advantages to biomedical treatments due to their highly hydrophilic nature and tissue-like mechanical properties. Additionally, the numerous and widespread endogenous roles of nitric oxide have led to an eruption in research developing biomimetic solutions to the many challenges the biomedical world faces. Though many design factors and fabrication details must be considered, utilizing hydrogels as nitric oxide delivery vehicles provides promising materials in several applications. Such applications include cardiovascular therapy, vasodilation and angiogenesis, antimicrobial treatments, wound dressings, and stem cell research. Herein, a recent update on the progress of NO-releasing hydrogels is presented in depth. In addition, considerations for the design and fabrication of hydrogels and specific biomedical applications of nitric oxide-releasing hydrogels are discussed.
Collapse
Affiliation(s)
- Lori M. Estes Bright
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Yi Wu
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Elizabeth J. Brisbois
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Hitesh Handa
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| |
Collapse
|
16
|
Ferreira EA, Queiroz LS, Silva Facchini GDF, Guedes MCMR, Macedo GC, de Sousa OV, Da Silva Filho AA. Baccharis dracunculifolia DC (Asteraceae) Root Extract and Its Triterpene Baccharis Oxide Display Topical Anti-Inflammatory Effects on Different Mice Ear Edema Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9923941. [PMID: 37275573 PMCID: PMC10234725 DOI: 10.1155/2023/9923941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
B. dracunculifolia is popularly used to treat skin diseases. This work aimed to evaluate the topical anti-inflammatory properties of B. dracunculifolia root extract (BdR) and its major compound baccharis oxide (BOx) on mice ear edema models. BdR was analyzed by GC-MS, and BOx was isolated by chromatographic fractionation. Topical anti-inflammatory activities were determined by using the croton oil, capsaicin, histamine, and phenol-induced mouse ear edema models. N-acetyl-β-D- glucosaminidase (NAG) and myeloperoxidase (MPO) activities, as well as NO dosage and histopathological analyses, were also evaluated. Phytochemical analysis of BdR showed BOx as one of the major constituents. BdR and BOx (both at 0.1, 0.5, and 1.0 mg/ear) significantly reduced croton oil, histamine, and phenol-induced ear edema, while only BOx was effective in reducing capsaicin-induced edema. MPO and NAG activities, as well as NO production, were significantly inhibited by BdR and BOx. Histopathological analysis confirmed the topical anti-inflammatory properties of BdR and BOx. Our findings showed that BdR and BOx demonstrated significant topical anti-inflammatory effects in mouse ear edema induced by different agents, suggesting their possible application on skin inflammatory diseases.
Collapse
Affiliation(s)
- Everton Allan Ferreira
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Lucas Sales Queiroz
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Gabriella de Faria Silva Facchini
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Maria Clara Machado Resende Guedes
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Gilson Costa Macedo
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Orlando Vieira de Sousa
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Ademar A. Da Silva Filho
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| |
Collapse
|
17
|
Zvi-Kedem T, Vintila S, Kleiner M, Tchernov D, Rubin-Blum M. Metabolic handoffs between multiple symbionts may benefit the deep-sea bathymodioline mussels. ISME COMMUNICATIONS 2023; 3:48. [PMID: 37210404 PMCID: PMC10199937 DOI: 10.1038/s43705-023-00254-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Bathymodioline mussels rely on thiotrophic and/or methanotrophic chemosynthetic symbionts for nutrition, yet, secondary heterotrophic symbionts are often present and play an unknown role in the fitness of the organism. The bathymodioline Idas mussels that thrive in gas seeps and on sunken wood in the Mediterranean Sea and the Atlantic Ocean, host at least six symbiont lineages that often co-occur. These lineages include the primary symbionts chemosynthetic methane- and sulfur-oxidizing gammaproteobacteria, and the secondary symbionts, Methylophagaceae, Nitrincolaceae and Flavobacteriaceae, whose physiology and metabolism are obscure. Little is known about if and how these symbionts interact or exchange metabolites. Here we curated metagenome-assembled genomes of Idas modiolaeformis symbionts and used genome-centered metatranscriptomics and metaproteomics to assess key symbiont functions. The Methylophagaceae symbiont is a methylotrophic autotroph, as it encoded and expressed the ribulose monophosphate and Calvin-Benson-Bassham cycle enzymes, particularly RuBisCO. The Nitrincolaceae ASP10-02a symbiont likely fuels its metabolism with nitrogen-rich macromolecules and may provide the holobiont with vitamin B12. The Urechidicola (Flavobacteriaceae) symbionts likely degrade glycans and may remove NO. Our findings indicate that these flexible associations allow for expanding the range of substrates and environmental niches, via new metabolic functions and handoffs.
Collapse
Affiliation(s)
- Tal Zvi-Kedem
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, 3108000, Israel
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Maxim Rubin-Blum
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, 3108000, Israel.
| |
Collapse
|
18
|
Vignaud J, Loiseau C, Hérault J, Mayer C, Côme M, Martin I, Ulmann L. Microalgae Produce Antioxidant Molecules with Potential Preventive Effects on Mitochondrial Functions and Skeletal Muscular Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12051050. [PMID: 37237915 DOI: 10.3390/antiox12051050] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, microalgae have become a source of molecules for a healthy life. Their composition of carbohydrates, peptides, lipids, vitamins and carotenoids makes them a promising new source of antioxidant molecules. Skeletal muscle is a tissue that requires constant remodeling via protein turnover, and its regular functioning consumes energy in the form of adenosine triphosphate (ATP), which is produced by mitochondria. Under conditions of traumatic exercise or muscular diseases, a high production of reactive oxygen species (ROS) at the origin of oxidative stress (OS) will lead to inflammation and muscle atrophy, with life-long consequences. In this review, we describe the potential antioxidant effects of microalgae and their biomolecules on mitochondrial functions and skeletal muscular oxidative stress during exercises or in musculoskeletal diseases, as in sarcopenia, chronic obstructive pulmonary disease (COPD) and Duchenne muscular dystrophy (DMD), through the increase in and regulation of antioxidant pathways and protein synthesis.
Collapse
Affiliation(s)
- Jordi Vignaud
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Céline Loiseau
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Josiane Hérault
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Claire Mayer
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Martine Côme
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Isabelle Martin
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Lionel Ulmann
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| |
Collapse
|
19
|
Kurhaluk N. The Effectiveness of L-arginine in Clinical Conditions Associated with Hypoxia. Int J Mol Sci 2023; 24:ijms24098205. [PMID: 37175912 PMCID: PMC10179183 DOI: 10.3390/ijms24098205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The review summarises the data of the last 50 years on the effectiveness of the amino acid L-arginine in therapeutic practice in conditions accompanied by different-origin hypoxia. The aim of this review was to analyse the literature and our research data on the role of nitric oxide in the modulation of individual physiological reactivity to hypoxia. The review considers the possibility of eliminating methodological conflicts in the case of L-arginine, which can be solved by taking into account individual physiological reactivity (or the hypoxia resistance factor). Considerable attention is paid to genetic and epigenetic mechanisms of adaptation to hypoxia and conditions of adaptation in different models. The article presents data on the clinical effectiveness of L-arginine in cardiovascular system diseases (hypertension, atherosclerosis, coronary heart disease, etc.) and stress disorders associated with these diseases. The review presents a generalised analysis of techniques, data on L-arginine use by athletes, and the ambiguous role of NO in the physiology and pathology of hypoxic states shown via nitric oxide synthesis. Data on the protective effects of adaptation in the formation of individual high reactivity in sportsmen are demonstrated. The review demonstrates a favourable effect of supplementation with L-arginine and its application depending on mitochondrial oxidative phosphorylation processes and biochemical indices in groups of individuals with low and high capacity of adaptation to hypoxia. In individuals with high initial anti-hypoxic reserves, these favourable effects are achieved by the blockade of NO-dependent biosynthesis pathways. Therefore, the methodological tasks of physiological experiments and the therapeutic consequences of treatment should include a component depending on the basic level of physiological reactivity.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200 Słupsk, Poland
| |
Collapse
|
20
|
Seo HJ, Rhim WK, Baek SW, Kim JY, Kim DS, Han DK. Endogenous stimulus-responsive nitric oxide releasing bioactive liposome for a multilayered drug-eluting balloon. Biomater Sci 2023; 11:916-930. [PMID: 36533852 DOI: 10.1039/d2bm01673g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drug-eluting balloon (DEB) system has been widely utilized for percutaneous coronary intervention (PCI), treating atherosclerosis to overcome the limitations of cardiovascular stents. With the anti-proliferative drug, everolimus (EVL), nitric oxide (NO) plays a key bioregulator role to facilitate the angiogenesis of endothelial cells (ECs) and inhibit the cell proliferation of smooth muscle cells (SMCs) in the lesions of cardiovascular diseases. Due to the very short lifetime and limited exposure area of NO in the body, the continuous release and efficient delivery of NO must be carefully considered. In this respect, a liposome-containing disulfide bonding group was introduced as a delivery vehicle of EVL and NO with the continuous release of NO via successive reaction cycles with GSH and SNAP in the blood vessel without the need for exogenous stimulations. With a multilayer coating platform consisting of a polyvinylpyrrolidone (PVP)/EVL-laden liposome with NO (EVL-NO-Lipo)/PVP, we precluded the loss of the EVL-encapsulated liposome with NO release during the transition time and maximized the transfer rate from the surface of DEB to the tissues. The sustained release of NO was monitored using a nitric oxide analyzer (NOA), and the synergistic bioactivities of EVL and NO were proved in EC and SMC with angiogenesis and cell proliferation-related assays. From the results of hemocompatibility and ex vivo studies, the feasibility was provided for future in vivo applications of the multilayer-coated DEB system.
Collapse
Affiliation(s)
- Hyo Jeong Seo
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea. .,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.,Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea. .,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.,Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea. .,School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| |
Collapse
|
21
|
Jeong G, Shin SY, Kyokunzire P, Cheon HJ, Wi E, Woo M, Chang M. High-Performance Nitric Oxide Gas Sensors Based on an Ultrathin Nanoporous Poly(3-hexylthiophene) Film. BIOSENSORS 2023; 13:132. [PMID: 36671967 PMCID: PMC9856169 DOI: 10.3390/bios13010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Conjugated polymer (CP)-based organic field-effect transistors (OFETs) have been considered a potential sensor platform for detecting gas molecules because they can amplify sensing signals by controlling the gate voltage. However, these sensors exhibit significantly poorer oxidizing gas sensing performance than their inorganic counterparts. This paper presents a high-performance nitric oxide (NO) OFET sensor consisting of a poly(3-hexylthiophene) (P3HT) film with an ultrathin nanoporous structure. The ultrathin nonporous structure of the P3HT film was created via deposition through the shear-coating-assisted phase separation of polymer blends and selective solvent etching. The ultrathin nonporous structure of the P3HT film enhanced NO gas diffusion, adsorption, and desorption, resulting in the ultrathin nanoporous P3HT-film-based OFET gas sensor exhibiting significantly better sensing performance than pristine P3HT-film-based OFET sensors. Additionally, upon exposure to 10 ppm NO at room temperature, the nanoporous P3HT-film-based OFET gas sensor exhibited significantly better sensing performance (i.e., responsivity ≈ 42%, sensitivity ≈ 4.7% ppm-1, limit of detection ≈ 0.5 ppm, and response/recovery times ≈ 6.6/8.0 min) than the pristine P3HT-film-based OFET sensors.
Collapse
Affiliation(s)
- Ganghoon Jeong
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seo Young Shin
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Proscovia Kyokunzire
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyeong Jun Cheon
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eunsol Wi
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Minhong Woo
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mincheol Chang
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
22
|
Mondal P, Ishigami I, Yeh SR, Wijeratne GB. The Role of Heme Peroxo Oxidants in the Rational Mechanistic Modeling of Nitric Oxide Synthase: Characterization of Key Intermediates and Elucidation of the Mechanism. Angew Chem Int Ed Engl 2022; 61:e202211521. [PMID: 36169890 PMCID: PMC9675724 DOI: 10.1002/anie.202211521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/08/2022]
Abstract
Mammalian nitric oxide synthase (NOS) mediates the two-step O2 -dependent oxidative degradation of arginine, and has been linked to a medley of disease situations in humans. Nonetheless, its exact mechanism of action still remains unclear. This work presents the first NOS model system where biologically proposed heme superoxo and peroxo intermediates are assessed as active oxidants against oxime substrates. Markedly, heme peroxo intermediates engaged in a bioinspired oxime oxidation reaction pathway, converting oximes to ketones and nitroxyl anions (NO- ). Detailed thermodynamic, kinetic, and mechanistic interrogations all evince a rate-limiting step primarily driven by the nucleophilicity of the heme peroxo moiety. Coherent with other findings, 18 O and 15 N isotope substitution experiments herein suffice compelling evidence toward a detailed mechanism, which draw close parallels to one of the enzymatic proposals. Intriguingly, recent enzymatic studies also lend credence to these findings, and several relevant reaction intermediates have been observed during NOS turnover.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Izumi Ishigami
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | - Gayan B Wijeratne
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| |
Collapse
|
23
|
Gundlach KA, Nawroth J, Kanso E, Nasrin F, Ruby EG, McFall-Ngai M. Ciliated epithelia are key elements in the recruitment of bacterial partners in the squid-vibrio symbiosis. Front Cell Dev Biol 2022; 10:974213. [PMID: 36340026 PMCID: PMC9632347 DOI: 10.3389/fcell.2022.974213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022] Open
Abstract
The Hawaiian bobtail squid, Euprymna scolopes, harvests its luminous symbiont, Vibrio fischeri, from the surrounding seawater within hours of hatching. During embryogenesis, the host animal develops a nascent light organ with ciliated fields on each lateral surface. We hypothesized that these fields function to increase the efficiency of symbiont colonization of host tissues. Within minutes of hatching from the egg, the host’s ciliated fields shed copious amounts of mucus in a non-specific response to bacterial surface molecules, specifically peptidoglycan (PGN), from the bacterioplankton in the surrounding seawater. Experimental manipulation of the system provided evidence that nitric oxide in the mucus drives an increase in ciliary beat frequency (CBF), and exposure to even small numbers of V. fischeri cells for short periods resulted in an additional increase in CBF. These results indicate that the light-organ ciliated fields respond specifically, sensitively, and rapidly, to the presence of nonspecific PGN as well as symbiont cells in the ambient seawater. Notably, the study provides the first evidence that this induction of an increase in CBF occurs as part of a thus far undiscovered initial phase in colonization of the squid host by its symbiont, i.e., host recognition of V. fischeri cues in the environment within minutes. Using a biophysics-based mathematical analysis, we showed that this rapid induction of increased CBF, while accelerating bacterial advection, is unlikely to be signaled by V. fischeri cells interacting directly with the organ surface. These overall changes in CBF were shown to significantly impact the efficiency of V. fischeri colonization of the host organ. Further, once V. fischeri has fully colonized the host tissues, i.e., about 12–24 h after initial host-symbiont interactions, the symbionts drove an attenuation of mucus shedding from the ciliated fields, concomitant with an attenuation of the CBF. Taken together, these findings offer a window into the very first interactions of ciliated surfaces with their coevolved microbial partners.
Collapse
Affiliation(s)
- Katrina A. Gundlach
- Kewalo Marine Laboratory, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Janna Nawroth
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Eva Kanso
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Farzana Nasrin
- Department of Mathematics, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Edward G. Ruby
- Kewalo Marine Laboratory, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Margaret McFall-Ngai
- Kewalo Marine Laboratory, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
- *Correspondence: Margaret McFall-Ngai,
| |
Collapse
|
24
|
Ruiz B, Sauviac L, Brouquisse R, Bruand C, Meilhoc E. Role of Nitric Oxide of Bacterial Origin in the Medicago truncatula-Sinorhizobium meliloti Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:887-892. [PMID: 35762680 DOI: 10.1094/mpmi-05-22-0118-sc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitric oxide (NO) is a small ubiquitous gaseous molecule that has been found in many host-pathogen interactions. NO has been shown to be part of the defense arsenal of animal cells and more recently of plant cells. To fight this molecular weapon, pathogens have evolved responses consisting of adaptation to NO or degradation of this toxic molecule. More recently, it was shown that NO could also be produced by the pathogen and contributes likewise to the success of the host cell infection. NO is also present during symbiotic interactions. Despite growing knowledge about the role of NO during friendly interactions, data on the specificity of action of NO produced by each partner are scarce, partly due to the multiplicity of NO production systems. In the nitrogen-fixing symbiosis between the soil bacterium Sinorhizobium meliloti and the model legume Medicago truncatula, NO has been detected at all steps of the interaction, where it displays various roles. Both partners contribute to NO production inside the legume root nodules where nitrogen fixation occurs. The study focuses on the role of bacterial NO in this interaction. We used a genetic approach to identify bacterial NO sources in the symbiotic context and to test the phenotype in planta of bacterial mutants affected in NO production. Our results show that only denitrification is a source of bacterial NO in Medicago nodules, giving insight into the role of bacteria-derived NO at different steps of the symbiotic interaction. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Bryan Ruiz
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INSA, Castanet-Tolosan, France
| | - Laurent Sauviac
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INSA, Castanet-Tolosan, France
| | - Renaud Brouquisse
- Institut Sophia Agrobiotech (ISA), INRAE, CNRS, Université Côte d'Azur, 06903 Sophia Antipolis Cedex, France
| | - Claude Bruand
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INSA, Castanet-Tolosan, France
| | - Eliane Meilhoc
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INSA, Castanet-Tolosan, France
| |
Collapse
|
25
|
Isolation of a novel Lactiplantibacillus plantarum strain resistant to nitrite stress and its transcriptome analysis. J Microbiol 2022; 60:715-726. [DOI: 10.1007/s12275-022-2221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
|
26
|
Yu NN, Ketya W, Choi EH, Park G. Plasma Promotes Fungal Cellulase Production by Regulating the Levels of Intracellular NO and Ca 2. Int J Mol Sci 2022; 23:6668. [PMID: 35743111 PMCID: PMC9223429 DOI: 10.3390/ijms23126668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/04/2022] Open
Abstract
For the industrial-scale production of useful enzymes by microorganisms, technological development is required for overcoming a technical bottleneck represented by poor efficiency in the induction of enzyme gene expression and secretion. In this study, we evaluated the potential of a non-thermal atmospheric pressure plasma jet to improve the production efficiency of cellulolytic enzymes in Neurospora crassa, a filamentous fungus. The total activity of cellulolytic enzymes and protein concentration were significantly increased (1.1~1.2 times) in media containing Avicel 24-72 h after 2 and 5 min of plasma treatment. The mRNA levels of four cellulolytic enzymes in fungal hyphae grown in media with Avicel were significantly increased (1.3~17 times) 2-4 h after a 5 min of plasma treatment. The levels of intracellular NO and Ca2+ were increased in plasma-treated fungal hyphae grown in Avicel media after 48 h, and the removal of intracellular NO decreased the activity of cellulolytic enzymes in media and the level of vesicles in fungal hyphae. Our data suggest that plasma treatment can promote the transcription and secretion of cellulolytic enzymes into the culture media in the presence of Avicel (induction condition) by enhancing the intracellular level of NO and Ca2+.
Collapse
Affiliation(s)
- Nan-Nan Yu
- Plasma Bioscience Research Center and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (N.-N.Y.); (W.K.); (E.-H.C.)
| | - Wirinthip Ketya
- Plasma Bioscience Research Center and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (N.-N.Y.); (W.K.); (E.-H.C.)
| | - Eun-Ha Choi
- Plasma Bioscience Research Center and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (N.-N.Y.); (W.K.); (E.-H.C.)
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (N.-N.Y.); (W.K.); (E.-H.C.)
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| |
Collapse
|
27
|
Saulskaya NB, Burmakina MA, Trofimova NA. Effect of Activation and Blockade of Nitrergic Neurotransmission on Serotonin System Activity of the Rat Medial Prefrontal Cortex. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Emerald BS, Mohsin S, D’Souza C, John A, El-Hasasna H, Ojha S, Raza H, al-Ramadi B, Adeghate E. Diabetes Mellitus Alters the Immuno-Expression of Neuronal Nitric Oxide Synthase in the Rat Pancreas. Int J Mol Sci 2022; 23:ijms23094974. [PMID: 35563364 PMCID: PMC9105024 DOI: 10.3390/ijms23094974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Nitric oxide is generated from nitric oxide synthase following hyperglycemia-induced oxidative stress during the course of diabetes mellitus (DM). We examined the temporal immuno-expression of neuronal nitric oxide synthase (nNOS) in the pancreas of diabetic and non-diabetic rats using immunohistochemical, immunofluorescence and western blot techniques 12 h, 24 h, 1 week, 2 weeks, 1, 8 and 15 months after induction of DM. nNOS co-localized with pancreatic beta cells but disappears 12 h after the onset of DM. In contrast, the nNOS content of pancreatic nerves increased significantly (p < 0.001) 24 h after the induction of DM, and decreased sharply thereafter. However, nNOS-positive ganglion cells were observed even 15 months post-diabetes. ROS increased by more than 100% two months after the onset of DM compared to non-diabetic control but was significantly (p < 0.000001) reduced at 9 months after the induction of DM. The pancreatic content of GSH increased significantly (p < 0.02) after 9 months of DM. Although, TBARS content was significantly (p < 0.009; p < 0.002) lower in aged (9 months) non-diabetic and DM rats, TBARS rate was markedly (p < 0.02) higher 9 months after the induction of DM when compared to younger age group. In conclusion, nNOS is present in pancreatic beta cell, but disappears 12 h after the onset of diabetes. In contrast, the tissue level of nNOS of pancreatic nerves increased in the first week of diabetes, followed by a sharp reduction. nNOS may play important roles in the metabolism of pancreatic beta cell.
Collapse
Affiliation(s)
- Bright Starling Emerald
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
| | - Sahar Mohsin
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
| | - Crystal D’Souza
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
| | - Annie John
- Departments of Biochemistry, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.J.); (H.R.)
| | - Hussain El-Hasasna
- Departments of Medical Microbiology and Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.E.-H.); (B.a.-R.)
| | - Shreesh Ojha
- Departments of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| | - Haider Raza
- Departments of Biochemistry, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.J.); (H.R.)
| | - Basel al-Ramadi
- Departments of Medical Microbiology and Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.E.-H.); (B.a.-R.)
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ernest Adeghate
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Correspondence:
| |
Collapse
|
29
|
Ikeda-Imafuku M, Wang LLW, Rodrigues D, Shaha S, Zhao Z, Mitragotri S. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation. J Control Release 2022; 345:512-536. [PMID: 35337939 DOI: 10.1016/j.jconrel.2022.03.043] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Many efforts have been made to achieve targeted delivery of anticancer drugs to enhance their efficacy and to reduce their adverse effects. These efforts include the development of nanomedicines as they can selectively penetrate through tumor blood vessels through the enhanced permeability and retention (EPR) effect. The EPR effect was first proposed by Maeda and co-workers in 1986, and since then various types of nanoparticles have been developed to take advantage of the phenomenon with regards to drug delivery. However, the EPR effect has been found to be highly variable and thus unreliable due to the complex tumor microenvironment. Various physical and pharmacological strategies have been explored to overcome this challenge. Here, we review key advances and emerging concepts of such EPR-enhancing strategies. Furthermore, we analyze 723 clinical trials of nanoparticles with EPR enhancers and discuss their clinical translation.
Collapse
Affiliation(s)
- Mayumi Ikeda-Imafuku
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Danika Rodrigues
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Suyog Shaha
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA.
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA.
| |
Collapse
|
30
|
Kavanaugh DW, Porrini C, Dervyn R, Ramarao N. The pathogenic biomarker alcohol dehydrogenase protein is involved in Bacillus cereus virulence and survival against host innate defence. PLoS One 2022; 17:e0259386. [PMID: 34982789 PMCID: PMC8726459 DOI: 10.1371/journal.pone.0259386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022] Open
Abstract
Bacillus cereus is a spore forming bacteria recognized among the leading agents responsible for foodborne outbreaks in Europe. B. cereus is also gaining notoriety as an opportunistic human pathogen inducing local and systemic infections. The real incidence of such infection is likely underestimated and information on genetic and phenotypic characteristics of the incriminated strains is generally scarce. We have recently analyzed a large strain collection of varying pathogenic potential. Screening for biomarkers to differentiate among clinical and non-clinical strains, a gene encoding an alcohol dehydrogenase-like protein was identified among the leading candidates. This family of proteins has been demonstrated to be involved in the virulence of several bacterial species. The relevant gene was knocked out to elucidate its function with regards to resistance to host innate immune response, both in vitro and in vivo. Our results demonstrate that the adhB gene plays a significant role in resistance to nitric oxide and oxidative stress in vitro, as well as its pathogenic ability with regards to in vivo toxicity. These properties may explain the pathogenic potential of strains carrying this newly identified virulence factor.
Collapse
Affiliation(s)
- Devon W. Kavanaugh
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Constance Porrini
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rozenn Dervyn
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nalini Ramarao
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
31
|
Abstract
Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is an enzootic, obligate, intracellular bacterial pathogen. Nitric oxide (NO) synthesized by the inducible NO synthase (iNOS) is a potent antimicrobial component of innate immunity and has been implicated in the control of virulent Rickettsia spp. in diverse cell types. In this study, we examined the antibacterial role of NO on R. rickettsii. Our results indicate that NO challenge dramatically reduces R. rickettsii adhesion through the disruption of bacterial energetics. Additionally, NO-treated R. rickettsii cells were unable to synthesize protein or replicate in permissive cells. Activated, NO-producing macrophages restricted R. rickettsii infections, but inhibition of iNOS ablated the inhibition of bacterial growth. These data indicate that NO is a potent antirickettsial effector of innate immunity that targets energy generation in these pathogenic bacteria to prevent growth and subversion of infected host cells.
Collapse
|
32
|
Abstract
The disruption of gut microbiota homeostasis has been associated with numerous diseases and with a disproportionate inflammatory response, including overproduction of nitric oxide (NO) in the intestinal lumen. However, the influence of NO on the human gut microbiota has not been well characterized yet. We used in vitro fermentation systems inoculated with human fecal samples to monitor the effect of repetitive NO pulses on the gut microbiota. NO exposure increased the redox potential and modified the fermentation profile and gas production. The overall metabolome was modified, reflecting less strict anaerobic conditions and shifts in amino acid and nitrogen metabolism. NO exposure led to a microbial shift in diversity with a decrease in Clostridium leptum group and Faecalibacterium prausnitzii biomass and an increased abundance of the Dialister genus. Escherichia coli, Enterococcus faecalis, and Proteus mirabilis operational taxonomic unit abundance increased, and strains from those species isolated after NO stress showed resistance to high NO concentrations. As a whole, NO quickly changed microbial fermentations, functions, and composition in a pulse- and dose-dependent manner. NO could shift, over time, the trophic chain to conditions that are unfavorable for strict anaerobic microbial processes, implying that a prolonged or uncontrolled inflammation has detrimental and irreversible consequences on the human microbiome. IMPORTANCE Gut microbiota dysbiosis has been associated with inflammatory diseases. The human inflammatory response leads to an overproduction of nitric oxide (NO) in the gut. However, so far, the influence of NO on the human gut microbiota has not been characterized. In this study, we used in vitro fermentation systems with human fecal samples to understand the effect of NO on the microbiota: NO modified the microbial composition and its functionality. High NO concentration depleted the microbiota of beneficial butyrate-producing species and favored potentially deleterious species (E. coli, E. faecalis, and P. mirabilis), which we showed can sustain high NO concentrations. Our work shows that NO may participate in the vicious circle of inflammation, leading to detrimental and irreversible consequences on human health.
Collapse
|
33
|
Mondal P, Tolbert GB, Wijeratne GB. Bio-inspired nitrogen oxide (NO x) interconversion reactivities of synthetic heme Compound-I and Compound-II intermediates. J Inorg Biochem 2021; 226:111633. [PMID: 34749065 DOI: 10.1016/j.jinorgbio.2021.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Dioxygen activating heme enzymes have long predicted to be powerhouses for nitrogen oxide interconversion, especially for nitric oxide (NO) oxidation which has far-reaching biological and/or environmental impacts. Lending credence, reactivity of NO with high-valent heme‑oxygen intermediates of globin proteins has recently been implicated in the regulation of a variety of pivotal physiological events such as modulating catalytic activities of various heme enzymes, enhancing antioxidant activity to inhibit oxidative damage, controlling inflammatory and infectious properties within the local heme environments, and NO scavenging. To reveal insights into such crucial biological processes, we have investigated low temperature NO reactivities of two classes of synthetic high-valent heme intermediates, Compound-II and Compound-I. In that, Compound-II rapidly reacts with NO yielding the six-coordinate (NO bound) heme ferric nitrite complex, which upon warming to room temperature converts into the five-coordinate heme ferric nitrite species. These ferric nitrite complexes mediate efficient substrate oxidation reactions liberating NO; i.e., shuttling NO2- back to NO. In contrast, Compound-I and NO proceed through an oxygen-atom transfer process generating the strong nitrating agent NO2, along with the corresponding ferric nitrosyl species that converts to the naked heme ferric parent complex upon warmup. All reaction components have been fully characterized by UV-vis, 2H NMR and EPR spectroscopic methods, mass spectrometry, elemental analyses, and semi-quantitative determination of NO2- anions. The clean, efficient, potentially catalytic NOx interconversions driven by high-valent heme species presented herein illustrate the strong prospects of a heme enzyme/O2/NOx dependent unexplored territory that is central to human physiology, pathology, and therapeutics.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States
| | - Garrett B Tolbert
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States
| | - Gayan B Wijeratne
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States.
| |
Collapse
|
34
|
Navasardyan I, Bonavida B. Regulation of T Cells in Cancer by Nitric Oxide. Cells 2021; 10:cells10102655. [PMID: 34685635 PMCID: PMC8534057 DOI: 10.3390/cells10102655] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/25/2021] [Indexed: 12/22/2022] Open
Abstract
The T cell-mediated immune response is primarily involved in the fight against infectious diseases and cancer and its underlying mechanisms are complex. The anti-tumor T cell response is regulated by various T cell subsets and other cells and tissues in the tumor microenvironment (TME). Various mechanisms are involved in the regulation of these various effector cells. One mechanism is the iNOS/.NO that has been reported to be intimately involved in the regulation and differentiation of the various cells that regulate the anti-tumor CD8 T cells. Both endogenous and exogenous .NO are implicated in this regulation. Importantly, the exposure of T cells to .NO had different effects on the immune response, depending on the .NO concentration and time of exposure. For instance, iNOS in T cells regulates activation-induced cell death and inhibits Treg induction. Effector CD8 T cells exposed to .NO result in the upregulation of death receptors and enhance their anti-tumor cytotoxic activity. .NO-Tregs suppress CD4 Th17 cells and their differentiation. Myeloid-derived suppressor cells (MDSCs) expressing iNOS inhibit T cell functions via .NO and inhibit anti-tumor CD8 T cells. Therefore, both .NO donors and .NO inhibitors are potential therapeutics tailored to specific target cells that regulate the T cell effector anti-tumor response.
Collapse
|
35
|
Nitric Oxide: From Gastric Motility to Gastric Dysmotility. Int J Mol Sci 2021; 22:ijms22189990. [PMID: 34576155 PMCID: PMC8470306 DOI: 10.3390/ijms22189990] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
It is known that nitric oxide (NO) plays a key physiological role in the control of gastrointestinal (GI) motor phenomena. In this respect, NO is considered as the main non-adrenergic, non-cholinergic (NANC) inhibitory neurotransmitter responsible for smooth muscle relaxation. Moreover, many substances (including hormones) have been reported to modulate NO production leading to changes in motor responses, further underlying the importance of this molecule in the control of GI motility. An impaired NO production/release has indeed been reported to be implicated in some GI dysmotility. In this article we wanted to focus on the influence of NO on gastric motility by summarizing knowledge regarding its role in both physiological and pathological conditions. The main role of NO on regulating gastric smooth muscle motor responses, with particular reference to NO synthases expression and signaling pathways, is discussed. A deeper knowledge of nitrergic mechanisms is important for a better understanding of their involvement in gastric pathophysiological conditions of hypo- or hyper-motility states and for future therapeutic approaches. A possible role of substances which, by interfering with NO production, could prove useful in managing such motor disorders has been advanced.
Collapse
|
36
|
Huang D, Jing G, Zhang L, Chen C, Zhu S. Interplay Among Hydrogen Sulfide, Nitric Oxide, Reactive Oxygen Species, and Mitochondrial DNA Oxidative Damage. FRONTIERS IN PLANT SCIENCE 2021; 12:701681. [PMID: 34421950 PMCID: PMC8377586 DOI: 10.3389/fpls.2021.701681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/06/2021] [Indexed: 06/01/2023]
Abstract
Hydrogen sulfide (H2S), nitric oxide (NO), and reactive oxygen species (ROS) play essential signaling roles in cells by oxidative post-translational modification within suitable ranges of concentration. All of them contribute to the balance of redox and are involved in the DNA damage and repair pathways. However, the damage and repair pathways of mitochondrial DNA (mtDNA) are complicated, and the interactions among NO, H2S, ROS, and mtDNA damage are also intricate. This article summarized the current knowledge about the metabolism of H2S, NO, and ROS and their roles in maintaining redox balance and regulating the repair pathway of mtDNA damage in plants. The three reactive species may likely influence each other in their generation, elimination, and signaling actions, indicating a crosstalk relationship between them. In addition, NO and H2S are reported to be involved in epigenetic variations by participating in various cell metabolisms, including (nuclear and mitochondrial) DNA damage and repair. Nevertheless, the research on the details of NO and H2S in regulating DNA damage repair of plants is in its infancy, especially in mtDNA.
Collapse
Affiliation(s)
- Dandan Huang
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Guangqin Jing
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Lili Zhang
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Changbao Chen
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Shuhua Zhu
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
37
|
Sheng Q, Yi M, Men Y, Lu H. Cometabolism of 17α-ethynylestradiol by nitrifying bacteria depends on reducing power availability and leads to elevated nitric oxide formation. ENVIRONMENT INTERNATIONAL 2021; 153:106528. [PMID: 33774495 DOI: 10.1016/j.envint.2021.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
17α-ethynylestradiol (EE2) is a priority emerging contaminant (EC) in diverse environments that can be cometabolized by ammonia oxidizing bacteria (AOB). However, its transformation kinetics and the underlying molecular mechanism are unclear. In this study, kinetic parameters, including maximum specific EE2 transformation rate, EE2 half-saturation coefficient, and EE2transformation capacity of AOBwere obtained by using the model AOB strain, Nitrosomonas europaea 19718. The relationship between EE2 cometabolism and ammonia oxidation was divided into three phases according to reducing power availability, namely "activation", "coupling", and "saturation". Specifically, there was a universal lag of EE2 transformation after ammonia oxidation was initiated, suggesting that sufficient reducing power (approximately 0.95 ± 0.06 mol NADH/L) was required to activate EE2 cometabolism. Interestingly, nitric oxide emission increased by 12 ± 2% during EE2 cometabolism, along with significantly upregulated nirK cluster genes. The findings are of importance to understanding the cometabolic behavior and mechanism of EE2 in natural and engineered environments. Maintaining relatively high and stable reducing power supply from ammonia oxidation can potentially improve the cometabolic removal of EE2 and other ECs during wastewater nitrification processes.
Collapse
Affiliation(s)
- Qi Sheng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming Yi
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
38
|
Vargas-Maya NI, Padilla-Vaca F, Romero-González OE, Rosales-Castillo EAS, Rangel-Serrano Á, Arias-Negrete S, Franco B. Refinement of the Griess method for measuring nitrite in biological samples. J Microbiol Methods 2021; 187:106260. [PMID: 34090997 DOI: 10.1016/j.mimet.2021.106260] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) is a reactive gas that participates in many physiological as well as pathogenic processes in higher eukaryotic organisms. Inflammatory responses elicit higher levels of this molecule. Nevertheless, there are many technical challenges to accurately measure the amount of NO produced. Previously, a method using whole-cell extracts from Escherichia coli was able to generate the conversion of nitrate into nitrite to measure the amount of nitrate or indirectly the NO present in a sample using the Griess reaction. Here we present an improvement to this method, by using E. coli whole-cell extracts lacking one of the two nitrite reductases, rendered a more precise measurement when coupled with the Griess reaction than our previous report. Alternatively, osmotic stress showed to downregulate the expression of both nitrate reductases, which can be an alternative for indirect nitrate and NO reduction. The results presented here show an easy method for nitrate and NO reduction to nitrite and avoid the reconversion to nitrate, also as an alternative for other analytical methods that are based on cadmium, purified nitrate reductase enzyme, or salicylic methods to reduce NO. This method can be widely used for measuring NO production in living organisms, soil, and other relevant microbiological samples.
Collapse
Affiliation(s)
- Naurú Idalia Vargas-Maya
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N 36050, Guanajuato, Gto, Mexico
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N 36050, Guanajuato, Gto, Mexico
| | - Oscar E Romero-González
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N 36050, Guanajuato, Gto, Mexico
| | | | - Ángeles Rangel-Serrano
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N 36050, Guanajuato, Gto, Mexico
| | - Sergio Arias-Negrete
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N 36050, Guanajuato, Gto, Mexico.
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N 36050, Guanajuato, Gto, Mexico.
| |
Collapse
|
39
|
Porrini C, Guérin C, Tran SL, Dervyn R, Nicolas P, Ramarao N. Implication of a Key Region of Six Bacillus cereus Genes Involved in Siroheme Synthesis, Nitrite Reductase Production and Iron Cluster Repair in the Bacterial Response to Nitric Oxide Stress. Int J Mol Sci 2021; 22:ijms22105079. [PMID: 34064887 PMCID: PMC8151001 DOI: 10.3390/ijms22105079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Bacterial response to nitric oxide (NO) is of major importance for bacterial survival. NO stress is a main actor of the eukaryotic immune response and several pathogenic bacteria have developed means for detoxification and repair of the damages caused by NO. However, bacterial mechanisms of NO resistance by Gram-positive bacteria are poorly described. In the opportunistic foodborne pathogen Bacillus cereus, genome sequence analyses did not identify homologs to known NO reductases and transcriptional regulators, such as NsrR, which orchestrate the response to NO of other pathogenic or non-pathogenic bacteria. Using a transcriptomic approach, we investigated the adaptation of B. cereus to NO stress. A cluster of 6 genes was identified to be strongly up-regulated in the early phase of the response. This cluster contains an iron-sulfur cluster repair enzyme, a nitrite reductase and three enzymes involved in siroheme biosynthesis. The expression pattern and close genetic localization suggest a functional link between these genes, which may play a pivotal role in the resistance of B. cereus to NO stress during infection.
Collapse
Affiliation(s)
- Constance Porrini
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (C.P.); (S.-L.T.); (R.D.)
| | - Cyprien Guérin
- MaIAGE, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (C.G.); (P.N.)
| | - Seav-Ly Tran
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (C.P.); (S.-L.T.); (R.D.)
| | - Rozenn Dervyn
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (C.P.); (S.-L.T.); (R.D.)
| | - Pierre Nicolas
- MaIAGE, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (C.G.); (P.N.)
| | - Nalini Ramarao
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (C.P.); (S.-L.T.); (R.D.)
- Correspondence:
| |
Collapse
|
40
|
Rhizobia: highways to NO. Biochem Soc Trans 2021; 49:495-505. [PMID: 33544133 DOI: 10.1042/bst20200989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/02/2023]
Abstract
The interaction between rhizobia and their legume host plants conduces to the formation of specialized root organs called nodules where rhizobia differentiate into bacteroids which fix atmospheric nitrogen to the benefit of the plant. This beneficial symbiosis is of importance in the context of sustainable agriculture as legumes do not require the addition of nitrogen fertilizer to grow. Interestingly, nitric oxide (NO) has been detected at various steps of the rhizobium-legume symbiosis where it has been shown to play multifaceted roles. Both bacterial and plant partners are involved in NO synthesis in nodules. To better understand the role of NO, and in particular the role of bacterial NO, at all steps of rhizobia-legumes interaction, the enzymatic sources of NO have to be elucidated. In this review, we discuss different enzymatic reactions by which rhizobia may potentially produce NO. We argue that there is most probably no NO synthase activity in rhizobia, and that instead the NO2- reductase nirK, which is part of the denitrification pathway, is the main bacterial source of NO. The nitrate assimilation pathway might contribute to NO production but only when denitrification is active. The different approaches to measure NO in rhizobia are also addressed.
Collapse
|
41
|
Updating NO •/HNO interconversion under physiological conditions: A biological implication overview. J Inorg Biochem 2020; 216:111333. [PMID: 33385637 DOI: 10.1016/j.jinorgbio.2020.111333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/13/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022]
Abstract
Azanone (HNO/NO-), also called nitroxyl, is a highly reactive compound whose biological role is still a matter of debate. A key issue that remains to be clarified regarding HNO and its biological activity is that of its endogenous formation. Given the overlap of the molecular targets and reactivity of nitric oxide (NO•) and HNO, its chemical biology was perceived to be similar to that of NO• as a biological signaling agent. However, despite their closely related reactivity, NO• and HNO's biochemical pathways are quite different. Moreover, the reduction of nitric oxide to azanone is possible but necessarily coupled to other reactions, which drive the reaction forward, overcoming the unfavorable thermodynamic barrier. The mechanism of this NO•/HNO interplay and its downstream effects in different contexts were studied recently, showing that more than fifteen moderate reducing agents react with NO• producing HNO. Particularly, it is known that the reaction between nitric oxide and hydrogen sulfide (H2S) produces HNO. However, this rate constant was not reported yet. In this work, firstly the NO•/H2S effective rate constant was measured as a function of the pH. Then, the implications of these chemical (non-enzymatic), biologically compatible, routes to endogenous HNO formation was discussed. There is no doubt that HNO could be (is?) a new endogenously produced messenger that mediates specific physiological responses, many of which were attributed yet to direct NO• effects.
Collapse
|
42
|
Rancan EA, Frota EI, de Freitas TMN, Jordani MC, Évora PRB, Castro-e-Silva O. Evaluation of Indigo carmine on hepatic ischemia and reperfusion injury. Acta Cir Bras 2020; 35:e202000901. [PMID: 32996998 PMCID: PMC7518224 DOI: 10.1590/s0102-865020200090000001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/01/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To evaluate the effects of treatment with Indigo Carmine (IC) on rat livers subjected to ischemia-reperfusion injury. METHODS The animals were subdivided into 4 groups: 1.SHAM group(SH) - saline; 2.SHAM group with IC-2mg/Kg(SHIC); 3.IR group - rats submitted to ischemia and reperfusion with saline(IR); 4.IR group with IC-2mg/Kg(IRIC). The IR protocol consists of liver exposure and administration of drug or saline intravenously, followed by 60 minutes of ischemia and 15 of reperfusion. Liver samples were collected for biochemical analysis. RESULTS State 3 of mitochondrial respiration showed a significant worsening of the IRIC group in relation to all others. State 4 showed a difference between IRIC and SHIC. The Respiratory Control Ratio showed statistical decrease in IR and IRIC versus Sham. The osmotic swelling showed significant difference between SHxIR; SHICxIRIC and SHxIRIC. There was a significant increase in ALT in the IRIC group in relation to all the others. Concerning the nitrate dosage, there was a decrease in the group treated with IC(IRxIRIC). There was no difference regarding the dosage of Malondialdehyde. CONCLUSION IC was not able to protect mitochondria from IR injury and proved to be a potentiating agent, acting in synergy with the IR injury promoting damage to the hepatocyte membranes.
Collapse
Affiliation(s)
- Eduardo Alexandre Rancan
- Graduate student, Faculdade de Medicina de Marília (FAMEMA), Marilia-SP, Brazil. Technical procedures; acquisition, analysis and interpretation of data, manuscript preparation
| | - Eloísa Ianes Frota
- Graduate student, Faculdade de Medicina de Marília (FAMEMA), Marilia-SP, Brazil. Technical procedures; acquisition, analysis and interpretation of data, manuscript preparation
| | - Tábata Marina Nóbrega de Freitas
- Graduate student, Faculdade de Medicina de Marília (FAMEMA), Marilia-SP, Brazil. Technical procedures; acquisition, analysis and interpretation of data, manuscript preparation
| | - Maria Cecília Jordani
- Master, Biochemistry, Division of Digestive Surgery, Department of Surgery and Anatomy, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirao Preto-SP, Brazil. Acquisition and interpretation of data, statistics analysis
| | - Paulo Roberto Barbosa Évora
- PhD, Full Professor, Division of Thoracic and Cardiovascular Surgery, Department of Surgery and Anatomy, FMRP-USP, Ribeirao Preto-SP, Brazil. Conception and design of the study, manuscript writing, critical revision
| | - Orlando Castro-e-Silva
- PhD, Full Professor, Surgery and Anatomy Department, FMRP-USP, Ribeirao Preto-SP, Brazil. Conception and design of the study, analysis and interpretation of data, manuscript writing, critical revision
| |
Collapse
|