1
|
Ding J, Dai Y, Zhang L, Wang Z, Zhang B, Guo J, Qi X, Lu D, Chang X, Wu C, Zhang J, Zhou Z. Identifying childhood pesticide exposure trajectories and critical window associated with behavioral problems at 10 years of age: Findings from SMBCS. ENVIRONMENT INTERNATIONAL 2024; 193:109079. [PMID: 39442318 DOI: 10.1016/j.envint.2024.109079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Pesticides may impact children's neurodevelopment. As children's metabolic function and neural plasticity change throughout their growth and development, the effects of pesticide exposure may also vary. OBJECTIVES We aimed to identify the trajectories of combined pesticide exposure during childhood, and to examine the associations of the exposure trajectories with children's neurobehavior at the age of 10. METHODS We involved repeated measurements of three pesticide metabolites [Pentachlorophenol (PCP), 3,5,6-Trichloro-2-pyridinol (TCPy), and Carbofuran phenol (CFP)], in urine samples collected from children in a cohort study at ages 1, 2, 3, 6, 7, 8, 9, and 10 years. The group-based multi-trajectory model (GBMT) and latent class analysis (LCA) were separately utilized to describe the distinct trajectories and patterns of pesticide mixture exposure during childhood. Meanwhile, the Strengths and Difficulties Questionnaire (SDQ) and attention deficit hyperactivity disorder (ADHD) Criteria of Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) list were applied to assess behavioral disorders in children. The associations between exposure trajectories and behavioral problem scores were then examined. RESULTS The GBMT model delineated three distinct trajectories of combined pesticide exposure among children: consistently low, higher levels in early childhood transitioning to lower levels during pre-school age, and lower levels in early childhood followed by higher levels in the middle childhood. The LCA model identified three similar longitudinal exposure patterns. Further, the children in the second trajectory group identified by GBMT, characterized by higher early childhood exposure levels, exhibited significantly elevated hyperactivity/inattention scores of the SDQ compared to the other two groups (β = 0.46, 95 %CI: 0.11, 0.81; β = 0.44, 95 %CI: 0.02, 0.86). CONCLUSIONS Our study revealed that exposure to pesticides during early childhood (especially before the age of two), rather than other age periods, was linked to hyperactivity/inattention problems in children aged 10 years. We also provided a novel perspective on characterizing the fluctuation in repeated measurements of multiple environmental chemicals and identifying the potential critical windows.
Collapse
Affiliation(s)
- Jiayun Ding
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Yiming Dai
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Lei Zhang
- Shanghai Municipal Center for Disease Control and Prevention, No. 1380 Zhongshan West Road, Shanghai, 200336, China
| | - Zheng Wang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Boya Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou, 310051, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention, No. 1380 Zhongshan West Road, Shanghai, 200336, China
| | - Xiuli Chang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
2
|
Alaoui A, Christ F, Silva V, Vested A, Schlünssen V, González N, Gai L, Abrantes N, Baldi I, Bureau M, Harkes P, Norgaard T, Navarro I, de la Torre A, Sanz P, Martínez MÁ, Hofman J, Pasković I, Pasković MP, Glavan M, Lwanga EH, Aparicio VC, Campos I, Alcon F, Contreras J, Mandrioli D, Sgargi D, Scheepers PTJ, Ritsema C, Geissen V. Identifying pesticides of high concern for ecosystem, plant, animal, and human health: A comprehensive field study across Europe and Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174671. [PMID: 39004368 DOI: 10.1016/j.scitotenv.2024.174671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
The widespread and excessive use of pesticides in modern agricultural practices has caused pesticide contamination of the environment, animals, and humans, with confirmed serious health consequences. This study aimed to identify the 20 most critical substances based on an analysis of detection frequency (DF) and median concentrations (MC) across environmental and biological matrices. A sampling campaign was conducted across 10 case study sites in Europe and 1 in Argentina, each encompassing conventional and organic farming systems. We analysed 209 active substances in a total of 4609 samples. All substances ranked among the 20 most critical were detected in silicon wristbands worn by humans and animals and indoor dust from both farming systems. Five of them were detected in all environmental matrices. Overall, higher values of DF and MC, including in the blood plasma of animals and humans, were recorded in samples of conventional compared to organic farms. The differences between farming systems were greater in the environmental samples and less in animal and human samples. Ten substances were detected in animal blood plasma from conventional farms and eight in animal blood plasma from organic farms. Two of those, detected in both farming systems, are classified as hazardous for mammals (acute). Five substances detected in animal blood plasma from organic farms and seven detected in animal blood plasma from conventional farms are classified as hazardous for mammals (dietary). Three substances detected in human blood plasma are classified as carcinogens. Seven of the substances detected in human blood plasma are classified as endocrine disruptors. Six substances, of which five were detected in human blood plasma, are hazardous for reproduction/development. Efforts are needed to elucidate the unknown effects of mixtures, and it is crucial that such research also considers biocides and banned substances, which constitute a baseline of contamination that adds to the effect of substances used in agriculture.
Collapse
Affiliation(s)
- Abdallah Alaoui
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.
| | - Florian Christ
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | - Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Anne Vested
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Vivi Schlünssen
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Lingtong Gai
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Nelson Abrantes
- CESAM and Department of Biology, University of Aveiro, Portugal
| | - Isabelle Baldi
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
| | - Mathilde Bureau
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Trine Norgaard
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - Irene Navarro
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Adrián de la Torre
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Paloma Sanz
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - María Ángeles Martínez
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Igor Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Huguesa 8, 52440 Poreč, Croatia
| | - Marija Polić Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Huguesa 8, 52440 Poreč, Croatia
| | - Matjaž Glavan
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Esperanza Huerta Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Isabel Campos
- CESAM and Department of Environment and Planning, University of Aveiro, Portugal
| | - Francisco Alcon
- Agricultural Engineering School, Universidad Politécnica de Cartagena, Spain
| | - Josefa Contreras
- Agricultural Engineering School, Universidad Politécnica de Cartagena, Spain
| | | | - Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Italy
| | - Paul T J Scheepers
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Coen Ritsema
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
3
|
Arnold TJ, Quandt SA, Arcury TA, Talton JW, Sandberg JC, Daniel SS. Salivary Cotinine Levels of Hired Latino Youth Tobacco Workers in North Carolina. J Agromedicine 2024; 29:499-503. [PMID: 38333934 PMCID: PMC11127789 DOI: 10.1080/1059924x.2024.2315934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
BACKGROUND Limited research has examined the health implications for youth working in United States tobacco production. Agricultural labor is hazardous, yet youth are legally permitted to be hired as farmworkers. Many youth farmworkers are members of the vulnerable Latino farmworker community. In North Carolina, youth work in many agricultural crops including tobacco. METHODS A sample of 152 Latino youth farmworkers ages 12-20 years (M = 16.7, SD = 2.0) across 19 North Carolina counties completed a cross-sectional survey and provided saliva samples in 2019. Surveys detailed personal and work characteristics. Saliva samples were analyzed for salivary cotinine and reported in geometric means (ng/ml). Bivariate associations were used to delineate the relationship between personal and work characteristics with salivary cotinine levels. RESULTS Cotinine levels ranged from 0.05 to 313.5 ng/ml. Older age and working in tobacco were significantly associated with higher salivary cotinine levels. For every one year increase in age, there was a 31% increase in mean salivary cotinine levels (b = 1.31; 95% CI = [1.15-1.50]; p < .0001). Youth tobacco workers' (n = 15) salivary cotinine levels were 890% higher than those not working in tobacco (n = 137) (13.26, 95% CI = [5.95-29.56] ng/ml compared to 1.34, 95% CI = [1.03-1.75] ng/ml (p < .0001)). CONCLUSIONS Latino youth tobacco workers are exposed to nicotine through their work. This exposure presents serious risk of Green Tobacco Sickness (acute nicotine poisoning) and other health concerns given the growing evidence for risk of epigenetic changes negatively affecting long-term cognitive function. Policy is urgently needed to protect this vulnerable population of adolescent workers.
Collapse
Affiliation(s)
- Taylor J Arnold
- Department of Family and Community Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Sara A Quandt
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Thomas A Arcury
- Department of Family and Community Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Jennifer W Talton
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Joanne C Sandberg
- Department of Family and Community Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Stephanie S Daniel
- Department of Family and Community Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
4
|
Tortora F, Guerrera V, Lettieri G, Febbraio F, Piscopo M. Prediction of Pesticide Interactions with Proteins Involved in Human Reproduction by Using a Virtual Screening Approach: A Case Study of Famoxadone Binding CRBP-III and Izumo. Int J Mol Sci 2024; 25:5790. [PMID: 38891976 PMCID: PMC11171824 DOI: 10.3390/ijms25115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, the awareness that pesticides can have other effects apart from generic toxicity is growing. In particular, several pieces of evidence highlight their influence on human fertility. In this study, we investigated, by a virtual screening approach, the binding between pesticides and proteins present in human gametes or associated with reproduction, in order to identify new interactions that could affect human fertility. To this aim, we prepared ligand (pesticides) and receptor (proteins) 3D structure datasets from online structural databases (such as PubChem and RCSB), and performed a virtual screening analysis using Autodock Vina. In the comparison of the predicted interactions, we found that famoxadone was predicted to bind Cellular Retinol Binding Protein-III in the retinol-binding site with a better minimum energy value of -10.4 Kcal/mol and an RMSD of 3.77 with respect to retinol (-7.1 Kcal/mol). In addition to a similar network of interactions, famoxadone binding is more stabilized by additional hydrophobic patches including L20, V29, A33, F57, L117, and L118 amino acid residues and hydrogen bonds with Y19 and K40. These results support a possible competitive effect of famoxadone on retinol binding with impacts on the ability of developing the cardiac tissue, in accordance with the literature data on zebrafish embryos. Moreover, famoxadone binds, with a minimum energy value between -8.3 and -8.0 Kcal/mol, to the IZUMO Sperm-Egg Fusion Protein, interacting with a network of polar and hydrophobic amino acid residues in the cavity between the 4HB and Ig-like domains. This binding is more stabilized by a predicted hydrogen bond with the N185 residue of the protein. A hindrance in this position can probably affect the conformational change for JUNO binding, avoiding the gamete membrane fusion to form the zygote. This work opens new interesting perspectives of study on the effects of pesticides on fertility, extending the knowledge to other typologies of interaction which can affect different steps of the reproductive process.
Collapse
Affiliation(s)
- Fabiana Tortora
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy;
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Valentina Guerrera
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy (M.P.)
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy (M.P.)
| |
Collapse
|
5
|
Ladeira C, Møller P, Giovannelli L, Gajski G, Haveric A, Bankoglu EE, Azqueta A, Gerić M, Stopper H, Cabêda J, Tonin FS, Collins A. The Comet Assay as a Tool in Human Biomonitoring Studies of Environmental and Occupational Exposure to Chemicals-A Systematic Scoping Review. TOXICS 2024; 12:270. [PMID: 38668493 PMCID: PMC11054096 DOI: 10.3390/toxics12040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
Biomonitoring of human populations exposed to chemical substances that can act as potential mutagens or carcinogens, may enable the detection of damage and early disease prevention. In recent years, the comet assay has become an important tool for assessing DNA damage, both in environmental and occupational exposure contexts. To evidence the role of the comet assay in human biomonitoring, we have analysed original research studies of environmental or occupational exposure that used the comet assay in their assessments, following the PRISMA-ScR method (preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews). Groups of chemicals were designated according to a broad classification, and the results obtained from over 300 original studies (n = 123 on air pollutants, n = 14 on anaesthetics, n = 18 on antineoplastic drugs, n = 57 on heavy metals, n = 59 on pesticides, and n = 49 on solvents) showed overall higher values of DNA strand breaks in the exposed subjects in comparison with the unexposed. In summary, our systematic scoping review strengthens the relevance of the use of the comet assay in assessing DNA damage in human biomonitoring studies.
Collapse
Affiliation(s)
- Carina Ladeira
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, 1172 Copenhagen, Denmark;
| | - Lisa Giovannelli
- Department NEUROFARBA, Section Pharmacology and Toxicology, University of Florence, 50121 Florence, Italy;
| | - Goran Gajski
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (G.G.); (M.G.)
| | - Anja Haveric
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany; (E.E.B.); (H.S.)
| | - Amaya Azqueta
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain;
| | - Marko Gerić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (G.G.); (M.G.)
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany; (E.E.B.); (H.S.)
| | - José Cabêda
- Guarda Nacional Republicana, Destacamento Territorial de Vila Franca de Xira, Núcleo de Proteção Ambiental, 1500-124 Lisbon, Portugal;
| | - Fernanda S. Tonin
- Pharmaceutical Care Research Group, Universidad de Granada, 18012 Granada, Spain;
| | - Andrew Collins
- Department of Nutrition, University of Oslo, 0316 Oslo, Norway;
| |
Collapse
|
6
|
Lira GVDAG, da Silva GAP, Bezerra PGDM, Sarinho ESC. Avoidance of Inhaled Pollutants and Irritants in Asthma from a Salutogenic Perspective. J Asthma Allergy 2024; 17:237-250. [PMID: 38524100 PMCID: PMC10960548 DOI: 10.2147/jaa.s445864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/19/2023] [Indexed: 03/26/2024] Open
Abstract
Much is known about the role of aeroallergens in asthma, but little is described about the damage caused by inhaled pollutants and irritants to the respiratory epithelium. In this context, the most frequent pollutants and irritants inhaled in the home environment were identified, describing the possible repercussions that may occur in the respiratory tract of the pediatric population with asthma and highlighting the role of the caregiver in environmental control through a salutogenic perspective. Searches were carried out in the MEDLINE/PubMed, Web of Science, Lilacs and Scopus databases for articles considered relevant for the theoretical foundation of this integrative review, in which interactions between exposure to pollutants and inhaled irritants and lung involvement. Articles published in the last 10 years that used the following descriptors were considered: air pollution; tobacco; particulate matter; disinfectants; hydrocarbons, fluorinated; odorants; chloramines; pesticide; asthma; and beyond Antonovsky's sense of coherence. Exposure to smoke and some substances found in cleaning products, such as benzalkonium chloride, ethylenediaminetetraacetic acid and monoethanolamine, offer potential risks for sensitization and exacerbation of asthma. The vast majority of the seven main inhaled products investigated provoke irritative inflammatory reactions and oxidative imbalance in the respiratory epithelium. In turn, the caregiver's role is essential in health promotion and the clinical control of paediatric asthma. From a salutogenic point of view, pollutants and irritants inhaled at home should be carefully investigated in the clinical history so that strategies to remove or reduce exposures can be used by caregivers of children and adolescents with asthma.
Collapse
Affiliation(s)
- Georgia Véras de Araújo Gueiros Lira
- Allergy and Immunology Research Centre, Federal University of Pernambuco, Recife, PE, Brazil
- Department of Paediatrics, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | - Emanuel S C Sarinho
- Allergy and Immunology Research Centre, Federal University of Pernambuco, Recife, PE, Brazil
- Department of Paediatrics, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
7
|
Pan S, Yu W, Zhang J, Guo Y, Qiao X, Xu P, Zhai Y. Environmental chemical TCPOBOP exposure alters milk liposomes and offspring growth trajectories in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116061. [PMID: 38340598 DOI: 10.1016/j.ecoenv.2024.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Exposure to environmental endocrine disruptors (EEDs) has become a global health concern, and EEDs are known to be potent inducers of constitutive androstane receptor (CAR). 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP, hereafter abbreviated as TC), a specific ligand for CAR, has been considered as a potential EED. Here, we analyzed the effect of TC exposure to female mice on the histological morphology of their alveoli in the basic unit of lactation. We quantified differences in the milk metabolome of the control and TC-exposed group while assessing the correlations between metabolites and neonatal growth. Mammary histological results showed that TC exposure inhibited alveolar development. Based on the milk metabolomic data, we identified a total of 1505 differential metabolites in both the positive and negative ion mode, which indicated that TC exposure affected milk composition. As expected, the differential metabolites were significantly enriched in the drug metabolism pathway. Further analyses revealed that differential metabolites were significantly enriched in multiple lipid metabolic pathways, such as fatty acid biosynthesis, suggesting that most differential metabolites were concentrated in lipids. Simultaneously, a quantitative analysis showed that TC exposure led to a decrease in the relative abundance of total milk lipids, affecting the proportion of some lipid subclasses. Notably, a portion of lipid metabolites were associated with neonatal growth. Taken together, these findings suggest that TC exposure may affect milk lipidomes, resulting in the inability of mothers to provide adequate nutrients, ultimately affecting the growth and health of their offspring.
Collapse
Affiliation(s)
- Shijia Pan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Wen Yu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jia Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yuan Guo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Xiaoxiao Qiao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Pengfei Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
8
|
Khaled R, Elabed S, Masarani A, Almulla A, Almheiri S, Koniyath R, Semerjian L, Abass K. Human biomonitoring of environmental contaminants in Gulf Countries - current status and future directions. ENVIRONMENTAL RESEARCH 2023; 236:116650. [PMID: 37479209 DOI: 10.1016/j.envres.2023.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND This systematic review aimed to evaluate the status of Human Biomonitoring (HBM) in the Gulf Cooperation Council (GCC) region and provide recommendations for future research, considering the increased environmental contaminants that pose a threat to human health in this rapidly industrializing area. METHODS A thorough search was performed in PubMed and Web of Science databases up to February 2023 to identify biomonitoring studies on human exposure and levels in the GCC region. Two independent reviewers assessed study eligibility, conducted data extraction and risk of bias assessment. The NIH Quality Assessment Tools and PRISMA guidelines were utilized for quality evaluation and reporting of results. RESULTS A total of 38 eligible articles were included in this systematic review out of 662 articles screened. The majority of the publications were from Saudi Arabia (n = 24) and Kuwait (n = 10), while limited representation was found from Qatar (n = 3) and the UAE (n = 1). No articles were identified from Oman and Bahrain. The studies focused on metals, organohalogen compounds, pesticides, polycyclic aromatic hydrocarbons, and phthalates. The findings revealed elevated levels of metals and established correlations between metal exposure and adverse health effects, including infant neurodevelopmental issues, vitamin D deficiency, and oxidative stress. The presence of organohalogen compounds and pesticides was prevalent in the GCC region, with significant associations between exposure to these compounds and negative health outcomes. Notably, high levels of perchlorate were observed in the Kuwaiti population, and a study from Saudi Arabia found an association between per- and polyfluorinated substances and increased odds of osteoporosis. CONCLUSIONS This review emphasizes the need to address environmental health challenges in the GCC region through improved HBM research methods and strategies. Implementing biomonitoring programs, conducting cohort studies, investing in tools and expertise, promoting collaboration, and engaging the community are crucial for reliable HBM data in the GCC.
Collapse
Affiliation(s)
- Raghad Khaled
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Shahd Elabed
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Asmaa Masarani
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Anfal Almulla
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Shamsa Almheiri
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Rinsha Koniyath
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Lucy Semerjian
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Khaled Abass
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates; Sharjah Institute for Medical Research (SIMR), University of Sharjah, United Arab Emirates; Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Finland.
| |
Collapse
|
9
|
Arnold TJ, Arcury TA, Quandt SA, Sandberg JC, Talton JW, Daniel SS. Understanding Latinx Child Farmworkers' Reasons for Working: A Mixed Methods Approach. JOURNAL OF ADOLESCENT RESEARCH 2023; 38:1142-1176. [PMID: 38235371 PMCID: PMC10794015 DOI: 10.1177/07435584221144956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Agricultural labor is extremely hazardous, yet young children are legally permitted to work on farms. This paper contextualizes and describes Latinx hired child farmworkers’ stated reasons for working. We conducted a mixed-methods study using in-depth interviews ( n = 30) and survey interviews ( n = 202) with Latinx child farmworkers aged 10 to 17 in North Carolina. Our qualitative thematic analysis identified children’s salient reasons for working, including supporting family, contextual factors that lead to farm work, and occupying summer time. Statistical analysis showed that children’s primary reasons for working included buying clothes (91.1%) and school supplies (64.7%), with few differences by gender, age, or other characteristics. The findings demonstrate that most Latinx children view farm work as a necessary but temporary experience that financially supports their families. We discuss the implications for protecting Latinx child workers by reducing their structural vulnerability in order to facilitate healthy development.
Collapse
Affiliation(s)
- Taylor J. Arnold
- Department of Family and Community Medicine, Wake Forest University School of Medicine
| | - Thomas A. Arcury
- Department of Family and Community Medicine, Wake Forest University School of Medicine
| | - Sara A. Quandt
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine
| | - Joanne C. Sandberg
- Department of Family and Community Medicine, Wake Forest University School of Medicine
| | - Jennifer W. Talton
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine
| | - Stephanie S. Daniel
- Department of Family and Community Medicine, Wake Forest University School of Medicine
| |
Collapse
|
10
|
Akgöl J, Kanat Pektaş M. Investigation of the Relationship between Spontaneous Abortion, Serum Pesticides, and Polychlorinated Biphenyl Levels. TOXICS 2023; 11:884. [PMID: 37999536 PMCID: PMC10675613 DOI: 10.3390/toxics11110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Occupational and environmental chemical exposure have been associated with adverse reproductive consequences. This study investigates the relationship between spontaneous abortion and blood pesticide and polychlorinated biphenyl (PCB) levels. A survey was conducted, and blood samples were collected from 200 patients, consisting of 100 cases with spontaneous abortion and 100 cases with normal deliveries. A total of 150 different pesticides, including organophosphates, organochlorines, carbamates, and pyrethroids, were screened in the collected blood samples and analyzed quantitatively using Tandem mass spectrometry-specifically in combination with liquid chromatography and gas chromatography-tandem mass spectrometry methods. Eight types of PCBs were analyzed with the gas chromatography-tandem mass spectrometry method. The groups were compared based on these analyses. The mean age of the participants was 28.09 ± 4.94 years. In 59% of the spontaneous abortion group, 5.05 ± 1.97 chemicals were detected in different amounts. (p < 0.05). Analysis of the samples identified the presence of β-Hexachlorocyclohexane (β-HCH), delta-hexachlorocyclohexane (δ HCH), Hexachlorobenzene (HCB), Pentachlorobiphenyl-28 (PCB-28), Pentachlorobiphenyl-52 (PCB-52), o,p'-Dichlorodiphenyldichloroethylene (o,p'-DDE), p,p'-Dichlorodiphenyldichloroethylene (p,p'DDE), o,p'-Dichlorodiphenyldichloroethane (o,p'-DDD), p,p'-Dichlorodiphenyldichloroethane (p,p'-DDD), Pentachlorobiphenyl-118 (PCB-118), Pentachlorobiphenyl-101 (PCB-101), Pentachlorobiphenyl-153 (PCB-153), Pentachlorobiphenyl-138 (PCB-138), Pentachlorobiphenyl-202 (PCB-202), Pentachlorobiphenyl-180 (PCB-180) as well as Fibronil, Buprimate, Acetoclor, Acemiprid, Pentimanthalin, and Triflokystrobin. The spontaneous abortion group had significantly higher exposure to PCB-101, PCB-52, PCB-138, and δ-HCH (p < 0.05). Women included in the study had high pesticide and PCB exposure rates. Many of the blood samples contained multiple pesticides with endocrine-disrupting effects. Higher exposure to organochlorine compounds in the serum was identified in the group with spontaneous abortions.
Collapse
Affiliation(s)
- Jale Akgöl
- Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey
| | - Mine Kanat Pektaş
- Department of Obstetrics and Gynecology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey;
| |
Collapse
|
11
|
Borowik A, Wyszkowska J, Zaborowska M, Kucharski J. Microbial Diversity and Enzyme Activity as Indicators of Permethrin-Exposed Soil Health. Molecules 2023; 28:4756. [PMID: 37375310 DOI: 10.3390/molecules28124756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Owing to their wide range of applications in the control of ticks and insects in horticulture, forestry, agriculture and food production, pyrethroids pose a significant threat to the environment, including a risk to human health. Hence, it is extremely important to gain a sound understanding of the response of plants and changes in the soil microbiome induced by permethrin. The purpose of this study has been to show the diversity of microorganisms, activity of soil enzymes and growth of Zea mays following the application of permethrin. This article presents the results of the identification of microorganisms with the NGS sequencing method, and of isolated colonies of microorganisms on selective microbiological substrates. Furthermore, the activity of several soil enzymes, such as dehydrogenases (Deh), urease (Ure), catalase (Cat), acid phosphatase (Pac), alkaline phosphatase (Pal), β-glucosidase (Glu) and arylsulfatase (Aryl), as well as the growth of Zea mays and its greenness indicators (SPAD), after 60 days of growth following the application of permethrin, were presented. The research results indicate that permethrin does not have a negative effect on the growth of plants. The metagenomic studies showed that the application of permethrin increases the abundance of Proteobacteria, but decreases the counts of Actinobacteria and Ascomycota. The application of permethrin raised to the highest degree the abundance of bacteria of the genera Cellulomonas, Kaistobacter, Pseudomonas, Rhodanobacter and fungi of the genera Penicillium, Humicola, Iodophanus, Meyerozyma. It has been determined that permethrin stimulates the multiplication of organotrophic bacteria and actinomycetes, decreases the counts of fungi and depresses the activity of all soil enzymes in unseeded soil. Zea mays is able to mitigate the effect of permethrin and can therefore be used as an effective phytoremediation plant.
Collapse
Affiliation(s)
- Agata Borowik
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Magdalena Zaborowska
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jan Kucharski
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
12
|
Drakulovski P, Krasteva D, Bellet V, Randazzo S, Roger F, Pottier C, Bertout S. Exposure of Cryptococcus neoformans to Seven Commonly Used Agricultural Azole Fungicides Induces Resistance to Fluconazole as Well as Cross-Resistance to Voriconazole, Posaconazole, Itraconazole and Isavuconazole. Pathogens 2023; 12:pathogens12050662. [PMID: 37242332 DOI: 10.3390/pathogens12050662] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Cross-resistance to medical azoles by exposure to azole pesticides is well documented for Aspergillus family fungi but is poorly evaluated for other environmental pathogen fungi, particularly for yeasts belonging to the Cryptococcus neoformans/Cryptococcus gattii species complexes. METHODS One thousand C. neoformans yeast were exposed to various concentrations of seven different commonly used azole pesticides. Clones surviving exposure were picked randomly, and their minimal inhibitory concentrations (MICs) of fluconazole, voriconazole, posaconazole, itraconazole and isavuconazole were assessed. RESULTS Depending on the pesticide used for exposure, up to 13.3% of selected Cryptococcus colonies showed a phenotype of resistance to fluconazole, and among them, several showed cross-resistance to another or several other medical azoles. Molecular mechanisms involved in the resistance setups seem to be dependent on ERG11 and AFR1 gene overexpression. CONCLUSION Exposure to any of the seven azole pesticides tested is capable of increasing the MIC of fluconazole in C. neoformans, including up to the level of the fluconazole-resistant phenotype, as well as generating cross-resistance to other medical azoles in some cases.
Collapse
Affiliation(s)
- Pascal Drakulovski
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| | - Donika Krasteva
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| | - Virginie Bellet
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| | - Sylvie Randazzo
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| | - Frédéric Roger
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| | - Cyrille Pottier
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| | - Sébastien Bertout
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| |
Collapse
|
13
|
Prissel CM, Grossardt BR, Klinger GS, St. Sauver JL, Rocca WA. Integrating Environmental Data with Medical Data in a Records-Linkage System to Explore Groundwater Nitrogen Levels and Child Health Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5116. [PMID: 36982025 PMCID: PMC10049688 DOI: 10.3390/ijerph20065116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Background: The Rochester Epidemiology Project (REP) medical records-linkage system offers a unique opportunity to integrate medical and residency data with existing environmental data, to estimate individual-level exposures. Our primary aim was to provide an archetype of this integration. Our secondary aim was to explore the association between groundwater inorganic nitrogen concentration and adverse child and adolescent health outcomes. Methods: We conducted a nested case-control study in children, aged seven to eighteen, from six counties of southeastern Minnesota. Groundwater inorganic nitrogen concentration data were interpolated, to estimate exposure across our study region. Residency data were then overlaid, to estimate individual-level exposure for our entire study population (n = 29,270). Clinical classification software sets of diagnostic codes were used to determine the presence of 21 clinical conditions. Regression models were adjusted for age, sex, race, and rurality. Results: The analyses support further investigation of associations between nitrogen concentration and chronic obstructive pulmonary disease and bronchiectasis (OR: 2.38, CI: 1.64-3.46) among boys and girls, thyroid disorders (OR: 1.44, CI: 1.05-1.99) and suicide and intentional self-inflicted injury (OR: 1.37, CI: >1.00-1.87) among girls, and attention deficit conduct and disruptive behavior disorders (OR: 1.34, CI: 1.24-1.46) among boys. Conclusions: Investigators with environmental health research questions should leverage the well-enumerated population and residency data in the REP.
Collapse
Affiliation(s)
- Christine M. Prissel
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brandon R. Grossardt
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory S. Klinger
- Water Resources Center, University of Minnesota Extension, Minneapolis, MN 55455, USA
| | - Jennifer L. St. Sauver
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
- The Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN 55905, USA
| | - Walter A. Rocca
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
- Women’s Health Research Center, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Bitencourt de Morais Valentim JM, Fagundes TR, Okamoto Ferreira M, Lonardoni Micheletti P, Broto Oliveira GE, Cremer Souza M, Geovana Leite Vacario B, da Silva JC, Scandolara TB, Gaboardi SC, Zanetti Pessoa Candiotto L, Mara Serpeloni J, Rodrigues Ferreira Seiva F, Panis C. Monitoring residues of pesticides in food in Brazil: A multiscale analysis of the main contaminants, dietary cancer risk estimative and mechanisms associated. Front Public Health 2023; 11:1130893. [PMID: 36908412 PMCID: PMC9992878 DOI: 10.3389/fpubh.2023.1130893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Pesticides pose a risk for cancer development and progression. People are continuously exposed to such substances by several routes, including daily intake of contaminated food and water, especially in countries that are highly pesticide consumers and have very permissive legislation about pesticide contamination as Brazil. This work investigated the relationship among pesticides, food contamination, and dietary cancer risk. Methods Analyzed two social reports from the Brazilian Government: the Program for Analysis of Residues of Pesticides in Food (PARA) and The National Program for Control of Waste and Contaminants (PNCRC). Results and discussion First, we characterized the main pesticide residues detected over the maximum limits allowed by legislation or those prohibited for use in food samples analyzed across the country. Based on this list, we estimated the dietary cancer risks for some of the selected pesticides. Finally, we searched for data about dietary cancer risks and carcinogenic mechanisms of each pesticide. We also provided a critical analysis concerning the pesticide scenario in Brazil, aiming to discuss the food contamination levels observed from a geographical, political, and public health perspective. Exposures to pesticides in Brazil violate a range of human rights when food and water for human consumption are contaminated.
Collapse
Affiliation(s)
| | - Tatiane Renata Fagundes
- Department of Biological Sciences, Universidade Estadual do Norte do Paraná (UENP), Jacarezinho, Brazil
| | - Mariane Okamoto Ferreira
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Blumenau, Brazil
| | | | | | - Milena Cremer Souza
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | | | | | - Shaiane Carla Gaboardi
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Blumenau, Brazil
- Instituto Federal Catarinense, Blumenau, Brazil
| | | | - Juliana Mara Serpeloni
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
- Department of Biological Sciences, Universidade Estadual do Norte do Paraná (UENP), Jacarezinho, Brazil
| | - Carolina Panis
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Blumenau, Brazil
| |
Collapse
|
15
|
De Luca V, Mandrich L, Manco G. Development of a Qualitative Test to Detect the Presence of Organophosphate Pesticides on Fruits and Vegetables. Life (Basel) 2023; 13:life13020490. [PMID: 36836850 PMCID: PMC9958579 DOI: 10.3390/life13020490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND In recent decades, the use of pesticides in agriculture has increased at a fast pace, highlighting safety problems for the environment and human health, which in turn has made it necessary to develop new detection and decontamination systems for pesticides. METHODS A new qualitative test capable of detecting the presence of pesticides on fruits and vegetables by using thermostable enzymes was discovered, and the test was carried out on apples and aubergines. The contaminating pesticides were extracted from fruits with acetonitrile and analyzed with a biosensor system based on the thermostable esterase EST2 immobilized on a nitrocellulose filter. This enzyme is irreversibly inhibited mainly in the presence of organophosphates pesticides. Therefore, by observing esterase activity inhibition, we revealed the presence of residual pesticides on the fruits and vegetables. RESULTS By analyzing the rate of esterase activity inhibition, we predicted that residual pesticides are present on the surface of the fruits. When we cleaned the fruits by washing them in the presence of the phosphotriesterase SsoPox before the detection of the esterase activity on filters, we observed a full recovery of the activity for apples and 30% for aubergines, indicating that the enzymatic decontamination of organophosphates pesticides took place. CONCLUSIONS The reported method permitted us to assess the pesticides present on the vegetables and their decontamination.
Collapse
Affiliation(s)
- Valentina De Luca
- Institute of Experimental Endocrinology and Oncology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Luigi Mandrich
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
- Correspondence: (L.M.); (G.M.)
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
- Correspondence: (L.M.); (G.M.)
| |
Collapse
|
16
|
Che X, Huang Y, Zhong K, Jia K, Wei Y, Meng Y, Yuan W, Lu H. Thiophanate-methyl induces notochord toxicity by activating the PI3K-mTOR pathway in zebrafish (Danio rerio) embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120861. [PMID: 36563988 DOI: 10.1016/j.envpol.2022.120861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Thiophanate-methyl (TM), a typical pesticide widely used worldwide, was detected in rivers, soil, fruits, and vegetables. Thus, it is urgent to identify the potential harm of TM residual to non-target organisms and its molecular mechanisms. We used zebrafish (Danio rerio) in this study to evaluate TM toxicity. TM exposure induced developmental toxicity, including inhibited hatchability, reduced heart rates, restrained spontaneous locomotion, and decreased body length. Furthermore, we observed obvious toxicity in the notochord and detected increased expression levels of notochord-related genes (shha, col2a, and tbxta) by in situ hybridization in zebrafish larvae. In addition, calcein staining, alkaline phosphatase (ALP) activity analysis, and anatomic analysis indicated that TM induced notochord toxicity. We used rescue experiments to verify whether the PI3K-mTOR pathway involved in the notochord development was the cause of notochord abnormalities. Rapamycin and LY294002 (an inhibitor of PI3K) relieve notochord toxicity caused by TM, including morphological abnormalities. In summary, TM might induce notochord toxicity by activating the PI3K-mTOR pathway in zebrafish.
Collapse
Affiliation(s)
- Xiaofang Che
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Kun Jia
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - You Wei
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, China.
| |
Collapse
|
17
|
Cech R, Zaller JG, Lyssimachou A, Clausing P, Hertoge K, Linhart C. Pesticide drift mitigation measures appear to reduce contamination of non-agricultural areas, but hazards to humans and the environment remain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158814. [PMID: 36115411 DOI: 10.1016/j.scitotenv.2022.158814] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 05/12/2023]
Abstract
Pesticide drift onto non-agricultural land is a common problem in intensively farmed regions, and national action plans have been established across Europe to prevent it. Here, we analyzed official data on pesticide residues in grass samples collected over six years to determine whether implemented measures to reduce pesticide drift were effective. We used 306 samples collected between 2014 and 2020 on non-agricultural land in one of the most intensively managed apple and wine growing regions in Europe, the Autonomous Province of Bolzano-South Tyrol, Italy. Samples were analyzed for up to 314 substances by gas chromatography and mass spectrometry. Percentage of sites with multiple pesticides and number of pesticides decreased between 2014 and 2020. Fungicides were most often detected, with fluazinam found on 74 % and captan on 60 % of the contaminated sites (53 sites out of a total of 88 sites were contaminated). The most frequently found insecticide, phosmet, was detected in 49 % of the contaminated sites. Only one herbicide, oxadiazon, was detected in <1 % of the sites; glyphosate was not analyzed. The percentage of residues with human hazard properties increased significantly across years regarding reproductive toxicity (from 21 % of the detected substances in 2014 to 88 % in 2020) and specific target organ toxicity (0 % in 2014 to 21 % in 2020). Percentages of substances associated with endocrine-disruption (89 % of substances across years) or carcinogenic properties (45 % of substances across years) remained constant. The percentage of sites where concentrations in grass samples exceeded the surrogate maximum residue levels (MRLs) for lettuce also remained constant. Potential ecotoxicological hazards of detected residues regarding acute contact toxicity to honeybees remained high over the study years, while the acute and chronic toxicity to earthworms decreased. Our results suggest that while drift mitigation measures contributed some reduction in pesticide contamination, they were not sufficient to eliminate substantial risks to human health and the environment in nontarget areas.
Collapse
Affiliation(s)
- Ramona Cech
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria
| | - Johann G Zaller
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria.
| | - Angeliki Lyssimachou
- Health and Environment Alliance (HEAL), Rue de la Charité 22, B-1210 Bruxelles, Belgium
| | - Peter Clausing
- Pesticide Action Network Germany, Nernstweg 32, 22765 Hamburg, Germany
| | - Koen Hertoge
- Pesticide Action Network Europe, 67 Rue de la Pacification, 1000 Brussels, Belgium
| | - Caroline Linhart
- Pesticide Action Network Europe, 67 Rue de la Pacification, 1000 Brussels, Belgium
| |
Collapse
|
18
|
Andersen HR, Rambaud L, Riou M, Buekers J, Remy S, Berman T, Govarts E. Exposure Levels of Pyrethroids, Chlorpyrifos and Glyphosate in EU-An Overview of Human Biomonitoring Studies Published since 2000. TOXICS 2022; 10:789. [PMID: 36548622 PMCID: PMC9788618 DOI: 10.3390/toxics10120789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Currently used pesticides are rapidly metabolised and excreted, primarily in urine, and urinary concentrations of pesticides/metabolites are therefore useful biomarkers for the integrated exposure from all sources. Pyrethroid insecticides, the organophosphate insecticide chlorpyrifos, and the herbicide glyphosate, were among the prioritised substances in the HBM4EU project and comparable human biomonitoring (HBM)-data were obtained from the HBM4EU Aligned Studies. The aim of this review was to supplement these data by presenting additional HBM studies of the priority pesticides across the HBM4EU partner countries published since 2000. We identified relevant studies (44 for pyrethroids, 23 for chlorpyrifos, 24 for glyphosate) by literature search using PubMed and Web of Science. Most studies were from the Western and Southern part of the EU and data were lacking from more than half of the HBM4EU-partner countries. Many studies were regional with relatively small sample size and few studies address residential and occupational exposure. Variation in urine sampling, analytical methods, and reporting of the HBM-data hampered the comparability of the results across studies. Despite these shortcomings, a widespread exposure to these substances in the general EU population with marked geographical differences was indicated. The findings emphasise the need for harmonisation of methods and reporting in future studies as initiated during HBM4EU.
Collapse
Affiliation(s)
- Helle Raun Andersen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark (SDU), 5000 Odense, Denmark
| | - Loïc Rambaud
- Santé Publique France, Environmental and Occupational Health Division, 94410 Saint-Maurice, France
| | - Margaux Riou
- Santé Publique France, Environmental and Occupational Health Division, 94410 Saint-Maurice, France
| | - Jurgen Buekers
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Tamar Berman
- Israel Ministry of Health (MOH-IL), Jerusalem 9446724, Israel
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| |
Collapse
|
19
|
Zhang J, Li Z, Dai Y, Guo J, Qi X, Liu P, Lv S, Lu D, Liang W, Chang X, Cao Y, Wu C, Zhou Z. Urinary para-nitrophenol levels of pregnant women and cognitive and motor function of their children aged 2 years: Evidence from the SMBCS (China). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114051. [PMID: 36075123 DOI: 10.1016/j.ecoenv.2022.114051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Urinary para-nitrophenol (PNP), an exposure biomarker of ethyl parathion (EP) and methyl parathion (MP) pesticides, was still pervasively detected in the general population even after global restriction for years. And the concern whether there is an association of PNP level with child development of the nervous system is increasing. The current study aimed to evaluate the maternal urinary PNP concentrations during late pregnancy and the associations of PNP levels with cognitive and motor function of their children at the age of 2 years. METHODS 323 mother-child pairs from the Sheyang Mini Birth Cohort Study were included in the current study. Gas chromatography-tandem mass spectrometry was used to measure concentrations of PNP, the specific metabolite of EP and MP, in maternal urine samples during pregnancy. Developmental quotients (DQs) scores measured with Gesell Developmental Scales were employed to evaluate cognitive and motor function of children aged 2 years. Generalized linear models were performed to analyze the associations of PNP concentrations in pregnant women's urine samples with cognitive and motor function of their children. RESULTS Maternal PNP was detected in all urine samples with a median of 4.11 μg/L and a range from 0.57 μg/L to 109.13 μg/L, respectively. Maternal urinary PNP concentrations showed a negative trend with DQ of motor area [regression coefficient (β) = - 1.35; 95 % confidence interval (95 %CI): - 2.37, - 0.33; P < 0.01], and the children whose mothers were in the fourth quartile exposure group performed significantly worse compared to the reference group (β = - 1.11; 95 %CI: - 1.80, - 0.42; P < 0.01). As for average DQ score, children with their mothers' urinary PNP concentrations in the third quartile group had higher scores than those in the first quartile group (β = 0.39; 95 %CI: 0.03, 0.75; P = 0.04). In sex-stratified analyses, a negative trend between maternal urinary PNP concentrations and DQ scores in motor area of children was only observed in boys (β = - 1.62; 95 %CI: - 2.80, - 0.43; P < 0.01). Boys in the third quartile group had higher DQ average scores than those in the lowest quartile as reference (β = 0.53; 95 %CI: 0.02, 1.04; P = 0.04). CONCLUSIONS The mothers from SMBCS may be widely exposed to EP and/or MP, which were associated with the cognitive and motor function of their children aged 2 years in a sex-specific manner. Our results might provide epidemiology evidence on the potential effects of prenatal exposure to EP and/or MP on children's cognitive and motor function.
Collapse
Affiliation(s)
- Jiming Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Zeyu Li
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Yiming Dai
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jianqiu Guo
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Xiaojuan Qi
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No.3399 Binsheng Road, Hangzhou 310051, China
| | - Ping Liu
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Shenliang Lv
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention, No.1380 West Zhongshan Road, Shanghai 200336, China
| | - Weijiu Liang
- Shanghai Changning Center for Disease Control and Prevention, No.39 Yunwushan Road, Shanghai 200051, China
| | - Xiuli Chang
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro 70182, Sweden; Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Chunhua Wu
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory of Public Health Safety/NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
20
|
Zaller JG, Kruse-Plaß M, Schlechtriemen U, Gruber E, Peer M, Nadeem I, Formayer H, Hutter HP, Landler L. Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156012. [PMID: 35597361 PMCID: PMC7614392 DOI: 10.1016/j.scitotenv.2022.156012] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 05/12/2022] [Indexed: 05/05/2023]
Abstract
Little is known about (i) how numbers and concentrations of airborne pesticide residues are influenced by land use, interactions with meteorological parameters, or by substance-specific chemo-physical properties, and (ii) what potential toxicological hazards this could pose to non-target organisms including humans. We installed passive air samplers (polyurethane PUF and polyester PEF filter matrices) in 15 regions with different land uses in eastern Austria for up to 8 months. Samples were analyzed for 566 substances by gas-chromatography/mass-spectrometry. We analyzed relationships between frequency and concentrations of pesticides, land use, meteorological parameters, substance properties, and season. We found totally 67 pesticide active ingredients (24 herbicides, 30 fungicides, 13 insecticides) with 10-53 pesticides per site. Herbicides metolachlor, pendimethalin, prosulfocarb, terbuthylazine, and the fungicide HCB were found in all PUF samplers, and glyphosate in all PEF samplers; chlorpyrifos-ethyl was the most abundant insecticide found in 93% of the samplers. Highest concentrations showed the herbicide prosulfocarb (725 ± 1218 ng sample-1), the fungicide folpet (412 ± 465 ng sample-1), and the insecticide chlorpyrifos-ethyl (110 ± 98 ng sample-1). Pesticide numbers and concentrations increased with increasing proportions of arable land in the surroundings. However, pesticides were also found in two National Parks (10 and 33 pesticides) or a city center (17 pesticides). Pesticide numbers and concentrations changed between seasons and correlated with land use, temperature, radiation, and wind, but were unaffected by substance volatility. Potential ecotoxicological exposure of mammals, birds, earthworms, fish, and honeybees increased with increasing pesticide numbers and concentrations. Human toxicity potential of detected pesticides was high, with averaged 54% being acutely toxic, 39% reproduction toxic, 24% cancerogenic, and 10% endocrine disrupting. This widespread pesticide air pollution indicates that current environmental risk assessments, field application techniques, protective measures, and regulations are inadequate to protect the environment and humans from potentially harmful exposure.
Collapse
Affiliation(s)
- Johann G Zaller
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria.
| | - Maren Kruse-Plaß
- TIEM Integrated Environmental Monitoring, 95615 Marktredwitz, Germany
| | - Ulrich Schlechtriemen
- TIEM Integrated Environmental Monitoring, Hohenzollernstr. 20, 44135 Dortmund, Germany
| | - Edith Gruber
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria
| | - Maria Peer
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria
| | - Imran Nadeem
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Water, Atmosphere and Environment, Institute of Meteorology and Climatology, Peter-Jordan Straße 82, 1180 Vienna, Austria
| | - Herbert Formayer
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Water, Atmosphere and Environment, Institute of Meteorology and Climatology, Peter-Jordan Straße 82, 1180 Vienna, Austria
| | - Hans-Peter Hutter
- Department of Environmental Health, Center for Public Health, Medical University Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Lukas Landler
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria
| |
Collapse
|
21
|
Sarailoo M, Afshari S, Asghariazar V, Safarzadeh E, Dadkhah M. Cognitive Impairment and Neurodegenerative Diseases Development Associated with Organophosphate Pesticides Exposure: a Review Study. Neurotox Res 2022; 40:1624-1643. [PMID: 36066747 DOI: 10.1007/s12640-022-00552-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 07/27/2022] [Indexed: 10/14/2022]
Abstract
A significant body of literature emphasizes the role of insecticide, particularly organophosphates (OPs), as the major environmental factor in the etiology of neurodegenerative diseases. This review aims to study the relationship between OP insecticide exposure, cognitive impairment, and neurodegenerative disease development. Human populations, especially in developing countries, are frequently exposed to OPs due to their extensive applications. The involvement of various signaling pathways in OP neurotoxicity are reported, but the OP-induced cognitive impairment and link between OP exposure and the pathophysiology of neurodegenerative diseases are not clearly understood. In the present review, we have therefore aimed to come to new conclusions which may help to find protective and preventive strategies against OP neurotoxicity and may establish a possible link between organophosphate exposure, cognitive impairment, and OP-induced neurotoxicity. Moreover, we discuss the findings obtained from animal and human research providing some support for OP-induced cognitive impairment and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mehdi Sarailoo
- Students Research Committee, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Salva Afshari
- Students Research Committee, Pharmacy School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Masoomeh Dadkhah
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
22
|
Childhood socioeconomic status, healthy lifestyle, and colon cancer risk in a cohort of U.S. women. Prev Med 2022; 161:107097. [PMID: 35643370 PMCID: PMC9296544 DOI: 10.1016/j.ypmed.2022.107097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/06/2022] [Accepted: 05/22/2022] [Indexed: 11/23/2022]
Abstract
Colon cancer is the third most common cancer in the US. While the socioeconomic status -health gradient has been established, findings linking adult socioeconomic status to colon cancer incidence specifically are mixed. Considering childhood socioeconomic status (CSES) and relevant risk factors, including related lifestyle behaviors, may provide more insight. At baseline in 1976, women from the Nurses' Health Study reported CSES as defined by parents' occupation when participants were age 16. Lifestyle-related factors (i.e., physical activity, body mass index, diet, alcohol, and tobacco consumption) were self-reported in 1988 or 1990, and every 4 years thereafter until 2016. Cox regression models estimated hazards ratio (HR) and 95% confidence intervals (CIs) of adopting an unhealthy lifestyle (N = 22,507) and developing colon cancer (N = 100,921) between 1976 and 2016, separately, across parents' occupation levels. During follow-up, 2342 cases of colon cancer occurred. Compared to women whose parents were white collar workers, women whose parents were farmers had lower colon cancer risk (HR = 0.84; 95%CI: 0.72, 0.98), but no differences were evident for women whose parents were blue collar workers in models adjusting for age and familial history of colon cancer. Using the same comparison group, risk of adopting an unhealthy lifestyle over follow-up was not significantly different in women with farmer parents (HR = 0.96, 95% CI: 0.91, 1.02), while children of blue collar workers had slightly greater risk (HR = 1.07; 95%CI: 1.03, 1.12) in age-adjusted models. These findings suggest the impact of CSES on colon cancer risk is modest and varies across outcomes and occupational status.
Collapse
|
23
|
Liu Z, Chen D, Lyu B, Wu Z, Li J, Zhao Y, Wu Y. Occurrence of Phenylpyrazole and Diamide Insecticides in Lactating Women and Their Health Risks for Infants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4467-4474. [PMID: 35357189 DOI: 10.1021/acs.jafc.2c00824] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To investigate the exposure of infants to phenylpyrazole and diamide insecticides during lactation, we collected 3467 breast milk samples of lactating women from 100 cities of 24 provinces in China and prepared 100 pooled samples together city-by-city. Among phenylpyrazole insecticides, fipronil and its metabolites (63-100%) were widely detected in breast milk, with total detection concentrations ranging from 178 to 2947 ng/L (median: 921 ng/L). Among diamide insecticides, chlorantraniliprole and flubendiamide were detected in breast milk, but their detection frequencies (20-85%) and concentration levels (nondetected to 89.9 ng/L) were far lower than those of total fipronils. The average estimated daily intake of infants exposed to total fipronils through breast milk is 209 ng/kg-bw/day by upper-bound scenario evaluation, which is higher than the acceptable daily intake (200 ng/kg-bw/day). This study indicates that infants have far higher exposure levels to fipronil than adults, while exposure levels to other types of phenylpyrazoles and diamide insecticides are low.
Collapse
Affiliation(s)
- Zhibin Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
- Nanchang Key Laboratory of Detection and Control of Food Safety, Nanchang Inspection and Testing Center, Nanchang 330096, China
| | - Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Bing Lyu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Zeming Wu
- iPhenome Biotechnology (Yun Pu Kang) Inc., Dalian 116085, China
| | - Jingguang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yongning Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
24
|
Joseph N, Kolok AS. Assessment of Pediatric Cancer and Its Relationship to Environmental Contaminants: An Ecological Study in Idaho. GEOHEALTH 2022; 6:e2021GH000548. [PMID: 35310467 PMCID: PMC8917512 DOI: 10.1029/2021gh000548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 05/31/2023]
Abstract
The primary aim of this study was to determine the degree to which a multivariable principal component model based on several potentially carcinogenic metals and pesticides could explain the county-level pediatric cancer rates across Idaho. We contend that human exposure to environmental contaminants is one of the reasons for increased pediatric cancer incidence in the United States. Although several studies have been conducted to determine the relationship between environmental contaminants and carcinogenesis among children, research gaps exist in developing a meaningful association between them. For this study, pediatric cancer data was provided by the Cancer Data Registry of Idaho, concentrations of metals and metalloids in groundwater were collected from the Idaho Department of Water Resources, and pesticide use data were collected from the United States Geological Survey. Most environmental variables were significantly intercorrelated at an adjusted P-value <0.01 (97 out of 153 comparisons). Hence, a principal component analysis was employed to summarize those variables to a smaller number of components. An environmental burden index (EBI) was constructed using these principal components, which categorized the environmental burden profiles of counties into low, medium, and high. EBI was significantly associated with pediatric cancer incidence (P-value <0.05). The rate ratio of high EBI profile to low EBI profile for pediatric cancer incidence was estimated as 1.196, with lower and upper confidence intervals of 1.061 and 1.348, respectively. A model was also developed in the study using EBI to estimate the county-level pediatric cancer incidence in Idaho (Nash-Sutcliffe Efficiency = 0.97).
Collapse
Affiliation(s)
- Naveen Joseph
- Idaho Water Resources Research InstituteUniversity of IdahoMoscowIDUSA
| | - Alan S. Kolok
- Idaho Water Resources Research InstituteUniversity of IdahoMoscowIDUSA
| |
Collapse
|
25
|
Severe Primary Open-Angle Glaucoma and Agricultural Profession: A Retrospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020926. [PMID: 35055748 PMCID: PMC8775777 DOI: 10.3390/ijerph19020926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022]
Abstract
While exposure to pesticides is a known risk factor for neurodegenerative brain diseases, little is known about the influence of environment on glaucoma neuropathy. We aimed to determine whether farmers are at higher risk of developing severe primary open-angle glaucoma (POAG). This retrospective cohort study (tertiary referral center, Reims University Hospital, France) included patients diagnosed with POAG in the last two years. Univariate analysis and adjusted multivariate logistic regression were performed to evaluate the association between agricultural profession and all recorded data. Glaucoma severity (primary outcome) and the number of patients who underwent filtering surgery (secondary outcome) were analyzed. In total, 2065 records were screened, and 772 patients were included (66 in the farmer group and 706 in the nonfarmer group). The risk of severe glaucoma was higher in the farmer group (adjusted odds ratio (aOR) 1.87, p = 0.03). More patients underwent filtering surgery in the farmer group in univariate analysis (p = 0.02) but with no statistical significance after adjustment (p = 0.08). These results suggest pesticide exposure may be a factor accelerating the neurodegeneration in POAG, although a direct link between the agricultural profession and the disease requires further extended studies to be demonstrated.
Collapse
|
26
|
Rodrigues ACM, Barbieri MV, Chino M, Manco G, Febbraio F. A FRET Approach to Detect Paraoxon among Organophosphate Pesticides Using a Fluorescent Biosensor. SENSORS (BASEL, SWITZERLAND) 2022; 22:561. [PMID: 35062524 PMCID: PMC8778994 DOI: 10.3390/s22020561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 02/01/2023]
Abstract
The development of faster, sensitive and real-time methods for detecting organophosphate (OP) pesticides is of utmost priority in the in situ monitoring of these widespread compounds. Research on enzyme-based biosensors is increasing, and a promising candidate as a bioreceptor is the thermostable enzyme esterase-2 from Alicyclobacillus acidocaldarius (EST2), with a lipase-like Ser-His-Asp catalytic triad with a high affinity for OPs. This study aimed to evaluate the applicability of Förster resonance energy transfer (FRET) as a sensitive and reliable method to quantify OPs at environmentally relevant concentrations. For this purpose, the previously developed IAEDANS-labelled EST2-S35C mutant was used, in which tryptophan and IAEDANS fluorophores are the donor and the acceptor, respectively. Fluorometric measurements showed linearity with increased EST2-S35C concentrations. No significant interference was observed in the FRET measurements due to changes in the pH of the medium or the addition of other organic components (glucose, ascorbic acid or yeast extract). Fluorescence quenching due to the presence of paraoxon was observed at concentrations as low as 2 nM, which are considered harmful for the ecosystem. These results pave the way for further experiments encompassing more complex matrices.
Collapse
Affiliation(s)
- Andreia C. M. Rodrigues
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy; (M.V.B.); (G.M.)
| | - Maria Vittoria Barbieri
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy; (M.V.B.); (G.M.)
| | - Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy;
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy; (M.V.B.); (G.M.)
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy; (M.V.B.); (G.M.)
| |
Collapse
|
27
|
Li Z, Xiao L, Yang L, Li S, Tan L. Characterization of Acute Poisoning in Hospitalized Children in Southwest China. Front Pediatr 2021; 9:727900. [PMID: 34956970 PMCID: PMC8705540 DOI: 10.3389/fped.2021.727900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/08/2021] [Indexed: 01/17/2023] Open
Abstract
Objective: Acute poisoning in children is characterized by regional differences. This study described the basic situation of childhood poisoning in southwest China based on hospitalized cases. Data and Methods: A total of 1,076 acute poisoning cases among hospitalized children admitted to Children's Hospital of Chongqing Medical University from January 2012 to December 2020 were included in this study. Clinical data such as gender, age, living environment, poisonous substance, and cause of poisoning were statistically described. Trends of length of hospital stay, population distribution, poisonous substances, and causes of acute poisoning in the hospitalized children were compared over time. Results: The cohort comprised 588 males and 488 females; 811 cases lived in rural areas and the rest resided in urban areas. Most cases were between early childhood and school age. Poisoning usually occurred at home (973 cases, 90.4%). Pesticides (381 cases, 35.4%) and drugs (275 cases, 25.6%) were the two most common poisonous substances. Two main causes of poisoning were accidental taking (755 cases, 70.2%) and suicide (177 cases, 16.4%). The results of univariate analysis of suicide showed significant correlations among gender, place of residence, age, poisonous substance, and place of suicide (P < 0.001), while living environment (town), age (adolescence), and poisonous substance (pesticide, drug) were independent risk factors (P < 0.05). There was no significant change in the length of hospital stay for poisoning over time. The overall number of hospitalizations presented a decreasing trend, while the number of urban children gradually increased. The proportion of adolescent poisoned children and suicidal children increased in the last 3 years. Conclusion: Optimizing the package and distribution channels of pesticides and drugs, raising safety awareness of children to avoid accidental injuries, and paying attention to children's mental health are measures that are necessary to prevent poisoning in children.
Collapse
Affiliation(s)
- Zhu Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Children's Medical Big Data Intelligent Application Chongqing University Engineering Research Center, Department of Emergency, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Xiao
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Children's Medical Big Data Intelligent Application Chongqing University Engineering Research Center, Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Yang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Children's Medical Big Data Intelligent Application Chongqing University Engineering Research Center, Department of Emergency, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shaojun Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Children's Medical Big Data Intelligent Application Chongqing University Engineering Research Center, Department of Emergency, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liping Tan
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Children's Medical Big Data Intelligent Application Chongqing University Engineering Research Center, Department of Emergency, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Dahiri B, Martín-Reina J, Carbonero-Aguilar P, Aguilera-Velázquez JR, Bautista J, Moreno I. Impact of Pesticide Exposure among Rural and Urban Female Population. An Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9907. [PMID: 34574830 PMCID: PMC8471259 DOI: 10.3390/ijerph18189907] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/27/2022]
Abstract
Pesticides are substances that have become widely used in agriculture and the human exposure to these substances may cause adverse health outcomes. Non-occupational exposure to them can come from many sources, such as food or water. For occupational exposure, many studies have been conducted in men, as they have been mostly in charge of work related to these substances. Nonetheless, the information available concerning the exposure in women is very scarce. In addition, an important differentiation between rural and urban areas has been established, rural areas being known as the most exposed ones due to plantation fields. However, the application of higher concentrations of herbicides in small urban areas is taking a lot of importance currently as well. Regardless of gender, the conditions of exposure, and the environment, the exposure to these pesticides can have different effects on health from early life stages, resulting in different outcomes ranging from neurodevelopmental effects in newborns to different types of cancers. In this review, we discussed the toxicity of the most commonly used pesticides and the main impact on the health of the general population, focusing mainly on the effect in women from both rural and urban areas, and the different stages of development, from pregnancy or lactation to the outcomes of these exposures for their children.
Collapse
Affiliation(s)
- Bouchra Dahiri
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (B.D.); (J.M.-R.); (I.M.)
| | - José Martín-Reina
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (B.D.); (J.M.-R.); (I.M.)
| | - Pilar Carbonero-Aguilar
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (B.D.); (J.M.-R.); (I.M.)
| | - José Raúl Aguilera-Velázquez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (J.R.A.-V.); (J.B.)
| | - Juan Bautista
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (J.R.A.-V.); (J.B.)
| | - Isabel Moreno
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (B.D.); (J.M.-R.); (I.M.)
| |
Collapse
|
29
|
El-Nahhal Y, El-Nahhal I. Cardiotoxicity of some pesticides and their amelioration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44726-44754. [PMID: 34231153 DOI: 10.1007/s11356-021-14999-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Pesticides are used to control pests that harm plants, animals, and humans. Their application results in the contamination of the food and water systems. Pesticides may cause harm to the human body via occupational exposure or the ingestion of contaminated food and water. Once a pesticide enters the human body, it may create health consequences such as cardiotoxicity. There is not enough information about pesticides that cause cardiotoxicity in the literature. Currently, there are few reports that summarized the cardiotoxicity due to some pesticide groups. This necessitates reviewing the current literature regarding pesticides and cardiotoxicity and to summarize them in a concrete review. The objectives of this review article were to summarize the advances in research related to pesticides and cardiotoxicity, to classify pesticides into certain groups according to cardiotoxicity, to discuss the possible mechanisms of cardiotoxicity, and to present the agents that ameliorate cardiotoxicity. Approximately 60 pesticides were involved in cardiotoxicity: 30, 13, and 17 were insecticides, herbicides, and fungicides, respectively. The interesting outcome of this study is that 30 and 13 pesticides from toxicity classes II and III, respectively, are involved in cardiotoxicity. The use of standard antidotes for pesticide poisoning shows health consequences among users. Alternative safe medical management is the use of cardiotoxicity-ameliorating agents. This review identifies 24 ameliorating agents that were successfully used to manage 60 cases. The most effective agents were vitamin C, curcumin, vitamin E, quercetin, selenium, chrysin, and garlic extract. Vitamin C showed ameliorating effects in a wide range of toxicities. The exposure mode to pesticide residues, where 1, 2, 3, and 4 are aerial exposure to pesticide drift, home and/or office exposure, exposure due to drinking contaminated water, and consumption of contaminated food, respectively. General cardiotoxicity is represented by 5, whereas 6, 7, 8 and 9 are electrocardiogram (ECG) of hypotension due to exposure to OP residues, ECG of myocardial infraction due to exposure to OPs, ECG of hypertension due to exposure to OC and/or PY, and normal ECG respectively.
Collapse
Affiliation(s)
- Yasser El-Nahhal
- Department of Earth and Environmental Science Faculty of Science, The Islamic University-Gaza, Gaza, Palestine.
| | | |
Collapse
|
30
|
Neurotoxic Effects of Neonicotinoids on Mammals: What Is There beyond the Activation of Nicotinic Acetylcholine Receptors?-A Systematic Review. Int J Mol Sci 2021; 22:ijms22168413. [PMID: 34445117 PMCID: PMC8395098 DOI: 10.3390/ijms22168413] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Neonicotinoids are a class of insecticides that exert their effect through a specific action on neuronal nicotinic acetylcholine receptors (nAChRs). The success of these insecticides is due to this mechanism of action, since they act as potent agonists of insect nAChRs, presenting low affinity for vertebrate nAChRs, which reduces potential toxic risk and increases safety for non-target species. However, although neonicotinoids are considered safe, their presence in the environment could increase the risk of exposure and toxicity. On the other hand, although neonicotinoids have low affinity for mammalian nAChRs, the large quantity, variety, and ubiquity of these receptors, combined with its diversity of functions, raises the question of what effects these insecticides can produce in non-target species. In the present systematic review, we investigate the available evidence on the biochemical and behavioral effects of neonicotinoids on the mammalian nervous system. In general, exposure to neonicotinoids at an early age alters the correct neuronal development, with decreases in neurogenesis and alterations in migration, and induces neuroinflammation. In adulthood, neonicotinoids induce neurobehavioral toxicity, these effects being associated with their modulating action on nAChRs, with consequent neurochemical alterations. These alterations include decreased expression of nAChRs, modifications in acetylcholinesterase activity, and significant changes in the function of the nigrostriatal dopaminergic system. All these effects can lead to the activation of a series of intracellular signaling pathways that generate oxidative stress, neuroinflammation and, finally, neuronal death. Neonicotinoid-induced changes in nAChR function could be responsible for most of the effects observed in the different studies.
Collapse
|
31
|
Pei B, Wang C, Yu B, Xia D, Li T, Zhou Z. The First Report on the Transovarial Transmission of Microsporidian Nosema bombycis in Lepidopteran Crop Pests Spodoptera litura and Helicoverpa armigera. Microorganisms 2021; 9:microorganisms9071442. [PMID: 34361877 PMCID: PMC8303212 DOI: 10.3390/microorganisms9071442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Microsporidia are ubiquitous fungi-related parasites infecting nearly all vertebrates and invertebrates. Microsporidian Nosema bombycis is a natural pathogen of multiple insects, including the silkworm and many agricultural and forest pests. N. bombycis can transovarially transmit in silkworm and cause huge economic losses to the sericulture. However, it remains unclear whether N. bombycis vertically transmits in the crop pests Spodoptera litura and Helicoverpa armigera. Here, we investigated the infection of N. bombycis in S. litura and H. armigera to illuminate its infectivity and transovarial transmission. In result, tissue examination with light microscopy revealed that the fat body, midgut, malpighian tubules, hemolymph, testis, and ovary were all infected in both pest pupae. Immunohistochemical analysis (IHA) of the ovariole showed that a large number of parasites in maturation and proliferation presented in follicle cell, nurse cell, and oocyte, suggesting that N. bombycis can infect and multiply in these cells and probably transovarially transmit to the next generations in both pests. Microscopic examination on the egg infection rate demonstrated that 50% and 38% of the S. litura and H. armigera eggs were congenitally infected, respectively. IHA of both eggs manifested numerous spores and proliferative pathogens in the oocyte, confirming that N. bombycis can invade into the female germ cell from the parent body. After hatching of the infected eggs, we detected the infection in offspring larvae and found large quantities of proliferative pathogens, confirming that N. bombycis can transovarially transmit in S. litura and H. armigera, and probably persists in both pest populations via congenital infection. In summary, our work, for the first time, proved that N. bombycis is able to vertically transmit in S. litura and H. armigera via infecting the oocyte in the parent, suggesting that N. bombycis could be a biological insecticide for controlling the population of crop pests.
Collapse
Affiliation(s)
- Boyan Pei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (B.P.); (C.W.); (B.Y.); (D.X.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Chunxia Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (B.P.); (C.W.); (B.Y.); (D.X.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Bin Yu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (B.P.); (C.W.); (B.Y.); (D.X.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Dan Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (B.P.); (C.W.); (B.Y.); (D.X.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (B.P.); (C.W.); (B.Y.); (D.X.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- Correspondence: (T.L.); (Z.Z.)
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (B.P.); (C.W.); (B.Y.); (D.X.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- College of Life Science, Chongqing Normal University, Chongqing 400047, China
- Correspondence: (T.L.); (Z.Z.)
| |
Collapse
|
32
|
Cobilinschi C, Tincu R, Băetu A, Deaconu C, Totan A, Rusu A, Neagu P, Grințescu I. ENDOCRINE DISTURBANCES INDUCED BY LOW-DOSE ORGANOPHOSPHATE EXPOSURE IN MALE WISTAR RATS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2021; 17:177-185. [PMID: 34925565 PMCID: PMC8665251 DOI: 10.4183/aeb.2021.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Organophosphate exposure induces many endocrine effects. AIM In this study we observed the effects of acute stress induced by cholinesterase inhibition on the main hormonal axes. MATERIALS AND METHODS We included thirteen weanling Wistar rats that were subjected to organophosphate exposure. They were first tested for baseline levels of butyrylcholinesterase, cortisol, free triiodothyronine, thyroxine, thyroid-stimulating hormone and prolactin. Secondly, chlorpyrifos was administered. Next samples were taken to determine the level of all the above-mentioned parameters. RESULTS Butyrylcholinesterase was significantly decreased after exposure (p<0.001). Cortisol levels were significantly higher after clorpyrifos administration (358.75±43 vs. 241.2±35 nmoL/L)(p<0.01). Although prolactin had a growing trend (450.25±24.65 vs. 423±43.4 uI/mL), the results were not statistically significant. Both free triiodothyronine and thyroxine were significantly higher after exposure. Surprisingly, thyroid-stimulating hormone level almost doubled after exposure with high statistical significance (p<0.001), suggesting a central stimulation of thyroid axis. Butyrylcholinesterase level was proportional with thyroid-stimulating hormone level (p=0.02) and thyroxine level was inversely correlated to the cortisol level (p=0.01). Acute cholinesterase inhibition may induce high levels of cortisol, free triiodothyronine, thyroxine and thyroid-stimulating hormone. From our knowledge this is the first study dedicated to the assessment of acute changes of hormonal status in weanling animals after low-dose organophosphate exposure.Conclusion. Acute cholinesterase inhibition may cause acute phase hormonal disturbances specific to shocked patients.
Collapse
Affiliation(s)
- C. Cobilinschi
- “Carol Davila” University of Medicine and Pharmacy - Anesthesiology and Intensive Care - Bucharest, Romania
- Bucharest Emergency Hospital - Anesthesiology and Intensive Care - Bucharest, Romania
| | - R.C. Tincu
- Bucharest Emergency Hospital - Intensive Care Toxicology Unit - Bucharest, Romania
| | - A.E. Băetu
- “Carol Davila” University of Medicine and Pharmacy - Anesthesiology and Intensive Care - Bucharest, Romania
- Bucharest Emergency Hospital - Anesthesiology and Intensive Care - Bucharest, Romania
| | - C.O. Deaconu
- “Carol Davila” University of Medicine and Pharmacy - Internal Medicine and Rheumatology - Bucharest, Romania
| | - A. Totan
- “Carol Davila” University of Medicine and Pharmacy - Biochemistry - Bucharest, Romania
| | - A. Rusu
- Bucharest Emergency Hospital - Anesthesiology and Intensive Care - Bucharest, Romania
| | - P.T. Neagu
- “Carol Davila” University of Medicine and Pharmacy - Plastic surgery, Bucharest, Romania
- Bucharest Emergency Hospital - Plastic surgery, Bucharest, Romania
| | - I.M. Grințescu
- “Carol Davila” University of Medicine and Pharmacy - Anesthesiology and Intensive Care - Bucharest, Romania
- Bucharest Emergency Hospital - Anesthesiology and Intensive Care - Bucharest, Romania
| |
Collapse
|