1
|
Cazalla E, Cuadrado A, García-Yagüe ÁJ. Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Fluids Barriers CNS 2024; 21:93. [PMID: 39574123 PMCID: PMC11580557 DOI: 10.1186/s12987-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Blood-Brain Barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional throughout oxidative stress and inflammation, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. MAIN BODY Maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. NRF2 is the main transcription factor that regulates cellular redox balance and inflammation-related gene expression. It has also demonstrated a potential role in regulating tight junction integrity and contributing to the inhibition of ECM remodeling, by reducing the expression of several metalloprotease family members involved in maintaining BBB function. Overall, we review current insights on the role of NRF2 in addressing protection against the effects of BBB dysfunction, discuss its involvement in BBB maintenance in different neuropathological diseases, as well as, some of its potential activators that have been used in vitro and in vivo animal models for preventing barrier dysfunction. CONCLUSIONS Thus, emerging evidence suggests that upregulation of NRF2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase its protection.
Collapse
Affiliation(s)
- Eduardo Cazalla
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángel Juan García-Yagüe
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain.
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
2
|
George B, Chan KH, Rios A. Therapeutic options for chronic myeloid leukemia following the failure of second-generation tyrosine kinase inhibitor therapy. Front Oncol 2024; 14:1446517. [PMID: 39139284 PMCID: PMC11320603 DOI: 10.3389/fonc.2024.1446517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
The management of chronic myeloid leukemia in the chronic phase (CML-CP) has witnessed significant advancements since the identification of a common chromosomal translocation anomaly involving chromosomes 9 and 22, which results in the formation of the Philadelphia chromosome driven by the BCR-ABL1 fusion protein. This discovery paved the way for the development of tyrosine kinase inhibitors (TKIs) that target the adenosine triphosphate (ATP) binding site of ABL1 through the BCR-ABL-1 fusion protein. Following the approval of Imatinib by the Food and Drug Administration (FDA) as the first TKI for CML treatment in 2001, the median overall survival (OS) for chronic phase CML (CML-CP) has significantly improved, approaching that of the general population. However, achieving this milestone crucially depends on reaching certain treatment response milestones. Since the introduction of imatinib, five additional TKIs have been approved for CML-CP treatment. Despite the availability of these treatments, many patients may experience treatment failure and require multiple lines of therapy due to factors such as the emergence of resistance, such as mutations in the ATP binding site of ABL, or intolerance to therapy. This review will primarily focus on exploring treatment options for patients who fail second-generation TKI therapy due to true resistance.
Collapse
Affiliation(s)
- Binsah George
- Division of Hematology/Oncology, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | | |
Collapse
|
3
|
Cama ES, Catenacci L, Perteghella S, Sorrenti M, Caira MR, Rassu G, Gavini E, Giunchedi P, Bonferoni MC. Design and development of a chitosan-based nasal powder of dimethyl fumarate-cyclodextrin binary systems aimed at nose-to-brain administration. A stability study. Int J Pharm 2024; 659:124216. [PMID: 38734272 DOI: 10.1016/j.ijpharm.2024.124216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
The nasal administration route has been studied for the delivery of active molecules directed to the Central Nervous System, thanks to the anatomical connection between the nasal cavity and the brain. Dimethyl fumarate is used to treat relapsing-remitting multiple sclerosis, with a role as an immunomodulator towards T- T-cells and a cytoprotector towards neurons and glial cells. Its use in therapy is hindered by its low aqueous solubility, and low stability, due to hydrolysis and sublimation at room temperature. To overcome this limitation, in this study we evaluated the feasibility of using two amorphous β-cyclodextrin derivatives, namely hydroxypropyl β-cyclodextrin and methyl β-cyclodextrin, to obtain a nasally administrable powder with a view to nose-to-brain administration. Initially, the interaction product was studied using different analytical methods (differential scanning calorimetry, Fourier transform infrared spectroscopy and powder X-ray diffraction) to detect the occurrence of binary product formation, while phase solubility analysis was used to probe the complexation in solution. The dimethyl fumarate-cyclodextrin binary product showing best solubility and stability properties was subsequently used in the development of a chitosan-based mucoadhesive nasally administrable powder comparing different preparative methods. The best performance in terms of both hydrolytic stability and DMF recovery was achieved by the powder obtained via freeze-drying.
Collapse
Affiliation(s)
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy.
| | - Mino R Caira
- Department of Chemistry, University of Cape Town, 7701 Rondebosch, South Africa
| | - Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | | |
Collapse
|
4
|
Collongues N, Durand-Dubief F, Lebrun-Frenay C, Audoin B, Ayrignac X, Bensa C, Bigaut K, Bourre B, Carra-Dallière C, Ciron J, Defer G, Kwiatkowski A, Leray E, Maillart E, Marignier R, Mathey G, Morel N, Thouvenot E, Zéphir H, Boucher J, Boutière C, Branger P, Da Silva A, Demortière S, Guillaume M, Hebant B, Januel E, Kerbrat A, Manchon E, Moisset X, Montcuquet A, Pierret C, Pique J, Poupart J, Prunis C, Roux T, Schmitt P, Androdias G, Cohen M. Cancer and multiple sclerosis: 2023 recommendations from the French Multiple Sclerosis Society. Mult Scler 2024; 30:899-924. [PMID: 38357870 DOI: 10.1177/13524585231223880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
BACKGROUND Epidemiological data reveal that 45% of persons with multiple sclerosis (PwMS) in France are more than 50 years. This population more than 50 is more susceptible to cancer, and this risk may be increased by frequent use of immunosuppressive drugs. Consequently, concerns have arisen about the potential increased risk of cancer in PwMS and how patients should be screened and managed in terms of cancer risk. OBJECTIVE To develop evidence-based recommendations to manage the coexistence of cancer and multiple sclerosis (MS). METHODS The French Group for Recommendations in MS collected articles from PubMed and university databases covering the period January 1975 through June 2022. The RAND/UCLA method was employed to achieve formal consensus. MS experts comprehensively reviewed the full-text articles and developed the initial recommendations. A group of multidisciplinary health care specialists then validated the final proposal. RESULTS Five key questions were addressed, encompassing various topics such as cancer screening before or after initiating a disease-modifying therapy (DMT), appropriate management of MS in the context of cancer, recommended follow-up for cancer in patients receiving a DMT, and the potential reintroduction of a DMT after initial cancer treatment. A strong consensus was reached for all 31 recommendations. CONCLUSION These recommendations propose a strategic approach to managing cancer risk in PwMS.
Collapse
Affiliation(s)
- Nicolas Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
- Center for Clinical Investigation, INSERM U1434, Strasbourg, France
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
- Department of Pharmacology, Addictology, Toxicology, and Therapeutics, Strasbourg University, Strasbourg, France
| | - Françoise Durand-Dubief
- Service de Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Christine Lebrun-Frenay
- Department of Neurology, CHU Nice, Nice, France
- Université Côte d'Azur, UMR2CA-URRIS, Nice, France
| | - Bertrand Audoin
- Department of Neurology, CRMBM, APHM, Aix-Marseille University, Marseille, France
| | - Xavier Ayrignac
- Department of Neurology, Montpellier University Hospital, Montpellier, France
- University of Montpellier, Montpellier, France
- INM, INSERM, Montpellier, France
| | - Caroline Bensa
- Department of Neurology, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Kévin Bigaut
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | | | | | - Jonathan Ciron
- CHU de Toulouse, CRC-SEP, Department of Neurology, Toulouse, France
- Université Toulouse III, Infinity, INSERM UMR1291-CNRS UMR5051, Toulouse, France
| | - Gilles Defer
- Department of Neurology, Caen University Hospital, Caen, France
| | - Arnaud Kwiatkowski
- Department of Neurology, Lille Catholic University, Lille Catholic Hospitals, Lille, France
| | - Emmanuelle Leray
- Université de Rennes, EHESP, CNRS, INSERM, ARENES-UMR 6051, RSMS-U1309, Rennes, France
| | | | - Romain Marignier
- Service de Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Guillaume Mathey
- Department of Neurology, Nancy University Hospital, Nancy, France
| | - Nathalie Morel
- Service de Neurologie, Centre Hospitalier Annecy Genevois, Epagny-Metz-Tessy, France
| | - Eric Thouvenot
- Service de Neurologie, CHU de Nîmes, Nîmes, France
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Hélène Zéphir
- University of Lille, INSERM U1172, CHU de Lille, Lille, France
| | - Julie Boucher
- Department of Neurology, CHU de Lille, Lille, France
| | - Clémence Boutière
- Department of Neurology, University Hospital of Marseille, Marseille, France
| | - Pierre Branger
- Service de Neurologie, CHU de Caen Normandie, Caen, France
| | - Angélique Da Silva
- Breast Cancer Unit, Centre François Baclesse, Institut Normand du Sein, Caen, France
| | - Sarah Demortière
- Department of Neurology, CRMBM, APHM, Aix-Marseille University, Marseille, France
| | | | | | - Edouard Januel
- Sorbonne Université, Paris, France/Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié Salpêtrière, Département de Santé Publique, Paris, France
- Département de Neurologie, Hôpital Pitié Salpêtrière, AP-HP, Paris, France
| | - Anne Kerbrat
- Service de Neurologie, CHU de Rennes, France
- EMPENN U1228, INSERM-INRIA, Rennes, France
| | - Eric Manchon
- Service de Neurologie, Centre Hospitalier de Gonesse, Gonesse, France
| | - Xavier Moisset
- Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM, Neuro-Dol, Clermont-Ferrand, France
| | | | - Chloé Pierret
- Université de Rennes, EHESP, CNRS, INSERM, ARENES-UMR 6051, RSMS U-1309, Rennes, France
| | - Julie Pique
- Service de Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Julien Poupart
- Department of Neurology and U995-LIRIC-Lille Inflammation Research International Center, INSERM, University of Lille, CHU Lille, Lille, France
| | - Chloé Prunis
- Department of Neurology, Nancy University Hospital, Nancy, France
| | - Thomas Roux
- Hôpital La Pitié-Salpêtrière, Service de Neurologie, Paris, France
- CRC-SEP Paris. Centre des maladies inflammatoires rares du cerveau et de la moelle de l'enfant et de l'adulte (Mircem)
| | | | - Géraldine Androdias
- Service de Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Service de Neurologie, Hôpital Neurologique Pierre Wertheimer, Bron, France
- Clinique de la Sauvegarde-Ramsay Santé, Lyon, France
| | - Mikael Cohen
- Department of Neurology, CHU Nice, Nice, France/Université Côte d'Azur, UMR2CA-URRIS, Nice, France
| |
Collapse
|
5
|
Bellanca CM, Augello E, Mariottini A, Bonaventura G, La Cognata V, Di Benedetto G, Cantone AF, Attaguile G, Di Mauro R, Cantarella G, Massacesi L, Bernardini R. Disease Modifying Strategies in Multiple Sclerosis: New Rays of Hope to Combat Disability? Curr Neuropharmacol 2024; 22:1286-1326. [PMID: 38275058 PMCID: PMC11092922 DOI: 10.2174/1570159x22666240124114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 01/27/2024] Open
Abstract
Multiple sclerosis (MS) is the most prevalent chronic autoimmune inflammatory- demyelinating disorder of the central nervous system (CNS). It usually begins in young adulthood, mainly between the second and fourth decades of life. Usually, the clinical course is characterized by the involvement of multiple CNS functional systems and by different, often overlapping phenotypes. In the last decades, remarkable results have been achieved in the treatment of MS, particularly in the relapsing- remitting (RRMS) form, thus improving the long-term outcome for many patients. As deeper knowledge of MS pathogenesis and respective molecular targets keeps growing, nowadays, several lines of disease-modifying treatments (DMT) are available, an impressive change compared to the relative poverty of options available in the past. Current MS management by DMTs is aimed at reducing relapse frequency, ameliorating symptoms, and preventing clinical disability and progression. Notwithstanding the relevant increase in pharmacological options for the management of RRMS, research is now increasingly pointing to identify new molecules with high efficacy, particularly in progressive forms. Hence, future efforts should be concentrated on achieving a more extensive, if not exhaustive, understanding of the pathogenetic mechanisms underlying this phase of the disease in order to characterize novel molecules for therapeutic intervention. The purpose of this review is to provide a compact overview of the numerous currently approved treatments and future innovative approaches, including neuroprotective treatments as anti-LINGO-1 monoclonal antibody and cell therapies, for effective and safe management of MS, potentially leading to a cure for this disease.
Collapse
Affiliation(s)
- Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Egle Augello
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Alice Mariottini
- Department of Neurosciences Drugs and Child Health, University of Florence, Florence, Italy
| | - Gabriele Bonaventura
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council, 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council, 95126 Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppe Attaguile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Rosaria Di Mauro
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Luca Massacesi
- Department of Neurosciences Drugs and Child Health, University of Florence, Florence, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| |
Collapse
|
6
|
Xu L, Peng CC, Dawson K, Stecher S, Woodworth J, Prakash C. Metabolism, Pharmacokinetics and Excretion of [ 14C]Dimethyl Fumarate in Healthy Volunteers: An Example of Xenobiotic Biotransformation Following Endogenous Metabolic Pathways. Xenobiotica 2023:1-28. [PMID: 37216617 DOI: 10.1080/00498254.2023.2217506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/24/2023]
Abstract
Delayed-release dimethyl fumarate (DMF), Tecfidera®, is approved globally for treating relapsing-remitting multiple sclerosis. The disposition of DMF was determined in humans after administration of a single oral dose of [14C]DMF, and the total recovery was estimated to be between 58.4% to 75.0%, primarily through expired air.The absorption of [14C]DMF-derived radioactivity was rapid, with Tmax at 1h postdose. Glucose was the predominant circulating metabolite, accounting for ∼60% of the total extractable radioactivity. Cysteine and N-acetylcysteine conjugates of mono- or di-methyl succinate were found to be the major urinary metabolites.In vitro studies showed that [14C]DMF was mainly metabolized to MMF, and fumarase exclusively converted fumaric acid to malic acid and did not catalyze the conversion of fumaric acid esters to malic acid. DMF was observed to bind with human serum albumin through Michael addition to the Cys-34 residue when exposed to human plasma.These findings indicate that DMF undergoes metabolism via hydrolysis, GSH conjugation, and the TCA cycle, leading to the formation of citric acid, CO2, and water. These ubiquitous and well-conserved metabolism pathways minimize the risk of drug-drug interactions and reduce variability related to pharmacogenetics and ethnicity.
Collapse
Affiliation(s)
- Lin Xu
- Clinical Pharmacology and Pharmacometrics, Biogen, Cambridge, MA
| | - Chi-Chi Peng
- Clinical Pharmacology and Pharmacometrics, Biogen, Cambridge, MA
| | - Kate Dawson
- Clinical Pharmacology and Pharmacometrics, Biogen, Cambridge, MA
| | - Scott Stecher
- Clinical Pharmacology and Pharmacometrics, Biogen, Cambridge, MA
| | - James Woodworth
- Clinical Pharmacology and Pharmacometrics, Biogen, Cambridge, MA
| | - Chandra Prakash
- Clinical Pharmacology and Pharmacometrics, Biogen, Cambridge, MA
| |
Collapse
|
7
|
Biscetti L, De Vanna G, Cresta E, Corbelli I, Gaetani L, Cupini L, Calabresi P, Sarchielli P. Headache and immunological/autoimmune disorders: a comprehensive review of available epidemiological evidence with insights on potential underlying mechanisms. J Neuroinflammation 2021; 18:259. [PMID: 34749743 PMCID: PMC8573865 DOI: 10.1186/s12974-021-02229-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/04/2021] [Indexed: 12/31/2022] Open
Abstract
Several lines of evidence support a role of the immune system in headache pathogenesis, with particular regard to migraine. Firstly, alterations in cytokine profile and in lymphocyte subsets have been reported in headache patients. Secondly, several genetic and environmental pathogenic factors seem to be frequently shared by headache and immunological/autoimmune diseases. Accordingly, immunological alterations in primary headaches, in particular in migraine, have been suggested to predispose some patients to the development of immunological and autoimmune diseases. On the other hand, pathogenic mechanisms underlying autoimmune disorders, in some cases, seem to favour the onset of headache. Therefore, an association between headache and immunological/autoimmune disorders has been thoroughly investigated in the last years. The knowledge of this possible association may have relevant implications in the clinical practice when deciding diagnostic and therapeutic approaches. The present review summarizes findings to date regarding the plausible relationship between headache and immunological/autoimmune disorders, starting from a description of immunological alteration of primary headaches, and moving onward to the evidence supporting a potential link between headache and each specific autoimmune/immunological disease.
Collapse
Affiliation(s)
- Leonardo Biscetti
- Istituto Nazionale di Riposo e Cura dell'Anziano a carattere scientifico, IRCSS- INRCA, Ancona, Italy
| | - Gioacchino De Vanna
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Cresta
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ilenia Corbelli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Letizia Cupini
- Headache Center, UOC Neurologia-Stroke Unit, Emergency Department, Ospedale S. Eugenio, Rome, Italy
| | - Paolo Calabresi
- Department of Neuroscience, Università Cattolica Sacro Cuore, Rome, Italy
| | - Paola Sarchielli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
8
|
Abstract
The transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) triggers homeostatic responses against a plethora of environmental or endogenous deviations in redox metabolism, inflammation, proteostasis, etc. Therefore, pharmacological activation of NRF2 is a promising therapeutic strategy for several chronic diseases that are underlined by low-grade oxidative inflammation and dysregulation of redox metabolism, such as neurodegenerative, cardiovascular, and metabolic diseases. While NRF2 activation is useful in inhibiting carcinogenesis, its inhibition is needed in constituted tumors where NRF2 provides a survival advantage in the challenging tumor niche. This review describes the electrophilic and non-electrophilic NRF2 activators with clinical projection in various chronic diseases. We also analyze the status of NRF2 inhibitors, which are for the moment in a proof-of-concept stage. Advanced in silico screening and medicinal chemistry are expected to provide new or repurposing small molecules with increased potential for fostering the development of targeted NRF2 modulators. The nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2) is rapidly degraded by proteasomes under a basal condition in a Keap1-dependent manner. ROS oxidatively modifies Keap1 to release NRF2 and allow its nuclear translocation. Here it binds to the antioxidant response element to regulate gene transcription. An alternative mechanism controlling NRF2 stability is glycogen synthase kinase 3 (GSK-3)-induced phosphorylation. Indicated in blue are NRF2-activating and NRF2-inhibiting drugs.
Collapse
|
9
|
Zecca C, Czaplinski A, Henny C, Petrini L, Beeler A, Gobbi C. SwissTecLive: effectiveness and safety of dimethyl fumarate in the treatment of RRMS in the Swiss clinical practice setting. Heliyon 2021; 6:e05819. [PMID: 33385094 PMCID: PMC7772546 DOI: 10.1016/j.heliyon.2020.e05819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/11/2020] [Accepted: 12/18/2020] [Indexed: 11/27/2022] Open
Abstract
Background Delayed-released dimethyl fumarate (DMF) is an oral disease-modifying therapy (DMT) approved for treating patients with multiple sclerosis (MS). This post-marketing study aimed at collecting real-world data on the safety, effectiveness, and tolerability of DMF in patients with relapsing remitting multiple sclerosis (RRMS). Methods 1-year post-marketing survey of patients prescribed DMF followed-up quarterly in hospital setting and private neurological practices in Switzerland from January 2015 to January 2018. Data on relapses, Expanded disability status scale (EDSS) score change, safety, tolerability, treatment adherence as judged by the treating neurologist and satisfaction were collected. Patients could refer to a patient support program. Results Of the 158 patients, 67 (42.4%) were treatment naïve, 91 (57.6%) switched from a prior MS DMT to DMF, 131 (82.9%) were treatment adherent, 108 (68.4%) used the support program, and 45 (28.5%) discontinued the therapy. Insufficient tolerability and insufficient effectiveness were the main reasons for discontinuation. 134 (84.8%) patients remained relapse free, 97 (61.4%) had stable or decreased EDSS score after 12 months. 74 (46.8%) patients reported adverse events; of these, 28 (17.7%) discontinued DMF treatment. Physicians and patients rated treatment satisfaction similarly (median score 8.0 of 10). Conclusions The results obtained from this real-world observation are consistent with the efficacy and safety findings reported in pivotal and larger observational trials evaluating DMF treatment. Most side effects were experienced early after therapy initiation reflecting the timing of therapy discontinuation.
Collapse
Affiliation(s)
- Chiara Zecca
- Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Adam Czaplinski
- Neurozentrum Bellevue, Theaterstrasse 8, 8001 Zurich, Switzerland
| | - Christophe Henny
- Clinique de La Source, Avenue Bergières 2, 1004 Lausanne, Switzerland
| | - Liliane Petrini
- Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano, Lugano, Switzerland
| | - Andreas Beeler
- Biogen Switzerland AG, Neuhofstrasse 30, 6340 Baar, Switzerland
| | - Claudio Gobbi
- Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
10
|
Michalska P, León R. When It Comes to an End: Oxidative Stress Crosstalk with Protein Aggregation and Neuroinflammation Induce Neurodegeneration. Antioxidants (Basel) 2020; 9:antiox9080740. [PMID: 32806679 PMCID: PMC7463521 DOI: 10.3390/antiox9080740] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are characterized by a progressive loss of neurons in the brain or spinal cord that leads to a loss of function of the affected areas. The lack of effective treatments and the ever-increasing life expectancy is raising the number of individuals affected, having a tremendous social and economic impact. The brain is particularly vulnerable to oxidative damage given the high energy demand, low levels of antioxidant defenses, and high levels of metal ions. Driven by age-related changes, neurodegeneration is characterized by increased oxidative stress leading to irreversible neuronal damage, followed by cell death. Nevertheless, neurodegenerative diseases are known as complex pathologies where several mechanisms drive neuronal death. Herein we discuss the interplay among oxidative stress, proteinopathy, and neuroinflammation at the early stages of neurodegenerative diseases. Finally, we discuss the use of the Nrf2-ARE pathway as a potential therapeutic strategy based on these molecular mechanisms to develop transformative medicines.
Collapse
Affiliation(s)
- Patrycja Michalska
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Correspondence: (P.M.); (R.L.); Tel.: +34-91-497-27-66 (P.M. & R.L.)
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), 28006 Madrid, Spain
- Correspondence: (P.M.); (R.L.); Tel.: +34-91-497-27-66 (P.M. & R.L.)
| |
Collapse
|
11
|
Zhang Y, Lickteig AJ, Liu J, Csanaky IL, Klaassen CD. Effects of ablation and activation of Nrf2 on bile acid homeostasis in male mice. Toxicol Appl Pharmacol 2020; 403:115170. [PMID: 32738332 DOI: 10.1016/j.taap.2020.115170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/16/2023]
Abstract
The role of nuclear factor erythroid 2-related factor 2 (Nrf2) in bile acid (BA) homeostasis remains controversial. In this study, activation of Nrf2 was achieved either pharmacologically by CDDO-imidazolide (CDDO-Im) or genetically through a "gene dose-response" model consisting of Nrf2-null, wild-type (WT), Keap1-knockdown (Keap1-KD), and Keap1-hepatocyte knockout (Keap1-HKO) mice. In WT mice, CDDO-Im increased bile flow and decreased hepatic BAs, which was associated with a down-regulation of the canalicular BA efflux transporter Bsep and an increase in biliary BA excretion. In contrast, hepatic Bsep and biliary BA excretion were not altered in Keap1-KD or Keap1-HKO mice, suggesting that Nrf2 is not important for regulating Bsep or BA-dependent bile flow. In contrast, hepatic Mrp2 and Mrp3 were up-regulated by both pharmacological and genetic activations of Nrf2. Furthermore, ileal BA transporters (Asbt and Ostβ) and cholesterol transporters (Abcg5 and Abcg8) were down-regulated by both pharmacological and genetic activations of Nrf2, suggesting a role of Nrf2 in intestinal absorption of BAs and cholesterol. In Nrf2-null mice, CDDO-Im down-regulated hepatic BA uptake transporters (Ntcp, Oatp1a1, and Oatp1b2), leading to a 39-fold increase of serum BAs. To conclude, the present study demonstrates that activation of Nrf2 in mice up-regulates Mrp2 and Mrp3 in the liver and down-regulates BA and cholesterol transporters in the intestine.
Collapse
Affiliation(s)
- Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Andrew J Lickteig
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jing Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Iván L Csanaky
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Division of Gastroenterology, Children's Mercy Hospital & Clinics, Kansas City, MO 64108, USA; Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
12
|
Goldschmidt CH, Hua LH. Re-Evaluating the Use of IFN-β and Relapsing Multiple Sclerosis: Safety, Efficacy and Place in Therapy. Degener Neurol Neuromuscul Dis 2020; 10:29-38. [PMID: 32617031 PMCID: PMC7326221 DOI: 10.2147/dnnd.s224912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/10/2020] [Indexed: 01/06/2023] Open
Abstract
The advent of interferon therapy for the treatment of multiple sclerosis (MS) was a massive advancement in the field and changed the course of the disease. While the exact mechanism of interferon therapy in MS is unknown, disease control is likely mediated by reducing Th1 and Th17 cells while increasing regulatory T cells and altering the cytokine profile. Interferon therapy not only gave physicians and patients an evidence-based treatment option to treat MS by decreasing relapses and the accrual of disability but it also provided valuable insight into disease pathophysiology that allowed for the development of further treatments. Currently, there are 18 disease-modifying therapies available for the treatment of MS with varying efficacies, routes of administration, and mechanisms. As treatment options in the field have evolved, interferon therapy is less commonly prescribed as first-line therapy, because the newer therapies are more effective and better tolerated. That being said, interferons still have a place in the field in both clinical practice and clinical trial research. In this review, we will summarize the safety and efficacy of interferon therapy and discuss its current place in MS care.
Collapse
Affiliation(s)
- Carolyn H Goldschmidt
- Cleveland Clinic Mellen Center for the Treatment of Multiple Sclerosis, Cleveland, OH, USA
| | - Le H Hua
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| |
Collapse
|
13
|
Valencia-Sanchez C, Carter JL. An evaluation of dimethyl fumarate for the treatment of relapsing remitting multiple sclerosis. Expert Opin Pharmacother 2020; 21:1399-1405. [PMID: 32543241 DOI: 10.1080/14656566.2020.1763304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION In recent years there has been a dramatic rise in available disease-modifying therapies for the treatment of relapsing multiple sclerosis (MS). Dimethyl fumarate (DMF) is an oral drug approved by the FDA for relapsing MS with unique immunomodulatory and cytoprotective effects. AREAS COVERED Herein, the authors provide the reader with a review of the literature obtained via a PubMed database search and provide their expert opinion on the use of DMF in clinical practice. The article details DMF's mechanism of action, long-term data on efficacy, tolerability and safety. EXPERT OPINION Since approval, growing experience with DMF in clinical practice demonstrates a combination of efficacy, ease of administration along with an acceptable safety profile. The authors believe that DMF is a valuable long-term treatment option in patients with relapsing MS. However, long-term follow up studies are needed to provide further data on progressive multifocal leukoencephalopathy (PML) risk stratification for MS patients on treatment with DMF. Indeed, despite the strong association with lymphopenia, not all patients with DMF associated PML experienced prolonged overall lymphopenia, suggesting that additional predictive metrics are still needed.
Collapse
Affiliation(s)
- Cristina Valencia-Sanchez
- Department of Neurology, Mayo Clinic Arizona, Mayo Foundation for Medical Education and Research , Scottsdale, AZ, USA
| | - Jonathan L Carter
- Department of Neurology, Mayo Clinic Arizona, Mayo Foundation for Medical Education and Research , Scottsdale, AZ, USA
| |
Collapse
|
14
|
Safavi F, Thome R, Li Z, Zhang GX, Rostami A. Dimethyl fumarate suppresses granulocyte macrophage colony-stimulating factor-producing Th1 cells in CNS neuroinflammation. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/4/e729. [PMID: 32371548 PMCID: PMC7217662 DOI: 10.1212/nxi.0000000000000729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/02/2020] [Indexed: 11/29/2022]
Abstract
Objective To study the immunomodulatory effect of dimethyl fumarate (DF) on granulocyte macrophage colony-stimulating factor (GM-CSF) production in CD4+ T cells in experimental autoimmune encephalomyelitis (EAE) and human peripheral blood mononuclear cells (PBMCs). Methods We collected splenocytes and CD4+ T cells from C57BL/6 wild-type and interferon (IFN)-γ–deficient mice. For human PBMCs, venous blood was collected from healthy donors, and PBMCs were collected using the Percoll gradient method. Cells were cultured with anti-CD3/28 in the presence/absence of DF for 3 to 5 days. Cells were stained and analyzed by flow cytometry. Cytokines were measured by ELISA in cell supernatants. For in vivo experiments, EAE was induced by myelin oligodendrocyte glycoprotein35–55 and mice were treated with oral DF or vehicle daily. Results DF acts directly on CD4+ T cells and suppresses GM-CSF–producing Th1 not Th17 or single GM-CSF+ T cells in EAE. In addition, GM-CSF suppression depends on the IFN-γ pathway. We also show that DF specifically suppresses Th1 and GM-CSF–producing Th1 cells in PBMCs from healthy donors. Conclusions We suggest that DF exclusively suppresses GM-CSF–producing Th1 cells in both animal and human CD4+ T cells through an IFN-γ–dependent pathway. These findings indicate that DF has a better therapeutic effect on patients with Th1-dominant immunophenotype. However, future longitudinal study to validate this finding in MS is needed.
Collapse
Affiliation(s)
- Farinaz Safavi
- From the Department of Neurology (F.S., R.T., Z.L., G.-X.Z., A.R.), Thomas Jefferson University, Philadelphia, PA. Dr. Safavi is now at National Institute of Health, NINDS, Bethesda, MD
| | - Rodolfo Thome
- From the Department of Neurology (F.S., R.T., Z.L., G.-X.Z., A.R.), Thomas Jefferson University, Philadelphia, PA. Dr. Safavi is now at National Institute of Health, NINDS, Bethesda, MD
| | - Zichen Li
- From the Department of Neurology (F.S., R.T., Z.L., G.-X.Z., A.R.), Thomas Jefferson University, Philadelphia, PA. Dr. Safavi is now at National Institute of Health, NINDS, Bethesda, MD
| | - Guang-Xian Zhang
- From the Department of Neurology (F.S., R.T., Z.L., G.-X.Z., A.R.), Thomas Jefferson University, Philadelphia, PA. Dr. Safavi is now at National Institute of Health, NINDS, Bethesda, MD
| | - Abdolmohamad Rostami
- From the Department of Neurology (F.S., R.T., Z.L., G.-X.Z., A.R.), Thomas Jefferson University, Philadelphia, PA. Dr. Safavi is now at National Institute of Health, NINDS, Bethesda, MD.
| |
Collapse
|
15
|
Sghaier R, Nury T, Leoni V, Caccia C, Pais De Barros JP, Cherif A, Vejux A, Moreau T, Limem K, Samadi M, Mackrill JJ, Masmoudi AS, Lizard G, Zarrouk A. Dimethyl fumarate and monomethyl fumarate attenuate oxidative stress and mitochondrial alterations leading to oxiapoptophagy in 158N murine oligodendrocytes treated with 7β-hydroxycholesterol. J Steroid Biochem Mol Biol 2019; 194:105432. [PMID: 31344443 DOI: 10.1016/j.jsbmb.2019.105432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 01/08/2023]
Abstract
Oxidative stress and mitochondrial dysfunction contribute to the pathogenesis of neurodegenerative diseases and favor lipid peroxidation, leading to increased levels of 7β-hydroxycholesterol (7β-OHC) which induces oxiapoptophagy (OXIdative stress, APOPTOsis, autoPHAGY). The cytoprotective effects of dimethylfumarate (DMF), used in the treatment of relapsing remitting multiple sclerosis and of monomethylfumarate (MMF), its main metabolite, were evaluated on murine oligodendrocytes 158 N exposed to 7β-OHC (50 μM, 24 h) with or without DMF or MMF (25 μM). The activity of 7β-OHC in the presence or absence DMF or MMF was evaluated on several parameters: cell adhesion; plasma membrane integrity measured with propidium iodide (PI), trypan blue and fluoresceine diacetate (FDA) assays; LDH activity; antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)); generation of lipid peroxidation products (malondialdehyde (MDA), conjugated dienes (CDs)) and protein oxidation products (carbonylated proteins (CPs)); reactive oxygen species (ROS) overproduction conducted with DHE and DHR123. The effect on mitochondria was determined with complementary criteria: measurement of succinate dehydrogenase activity, evaluation of mitochondrial potential (ΔΨm) and mitochondrial superoxide anions (O2●-) production using DiOC6(3) and MitoSOX, respectively; quantification of mitochondrial mass with Mitotracker Red, and of cardiolipins and organic acids. The effects on mitochondrial and peroxisomal ultrastructure were determined by transmission electron microscopy. Intracellular sterol and fatty acid profiles were determined. Apoptosis and autophagy were characterized by staining with Hoechst 33,342, Giemsa and acridine orange, and with antibodies raised against caspase-3 and LC3. DMF and MMF attenuate 7β-OHC-induced cytotoxicity: cell growth inhibition; decreased cell viability; mitochondrial dysfunction (decrease of succinate dehydrogenase activity, loss of ΔΨm, increase of mitochondrial O2●- production, alteration of the tricarboxilic acid (TCA) cycle, and cardiolipins content); oxidative stress induction (ROS overproduction, alteration of GPx, CAT, and SOD activities, increased levels of MDA, CDs, and CPs); changes in fatty acid and cholesterol metabolism; and cell death induction (caspase-3 cleavage, activation of LC3-I in LC3-II). Ultrastructural alterations of mitochondria and peroxisomes were prevented. These results demonstrate that DMF and MMF prevent major dysfunctions associated with neurodegenerative diseases: oxidative stress, mitochondrial dysfunction, apoptosis and autophagy.
Collapse
Affiliation(s)
- Randa Sghaier
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France; Univ. Sousse, Laboratory of Biochemistry, Faculty of Medicine, Tunisia; Univ. Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir; Univ. Manouba, Laboratory of Biotechnology and Valorisation of Bio-Géo Ressources (LR11ES31), Higher Institute of Biotechnology, Sidi Thabet, Tunisia
| | - Thomas Nury
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy
| | - Claudio Caccia
- Unit of Medical Genetics and Neurogenetics, IRCCS Carlo Besta, Milano, Italy
| | | | - Ameur Cherif
- Univ. Manouba, Laboratory of Biotechnology and Valorisation of Bio-Géo Ressources (LR11ES31), Higher Institute of Biotechnology, Sidi Thabet, Tunisia
| | - Anne Vejux
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France
| | - Thibault Moreau
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France; Univ. Hospital, Department of Neurology, Dijon, France
| | - Khalifa Limem
- Univ. Sousse, Laboratory of Biochemistry, Faculty of Medicine, Tunisia
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Dept of Chemistry, Univ. Lorraine, Metz Technopôle, Metz, France
| | - John J Mackrill
- Department of Physiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Ahmed Slaheddine Masmoudi
- Univ. Manouba, Laboratory of Biotechnology and Valorisation of Bio-Géo Ressources (LR11ES31), Higher Institute of Biotechnology, Sidi Thabet, Tunisia
| | - Gérard Lizard
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France.
| | - Amira Zarrouk
- Univ. Sousse, Laboratory of Biochemistry, Faculty of Medicine, Tunisia; Univ. Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir.
| |
Collapse
|
16
|
Kridin K, Kowalski EH, Kneiber D, Laufer-Britva R, Amber KT. From bench to bedside: evolving therapeutic targets in autoimmune blistering disease. J Eur Acad Dermatol Venereol 2019; 33:2239-2252. [PMID: 31314932 DOI: 10.1111/jdv.15816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Autoimmune blistering diseases comprise a group of heterogenous conditions characterized by the loss of tolerance and subsequent development of autoantibodies targeting epidermal and subepidermal adhesion proteins. Blisters and erosions form on the skin and mucous membranes leading to significant morbidity and mortality. Traditional therapies rely on systemic immunosuppression. Advancements in our understanding of the pathophysiology of pemphigus and pemphigoid have led to the development of molecules which target specific pathways involved in induction and perpetuation of disease. In this review, we outline the novel therapeutic strategies including B-cell depletion, T-regulatory cell repletion, cell signalling inhibitors and small molecular inhibitors, inhibitory monoclonal antibodies, as well as complement inhibition. We additionally review their current level of clinical evidence. We lastly review therapeutics targets gleaned from the experimental epidermolysis bullosa acquisita mouse model. These emerging treatments offer an exciting progression from basic science discoveries that have the potential to transform the treatment paradigm in autoimmune blistering diseases.
Collapse
Affiliation(s)
- K Kridin
- Department of Dermatology, Rambam Healthcare Campus, Haifa, Israel
| | - E H Kowalski
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - D Kneiber
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - R Laufer-Britva
- Department of Dermatology, Rambam Healthcare Campus, Haifa, Israel
| | - K T Amber
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Tsivgoulis G, Palaiodimou L, Katsanos AH, Voumvourakis K, Hadjigeorgiou GM, Heliopoulos I, Karapanayiotides T, Papathanasopoulos P, Kilidireas C, Grigoriadis N. Comment on: "Oral Disease-Modifying Treatments for Relapsing Multiple Sclerosis: A Likelihood to Achieve No Evidence of Disease Activity or Harm Analysis". CNS Drugs 2019; 33:293-295. [PMID: 30806966 DOI: 10.1007/s40263-019-00615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Georgios Tsivgoulis
- Second Department of Neurology, "Attikon" Hospital, School of Medicine, National and Kapodistrian University of Athens, Iras 39, Gerakas Attikis, Athens, 15344, Greece. .,Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Lina Palaiodimou
- Second Department of Neurology, "Attikon" Hospital, School of Medicine, National and Kapodistrian University of Athens, Iras 39, Gerakas Attikis, Athens, 15344, Greece
| | - Aristeidis H Katsanos
- Second Department of Neurology, "Attikon" Hospital, School of Medicine, National and Kapodistrian University of Athens, Iras 39, Gerakas Attikis, Athens, 15344, Greece.,Department of Neurology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, "Attikon" Hospital, School of Medicine, National and Kapodistrian University of Athens, Iras 39, Gerakas Attikis, Athens, 15344, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Ioannis Heliopoulos
- Department of Neurology, Alexandroupolis University Hospital, Democritus University of Thrace, Alexandroupolis, Greece
| | - Theodore Karapanayiotides
- Second Department of Neurology, "AHEPA" University Hospital, Aristotelion University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | | | - Constantinos Kilidireas
- First Department of Neurology, "Eginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Grigoriadis
- Second Department of Neurology, "AHEPA" University Hospital, Aristotelion University of Thessaloniki, Thessaloniki, Macedonia, Greece
| |
Collapse
|
18
|
Gholamzad M, Ebtekar M, Ardestani MS, Azimi M, Mahmodi Z, Mousavi MJ, Aslani S. A comprehensive review on the treatment approaches of multiple sclerosis: currently and in the future. Inflamm Res 2018; 68:25-38. [DOI: 10.1007/s00011-018-1185-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
|
19
|
Fu Y, Yan Y. Emerging Role of Immunity in Cerebral Small Vessel Disease. Front Immunol 2018; 9:67. [PMID: 29422904 PMCID: PMC5788893 DOI: 10.3389/fimmu.2018.00067] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/10/2018] [Indexed: 01/06/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is one of the main causes of vascular dementia in older individuals. Apart from risk containment, efforts to prevent or treat CSVD are ineffective due to the unknown pathogenesis of the disease. CSVD, a subtype of stroke, is characterized by recurrent strokes and neurodegeneration. Blood-brain barrier (BBB) impairment, chronic inflammatory responses, and leukocyte infiltration are classical pathological features of CSVD. Understanding how BBB disruption instigates inflammatory and degenerative processes may be informative for CSVD therapy. Antigens derived from the brain are found in the peripheral blood of lacunar stroke patients, and antibodies and sensitized T cells against brain antigens are also detected in patients with leukoaraiosis. These findings suggest that antigen-specific immune responses could occur in CSVD. This review describes the neurovascular unit features of CSVD, the immune responses to specific neuronal and glial processes that may be involved in a distinct mechanism of CSVD, and the current evidence of the association between mechanisms of inflammation and interventions in CSVD. We suggest that autoimmune activity should be assessed in future studies; this knowledge would benefit the development of effective therapeutic interventions in CSVD.
Collapse
Affiliation(s)
- Ying Fu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
20
|
Gieselbach RJ, Muller-Hansma AH, Wijburg MT, de Bruin-Weller MS, van Oosten BW, Nieuwkamp DJ, Coenjaerts FE, Wattjes MP, Murk JL. Progressive multifocal leukoencephalopathy in patients treated with fumaric acid esters: a review of 19 cases. J Neurol 2017; 264:1155-1164. [PMID: 28536921 DOI: 10.1007/s00415-017-8509-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 11/25/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare and potentially fatal condition caused by a brain infection with JC polyomavirus (JCV). PML develops almost exclusively in immunocompromised patients and has recently been associated with use of fumaric acid esters (FAEs), or fumarates. We reviewed the literature and the Dutch and European pharmacovigilance databases in order to identify all available FAE-associated PML cases and distinguish possible common features among these patients. A total of 19 PML cases associated with FAE use were identified. Five cases were associated with FAE use for multiple sclerosis and 14 for psoriasis. Ten patients were male and nine were female. The median age at PML diagnosis was 59 years. The median duration of FAE therapy to PML symptom onset or appearance of first PML lesion on brain imaging was 31 months (range 6-110). In all cases a certain degree of lymphocytopenia was reported. The median duration of lymphocytopenia to PML symptom onset was 23 months (range 6-72). The median lymphocyte count at PML diagnosis was 414 cells/µL. CD4 and CD8 counts were reported in ten cases, with median cell count of 137 and 39 cells/µL, respectively. Three patients died (16% mortality). The association between occurrence of PML in patients with low CD4 and CD8 counts is reminiscent of PML cases in the HIV population and suggests that loss of T cells is the most important risk factor.
Collapse
Affiliation(s)
- Robbert-Jan Gieselbach
- Department of Medical Microbiology and Infection Control, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Martijn T Wijburg
- Department of Neurology, Neuroscience Amsterdam, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Neuroscience Amsterdam, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bob W van Oosten
- Department of Neurology, Neuroscience Amsterdam, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Dennis J Nieuwkamp
- Department of Neurology, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | - Frank E Coenjaerts
- Department of Medical Microbiology and Infection Control, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mike P Wattjes
- Department of Radiology and Nuclear Medicine, Neuroscience Amsterdam, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Jean-Luc Murk
- Laboratory of Medical Microbiology and Immunology, St. Elisabeth Hospital Tilburg, Tilburg, The Netherlands.
- Laboratory of Medical Microbiology and Immunology, St. Elisabeth TweeSteden ziekenhuis (ETZ), Hilvarenbeekseweg 60, 5022 GC, Tilburg, The Netherlands.
| |
Collapse
|
21
|
Li R, Rezk A, Ghadiri M, Luessi F, Zipp F, Li H, Giacomini PS, Antel J, Bar-Or A. Dimethyl Fumarate Treatment Mediates an Anti-Inflammatory Shift in B Cell Subsets of Patients with Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2016; 198:691-698. [PMID: 27974457 DOI: 10.4049/jimmunol.1601649] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/14/2016] [Indexed: 11/19/2022]
Abstract
The therapeutic mode of action of dimethyl fumarate (DMF), approved for treating patients with relapsing-remitting multiple sclerosis, is not fully understood. Recently, we and others demonstrated that Ab-independent functions of distinct B cell subsets are important in mediating multiple sclerosis (MS) relapsing disease activity. Our objective was to test whether and how DMF influences both the phenotype and functional responses of disease-implicated B cell subsets in patients with MS. High-quality PBMC were obtained from relapsing-remitting MS patients prior to and serially after initiation of DMF treatment. Multiparametric flow cytometry was used to monitor the phenotype and functional response-profiles of distinct B cell subsets. Total B cell counts decreased following DMF treatment, largely reflecting losses of circulating mature/differentiated (but not of immature transitional) B cells. Within the mature B cell pool, DMF had a greater impact on memory than naive B cells. In keeping with these in vivo effects, DMF treatment in vitro remarkably diminished mature (but not transitional B cell) survival, mediated by inducing apoptotic cell death. Although DMF treatment (both in vivo and in vitro) minimally impacted B cell IL-10 expression, it strongly reduced B cell expression of GM-CSF, IL-6, and TNF-α, resulting in a significant anti-inflammatory shift of B cell response profiles. The DMF-mediated decrease in B cell proinflammatory cytokine responses was further associated with reduced phosphorylation of STAT5/6 and NF-κB in surviving B cells. Together, these data implicate novel mechanisms by which DMF may modulate MS disease activity through shifting the balance between pro- and anti-inflammatory B cell responses.
Collapse
Affiliation(s)
- Rui Li
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Ayman Rezk
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Mathab Ghadiri
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Felix Luessi
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada.,Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine-Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany; and
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine-Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany; and
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, NanGang District, Harbin 150086, Heilongjiang, China
| | - Paul S Giacomini
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Amit Bar-Or
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada;
| |
Collapse
|
22
|
Coclitu C, Constantinescu CS, Tanasescu R. The future of multiple sclerosis treatments. Expert Rev Neurother 2016; 16:1341-1356. [DOI: 10.1080/14737175.2016.1243056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Grigoriadis N, Linnebank M, Alexandri N, Muehl S, Hofbauer GFL. Considerations on long-term immuno-intervention in the treatment of multiple sclerosis: an expert opinion. Expert Opin Pharmacother 2016; 17:2085-95. [PMID: 27594523 DOI: 10.1080/14656566.2016.1232712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION As management of multiple sclerosis (MS) requires life-long treatment with disease-modifying agents, any risks associated with long-term use should be considered when evaluating therapeutic options. AREAS COVERED Immune cells of the innate and adaptive immune systems play various roles in the pathogenesis of MS. MS therapies affect the immune system, each with a unique mode of action, and consequently possess different long-term safety profiles. Rare, but serious safety concerns, including an increased risk of infection and cancer, have been associated with immunosuppressant use. The risks associated with newer immunosuppressive agents, which target specific elements of MS disease pathophysiology, are not yet fully established as the duration of clinical trials is relatively short and post-marketing experience is limited. Non-immunosuppressants used to treat MS have well-defined safety profiles established over a large number of patient-years demonstrating them to be well-tolerated long-term treatment options. When considering the long-term use of disease-modifying agents for treating MS, classification as immunosuppressants or non-immunosuppressants can be useful when evaluating potential risks associated with chronic use. EXPERT OPINION A successful therapeutic strategy for any serious, chronic disease such as MS should weigh effectiveness versus long-term safety of available treatments.
Collapse
Affiliation(s)
- Nikolaos Grigoriadis
- a B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology , AHEPA University Hospital, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Michael Linnebank
- b Klinik für Neurologie Universitätsspital Zürich , Zürich , Switzerland.,c Department of Neurology , Helios-Klinik, Hagen-Ambrock , Hagen , Germany
| | | | - Sarah Muehl
- e Merck (Schweiz) AG, Zug, Switzerland, a subsidiary of Merck KGaA Darmstadt , Germany
| | | |
Collapse
|
24
|
Disanto G, Benkert P, Lorscheider J, Mueller S, Vehoff J, Zecca C, Ramseier S, Achtnichts L, Findling O, Nedeltchev K, Radue EW, Sprenger T, Stippich C, Derfuss T, Louvion JF, Kamm CP, Mattle HP, Lotter C, Du Pasquier R, Schluep M, Pot C, Lalive PH, Yaldizli Ö, Gobbi C, Kappos L, Kuhle J. The Swiss Multiple Sclerosis Cohort-Study (SMSC): A Prospective Swiss Wide Investigation of Key Phases in Disease Evolution and New Treatment Options. PLoS One 2016; 11:e0152347. [PMID: 27032105 PMCID: PMC4816556 DOI: 10.1371/journal.pone.0152347] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 03/11/2016] [Indexed: 11/19/2022] Open
Abstract
The mechanisms leading to disability and the long-term efficacy and safety of disease modifying drugs (DMDs) in multiple sclerosis (MS) are unclear. We aimed at building a prospective cohort of MS patients with standardized collection of demographic, clinical, MRI data and body fluids that can be used to develop prognostic indicators and biomarkers of disease evolution and therapeutic response. The Swiss MS Cohort (SMSC) is a prospective observational study performed across seven Swiss MS centers including patients with MS, clinically isolated syndrome (CIS), radiologically isolated syndrome or neuromyelitis optica. Neurological and radiological assessments and biological samples are collected every 6-12 months. We recruited 872 patients (clinically isolated syndrome [CIS] 5.5%, relapsing-remitting MS [RRMS] 85.8%, primary progressive MS [PPMS] 3.5%, secondary progressive MS [SPMS] 5.2%) between June 2012 and July 2015. We performed 2,286 visits (median follow-up 398 days) and collected 2,274 serum, plasma and blood samples, 152 cerebrospinal fluid samples and 1,276 brain MRI scans. 158 relapses occurred and expanded disability status scale (EDSS) scores increased in PPMS, SPMS and RRMS patients experiencing relapses. Most RRMS patients were treated with fingolimod (33.4%), natalizumab (24.5%) or injectable DMDs (13.6%). The SMSC will provide relevant information regarding DMDs efficacy and safety and will serve as a comprehensive infrastructure available for nested research projects.
Collapse
Affiliation(s)
- Giulio Disanto
- Department of Neurology, Regional Hospital Lugano (EOC), Lugano, Switzerland
| | - Pascal Benkert
- Clinical Trial Unit, University Hospital Basel, Switzerland
| | - Johannes Lorscheider
- Neurology, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Stefanie Mueller
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Jochen Vehoff
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Chiara Zecca
- Department of Neurology, Regional Hospital Lugano (EOC), Lugano, Switzerland
| | - Simon Ramseier
- Department of Neurology, Cantonal Hospital Aarau, Switzerland
| | - Lutz Achtnichts
- Department of Neurology, Cantonal Hospital Aarau, Switzerland
| | - Oliver Findling
- Department of Neurology, Cantonal Hospital Aarau, Switzerland
| | | | | | - Till Sprenger
- Neurology, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
- Medical Image Analysis Centre, University of Basel, Basel, Switzerland
| | - Christoph Stippich
- Neuroradiology, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Tobias Derfuss
- Neurology, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
| | | | - Christian P. Kamm
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Heinrich P. Mattle
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | | | - Renaud Du Pasquier
- Department of Neurology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Myriam Schluep
- Department of Neurology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Caroline Pot
- Department of Neurology, University Hospital of Geneva (HUG), Geneva
| | - Patrice H. Lalive
- Department of Neurology, University Hospital of Geneva (HUG), Geneva
| | - Özgür Yaldizli
- Neurology, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Claudio Gobbi
- Department of Neurology, Regional Hospital Lugano (EOC), Lugano, Switzerland
| | - Ludwig Kappos
- Neurology, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
- * E-mail: (JK); (LK)
| | - Jens Kuhle
- Neurology, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
- * E-mail: (JK); (LK)
| | | |
Collapse
|
25
|
Abstract
The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is a major regulator of oxidative stress defence in the human body. As Nrf2 regulates the expression of a large battery of cytoprotective genes, it plays a crucial role in the prevention of degenerative disease in multiple organs. Thus it has been the focus of research as a pharmacological target that could be used for prevention and treatment of chronic diseases such as multiple sclerosis, chronic kidney disease or cardiovascular diseases. The present review summarizes promising findings from basic research and shows which Nrf2-targeting therapies are currently being investigated in clinical trials and which agents have already entered clinical practice.
Collapse
|
26
|
Dubey D, Kieseier BC, Hartung HP, Hemmer B, Warnke C, Menge T, Miller-Little WA, Stuve O. Dimethyl fumarate in relapsing-remitting multiple sclerosis: rationale, mechanisms of action, pharmacokinetics, efficacy and safety. Expert Rev Neurother 2015; 15:339-46. [PMID: 25800129 DOI: 10.1586/14737175.2015.1025755] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dimethyl fumarate (DMF), a fumaric acid ester, is a new orally available disease-modifying agent that was recently approved by the US FDA and the EMA for the management of relapsing forms of multiple sclerosis (MS). Fumaric acid has been used for the management of psoriasis, for more than 50 years. Because of the known anti-inflammatory properties of fumaric acid ester, DMF was brought into clinical development in MS. More recently, neuroprotective and myelin-protective mechanism actions have been proposed, making it a possible candidate for MS treatment. Two Phase III clinical trials (DEFINE, CONFIRM) have evaluated the safety and efficacy of DMF in patients with relapsing-remitting MS. Being an orally available agent with a favorable safety profile, it has become one of the most commonly prescribed disease-modifying agents in the USA and Europe.
Collapse
|
27
|
Value of monitoring Nrf2 activity for the detection of chemical and oxidative stress. Biochem Soc Trans 2015; 43:657-62. [PMID: 26551708 PMCID: PMC4613517 DOI: 10.1042/bst20150044] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Indexed: 02/08/2023]
Abstract
Beyond specific limits of exposure, chemical entities can provoke deleterious effects in mammalian cells via direct interaction with critical macromolecules or by stimulating the accumulation of reactive oxygen species (ROS). In particular, these chemical and oxidative stresses can underpin adverse reactions to therapeutic drugs, which pose an unnecessary burden in the clinic and pharmaceutical industry. Novel pre-clinical testing strategies are required to identify, at an earlier stage in the development pathway, chemicals and drugs that are likely to provoke toxicity in humans. Mammalian cells can adapt to chemical and oxidative stress via the action of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which up-regulates the expression of numerous cell defence genes and has been shown to protect against a variety of chemical toxicities. Here, we provide a brief overview of the Nrf2 pathway and summarize novel experimental models that can be used to monitor changes in Nrf2 pathway activity and thus understand the functional consequences of such perturbations in the context of chemical and drug toxicity. We also provide an outlook on the potential value of monitoring Nrf2 activity for improving the pre-clinical identification of chemicals and drugs with toxic liability in humans.
Collapse
|
28
|
Richardson BG, Jain AD, Speltz TE, Moore TW. Non-electrophilic modulators of the canonical Keap1/Nrf2 pathway. Bioorg Med Chem Lett 2015; 25:2261-8. [PMID: 25937010 PMCID: PMC4643947 DOI: 10.1016/j.bmcl.2015.04.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/30/2022]
Abstract
Nrf2 is the major transcription factor that regulates many of the cytoprotective enzymes involved in the adaptive stress response. Modulation of Nrf2 could be therapeutically useful in a number of disease states. Activation can occur through either an electrophilic or non-electrophilic mechanism. To date, most of the research has focused on electrophilic Nrf2 activators, but there is increasing interest in non-electrophilic modulators of Nrf2. This Digest examines the current selection of small molecules that modulate Nrf2 through non-electrophilic mechanisms, and it highlights new opportunities for this important therapeutic target.
Collapse
Affiliation(s)
- B G Richardson
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, 833 S. Wood St., Chicago, IL 60612, United States
| | - A D Jain
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, 833 S. Wood St., Chicago, IL 60612, United States
| | - T E Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, 833 S. Wood St., Chicago, IL 60612, United States
| | - T W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, 833 S. Wood St., Chicago, IL 60612, United States; University of Illinois Cancer Center, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, United States.
| |
Collapse
|
29
|
Meuth SG. [Do new oral therapies show advantages in the basal therapy of multiple sclerosis? Pro]. DER NERVENARZT 2015; 86:491. [PMID: 25694251 DOI: 10.1007/s00115-014-4243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- S G Meuth
- Klinik für Neurologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Deutschland,
| |
Collapse
|
30
|
|
31
|
Bomprezzi R. Dimethyl fumarate in the treatment of relapsing-remitting multiple sclerosis: an overview. Ther Adv Neurol Disord 2015; 8:20-30. [PMID: 25584071 DOI: 10.1177/1756285614564152] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) shares an immune-mediated origin with psoriasis. Long-term safety and efficacy data generated in Europe from usage of fumaric acid formulations in the latter disease constituted grounds to investigate their effects in MS patients. Dimethyl fumarate (DMF) was found to be the active principle in those formulations and in vitro studies have demonstrated that DMF has immune-modulatory properties exerted through abilities to divert cytokine production toward a Th2 profile, both on lymphocytes and microglial cells. More importantly, DMF was discovered to impact the anti-oxidative stress cell machinery promoting the transcription of genes downstream to the activation of the nuclear factor (erythroid derived 2)-like2 (NRF2). DMF exposure increases the cytosol concentrations of NRF2, which besides immune regulatory effects, has the potential for cytoprotection on glial cells, oligodendrocytes and neurons. Extensive and rigorous clinical trials have assessed the efficacy and safety of DMF at the dose of 240 mg twice and three times a day in relapsing-remitting MS patients during one phase IIb and two phase III trials. Robust, positive results were obtained across a number of clinical and paraclinical parameters. In one study (DEFINE), the relative reductions of the adjusted annualized relapse rate of the low and high dose regimens in comparison with placebo were 53% and 48%, respectively (p < 0.001 for both comparisons). In the other trial (CONFIRM), DMF decreased the annualized relapse rate in comparison with placebo by 44% in the lower and by 51% in higher dosage group (also p < 0.001). The number and size of lesions as detected by magnetic resonance imaging were also significantly decreased in comparison with the patients receiving DMF at every dosage. Multiple post hoc and subgroup analyses corroborated the clinical data, rendering DMF an appealing medication whose potential for impacting the degenerative aspects of MS remains to be explored.
Collapse
Affiliation(s)
- Roberto Bomprezzi
- Department of Neurology, University of Massachusetts, 55 Lake Avenue North, Worcester, MA 01655, USA
| |
Collapse
|
32
|
Kawalec P, Mikrut A, Wiśniewska N, Pilc A. The effectiveness of dimethyl fumarate monotherapy in the treatment of relapsing-remitting multiple sclerosis: a systematic review and meta-analysis. Curr Neuropharmacol 2014; 12:256-68. [PMID: 24851089 PMCID: PMC4023455 DOI: 10.2174/1570159x12666140115214801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/27/2013] [Accepted: 01/13/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Dimethyl fumarate (BG-12, Tecfidera®) is a new oral drug approved by FDA and EMA in March 2013 for relapsing - remitting multiple sclerosis (RRMS). The drug was much anticipated because of its possible superiority over currently available medications: fingolimod and teriflunomide as the only MS treatments currently available in oral form. OBJECTIVE The aim of this systematic review with meta-analysis was to assess the efficacy and safety of BG-12 in the treatment of RRMS. METHODS A systematic literature search was conducted in Medline/PubMed, EMBASE, and Cochrane Library up till 3(rd) November, 2013. We sought all published randomized clinical trials evaluating the use of dimethyl fumarate for the treatment of patients with RRMS. All included studies were critically appraised and analyzed with the use of Review Manager 5.1.0. software according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement protocol. RESULTS Two trials, DEFINE and CONFIRM involved 2 651 patients and compared dimethyl fumarate taken either two or three times daily with placebo in patients with RRMS. Additionally in CONFIRM trial third group of patients received glatiramer acetate. The overall results of the meta-analysis showed that BG-12 (at both dosages) given to patients with RRMS is safe and statistically significantly more effective than placebo in reducing the proportion of patients who had a relapse by 2 years, the rate of disability progression and the mean number of gadolinium-enhancing lesions at 2 years. The comparison between BG-12 and glatiramer acetate revealed that the analyzed agent could potentially be more effective in the treatment of RRMS. CONCLUSIONS Despite limited RCTs data available, both analyzed BG-12 regimens showed their efficacy on clinical disease parameters and other measures of disease activity in RRMS. The safety profile of the study agent was acceptable.
Collapse
Affiliation(s)
- Paweł Kawalec
- Jagiellonian University Medical College, Faculty of Health Sciences, Institute of Public Health, Department of Drug
Management, Krakow, Poland
| | | | | | - Andrzej Pilc
- Jagiellonian University Medical College, Faculty of Health Sciences, Institute of Public Health, Department of Drug
Management, Krakow, Poland
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| |
Collapse
|