1
|
Festag J, Festag MM, Asen T, Wettengel JM, Mück-Häusl MA, Abdulhaqq S, Stahl-Hennig C, Sacha JB, Burwitz BJ, Protzer U, Wisskirchen K. Vector-Mediated Delivery of Human Major Histocompatibility Complex-I into Hepatocytes Enables Investigation of T Cell Receptor-Redirected Hepatitis B Virus-Specific T Cells in Mice, and in Macaque Cell Cultures. Hum Gene Ther 2023; 34:1204-1218. [PMID: 37747811 PMCID: PMC10825313 DOI: 10.1089/hum.2023.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023] Open
Abstract
Adoptive T cell therapy using natural T cell receptor (TCR) redirection is a promising approach to fight solid cancers and viral infections in liver and other organs. However, clinical efficacy of such TCR+-T cells has been limited so far. One reason is that syngeneic preclinical models to evaluate safety and efficacy of TCR+-T cells are missing. We, therefore, developed an efficient viral vector strategy mediating expression of human major histocompatibility complex (MHC)-I in hepatocytes, which allows evaluation of TCR-T cell therapies targeting diseased liver cells. We designed adeno-associated virus (AAV) and adenoviral vectors encoding either the human-mouse chimeric HLA-A*02-like molecule, or fully human HLA-A*02 and human β2 microglobulin (hβ2m). Upon transduction of murine hepatocytes, the HLA-A*02 construct proved superior in terms of expression levels, presentation of endogenously processed peptides and activation of murine TCR+-T cells grafted with HLA-A*02-restricted, hepatitis B virus (HBV)-specific TCRs. In vivo, these T cells elicited effector function, controlled HBV replication, and reduced HBV viral load and antigen expression in livers of those mice that had received AAV-HBV and AAV-HLA-A*02. We then demonstrated the broad utility of this approach by grafting macaque T cells with the HBV-specific TCRs and enabling them to recognize HBV-infected primary macaque hepatocytes expressing HLA-A*02 upon adenoviral transduction. In conclusion, AAV and adenovirus vectors are suitable for delivery of HLA-A*02 and hβ2m into mouse and macaque hepatocytes. When recognizing their cognate antigen in HLA-A*02-transduced mouse livers or on isolated macaque hepatocytes, HLA-A*02-restricted, HBV-specific TCR+-T cells become activated and exert antiviral effector functions. This approach is applicable to any MHC restriction and target disease, paving the way for safety and efficacy studies of human TCR-based therapies in physiologically relevant preclinical animal models.
Collapse
Affiliation(s)
- Julia Festag
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Marvin M. Festag
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Theresa Asen
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Jochen M. Wettengel
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Shaheed Abdulhaqq
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | | | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
- Oregon National Primate Research Center (ONPRC), Oregon Health and Science University, Beaverton, Oregon, USA
| | - Benjamin J. Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
- Oregon National Primate Research Center (ONPRC), Oregon Health and Science University, Beaverton, Oregon, USA
| | - Ulrike Protzer
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Karin Wisskirchen
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| |
Collapse
|
2
|
Zhu MM, Niu BW, Liu LL, Yang H, Qin BY, Peng XH, Chen LX, Liu Y, Wang C, Ren XN, Xu CH, Zhou XH, Li F. Development of a humanized HLA-A30 transgenic mouse model. Animal Model Exp Med 2022; 5:350-361. [PMID: 35791899 PMCID: PMC9434587 DOI: 10.1002/ame2.12225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background There are remarkable genetic differences between animal major histocompatibility complex (MHC) systems and the human leukocyte antigen (HLA) system. HLA transgenic humanized mouse model systems offer a much better method to study the HLA‐A‐related principal mechanisms for vaccine development and HLA‐A‐restricted responses against infection in human. Methods A recombinant gene encoding the chimeric HLA‐A30 monochain was constructed. This HHD molecule contains the following: α1‐α2 domains of HLA‐A30, α3 and cytoplasmic domains of H‐2Db, linked at its N‐terminus to the C‐terminus of human β2m by a 15‐amino‐acid peptide linker. The recombinant gene encoding the chimeric HLA‐A30 monochain cassette was introduced into bacterial artificial chromosome (BAC) CH502‐67J3 containing the HLA‐A01 gene locus by Red‐mediated homologous recombination. Modified BAC CH502‐67J3 was microinjected into the pronuclei of wild‐type mouse oocytes. This humanized mouse model was further used to assess the immune responses against influenza A virus (H1N1) pdm09 clinically isolated from human patients. Immune cell population, cytokine production, and histopathology in the lung were analyzed. Results We describe a novel human β2m‐HLA‐A30 (α1α2)‐H‐2Db (α3 transmembrane cytoplasmic) (HHD) monochain transgenic mouse strain, which contains the intact HLA‐A01 gene locus including 49 kb 5′‐UTR and 74 kb 3′‐UTR of HLA‐A01*01. Five transgenic lines integrated into the large genomic region of HLA‐A gene locus were obtained, and the robust expression of exogenous transgene was detected in various tissues from A30‐18# and A30‐19# lines encompassing the intact flanking sequences. Flow cytometry revealed that the introduction of a large genomic region in HLA‐A gene locus can influence the immune cell constitution in humanized mice. Pdm09 infection caused a similar immune response among HLA‐A30 Tg humanized mice and wild‐type mice, and induced the rapid increase of cytokines, including IFN‐γ, TNF‐α, and IL‐6, in both HLA‐A30 humanized Tg mice and wild‐type mice. The expression of HLA‐A30 transgene was dramatically promoted in tissues from A30‐9# line at 3 days post‐infection (dpi). Conclusions We established a promising preclinical research animal model of HLA‐A30 Tg humanized mouse, which could accelerate the identification of novel HLA‐A30‐restricted epitopes and vaccine development, and support the study of HLA‐A‐restricted responses against infection in humans.
Collapse
Affiliation(s)
- Meng-Min Zhu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Bo-Wen Niu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Ling-Ling Liu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Hua Yang
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Bo-Yin Qin
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiu-Hua Peng
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Li-Xiang Chen
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Yang Liu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Chao Wang
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiao-Nan Ren
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Chun-Hua Xu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiao-Hui Zhou
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Feng Li
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| |
Collapse
|
3
|
Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-Based Vaccines for Tuberculosis. Front Immunol 2022; 13:830497. [PMID: 35173740 PMCID: PMC8841753 DOI: 10.3389/fimmu.2022.830497] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. As a result of the coronavirus disease 2019 (COVID-19) pandemic, the global TB mortality rate in 2020 is rising, making TB prevention and control more challenging. Vaccination has been considered the best approach to reduce the TB burden. Unfortunately, BCG, the only TB vaccine currently approved for use, offers some protection against childhood TB but is less effective in adults. Therefore, it is urgent to develop new TB vaccines that are more effective than BCG. Accumulating data indicated that peptides or epitopes play essential roles in bridging innate and adaptive immunity and triggering adaptive immunity. Furthermore, innovations in bioinformatics, immunoinformatics, synthetic technologies, new materials, and transgenic animal models have put wings on the research of peptide-based vaccines for TB. Hence, this review seeks to give an overview of current tools that can be used to design a peptide-based vaccine, the research status of peptide-based vaccines for TB, protein-based bacterial vaccine delivery systems, and animal models for the peptide-based vaccines. These explorations will provide approaches and strategies for developing safer and more effective peptide-based vaccines and contribute to achieving the WHO's End TB Strategy.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou City, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Avdoshina DV, Kondrashova AS, Belikova MG, Bayurova EO. Murine Models of Chronic Viral Infections and Associated Cancers. Mol Biol 2022; 56:649-667. [PMID: 36217336 PMCID: PMC9534466 DOI: 10.1134/s0026893322050028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022]
Abstract
Viruses are now recognized as bona fide etiologic factors of human cancer. Carcinogenic viruses include Epstein– Barr virus (EBV), high-risk human papillomaviruses (HPVs), hepatitis B virus (HBV), hepatitis C virus (HCV), human T-cell leukemia virus type 1 (HTLV-1), human immunodeficiency virus type 1 (HIV-1, indirectly), and several candidate human cancer viruses. It is estimated that 15% of all human tumors worldwide are caused by viruses. Tumor viruses establish long-term persistent infections in humans, and cancer is an accidental side effect of viral replication strategies. Viruses are usually not complete carcinogens, supporting the concept that cancer results from the accumulation of multiple cooperating events, in which human cancer viruses display different, often opposing roles. The laboratory mouse Mus musculus is one of the best in vivo experimental systems for modeling human pathology, including viral infections and cancer. However, mice are unsusceptible to infection with the known carcinogenic viruses. Many murine models were developed to overcome this limitation and to address various aspects of virus-associated carcinogenesis, from tumors resulting from xenografts of human tissues and cells, including cancerous and virus infected, to genetically engineered mice susceptible to viral infections and associated cancer. The review considers the main existing models, analyzes their advantages and drawbacks, describes their applications, outlines the prospects of their further development.
Collapse
Affiliation(s)
- D. V. Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia
| | - A. S. Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia
| | - M. G. Belikova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia ,Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia ,Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - E. O. Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia ,Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| |
Collapse
|
5
|
Vaccines against COVID-19: Priority to mRNA-Based Formulations. Cells 2021; 10:cells10102716. [PMID: 34685696 PMCID: PMC8534873 DOI: 10.3390/cells10102716] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
As of September 2021, twenty-one anti-COVID-19 vaccines have been approved in the world. Their utilization will expedite an end to the current pandemic. Besides the usual vaccine formats that include inactivated viruses (eight approved vaccines) and protein-based vaccines (four approved vaccines), three new formats have been validated: recombinant adenovirus (six approved vaccines), DNA (one approved vaccine), and messenger RNA (mRNA, two approved vaccines). The latter was the fastest (authorized in 2020 in the EU, the USA, and Switzerland). Most Western countries have reserved or use the protein vaccines, the adenovirus vaccines, and mRNA vaccines. I describe here the different vaccine formats in the context of COVID-19, detail the three formats that are chiefly reserved or used in Europe, Canada, and the USA, and discuss why the mRNA vaccines appear to be the superior format.
Collapse
|
6
|
Implementation of Adenovirus-Mediated Pulmonary Expression of Human ACE2 in HLA Transgenic Mice Enables Establishment of a COVID-19 Murine Model for Assessment of Immune Responses to SARS-CoV-2 Infection. Pathogens 2021; 10:pathogens10080940. [PMID: 34451403 PMCID: PMC8398702 DOI: 10.3390/pathogens10080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022] Open
Abstract
HLA transgenic mice are instrumental for evaluation of human-specific immune responses to viral infection. Mice do not develop COVID-19 upon infection with SARS-CoV-2 due to the strict tropism of the virus to the human ACE2 receptor. The aim of the current study was the implementation of an adenovirus-mediated infection protocol for human ACE2 expression in HLA transgenic mice. Transient pulmonary expression of the human ACE2 receptor in these mice results in their sensitisation to SARS-CoV-2 infection, consequently providing a valuable animal model for COVID-19. Infection results in a transient loss in body weight starting 3 days post-infection, reaching 20–30% loss of weight at day 7 and full recovery at days 11–13 post-infection. The evolution of the disease revealed high reproducibility and very low variability among individual mice. The method was implemented in two different strains of HLA immunized mice. Infected animals developed strong protective humoral and cellular immune responses specific to the viral spike-protein, strictly depending on the adenovirus-mediated human ACE2 expression. Convalescent animals were protected against a subsequent re-infection with SARS-CoV-2, demonstrating that the model may be applied for assessment of efficacy of anti-viral immune responses.
Collapse
|
7
|
Fischer K, Rieblinger B, Hein R, Sfriso R, Zuber J, Fischer A, Klinger B, Liang W, Flisikowski K, Kurome M, Zakhartchenko V, Kessler B, Wolf E, Rieben R, Schwinzer R, Kind A, Schnieke A. Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1, CMAH and B4GALNT2. Xenotransplantation 2019; 27:e12560. [PMID: 31591751 DOI: 10.1111/xen.12560] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cell surface carbohydrate antigens play a major role in the rejection of porcine xenografts. The most important for human recipients are α-1,3 Gal (Galactose-alpha-1,3-galactose) causing hyperacute rejection, also Neu5Gc (N-glycolylneuraminic acid) and Sd(a) blood group antigens both of which are likely to elicit acute vascular rejection given the known human immune status. Porcine cells with knockouts of the three genes responsible, GGTA1, CMAH and B4GALNT2, revealed minimal xenoreactive antibody binding after incubation with human serum. However, human leucocyte antigen (HLA) antibodies cross-reacted with swine leucocyte antigen class I (SLA-I). We previously demonstrated efficient generation of pigs with multiple xeno-transgenes placed at a single genomic locus. Here we wished to assess whether key xenoreactive antigen genes can be simultaneously inactivated and if combination with the multi-transgenic background further reduces antibody deposition and complement activation. METHODS Multiplex CRISPR/Cas9 gene editing and somatic cell nuclear transfer were used to generate pigs carrying functional knockouts of GGTA1, CMAH, B4GALNT2 and SLA class I. Fibroblasts derived from one- to four-fold knockout animals, and from multi-transgenic cells (human CD46, CD55, CD59, HO1 and A20) with the four-fold knockout were used to examine the effects on human IgG and IgM binding or complement activation in vitro. RESULTS Pigs were generated carrying four-fold knockouts of important xenoreactive genes. In vitro assays revealed that combination of all four gene knockouts reduced human IgG and IgM binding to porcine kidney cells more effectively than single or double knockouts. The multi-transgenic background combined with GGTA1 knockout alone reduced C3b/c and C4b/c complement activation to such an extent that further knockouts had no significant additional effect. CONCLUSION We showed that pigs carrying several xenoprotective transgenes and knockouts of xenoreactive antigens can be readily generated and these modifications will have significant effects on xenograft survival.
Collapse
Affiliation(s)
- Konrad Fischer
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Beate Rieblinger
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Rabea Hein
- Transplantationslabor, Medizinische Hochschule Hannover, Hannover, Germany
| | - Riccardo Sfriso
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Julia Zuber
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Andrea Fischer
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Bernhard Klinger
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Wei Liang
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Mayuko Kurome
- Chair of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Oberschleissheim, Germany
| | - Valeri Zakhartchenko
- Chair of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Oberschleissheim, Germany
| | - Barbara Kessler
- Chair of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Oberschleissheim, Germany
| | - Eckhard Wolf
- Chair of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Oberschleissheim, Germany
| | - Robert Rieben
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Reinhard Schwinzer
- Transplantationslabor, Medizinische Hochschule Hannover, Hannover, Germany
| | - Alexander Kind
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
8
|
Kruse S, Büchler M, Uhl P, Sauter M, Scherer P, Lan TCT, Zottnick S, Klevenz A, Yang R, Rösl F, Mier W, Riemer AB. Therapeutic vaccination using minimal HPV16 epitopes in a novel MHC-humanized murine HPV tumor model. Oncoimmunology 2018; 8:e1524694. [PMID: 30546964 DOI: 10.1080/2162402x.2018.1524694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/21/2018] [Accepted: 09/12/2018] [Indexed: 10/28/2022] Open
Abstract
Therapeutic vaccination as a treatment option for HPV-induced cancers is actively pursued because the two HPV proteins E6 and E7 represent ideal targets for immunotherapy, as they are non-self and expressed in all tumor stages. MHC-humanized mice are valuable tools for the study of therapeutic cancer vaccines - given the availability of a suitable tumor model. Here, we present for the first time an HPV16 tumor model suitable for fully MHC-humanized A2.DR1 mice, PAP-A2 cells, which in contrast to existing HPV16 tumor models allows the exclusive study of HLA-A2- and DR1-mediated immune responses, without any interfering murine MHC-presented epitopes. We used several HPV16 epitopes that were shown to be presented on human cervical cancer cells by mass spectrometry for therapeutic anti-tumor vaccination in the new tumor model. All epitopes were immunogenic when rendered amphiphilic by incorporation into a molecule containing stearic acids. Prophylactic and therapeutic vaccination experiments with the epitope E7/11-19 demonstrated that effective immune responses could be induced with these vaccination approaches in A2.DR1 mice. Interestingly, the combination of E7/11-19 with other immunogenic HPV16 E6/E7 epitopes caused a reduction of vaccine efficacy, although all tested combinations resulted in a survival benefit. In summary, we present the first HPV16 tumor model for exclusive studies of HLA-A2-mediated anti-HPV tumor immune responses and show anti-tumor efficacy of minimal epitope vaccines.
Collapse
Affiliation(s)
- Sebastian Kruse
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marleen Büchler
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Philipp Uhl
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Max Sauter
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Scherer
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tammy C T Lan
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Samantha Zottnick
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alexandra Klevenz
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ruwen Yang
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Rösl
- Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Angelika B Riemer
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Rangan L, Galaine J, Boidot R, Hamieh M, Dosset M, Francoual J, Beziaud L, Pallandre JR, Lauret Marie Joseph E, Asgarova A, Borg C, Al Saati T, Godet Y, Latouche JB, Valmary-Degano S, Adotévi O. Identification of a novel PD-L1 positive solid tumor transplantable in HLA-A*0201/DRB1*0101 transgenic mice. Oncotarget 2018; 8:48959-48971. [PMID: 28430664 PMCID: PMC5564740 DOI: 10.18632/oncotarget.16900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/22/2017] [Indexed: 12/28/2022] Open
Abstract
HLA-A*0201/DRB1*0101 transgenic mice (A2/DR1 mice) have been developed to study the
immunogenicity of tumor antigen-derived T cell epitopes. To extend the use and
application of this mouse model in the field of antitumor immunotherapy, we described
a tumor cell line generated from a naturally occurring tumor in A2/DR1 mouse named
SARC-L1. Histological and genes signature analysis supported the sarcoma origin of
this cell line. While SARC-L1 tumor cells lack HLA-DRB1*0101 expression, a very low
expression of HLA-A*0201 molecules was found on these cells. Furthermore they also
weakly but constitutively expressed the programmed death-ligand 1 (PD-L1).
Interestingly both HLA-A*0201 and PD-L1 expressions can be increased on SARC-L1 after
IFN-γ exposure in vitro. We also obtained two genetically
modified cell lines highly expressing either HLA-A*0201 or both HLA-A*0201/
HLA-DRB1*0101 molecules referred as SARC-A2 and SARC-A2DR1 respectively. All the
SARC-L1-derived cell lines induced aggressive subcutaneous tumors in A2DR1 mice
in vivo. The analysis of SARC-L1 tumor microenvironment revealed
a strong infiltration by T cells expressing inhibitory receptors such as PD-1 and
TIM-3. Finally, we found that SARC-L1 is sensitive to several drugs commonly used to
treat sarcoma and also susceptible to anti-PD-L1 monoclonal antibody therapy
in vivo. Collectively, we described a novel syngeneic tumor model
A2/DR1 mice that could be used as preclinical tool for the evaluation of antitumor
immunotherapies.
Collapse
Affiliation(s)
- Laurie Rangan
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Jeanne Galaine
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Romain Boidot
- Platform for Transfer to Cancer Biology, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Mohamad Hamieh
- University Hospital of Rouen, INSERM UMR1245, Institute for Research and Innovation in Biomedicine, 76183 Rouen, France
| | - Magalie Dosset
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Julie Francoual
- University Hospital of Rouen, INSERM UMR1245, Institute for Research and Innovation in Biomedicine, 76183 Rouen, France
| | - Laurent Beziaud
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Jean-René Pallandre
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Elodie Lauret Marie Joseph
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Afag Asgarova
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Christophe Borg
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, 25000 Besançon, France
| | - Talal Al Saati
- INSERM/UPS, US006/CREFRE, Department of Histopathology, University Hospital of Purpan, 31000 Toulouse, France
| | - Yann Godet
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Jean Baptiste Latouche
- Department of Genetics, University Hospital of Rouen, Normandy Centre for Genomic and Personalized Medicine, 76183 Rouen, France
| | | | - Olivier Adotévi
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, 25000 Besançon, France
| |
Collapse
|
10
|
Didwania N, Shadab M, Sabur A, Ali N. Alternative to Chemotherapy-The Unmet Demand against Leishmaniasis. Front Immunol 2017; 8:1779. [PMID: 29312309 PMCID: PMC5742582 DOI: 10.3389/fimmu.2017.01779] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis is a neglected protozoan disease that mainly affects the tropical as well as subtropical countries of the world. The primary option to control the disease still relies on chemotherapy. However, a hindrance to treatments owing to the emergence of drug-resistant parasites, enormous side effects of the drugs, their high cost, and requirement of long course hospitalization has added to the existing problems of leishmaniasis containment program. This review highlights the prospects of immunotherapy and/or immunochemotherapy to address the limitations for current treatment measures for leishmaniasis. In addition to the progress in alternate therapeutic strategies, the possibility and advances in developing preventive measures against the disease have been pointed. The review highlights our recent understandings of the protective immunology that can be exploited to develop an effective vaccine against leishmaniasis. Moreover, an update on the approaches that have evolved over the recent years are predominantly focused to overcome the current challenges in developing immunotherapeutic as well as prophylactic antileishmanial vaccines is discussed.
Collapse
Affiliation(s)
- Nicky Didwania
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Md Shadab
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Abdus Sabur
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
11
|
Athanasiou E, Agallou M, Tastsoglou S, Kammona O, Hatzigeorgiou A, Kiparissides C, Karagouni E. A Poly(Lactic- co-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different Leishmania infantum Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8 + T Cells Essential for the Protection against Experimental Visceral Leishmaniasis. Front Immunol 2017; 8:684. [PMID: 28659922 PMCID: PMC5468442 DOI: 10.3389/fimmu.2017.00684] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/26/2017] [Indexed: 01/19/2023] Open
Abstract
Visceral leishmaniasis, caused by Leishmania (L.) donovani and L. infantum protozoan parasites, can provoke overwhelming and protracted epidemics, with high case-fatality rates. An effective vaccine against the disease must rely on the generation of a strong and long-lasting T cell immunity, mediated by CD4+ TH1 and CD8+ T cells. Multi-epitope peptide-based vaccine development is manifesting as the new era of vaccination strategies against Leishmania infection. In this study, we designed chimeric peptides containing HLA-restricted epitopes from three immunogenic L. infantum proteins (cysteine peptidase A, histone H1, and kinetoplastid membrane protein 11), in order to be encapsulated in poly(lactic-co-glycolic) acid nanoparticles with or without the adjuvant monophosphoryl lipid A (MPLA) or surface modification with an octapeptide targeting the tumor necrosis factor receptor II. We aimed to construct differentially functionalized peptide-based nanovaccine candidates and investigate their capacity to stimulate the immunomodulatory properties of dendritic cells (DCs), which are critical regulators of adaptive immunity generated upon vaccination. According to our results, DCs stimulation with the peptide-based nanovaccine candidates with MPLA incorporation or surface modification induced an enhanced maturation profile with prominent IL-12 production, promoting allogeneic T cell proliferation and intracellular production of IFNγ by CD4+ and CD8+ T cell subsets. In addition, DCs stimulated with the peptide-based nanovaccine candidate with MPLA incorporation exhibited a robust transcriptional activation, characterized by upregulated genes indicative of vaccine-driven DCs differentiation toward type 1 phenotype. Immunization of HLA A2.1 transgenic mice with this peptide-based nanovaccine candidate induced peptide-specific IFNγ-producing CD8+ T cells and conferred significant protection against L. infantum infection. Concluding, our findings supported that encapsulation of more than one chimeric multi-epitope peptides from different immunogenic L. infantum proteins in a proper biocompatible delivery system with the right adjuvant is considered as an improved promising approach for the development of a vaccine against VL.
Collapse
Affiliation(s)
- Evita Athanasiou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Agallou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | | | - Olga Kammona
- Laboratory of Polymer Reaction Engineering, Chemical Process and Energy Resources Institute, Centre for Research and Technology-Hellas, Thessaloniki, Greece
| | | | - Costas Kiparissides
- Laboratory of Polymer Reaction Engineering, Chemical Process and Energy Resources Institute, Centre for Research and Technology-Hellas, Thessaloniki, Greece.,Laboratory of Chemical Engineering B, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evdokia Karagouni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
12
|
Wang Y, Du Y, Zhou X, Wang L, Li J, Wang F, Huang Z, Huang X, Wei H. Efficient generation of B2m-null pigs via injection of zygote with TALENs. Sci Rep 2016; 6:38854. [PMID: 27982048 PMCID: PMC5159787 DOI: 10.1038/srep38854] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 11/14/2016] [Indexed: 02/07/2023] Open
Abstract
Donor major histocompatibility complex class I (MHC I) molecules are the main targets of the host immune response after organ allotransplantation. Whether and how MHC I-deficiency of pig donor tissues affects rejection after xenotransplantation has not been assessed. Beta2-microglobulin (B2M) is indispensable for the assembly of MHC I receptors and therefore provides an effective target to disrupt cell surface MHC I expression. Here, we report the one-step generation of mutant pigs with targeted disruptions in B2m by injection of porcine zygotes with B2m exon 2-specific TALENs. After germline transmission of mutant B2m alleles, we obtained F1 pigs with biallelic B2m frameshift mutations. F1 pigs lacked detectable B2M expression in tissues derived from the three germ layers, and their lymphocytes were devoid of MHC I surface receptors. Skin grafts from B2M deficient pigs exhibited remarkably prolonged survival on xenogeneic wounds compared to tissues of non-mutant littermates. Mutant founder pigs with bi-allelic disruption in B2m and B2M deficient F1 offspring did not display visible abnormalities, suggesting that pigs are tolerant to B2M deficiency. In summary, we show the efficient generation of pigs with germline mutations in B2m, and demonstrate a beneficial effect of donor MHC I-deficiency on xenotransplantation.
Collapse
Affiliation(s)
- Yong Wang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yinan Du
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing 210061, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai 201210, China
| | - Xiaoyang Zhou
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Lulu Wang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Jian Li
- Department of Immunology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Fengchao Wang
- Institute of Combined Injury, College of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Zhengen Huang
- Research Institute of Burns, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xingxu Huang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing 210061, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai 201210, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
13
|
Seyed N, Taheri T, Rafati S. Post-Genomics and Vaccine Improvement for Leishmania. Front Microbiol 2016; 7:467. [PMID: 27092123 PMCID: PMC4822237 DOI: 10.3389/fmicb.2016.00467] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 03/21/2016] [Indexed: 01/27/2023] Open
Abstract
Leishmaniasis is a parasitic disease that primarily affects Asia, Africa, South America, and the Mediterranean basin. Despite extensive efforts to develop an effective prophylactic vaccine, no promising vaccine is available yet. However, recent advancements in computational vaccinology on the one hand and genome sequencing approaches on the other have generated new hopes in vaccine development. Computational genome mining for new vaccine candidates is known as reverse vaccinology and is believed to further extend the current list of Leishmania vaccine candidates. Reverse vaccinology can also reduce the intrinsic risks associated with live attenuated vaccines. Individual epitopes arranged in tandem as polytopes are also a possible outcome of reverse genome mining. Here, we will briefly compare reverse vaccinology with conventional vaccinology in respect to Leishmania vaccine, and we will discuss how it influences the aforementioned topics. We will also introduce new in vivo models that will bridge the gap between human and laboratory animal models in future studies.
Collapse
Affiliation(s)
- Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of IranTehran, Iran
| | | | | |
Collapse
|
14
|
Yu W, Grubor-Bauk B, Mullick R, Das S, Gowans EJ. Immunocompetent mouse models to evaluate intrahepatic T cell responses to HCV vaccines. Hum Vaccin Immunother 2015; 10:3576-8. [PMID: 25483684 DOI: 10.4161/hv.34343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Despite considerable progress in the development of immunocompetent mouse models using different high end technologies, most available small animal models for HCV study are unsuitable for challenge experiments, which are vital for vaccine development, as they fail to measure the T cell response in liver. A recently developed intra-hepatic challenge model results in HCV antigen expression in mouse hepatocytes and through the detection of the surrogate marker, SEAP, in serum, the effect of prior vaccination can be monitored longitudinally.
Collapse
Affiliation(s)
- Wenbo Yu
- a Discipline of Surgery ; University of Adelaide; Basil Hetzel Institute ; Adelaide , SA , Australia
| | | | | | | | | |
Collapse
|
15
|
Seyed N, Taheri T, Vauchy C, Dosset M, Godet Y, Eslamifar A, Sharifi I, Adotevi O, Borg C, Rohrlich PS, Rafati S. Immunogenicity evaluation of a rationally designed polytope construct encoding HLA-A*0201 restricted epitopes derived from Leishmania major related proteins in HLA-A2/DR1 transgenic mice: steps toward polytope vaccine. PLoS One 2014; 9:e108848. [PMID: 25310094 PMCID: PMC4195657 DOI: 10.1371/journal.pone.0108848] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/22/2014] [Indexed: 11/18/2022] Open
Abstract
Background There are several reports demonstrating the role of CD8 T cells against Leishmania species. Therefore peptide vaccine might represent an effective approach to control the infection. We developed a rational polytope-DNA construct encoding immunogenic HLA-A2 restricted peptides and validated the processing and presentation of encoded epitopes in a preclinical mouse model humanized for the MHC-class-I and II. Methods and Findings HLA-A*0201 restricted epitopes from LPG-3, LmSTI-1, CPB and CPC along with H-2Kd restricted peptides, were lined-up together as a polytope string in a DNA construct. Polytope string was rationally designed by harnessing advantages of ubiquitin, spacers and HLA-DR restricted Th1 epitope. Endotoxin free pcDNA plasmid expressing the polytope was inoculated into humanized HLA-DRB1*0101/HLA-A*0201 transgenic mice intramuscularly 4 days after Cardiotoxin priming followed by 2 boosters at one week interval. Mice were sacrificed 10 days after the last booster, and splenocytes were subjected to ex-vivo and in-vitro evaluation of specific IFN-γ production and in-vitro cytotoxicity against individual peptides by ELISpot and standard chromium-51(51Cr) release assay respectively. 4 H-2Kd and 5 HLA-A*0201 restricted peptides were able to induce specific CD8 T cell responses in BALB/C and HLA-A2/DR1 mice respectively. IFN-γ and cytolytic activity together discriminated LPG-3-P1 as dominant, LmSTI-1-P3 and LmSTI-1-P6 as subdominant with both cytolytic activity and IFN-γ production, LmSTI-1-P4 and LPG-3-P5 as subdominant with only IFN-γ production potential. Conclusions Here we described a new DNA-polytope construct for Leishmania vaccination encompassing immunogenic HLA-A2 restricted peptides. Immunogenicity evaluation in HLA-transgenic model confirmed CD8 T cell induction with expected affinities and avidities showing almost efficient processing and presentation of the peptides in relevant preclinical model. Further evaluation will determine the efficacy of this polytope construct protecting against infectious challenge of Leishmania. Fortunately HLA transgenic mice are promising preclinical models helping to speed up immunogenicity analysis in a human related mouse model.
Collapse
Affiliation(s)
- Negar Seyed
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Charline Vauchy
- INSERM U1098, Unité Mixte de Recherche, Besançon, France
- Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France
- Université de Franche-Comté, Besançon, France
| | - Magalie Dosset
- INSERM U1098, Unité Mixte de Recherche, Besançon, France
- Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France
- Université de Franche-Comté, Besançon, France
| | - Yann Godet
- INSERM U1098, Unité Mixte de Recherche, Besançon, France
- Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France
- Université de Franche-Comté, Besançon, France
| | - Ali Eslamifar
- Department of Electron Microscopy and Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Iraj Sharifi
- School of Medicine, Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Olivier Adotevi
- INSERM U1098, Unité Mixte de Recherche, Besançon, France
- Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France
- Université de Franche-Comté, Besançon, France
- CHRU de Besançon, Service d′Oncologie, Besançon, France
| | - Christophe Borg
- INSERM U1098, Unité Mixte de Recherche, Besançon, France
- Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France
- Université de Franche-Comté, Besançon, France
- CHRU de Besançon, Service d′Oncologie, Besançon, France
| | - Pierre Simon Rohrlich
- INSERM U1098, Unité Mixte de Recherche, Besançon, France
- Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France
- Université de Franche-Comté, Besançon, France
- CHRU de Besançon, Service de pédiatrie, Besançon, France
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
- * E-mail:
| |
Collapse
|
16
|
Matsui M, Kawano M, Matsushita S, Akatsuka T. Introduction of a point mutation into an HLA class I single-chain trimer induces enhancement of CTL priming and antitumor immunity. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14027. [PMID: 26015969 PMCID: PMC4362367 DOI: 10.1038/mtm.2014.27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 05/25/2014] [Accepted: 05/26/2014] [Indexed: 01/02/2023]
Abstract
We previously discovered one particular HLA-A*02:01 mutant that enhanced peptide-specific cytotoxic T lymphocyte (CTL) recognition in vitro compared to wild-type HLA-A*02:01. This mutant contains a single amino acid substitution from histidine to leucine at position 74 (H74L) that is located in the peptide-binding groove. To investigate the effect of the H74L mutation on the in vivo CTL priming, we took advantage of the technology of the HLA class I single-chain trimer (SCT) in which three components involving a peptide, β2 microglobulin and the HLA class I heavy chain are joined together via flexible linkers. We generated recombinant adenovirus expressing SCT comprised influenza A matrix protein (FMP)-derived peptide, β2 microglobulin and the H74L heavy chain. HLA-A*02:01 transgenic mice were immunized with the adenovirus, and the induction of peptide-specific CTLs and antitumor immunity was investigated. It was clearly shown that the H74L mutation enabled the HLA-A*02:01 SCT molecule to dramatically enhance both in vivo priming of FMP-specific CTLs and protection against a lethal challenge of tumor cells expressing FMP. These data present the first evidence that a simple point mutation in the HLA class I heavy chain of SCT is beneficial for improving CTL-based immunotherapy and prophylaxis to control tumors.
Collapse
Affiliation(s)
- Masanori Matsui
- Department of Microbiology, Saitama Medical University , Iruma-gun, Saitama, Japan
| | - Masaaki Kawano
- Department of Allergy and Immunology, Saitama Medical University , Iruma-gun, Saitama, Japan
| | - Sho Matsushita
- Department of Allergy and Immunology, Saitama Medical University , Iruma-gun, Saitama, Japan ; Allergy Center, Saitama Medical University , Iruma-gun, Saitama, Japan
| | - Toshitaka Akatsuka
- Department of Microbiology, Saitama Medical University , Iruma-gun, Saitama, Japan
| |
Collapse
|
17
|
Therapeutic Vaccine Strategies against Human Papillomavirus. Vaccines (Basel) 2014; 2:422-62. [PMID: 26344626 PMCID: PMC4494257 DOI: 10.3390/vaccines2020422] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022] Open
Abstract
High-risk types of human papillomavirus (HPV) cause over 500,000 cervical, anogenital and oropharyngeal cancer cases per year. The transforming potential of HPVs is mediated by viral oncoproteins. These are essential for the induction and maintenance of the malignant phenotype. Thus, HPV-mediated malignancies pose the unique opportunity in cancer vaccination to target immunologically foreign epitopes. Therapeutic HPV vaccination is therefore an ideal scenario for proof-of-concept studies of cancer immunotherapy. This is reflected by the fact that a multitude of approaches has been utilized in therapeutic HPV vaccination design: protein and peptide vaccination, DNA vaccination, nanoparticle- and cell-based vaccines, and live viral and bacterial vectors. This review provides a comprehensive overview of completed and ongoing clinical trials in therapeutic HPV vaccination (summarized in tables), and also highlights selected promising preclinical studies. Special emphasis is given to adjuvant science and the potential impact of novel developments in vaccinology research, such as combination therapies to overcome tumor immune suppression, the use of novel materials and mouse models, as well as systems vaccinology and immunogenetics approaches.
Collapse
|
18
|
Nascimento EJM, Mailliard RB, Khan AM, Sidney J, Sette A, Guzman N, Paulaitis M, de Melo AB, Cordeiro MT, Gil LVG, Lemonnier F, Rinaldo C, August JT, Marques ETA. Identification of conserved and HLA promiscuous DENV3 T-cell epitopes. PLoS Negl Trop Dis 2013; 7:e2497. [PMID: 24130917 PMCID: PMC3794980 DOI: 10.1371/journal.pntd.0002497] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 09/09/2013] [Indexed: 12/31/2022] Open
Abstract
Anti-dengue T-cell responses have been implicated in both protection and immunopathology. However, most of the T-cell studies for dengue include few epitopes, with limited knowledge of their inter-serotype variation and the breadth of their human leukocyte antigen (HLA) affinity. In order to expand our knowledge of HLA-restricted dengue epitopes, we screened T-cell responses against 477 overlapping peptides derived from structural and non-structural proteins of the dengue virus serotype 3 (DENV3) by use of HLA class I and II transgenic mice (TgM): A2, A24, B7, DR2, DR3 and DR4. TgM were inoculated with peptides pools and the T-cell immunogenic peptides were identified by ELISPOT. Nine HLA class I and 97 HLA class II novel DENV3 epitopes were identified based on immunogenicity in TgM and their HLA affinity was further confirmed by binding assays analysis. A subset of these epitopes activated memory T-cells from DENV3 immune volunteers and was also capable of priming naïve T-cells, ex vivo, from dengue IgG negative individuals. Analysis of inter- and intra-serotype variation of such an epitope (A02-restricted) allowed us to identify altered peptide ligands not only in DENV3 but also in other DENV serotypes. These studies also characterized the HLA promiscuity of 23 HLA class II epitopes bearing highly conserved sequences, six of which could bind to more than 10 different HLA molecules representing a large percentage of the global population. These epitope data are invaluable to investigate the role of T-cells in dengue immunity/pathogenesis and vaccine design. Although there is an increased recognition of the role of T-cells in both dengue pathogenesis and protection, comprehensive analysis of T-cell activation during dengue infection is hampered by the small repertoire of known human dengue T-cell epitopes. Although dengue serotype 3 (DENV3) is responsible for numerous outbreaks worldwide, most of the known epitopes are from studies of dengue 2 serotype (DENV2). In this study, we identified novel DENV3 T-cell epitopes in HLA transgenic mice that were confirmed by HLA binding assays. A subset of these epitopes activated memory T-cells from subjects who were dengue IgG positive and primed naïve T-cells from dengue IgG negative individuals. Notably, some of HLA class II epitopes bearing highly conserved regions common to all four dengue serotypes could bind to multiple HLAs. We postulate that these highly conserved and HLA promiscuous T-helper epitopes can be important components of a dengue tetravalent vaccine.
Collapse
Affiliation(s)
- Eduardo J. M. Nascimento
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (EJMN); , (ETAM)
| | - Robbie B. Mailliard
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Asif M. Khan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Perdana University Graduate School of Medicine, Serdang, Selangor Darul Ehsan, Malaysia
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Nicole Guzman
- Department of Chemical & Biomolecular Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Michael Paulaitis
- Department of Chemical & Biomolecular Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Andréa Barbosa de Melo
- Department of Virology and Experimental Therapy, CPqAM/FIOCRUZ, Recife, Pernambuco, Brazil
| | - Marli T. Cordeiro
- Department of Virology and Experimental Therapy, CPqAM/FIOCRUZ, Recife, Pernambuco, Brazil
| | - Laura V. G. Gil
- Department of Virology and Experimental Therapy, CPqAM/FIOCRUZ, Recife, Pernambuco, Brazil
| | | | - Charles Rinaldo
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - J. Thomas August
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ernesto T. A. Marques
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Virology and Experimental Therapy, CPqAM/FIOCRUZ, Recife, Pernambuco, Brazil
- * E-mail: (EJMN); , (ETAM)
| |
Collapse
|
19
|
Scheer N, Snaith M, Wolf CR, Seibler J. Generation and utility of genetically humanized mouse models. Drug Discov Today 2013; 18:1200-11. [PMID: 23872278 DOI: 10.1016/j.drudis.2013.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/20/2013] [Accepted: 07/11/2013] [Indexed: 01/15/2023]
Abstract
Identifying in vivo models that are naturally predictive for particular areas of study in humans can be challenging due to the divergence that has occurred during speciation. One solution to this challenge that is gaining increasing traction is the use of genetic engineering to introduce human genes into mice to generate superior models for predicting human responses. This review describes the state-of-the-art for generating such models, provides an overview of the types of genetically humanized mouse models described to date and their applications in basic research, drug discovery and development and to understand clinical drug toxicity. We discuss limitations and explore promising future directions for the use of genetically humanized mice to further improve translational research.
Collapse
Affiliation(s)
- Nico Scheer
- TaconicArtemis, Neurather Ring 1, Koeln 51063, Germany.
| | | | | | | |
Collapse
|
20
|
Boucherma R, Kridane-Miledi H, Bouziat R, Rasmussen M, Gatard T, Langa-Vives F, Lemercier B, Lim A, Bérard M, Benmohamed L, Buus S, Rooke R, Lemonnier FA. HLA-A*01:03, HLA-A*24:02, HLA-B*08:01, HLA-B*27:05, HLA-B*35:01, HLA-B*44:02, and HLA-C*07:01 monochain transgenic/H-2 class I null mice: novel versatile preclinical models of human T cell responses. THE JOURNAL OF IMMUNOLOGY 2013; 191:583-93. [PMID: 23776170 DOI: 10.4049/jimmunol.1300483] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have generated a panel of transgenic mice expressing HLA-A*01:03, -A*24:02, -B*08:01, -B*27:05, -B*35:01, -B*44:02, or -C*07:01 as chimeric monochain molecules (i.e., appropriate HLA α1α2 H chain domains fused with a mouse α3 domain and covalently linked to human β2-microglobulin). Whereas surface expression of several transgenes was markedly reduced in recipient mice that coexpressed endogenous H-2 class I molecules, substantial surface expression of all human transgenes was observed in mice lacking H-2 class I molecules. In these HLA monochain transgenic/H-2 class I null mice, we observed a quantitative and qualitative restoration of the peripheral CD8(+) T cell repertoire, which exhibited a TCR diversity comparable with C57BL/6 WT mice. Potent epitope-specific, HLA-restricted, IFN-γ-producing CD8(+) T cell responses were generated against known reference T cell epitopes after either peptide or DNA immunization. HLA-wise, these new transgenic strains encompass a large proportion of individuals from all major human races and ethnicities. In combination with the previously created HLA-A*02:01 and -B*07:02 transgenic mice, the novel HLA transgenic mice described in this report should be a versatile preclinical animal model that will speed up the identification and optimization of HLA-restricted CD8(+) T cell epitopes of potential interest in various autoimmune human diseases and in preclinical evaluation of T cell-based vaccines.
Collapse
Affiliation(s)
- Rachid Boucherma
- INSERM U1016, Institut Cochin, Equipe Immunologie du Diabète, Hôpital Saint-Vincent-de-Paul, 75674 Paris, Cedex 14, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Aspord C, Yu CI, Banchereau J, Palucka AK. Humanized mice for the development and testing of human vaccines. Expert Opin Drug Discov 2013; 2:949-60. [PMID: 23484815 DOI: 10.1517/17460441.2.7.949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mouse models of human disease form a link between genetics and biology. However, mice and humans differ in many aspects of immune system biology. These differences might explain, in part, why many successful preclinical immunotherapy studies in mice turn out to be unsuccessful when used in clinical trials in humans. Pioneering studies in the late 1980s demonstrated the reconstitution of human lympho-hematopoietic cells in immunodeficient mice. Since this time, immunodeficient mice are being tested as hosts for human hematopoietic organs or cells in an effort to create an in vivo model of the complete human immune system. Such Humouse models could permit us to generate and test novel human vaccines.
Collapse
Affiliation(s)
- Caroline Aspord
- Baylor Institute for Immunology Research and Baylor NIAID Cooperative Center for Translational Research on Human Immunology and Biodefense, Dallas, TX75204, USA +1 214 820 7450 ; +1 214 820 4813 ;
| | | | | | | |
Collapse
|
22
|
Study designs for the nonclinical safety testing of new vaccine products. J Pharmacol Toxicol Methods 2012; 66:1-7. [DOI: 10.1016/j.vascn.2012.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 11/19/2022]
|
23
|
West Nile virus T-cell ligand sequences shared with other flaviviruses: a multitude of variant sequences as potential altered peptide ligands. J Virol 2012; 86:7616-24. [PMID: 22573867 DOI: 10.1128/jvi.00166-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phylogenetic relatedness and cocirculation of several major human pathogen flaviviruses are recognized as a possible cause of deleterious immune responses to mixed infection or immunization and call for a greater understanding of the inter-Flavivirus protein homologies. This study focused on the identification of human leukocyte antigen (HLA)-restricted West Nile virus (WNV) T-cell ligands and characterization of their distribution in reported sequence data of WNV and other flaviviruses. H-2-deficient mice transgenic for either A2, A24, B7, DR2, DR3, or DR4 HLA alleles were immunized with overlapping peptides of the WNV proteome, and peptide-specific T-cell activation was measured by gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assays. Approximately 30% (137) of the WNV proteome peptides were identified as HLA-restricted T-cell ligands. The majority of these ligands were conserved in ∼≥88% of analyzed WNV sequences. Notably, only 51 were WNV specific, and the remaining 86, chiefly of E, NS3, and NS5, shared an identity of nine or more consecutive amino acids with sequences of 64 other flaviviruses, including several major human pathogens. Many of the shared ligands had an incidence of >50% in the analyzed sequences of one or more of six major flaviviruses. The multitude of WNV sequences shared with other flaviviruses as interspecies variants highlights the possible hazard of defective T-cell activation by altered peptide ligands in the event of dual exposure to WNV and other flaviviruses, by either infection or immunization. The data suggest the possible preferred use of sequences that are pathogen specific with minimum interspecies sequence homology for the design of Flavivirus vaccines.
Collapse
|
24
|
Ru Z, Xiao W, Pajot A, Kou Z, Sun S, Maillere B, Zhao G, Ojcius DM, Lone YC, Zhou Y. Development of a humanized HLA-A2.1/DP4 transgenic mouse model and the use of this model to map HLA-DP4-restricted epitopes of HBV envelope protein. PLoS One 2012; 7:e32247. [PMID: 22403638 PMCID: PMC3293898 DOI: 10.1371/journal.pone.0032247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 01/24/2012] [Indexed: 01/22/2023] Open
Abstract
A new homozygous humanized transgenic mouse strain, HLA-A2.1(+/+)HLA-DP4(+/+) hCD4(+/+)mCD4(-/-)IAβ(-/-)β2m(-/-) (HLA-A2/DP4), was obtained by crossing the previously characterized HLA-A2(+/+)β2m(-/-) (A2) mouse and our previously created HLA-DP4(+/+) hCD4(+/+)mCD4(-/-)IAβ(-/-) (DP4) mouse. We confirmed that the transgenes (HLA-A2, HLA-DP4, hCD4) inherited from the parental A2 and DP4 mice are functional in the HLA-A2/DP4 mice. After immunizing HLA-A2/DP4 mice with a hepatitis B DNA vaccine, hepatitis B virus-specific antibodies, HLA-A2-restricted and HLA-DP4-restricted responses were observed to be similar to those in naturally infected humans. Therefore, the present study demonstrated that HLA-A2/DP4 transgenic mice can faithfully mimic human cellular responses. Furthermore, we reported four new HLA-DP4-restricted epitopes derived from HBsAg that were identified in both vaccinated HLA-A2/DP4 mice and HLA-DP4-positive human individuals. The HLA-A2/DP4 mouse model is a promising preclinical animal model carrying alleles present to more than a quarter of the human population. This model should facilitate the identification of novel HLA-A2- and HLA-DP4-restricted epitopes and vaccine development as well as the characterization of HLA-DP4-restricted responses against infection in humans.
Collapse
Affiliation(s)
- Zhitao Ru
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- INSERM U1014 (ex U542), Université Paris-Sud, Hôpital Paul Brousse, Villejuif, France
| | - Wenjun Xiao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Anthony Pajot
- INSERM U1014 (ex U542), Université Paris-Sud, Hôpital Paul Brousse, Villejuif, France
| | - Zhihua Kou
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shihui Sun
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bernard Maillere
- Commissariat à l'Energie Atomique-Saclay, Institut de Biologie et Technologies, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette, France
| | - Guangyu Zhao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - David M. Ojcius
- Health Sciences Research Institute and School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Yu-chun Lone
- INSERM U1014 (ex U542), Université Paris-Sud, Hôpital Paul Brousse, Villejuif, France
- * E-mail: (YL); (YZ)
| | - Yusen Zhou
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (YL); (YZ)
| |
Collapse
|
25
|
Laing KJ, Dong L, Sidney J, Sette A, Koelle DM. Immunology in the Clinic Review Series; focus on host responses: T cell responses to herpes simplex viruses. Clin Exp Immunol 2012; 167:47-58. [PMID: 22132884 PMCID: PMC3248086 DOI: 10.1111/j.1365-2249.2011.04502.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2011] [Indexed: 01/04/2023] Open
Abstract
Herpes virus infections are chronic and co-exist with acquired immune responses that generally prevent severe damage to the host, while allowing periodic shedding of virus and maintenance of its transmission in the community. Herpes simplex viruses type 1 and 2 (HSV-1, HSV-2) are typical in this regard and are representative of the viral subfamily Alphaherpesvirinae, which has a tropism for neuronal and epithelial cells. This review will emphasize recent progress in decoding the physiologically important CD8(+) and CD4(+) T cell responses to HSV in humans. The expanding data set is discussed in the context of the search for an effective HSV vaccine as therapy for existing infections and to prevent new infections.
Collapse
Affiliation(s)
- K J Laing
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
26
|
DNA fusion gene vaccines induce cytotoxic T-cell attack on naturally processed peptides of human prostate-specific membrane antigen. Eur J Immunol 2011; 41:2447-56. [DOI: 10.1002/eji.201141518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/13/2011] [Accepted: 05/11/2011] [Indexed: 02/05/2023]
|
27
|
Characterization of the specific CD4+ T cell response against the F protein during chronic hepatitis C virus infection. PLoS One 2010; 5:e14237. [PMID: 21151917 PMCID: PMC2997803 DOI: 10.1371/journal.pone.0014237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 11/06/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The hepatitis C virus (HCV) Alternate Reading Frame Protein (ARFP or F protein) presents a double-frame shift product of the HCV core gene. We and others have previously reported that the specific antibodies against the F protein could be raised in the sera of HCV chronically infected patients. However, the specific CD4(+) T cell responses against the F protein during HCV infection and the pathological implications remained unclear. In the current study, we screened the MHC class II-presenting epitopes of the F protein through HLA-transgenic mouse models and eventually validated the specific CD4(+) T cell responses in HCV chronically infected patients. METHODOLOGY DNA vaccination in HLA-DR1 and-DP4 transgenic mouse models, proliferation assay to test the F protein specific T cell response, genotyping of Chronic HCV patients and testing the F-peptide stimulated T cell response in the peripheral blood mononuclear cell (PBMC) by in vitro expansion and interferon (IFN)- γ intracellular staining. PRINCIPAL FINDINGS At least three peptides within HCV F protein were identified as HLA-DR or HLA-DP4 presenting epitopes by the proliferation assays in mouse models. Further study with human PBMCs evidenced the specific CD4(+) T cell responses against HCV F protein as well in patients chronically infected with HCV. CONCLUSION The current study provided the evidence for the first time that HCV F protein could elicit specific CD4(+) T cell response, which may provide an insight into the immunopathogenesis during HCV chronic infection.
Collapse
|
28
|
Identification of an HLA-A*0201-restricted CD8+ T-cell epitope encoded within Leptospiral immunoglobulin-like protein A. Microbes Infect 2010; 12:364-73. [DOI: 10.1016/j.micinf.2010.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 11/24/2022]
|
29
|
Abstract
PURPOSE OF REVIEW Update on humanized mouse models and their use in biomedical research. RECENT FINDINGS The recent description of immunodeficient mice bearing a mutated IL-2 receptor gamma chain (IL2rgamma) facilitated greatly the engraftment and function of human hematolymphoid cells and other cells and tissues. These mice permit the development of human immune systems, including functional T and B cells, following engraftment of hematopoietic stem cells (HSCs). The engrafted functional human immune systems are capable of T and B cell-dependent immune responses, antibody production, antiviral responses, and allograft rejection. Immunodeficient IL2rgamma(null) mice also support heightened engraftment of primary human cancers and malignant progenitor cells, permitting in-vivo investigation of pathogenesis and function. In addition, human-specific infectious agents for which animal models were previously unavailable can now be studied in vivo using these new-generation humanized mice. SUMMARY Immunodeficient mice bearing an IL2rgamma(null) mutated gene can be engrafted with functional human cells and tissues, including human immune systems, following engraftment with human hematolymphoid cells. These mice are now used as in-vivo models to study human hematopoiesis, immunity, regeneration, stem cell function, cancer, and human-specific infectious agents without putting patients at risk.
Collapse
Affiliation(s)
- Michael A. Brehm
- Diabetes Division, 373 Plantation Street, Biotech 2, Suite 218, University of Massachusetts Medical School, Worcester, MA 01605
| | | | - Dale L. Greiner
- Diabetes Division, 373 Plantation Street, Biotech 2, Suite 218, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
30
|
Sacca R, Engle SJ, Qin W, Stock JL, McNeish JD. Genetically engineered mouse models in drug discovery research. Methods Mol Biol 2010; 602:37-54. [PMID: 20012391 DOI: 10.1007/978-1-60761-058-8_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetically modified mouse models have been proven to be a powerful tool in drug discovery. The ability to genetically modify the mouse genome by removing or replacing a specific gene has enhanced our ability to identify and validate target genes of interest. In addition, many human diseases can be mimicked in the mouse and signaling pathways have been shown to be conserved. In spite of these advantages the technology has limitations. In transgenic animals there may be significant heterogeneity among different founders. In knock-out animals the predicted phenotypes are not always readily observed and occasionally a completely novel and unexpected phenotype emerges. To address the latter and ensure that a deep knowledge of the target of interest is obtained, we have developed a comprehensive phenotyping program which has identified novel phenotypes as well as any potential safety concerns which may be associated with a particular target. Finally we continue to explore innovative technologies as they become available such as RNAi for temporal and spatial gene knock-down and humanized models that may better simulate human disease states.
Collapse
Affiliation(s)
- Rosalba Sacca
- Genetically Modified Models Center of Emphasis, Pfizer Global Research and Development, Pfizer Inc., Groton, CT, USA
| | | | | | | | | |
Collapse
|
31
|
Terajima M, Orphin L, Leporati AM, Pazoles P, Cruz J, Rothman AL, Ennis FA. Vaccinia virus-specific CD8(+) T-cell responses target a group of epitopes without a strong immunodominance hierarchy in humans. Hum Immunol 2008; 69:815-25. [PMID: 18955096 DOI: 10.1016/j.humimm.2008.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
Abstract
Immunization with vaccinia virus (VACV) resulted in long-lasting protection against smallpox and successful global eradication of the disease. VACV elicits strong cellular and humoral immune responses. Although neutralizing antibody is essential for protection, cellular immunity seems to be more important for recovery from infection in humans. We analyzed the immunodominance hierarchy of 73 previously identified VACV human CD8(+) T-cell epitopes restricted by HLA-A1, -A2, -A3, -A24, -B7, or -B44 alleles or the alleles belonging to one of these supertypes in 56 donors after primary VACV immunization. With the exception of the responses to HLA-A24 supertype-restricted epitopes, there were no consistent patterns of epitope immunodominance among donors sharing the same HLA alleles or supertypes, which is in sharp contrast with the mouse studies. However, we identified 12 epitopes that were recognized by >or=20% of donors sharing the same HLA allele; 6 of these epitopes contributed >or=20% of the total VACV-specific T-cell response in at least one individual. VACV-specific CD8(+) T-cell responses targeted a group of epitopes, "relatively dominant" epitopes, without a strong immunodominance hierarchy in humans, which may be advantageous to humans to prevent the emergence of T-cell escape mutants.
Collapse
Affiliation(s)
- Masanori Terajima
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
A detailed analysis of the murine TAP transporter substrate specificity. PLoS One 2008; 3:e2402. [PMID: 18545702 PMCID: PMC2408963 DOI: 10.1371/journal.pone.0002402] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 04/26/2008] [Indexed: 01/06/2023] Open
Abstract
Background The transporter associated with antigen processing (TAP) supplies cytosolic peptides into the endoplasmic reticulum for binding to major histocompatibility complex (MHC) class I molecules. Its specificity therefore influences the repertoire of peptides presented by MHC molecules. Compared to human TAP, murine TAP's binding specificity has not been characterized as well, even though murine systems are widely used for basic studies of antigen processing and presentation. Methodology/Principal Findings We performed a detailed experimental analysis of murine TAP binding specificity by measuring the binding affinities of 323 peptides. Based on this experimental data, a computational model of murine TAP specificity was constructed. The model was compared to previously generated data on human and murine TAP specificities. In addition, the murine TAP specificities for known epitopes and random peptides were predicted and compared to assess the impact of murine TAP selectivity on epitope selection. Conclusions/Significance Comparisons to a previously constructed model of human TAP specificity confirms the well-established differences for peptide substrates with positively charged C-termini. In addition these comparisons show that several residues at the N-terminus of peptides which strongly influence binding to human TAP showed little effect on binding to murine TAP, and that the overall influence of the aminoterminal residues on peptide affinity for murine TAP is much lower than for the human transporter. Murine TAP also partly prefers different hydrophobic amino acids than human TAP in the carboxyterminal position. These species-dependent differences in specificity determined in vitro are shown to correlate with the epitope repertoire recognized in vivo. The quantitative model of binding specificity of murine TAP developed herein should be useful for interpreting epitope mapping and immunogenicity data obtained in humanized mouse models.
Collapse
|
33
|
Abstract
Variola major, the causative agent of smallpox, afflicted mankind throughout history until the worldwide World Health Organisation WHO vaccination campaign successfully eradicated the disease. Unfortunately, recent concerns about bioterrorism have renewed scientific interest in this virus. One essential component of our biodefense and preparedness efforts is an understanding of poxvirus immunity. To this end a number of laboratories have sought to discover T- and B-Cell epitopes from select agents such as variola virus. This review focuses on the efforts to identify CD8(+) T-Cell epitopes from poxviruses as a means to develop new vaccines and therapeutics. A wide variety of techniques have been employed by several research groups to provide complementary information regarding cellular immune responses to poxviruses. In the last several years well over 100 T-Cell epitopes have been identified and the work rapidly continues. The information gleaned from these studies will not only give us a greater understanding of immunity to variola virus and other viruses, but also provide a foundation for next generation vaccines and additional tools with which to study host-pathogen interactions.
Collapse
Affiliation(s)
- Richard Kennedy
- Mayo Vaccine Research Group, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | |
Collapse
|
34
|
Mancini-Bourgine M, Bayard F, Soussan P, Deng Q, Lone YC, Kremsdorf D, Michel ML. Hepatitis B virus splice-generated protein induces T-cell responses in HLA-transgenic mice and hepatitis B virus-infected patients. J Virol 2007; 81:4963-72. [PMID: 17360751 PMCID: PMC1900232 DOI: 10.1128/jvi.02619-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatitis B virus splice-generated protein (HBSP), encoded by a spliced hepatitis B virus RNA, was recently identified in liver biopsy specimens from patients with chronic active hepatitis B. We investigated the possible generation of immunogenic peptides by the processing of this protein in vivo. We identified a panel of potential epitopes in HBSP by using predictive computational algorithms for peptide binding to HLA molecules. We used transgenic mice devoid of murine major histocompatibility complex (MHC) class I molecules and positive for human MHC class I molecules to characterize immune responses specific for HBSP. Two HLA-A2-restricted peptides and one immunodominant HLA-B7-restricted epitope were identified following the immunization of mice with DNA vectors encoding HBSP. Most importantly, a set of overlapping peptides covering the HBSP sequence induced significant HBSP-specific T-cell responses in peripheral blood mononuclear cells from patients with chronic hepatitis B. The response was multispecific, as several epitopes were recognized by CD8(+) and CD4(+) human T cells. This study provides the first evidence that this protein generated in vivo from an alternative reading frame of the hepatitis B virus genome activates T-cell responses in hepatitis B virus-infected patients. Given that hepatitis B is an immune response-mediated disease, the detection of T-cell responses directed against HBSP in patients with chronic hepatitis B suggests a potential role for this protein in liver disease progression.
Collapse
Affiliation(s)
- Maryline Mancini-Bourgine
- INSERM U812, Unité de Pathogénèse des Hépatites Virales B et Immunothérapie, Bâtiment Lwoff, Institut Pasteur, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Farzaneh L, Kasahara N, Farzaneh F. The strange case of TGN1412. Cancer Immunol Immunother 2007; 56:129-34. [PMID: 16783575 PMCID: PMC11030174 DOI: 10.1007/s00262-006-0189-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2006] [Accepted: 05/23/2006] [Indexed: 11/28/2022]
Affiliation(s)
- L. Farzaneh
- King’s College London, Department of Haematological and Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU UK
| | - N. Kasahara
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E. Young Drive South, MRL-1551, Los Angeles, CA 90095 USA
| | - F. Farzaneh
- King’s College London, Department of Haematological and Molecular Medicine, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU UK
| |
Collapse
|
36
|
Viatte S, Alves PM, Romero P. Reverse immunology approach for the identification of CD8 T-cell-defined antigens: advantages and hurdles. Immunol Cell Biol 2006; 84:318-30. [PMID: 16681829 DOI: 10.1111/j.1440-1711.2006.01447.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One of the challenges of tumour immunology remains the identification of strongly immunogenic tumour antigens for vaccination. Reverse immunology, that is, the procedure to predict and identify immunogenic peptides from the sequence of a gene product of interest, has been postulated to be a particularly efficient, high-throughput approach for tumour antigen discovery. Over one decade after this concept was born, we discuss the reverse immunology approach in terms of costs and efficacy: data mining with bioinformatic algorithms, molecular methods to identify tumour-specific transcripts, prediction and determination of proteasomal cleavage sites, peptide-binding prediction to HLA molecules and experimental validation, assessment of the in vitro and in vivo immunogenic potential of selected peptide antigens, isolation of specific cytolytic T lymphocyte clones and final validation in functional assays of tumour cell recognition. We conclude that the overall low sensitivity and yield of every prediction step often requires a compensatory up-scaling of the initial number of candidate sequences to be screened, rendering reverse immunology an unexpectedly complex approach.
Collapse
Affiliation(s)
- Sebastien Viatte
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne branch, University Hospital, CHUV, and National Center for Competence in Research, NCCR, Molecular Oncology, Lausanne, Switzerland
| | | | | |
Collapse
|