1
|
Öztürk C, Kalay E, Gerni S, Balci N, Tokali FS, Aslan ON, Polat E. Sulfonamide derivatives with benzothiazole scaffold: Synthesis and carbonic anhydrase I-II inhibition properties. Biotechnol Appl Biochem 2024; 71:223-231. [PMID: 37964505 DOI: 10.1002/bab.2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
The secondary sulfonamide derivatives containing benzothiazole scaffold (1-10) were synthesized to determine their inhibition properties on two physiologically essential human carbonic anhydrases isoforms (hCAs, EC, 4.2.1.1), hCA I, and hCA II. The inhibitory effects of the compounds on hCA I and hCA II isoenzymes were investigated by comparing their IC50 and Ki values. The Ki values of compounds (1-10) against hCA I and hCA II are in the range of 0.052 ± 0.022-0.971 ± 0.280 and 0.025 ± 0.010-0.682 ± 0.335, respectively. Some of these inhibited the enzyme more effectively than the standard drug, acetazolamide. In particular, compounds 5 and 4 were found to be most effective on hCA I and hCA II.
Collapse
Affiliation(s)
- Cansu Öztürk
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Erbay Kalay
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Serpil Gerni
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Neslihan Balci
- Siran Dursun Keles Vocational School of Health Services, Gümüshane University, Gümüshane, Turkey
| | - Feyzi Sinan Tokali
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Osman Nuri Aslan
- East Anatolian High Technology Application and Research Center, Atatürk University, Erzurum, Turkey
| | - Emrah Polat
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
2
|
Ortiz-Perez E, Vazquez-Jimenez LK, Paz-Gonzalez AD, Delgado-Maldonado T, González-González A, Gaona-Lopez C, Moreno-Herrera A, Vazquez K, Rivera G. Advances in the Development of Carbonic Anhydrase Inhibitors as New Antiprotozoal Agents. Curr Med Chem 2024; 31:6735-6759. [PMID: 37909441 DOI: 10.2174/0109298673249553231018070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/19/2023] [Accepted: 09/14/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Parasitic diseases are a public health problem despite the existence of drugs for their treatment. These treatments have variable efficacy and, in some cases, serious adverse effects. There has been interest in the enzyme carbonic anhydrase (CA) in the last two decades since it is essential in the life cycle of various parasites due to its important participation in processes such as pyrimidine synthesis, HCO3 - transport across cell membranes, and the maintenance of intracellular pH and ion transport (Na+, K+, and H+), among others. OBJECTIVE In this review, CA was analyzed as a pharmacological target in etiological agents of malaria, American trypanosomiasis, leishmaniasis, amoebiasis, and trichomoniasis. The CA inhibitors´ design, binding mode, and structure-activity relationship are also discussed. CONCLUSION According to this review, advances in discovering compounds with potent inhibitory activity suggest that CA is a candidate for developing new antiprotozoal agents.
Collapse
Affiliation(s)
- Eyra Ortiz-Perez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Lenci K Vazquez-Jimenez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Alma D Paz-Gonzalez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Alonzo González-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Carlos Gaona-Lopez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Karina Vazquez
- Departamento de Biotecnología Farmacéutica, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Gral. Escobedo, 66050, México
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| |
Collapse
|
3
|
Tekeli T, Akocak S, Petreni A, Lolak N, Çete S, Supuran CT. Potent carbonic anhydrase I, II, IX and XII inhibition activity of novel primary benzenesulfonamides incorporating bis-ureido moieties. J Enzyme Inhib Med Chem 2023; 38:2185762. [PMID: 36880350 PMCID: PMC9987750 DOI: 10.1080/14756366.2023.2185762] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
A novel series of twelve aromatic bis-ureido-substituted benzenesulfonamides was synthesised by conjugation of aromatic aminobenzenesulfonamides with aromatic bis-isocyanates. The obtained bis-ureido-substituted derivatives were tested against four selected human carbonic anhydrase isoforms (hCA I, hCA II, hCA IX and hCA XII). Most of the new compounds showed an effective inhibitory profile against isoforms hCA IX and hCA XII, also having some selectivity with respect to hCA I and hCA II. The inhibition constants of these compounds against isoforms hCA IX and XII were in the range of 6.73-835 and 5.02-429 nM, respectively. Since hCA IX and hCA XII are important drug targets for anti-cancer/anti-metastatic drugs, these effective inhibitors reported here may be considered of interest for cancer related studies in which these enzymes are involved.
Collapse
Affiliation(s)
- Tuba Tekeli
- Vocational School of Technical Science, Department of Chemistry and Chemical Processing Technologies, Adıyaman University, Adıyaman, Türkiye.,Department of Chemistry, Faculty of Science, Gazi University, Ankara, Türkiye
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Türkiye
| | - Andrea Petreni
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Türkiye
| | - Servet Çete
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Türkiye
| | - Claudiu T Supuran
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
4
|
D'Agostino I, Zara S, Carradori S, De Luca V, Capasso C, Kocken CHM, Zeeman AM, Angeli A, Carta F, Supuran CT. Antimalarial Agents Targeting Plasmodium falciparum Carbonic Anhydrase: Towards Artesunate Hybrid Compounds with Dual Mechanism of Action. ChemMedChem 2023; 18:e202300267. [PMID: 37697903 DOI: 10.1002/cmdc.202300267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Malaria continues to be a major public health challenge worldwide and, as part of the global effort toward malaria eradication, plasmodium carbonic anhydrases (CAs) have recently been proposed as potential targets for malaria treatment. In this study, a series of eight hybrid compounds combining the Artesunate core with a sulfonamide moiety were synthesized and evaluated for their inhibition potency against the widely expressed human (h) CAs I, II and the isoform from P. falciparum (PfCA). All derivatives demonstrated high inhibition potency against PfCA, achieving a KI value in the sub-nanomolar range (0.35 nM). Two Compounds showed a selectivity index of 4.1 and 3.1, respectively, against this protozoan isoform compared to hCA II. Three Derivatives showed no cytotoxic effects on human gingival fibroblasts at 50 μM with a high killing rate against both P. falciparum and P. knowlesi strains with IC50 in the sub-nanomolar range, providing a wide therapeutic window. Our findings suggest that these compounds may serve as promising leads for developing new antimalarial drugs and warrant further investigation, including activity against antimalarial-resistant strains, mode of action studies, and in vivo efficacy assessment in preclinical mouse models of malaria.
Collapse
Affiliation(s)
- Ilaria D'Agostino
- Department of Pharmacy "G. d'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy
| | - Susi Zara
- Department of Pharmacy "G. d'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy "G. d'Annunzio", University of Chieti-Pescara, 66100, Chieti, Italy
| | - Viviana De Luca
- Istituto di Bioscienze e Biorisorse CNR, 80131, Napoli, Italy
| | | | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Center, 2288, Rijswijk, The Netherlands
| | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Center, 2288, Rijswijk, The Netherlands
| | - Andrea Angeli
- Neurofarba Department, University of Florence, 50019, Sesto Fiorentino FL, Italy
| | - Fabrizio Carta
- Neurofarba Department, University of Florence, 50019, Sesto Fiorentino FL, Italy
| | - Claudiu T Supuran
- Neurofarba Department, University of Florence, 50019, Sesto Fiorentino FL, Italy
| |
Collapse
|
5
|
Sheikh AS, Altaf R, Nadeem H, Khan MT, Murtaza B. Formation of morpholine-acetamide derivatives as potent anti-tumor drug candidates: Pharmacological evaluation and molecular docking studies. Heliyon 2023; 9:e22183. [PMID: 38053851 PMCID: PMC10694180 DOI: 10.1016/j.heliyon.2023.e22183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Heterocyclic amines and acetamide derivatives are known for their chemotherapeutic potential. Hence, in the present study, morpholine was taken as a principal product and novel morpholine derivatives were designed, formulated, characterized, and screened for the mechanism of inhibition of carbonic anhydrase and their anticancer potential. In addition, in vitro inhibition of hypoxia-inducible factor-1 (HIF-1) protein was also investigated. Results revealed that compounds 1c, 1d, and 1h possessed significant inhibitory activities against carbonic anhydrase with IC50 of 8.80, 11.13, and 8.12 μM, respectively. Interestingly, the carbonic anhydrase inhibitory activity of compound 1h was comparable with that of standard acetazolamide (IC50 7.51 μM). The compounds 1h and 1i significantly inhibited the proliferation of ovarian cancer cell line ID8 with IC50 of 9.40, and 11.2 μM, respectively while the standard cisplatin exhibited an IC50 8.50 μM. In addition, compounds 1c, 1b, 1h and 1i also exhibited significant inhibitory effects on HIF-1α. In conclusion, we report first time the biological potential of morpholine based compounds against ovarian cancer and HIF-1α that may serve as lead molecules for drug discovery.
Collapse
Affiliation(s)
- Ahmed Sadiq Sheikh
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, RIU, Islamabad, Pakistan
| | - Reem Altaf
- Department of Pharmacy, Iqra University, Islamabad, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, RIU, Islamabad, Pakistan
| | | | - Babar Murtaza
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, RIU, Islamabad, Pakistan
| |
Collapse
|
6
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
7
|
Villa R, Nieto S, Donaire A, Lozano P. Direct Biocatalytic Processes for CO 2 Capture as a Green Tool to Produce Value-Added Chemicals. Molecules 2023; 28:5520. [PMID: 37513391 PMCID: PMC10383722 DOI: 10.3390/molecules28145520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Direct biocatalytic processes for CO2 capture and transformation in value-added chemicals may be considered a useful tool for reducing the concentration of this greenhouse gas in the atmosphere. Among the other enzymes, carbonic anhydrase (CA) and formate dehydrogenase (FDH) are two key biocatalysts suitable for this challenge, facilitating the uptake of carbon dioxide from the atmosphere in complementary ways. Carbonic anhydrases accelerate CO2 uptake by promoting its solubility in water in the form of hydrogen carbonate as the first step in converting the gas into a species widely used in carbon capture storage and its utilization processes (CCSU), particularly in carbonation and mineralization methods. On the other hand, formate dehydrogenases represent the biocatalytic machinery evolved by certain organisms to convert CO2 into enriched, reduced, and easily transportable hydrogen species, such as formic acid, via enzymatic cascade systems that obtain energy from chemical species, electrochemical sources, or light. Formic acid is the basis for fixing C1-carbon species to other, more reduced molecules. In this review, the state-of-the-art of both methods of CO2 uptake is assessed, highlighting the biotechnological approaches that have been developed using both enzymes.
Collapse
Affiliation(s)
- Rocio Villa
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Susana Nieto
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio Donaire
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
8
|
Design, Synthesis and Biological Assessment of Rhodanine-Linked Benzenesulfonamide Derivatives as Selective and Potent Human Carbonic Anhydrase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228028. [PMID: 36432129 PMCID: PMC9697818 DOI: 10.3390/molecules27228028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
A novel series of twenty-five rhodamine-linked benzenesulfonamide derivatives (7a-u and 9a-d) were synthesized and screened for their inhibitory action against four physiologically relevant human (h) carbonic anhydrase (CA) isoforms, namely hCA I, hCA II, hCA IX, and hCA XII. All the synthesized molecules showed good to excellent inhibition against all the tested isoforms in the nanomolar range due to the presence of the sulfonamide as a zinc binding group. The target compounds were developed from indol-3-ylchalcone-linked benzenesulfonamide where the indol-3-ylchalcone moiety was replaced with rhodanine-linked aldehydes or isatins to improve the inhibition. Interestingly, the molecules were slightly more selective towards hCA IX and XII compared to hCA I and II. The most potent and efficient ones against hCA I were 7h (KI 22.4 nM) and 9d (KI 35.8 nM) compared to the standard drug AAZ (KI 250.0 nM), whereas in case of hCA II inhibition, the derivatives containing the isatin nucleus as a tail were preferred. Collectively, all compounds were endowed with better inhibition against hCA IX compared to AAZ (KI 25.8 nM) as well as strong potency against hCA XII. Finally, these newly synthesized molecules could be taken as potential leads for the development of isoform selective hCA IX and XII inhibitors.
Collapse
|
9
|
Castaño LF, Quiroga J, Abonia R, Insuasty D, Vidal OM, Seña R, Rubio V, Puerto G, Nogueras M, Cobo J, Guzman J, Insuasty A, Insuasty B. Synthesis, Anticancer and Antitubercular Properties of New Chalcones and Their Nitrogen-Containing Five-Membered Heterocyclic Hybrids Bearing Sulfonamide Moiety. Int J Mol Sci 2022; 23:ijms232012589. [PMID: 36293443 PMCID: PMC9604400 DOI: 10.3390/ijms232012589] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
A new series of sulfonamides, 8a-b, 10, 12, and 14a-b, were synthesized by N-sulfonation reaction with sulfonyl chlorides 6a-b. Five new series of chalcone-sulfonamide hybrids (16-20)a-f were prepared via Claisen–Schmidt condensation of the newly obtained sulfonamides with aromatic aldehydes 15a-f in basic medium. Chalcones substituted with chlorine at position 4 of each series were used as precursors for the generation of their five-membered heterocyclic pyrazoline (22-23)a-d, (24-25)a-b and carbothioamide 27a-f derivatives. The synthesized compounds were evaluated for their anticancer and antituberculosis activities. To determine their anticancer activity, compounds were screened against sixty human cancer cell lines at a single dose (10 μM). Compounds 17a-c were highly active against LOX IMVI (melanoma), with IC50 values of 0.34, 0.73 and 0.54 μM, respectively. Chalcone 18e showed remarkable results against the entire panel of leukemia cell lines with IC50 values between 0.99–2.52 μM. Moreover, compounds 20e and 20f displayed growth inhibition of Mycobacterium tuberculosis H37Rv at concentrations below 10 μM. Although they showed low selectivity in cytotoxicity tests against the Vero cell line, further optimization could advance the potential biological activity of the selected compounds.
Collapse
Affiliation(s)
- Lina Fernanda Castaño
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A., Cali 25360, Colombia
| | - Jairo Quiroga
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A., Cali 25360, Colombia
- Centre for Bioinformatics and Photonics-CIBioFI, Universidad del Valle, A.A., Cali 25360, Colombia
| | - Rodrigo Abonia
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A., Cali 25360, Colombia
- Centre for Bioinformatics and Photonics-CIBioFI, Universidad del Valle, A.A., Cali 25360, Colombia
| | - Daniel Insuasty
- Department of Chemistry and Biology, Basic Sciences Division, Universidad del Norte, Barranquilla 081007, Colombia
| | - Oscar M. Vidal
- Department of Medicine, Health Division, Universidad del Norte, Barranquilla 081007, Colombia
| | - Rosalia Seña
- Department of Chemistry and Biology, Basic Sciences Division, Universidad del Norte, Barranquilla 081007, Colombia
- Department of Medicine, Health Division, Universidad del Norte, Barranquilla 081007, Colombia
| | - Vivian Rubio
- Grupo de Micobacterias, Red TB. Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Gloria Puerto
- Grupo de Micobacterias, Red TB. Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Manuel Nogueras
- Department of Inorganic and Organic Chemistry, Universidad de Jaén, 23071 Jaén, Spain
| | - Justo Cobo
- Department of Inorganic and Organic Chemistry, Universidad de Jaén, 23071 Jaén, Spain
| | - Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
| | - Alberto Insuasty
- Nanostructured Functional Materials Research Group, Universidad CESMAG, Pasto 520003, Colombia
- Correspondence: (A.I.); (B.I.)
| | - Braulio Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, A.A., Cali 25360, Colombia
- Centre for Bioinformatics and Photonics-CIBioFI, Universidad del Valle, A.A., Cali 25360, Colombia
- Correspondence: (A.I.); (B.I.)
| |
Collapse
|
10
|
An Update on Synthesis of Coumarin Sulfonamides as Enzyme Inhibitors and Anticancer Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051604. [PMID: 35268704 PMCID: PMC8911621 DOI: 10.3390/molecules27051604] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 12/20/2022]
Abstract
Coumarin is an important six-membered aromatic heterocyclic pharmacophore, widely distributed in natural products and synthetic molecules. The versatile and unique features of coumarin nucleus, in combination with privileged sulfonamide moiety, have enhanced the broad spectrum of biological activities. The research and development of coumarin, sulfonamide-based pharmacology, and medicinal chemistry have become active topics, and attracted the attention of medicinal chemists, pharmacists, and synthetic chemists. Coumarin sulfonamide compounds and analogs as clinical drugs have been used to cure various diseases with high therapeutic potency, which have shown their enormous development value. The diversified and wide array of biological activities such as anticancer, antibacterial, anti-fungal, antioxidant and anti-viral, etc. were displayed by diversified coumarin sulfonamides. The present systematic and comprehensive review in the current developments of synthesis and the medicinal chemistry of coumarin sulfonamide-based scaffolds give a whole range of therapeutics, especially in the field of oncology and carbonic anhydrase inhibitors. In the present review, various synthetic approaches, strategies, and methodologies involving effect of catalysts, the change of substrates, and the employment of various synthetic reaction conditions to obtain high yields is cited.
Collapse
|
11
|
Giovannuzzi S, De Luca V, Nocentini A, Capasso C, Supuran CT. Coumarins inhibit η-class carbonic anhydrase from Plasmodium falciparum. J Enzyme Inhib Med Chem 2022; 37:680-685. [PMID: 35139744 PMCID: PMC8843172 DOI: 10.1080/14756366.2022.2036986] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coumarins were discovered to act as inhibitors of α-carbonic anhydrases (CAs, EC 4.2.1.1) after undergoing hydrolysis mediated by the esterase activity of the enzyme to the corresponding 2-hydroxycinnamic acids. Other classes of CAs among the eight currently known do not possess esterase activity or this activity was poorly investigated. Hence, we decided to look at the potential of coumarins as inhibitors of the η-CA from the malaria-producing protozoan Plasmodium falciparum, PfaCA. A panel of simple coumarins incorporating hydroxyl, amino, ketone or carboxylic acid ester moieties in various positions of the ring system acted as low to medium micromolar PfaCA inhibitors, whereas their affinities for the cytosolic off-target human isoforms hCA I and II were in a much higher range. Thus, we confirm that η-CAs possess esterase activity and that coumarins effectively inhibit this enzyme. Elaboration of the simple coumarin scaffolds investigated here may probably lead to more effective PfaCA inhibitors.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto, Italy
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto, Italy
| |
Collapse
|
12
|
Kumar R, Kumar A, Ram S, Angeli A, Bonardi A, Nocentini A, Gratteri P, Supuran CT, Sharma PK. Novel benzenesulfonamide-bearing pyrazoles and 1,2,4-thiadiazoles as selective carbonic anhydrase inhibitors. Arch Pharm (Weinheim) 2022; 355:e2100241. [PMID: 34596922 DOI: 10.1002/ardp.202100241] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/28/2021] [Accepted: 09/13/2021] [Indexed: 11/11/2022]
Abstract
Two series comprising 20 novel benzenesulfonamides bearing thioureido-linked pyrazole 8 and amino-1,2,4-thiadiazole 10 were synthesized and assayed as human carbonic anhydrase (hCA) inhibitors against isoforms I and II as well as the tumor-associated isoforms IX and XII. Molecular modeling studies of some potent derivatives (8a, 8c, 10a, and 10c) were also performed against isoforms hCA I, II, and XII. Both the promising series of compounds were synthesized by using commercially available mtethyl ketones and sulfanilamide as the starting materials. Interestingly, this paper also reports a novel methodology for the synthesis of amino-1,2,4-thiadiazoles 10 using 3-amino isoxazoles and 4-isothiocyanatobenzenesulfonamide as reactants. The activity profile of all the newly synthesized compounds reveals that amino-linked 1,2,4-thiadiazoles 10 were better inhibitors of the cytosolic isoform, hCA I, as compared to thioureido-linked pyrazoles 8. Further, hCA II was strongly inhibited by nearly all the newly synthesized sulfonamides, while all the compounds were less effective as hCA IX and XII inhibitors compared to the standard drug acetazolamide. However, in terms of selectivity, compound 8e was found to be the most selective inhibitor of hCA II, which is the isoform associated with glaucoma, edema, altitude sickness, and epilepsy.
Collapse
Affiliation(s)
- Rajiv Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- Department of Chemistry, Ch. Mani Ram Godara Government College for Women, Bhodia Khera, Fatehabad, India
| | - Amit Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Sita Ram
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- Department of Chemistry, J. C. Bose University of Science and Technology, YMCA, Faridabad, India
| | - Andrea Angeli
- NEUROFARBA Department-Pharmaceutical and Nutraceutical Section, University of Florence, Polo Scientifico, Firenze, Italy
| | - Alessandro Bonardi
- NEUROFARBA Department-Pharmaceutical and Nutraceutical Section, University of Florence, Polo Scientifico, Firenze, Italy
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modelling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Firenze, Italy
| | - Alessio Nocentini
- NEUROFARBA Department-Pharmaceutical and Nutraceutical Section, University of Florence, Polo Scientifico, Firenze, Italy
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modelling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Firenze, Italy
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modelling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Firenze, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department-Pharmaceutical and Nutraceutical Section, University of Florence, Polo Scientifico, Firenze, Italy
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
13
|
Petreni A, Osman SM, Alasmary FA, Almutairi TM, Nocentini A, Supuran CT. Binding site comparison for coumarin inhibitors and amine/amino acid activators of human carbonic anhydrases. Eur J Med Chem 2021; 226:113875. [PMID: 34634741 DOI: 10.1016/j.ejmech.2021.113875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 02/08/2023]
Abstract
The first structural analysis comparing the binding mode to the target carbonic anhydrases (CAs, EC 4.2.1.1) of two opposite classes of modulators is presented here: coumarin derivatives act as prodrug CA inhibitors (CAIs), being hydrolyzed by the enzyme esterase activity to 2-hydroxycinnamic acids that occlude the active site entrance; CA activators (CAAs) belonging of the amine and amino acid types, enhance the CA activity by increasing the efficiency of the rate-determining proton shuttling step in the CA catalytic cycle. Analysis of the crystallographic data available for the human CA isoform II in adduct with two coumarin CAIs and some CAAs showed that both types of CA modulators bind in the same region of the enzyme active site, basically interacting with superimposable amino acid residues, that are Trp5, Asn62, His64, Asn67, Gln92, Thr200. A plethora of water molecules also participate in the adducts formation. This structural analysis showed that presence of certain chemical groups in the compound structure is mandatory to produce an activating rather than inhibitory action, such as multiple nitrogen- and oxygen-based moieties capable of shuttling protons or forming extended H-bond networks nearby the proton shuttle residue. This constitutes the only known example among all enzymes of an identical binding site for inhibitors and activators, which, in addition, possess significant pharmacological applications.
Collapse
Affiliation(s)
- Andrea Petreni
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Fatmah A Alasmary
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tahani M Almutairi
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Alessio Nocentini
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy.
| | - Claudiu T Supuran
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
14
|
Angeli A, Kartsev V, Petrou A, Pinteala M, Brovarets V, Vydzhak R, Panchishin S, Geronikaki A, Supuran CT. Carbonic Anhydrase Inhibition with Sulfonamides Incorporating Pyrazole- and Pyridazinecarboxamide Moieties Provides Examples of Isoform-Selective Inhibitors. Molecules 2021; 26:7023. [PMID: 34834114 PMCID: PMC8625619 DOI: 10.3390/molecules26227023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/01/2022] Open
Abstract
A series of benzenesulfonamides incorporating pyrazole- and pyridazinecarboxamides decorated with several bulky moieties has been obtained by original procedures. The new derivatives were investigated for the inhibition of four physiologically crucial human carbonic anhydrase (hCA, EC 4.2.2.1.1) isoforms, hCA I and II (cytosolic enzymes) as well as hCA IX and XII (transmembrane, tumor-associated isoforms). Examples of isoform-selective inhibitors were obtained for all four enzymes investigated here, and a computational approach was employed for explaining the observed selectivity, which may be useful in drug design approaches for obtaining inhibitors with pharmacological applications useful as antiglaucoma, diuretic, antitumor or anti-cerebral ischemia drugs.
Collapse
Affiliation(s)
- Andrea Angeli
- NeuroFarba Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, no. 41A, 700487 Iasi, Romania;
| | - Victor Kartsev
- InterBioScreen, Chernogolovka, 142432 Moscow Region, Russia;
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, no. 41A, 700487 Iasi, Romania;
| | - Volodymyr Brovarets
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine 1, Murmanska St, 02094 Kyiv, Ukraine; (V.B.); (R.V.); (S.P.)
| | - Roman Vydzhak
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine 1, Murmanska St, 02094 Kyiv, Ukraine; (V.B.); (R.V.); (S.P.)
| | - Svitlana Panchishin
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine 1, Murmanska St, 02094 Kyiv, Ukraine; (V.B.); (R.V.); (S.P.)
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Claudiu T. Supuran
- NeuroFarba Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
15
|
Amedei A, Capasso C, Nannini G, Supuran CT. Microbiota, Bacterial Carbonic Anhydrases, and Modulators of Their Activity: Links to Human Diseases? Mediators Inflamm 2021; 2021:6926082. [PMID: 34803517 PMCID: PMC8601860 DOI: 10.1155/2021/6926082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
The involvement of the human microbiome is crucial for different host functions such as protection, metabolism, reproduction, and especially immunity. However, both endogenous and exogenous factors can affect the balance of the microbiota, creating a state of dysbiosis, which can start various gastrointestinal or systemic diseases. The challenge of future medicine is to remodel the intestinal microbiota to bring it back to healthy equilibrium (eubiosis) and, thus, counteract its negative role in the diseases' onset. The shaping of the microbiota is currently practiced in different ways ranging from diet (or use of prebiotics, probiotics, and synbiotics) to phage therapy and antibiotics, including microbiota fecal transplantation. Furthermore, because microbiota modulation is a capillary process, and because many microbiota bacteria (both beneficial and pathogenic) have carbonic anhydrases (specifically the four classes α, β, γ, and ι), we believe that the use of CA inhibitors and activators can open up new therapeutic strategies for many diseases associated with microbial dysbiosis, such as the various gastrointestinal disorders and the same colorectal cancer.
Collapse
Affiliation(s)
- Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy
| | - Clemente Capasso
- CNR, Institute of Biosciences and Bioresources, 80131 Napoli, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | | |
Collapse
|
16
|
New Sulfanilamide Derivatives Incorporating Heterocyclic Carboxamide Moieties as Carbonic Anhydrase Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14080828. [PMID: 34451924 PMCID: PMC8398262 DOI: 10.3390/ph14080828] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/12/2023] Open
Abstract
Carbonic Anhydrases (CAs) are ubiquitous metalloenzymes involved in several disease conditions. There are 15 human CA (hCA) isoforms and their high homology represents a challenge for the discovery of potential drugs devoid of off-target side effects. For this reason, many synthetic and pharmacologic research efforts are underway to achieve the full pharmacological potential of CA modulators of activity. We report here a novel series of sulfanilamide derivatives containing heterocyclic carboxamide moieties which were evaluated as CA inhibitors against the physiological relevant isoforms hCA I, II, IX, and XII. Some of them showed selectivity toward isoform hCA II and hCA XII. Molecular docking was performed for some of these compounds on isoforms hCA II and XII to understand the possible interaction with the active site amino acid residues, which rationalized the reported inhibitory activity.
Collapse
|
17
|
Sharker MR, Sukhan ZP, Sumi KR, Choi SK, Choi KS, Kho KH. Molecular Characterization of Carbonic Anhydrase II (CA II) and Its Potential Involvement in Regulating Shell Formation in the Pacific Abalone, Haliotis discus hannai. Front Mol Biosci 2021; 8:669235. [PMID: 34026840 PMCID: PMC8138131 DOI: 10.3389/fmolb.2021.669235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Carbonic anhydrases (CAs) are a family of metalloenzymes that can catalyze the reversible interconversion of CO2/HCO3–, ubiquitously present in both prokaryotes and eukaryotes. In the present study, a CA II (designated as HdhCA II) was sequenced and characterized from the mantle tissue of the Pacific abalone. The complete sequence of HdhCA II was 1,169 bp, encoding a polypeptide of 349 amino acids with a NH2-terminal signal peptide and a CA architectural domain. The predicted protein shared 98.57% and 68.59% sequence identities with CA II of Haliotis gigantea and Haliotis tuberculata, respectively. Two putative N-linked glycosylation motifs and two cysteine residues could potentially form intramolecular disulfide bond present in HdhCA II. The phylogenetic analysis indicated that HdhCA II was placed in a gastropod clade and robustly clustered with CA II of H. gigantea and H. tuberculata. The highest level of HdhCA II mRNA expression was detected in the shell forming mantle tissue. During ontogenesis, the mRNA of HdhCA II was detected in all stages, with larval shell formation stage showing the highest expression level. The in situ hybridization results detected the HdhCA II mRNA expression in the epithelial cells of the dorsal mantle pallial, an area known to express genes involved in the formation of a nacreous layer in the shell. This is the first report of HdhCA II in the Pacific abalone, and the results of this study indicate that this gene might play a role in the shell formation of abalone.
Collapse
Affiliation(s)
- Md Rajib Sharker
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea.,Department of Fisheries Biology and Genetics, Faculty of Fisheries, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Zahid Parvez Sukhan
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
| | - Kanij Rukshana Sumi
- Department of Aquaculture, Faculty of Fisheries, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Sang Ki Choi
- Department of Biological Sciences, College of Life Industry and Science, Sunchon National University, Jeonnam, South Korea
| | - Kap Seong Choi
- Department of Food Science and Technology, Sunchon National University, Jeonnam, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
| |
Collapse
|
18
|
Sharker MR, Kim SC, Hossen S, Sumi KR, Choi SK, Choi KS, Kho KH. Carbonic Anhydrase in Pacific Abalone Haliotis discus hannai: Characterization, Expression, and Role in Biomineralization. Front Mol Biosci 2021; 8:655115. [PMID: 33937335 PMCID: PMC8082251 DOI: 10.3389/fmolb.2021.655115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Carbonic anhydrases (CAs) are universal zinc ion containing metalloenzymes that play a pivotal role in various physiological processes. In this study, a CA I (designated as Hdh CA I) was isolated and characterized from the mantle tissue of Pacific abalone, Haliotis discus hannai. The full-length cDNA sequence of Hdh CA I was 1,417-bp in length, encoding a protein of 337 amino acids with molecular weight of 37.58 kDa. Hdh CA I sequence possessed a putative signal peptide of 22 amino acids and a CA catalytic function domain. The predicted protein shared 94 and 78% sequence identities with Haliotis gigantea and Haliotis tuberculata CA I, respectively. Results of phylogenetic analysis indicated that Hdh CA I was evolutionarily close to CA I of H. gigantea and H. tuberculata with high bootstrap values. Significantly higher levels of Hdh CA I mRNA transcript were found in mantle than other examined tissues. In situ hybridization results showed strong hybridization signals in epithelial cells of the dorsal mantle pallial, an area known to synthesize and secrete proteins responsible for the nacreous layer formation of shell. This is the first study on Hdh CA I in H. discus hannai and the results may contribute to further study its physiological functions in shell biomineralization of abalone.
Collapse
Affiliation(s)
- Md. Rajib Sharker
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Soo Cheol Kim
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
| | - Shaharior Hossen
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
| | - Kanij Rukshana Sumi
- Department of Aquaculture, Faculty of Fisheries, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Sang Ki Choi
- Department of Biological Sciences, College of Life Industry and Science, Sunchon National University, Suncheon, South Korea
| | - Kap Seong Choi
- Department of Food Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, South Korea
| |
Collapse
|
19
|
Abstract
Coumarins constitute a relatively new class of inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), possessing a unique inhibition mechanism, acting as "prodrug inhibitors." They undergo the hydrolysis of the lactone ring mediated by the esterase activity of CA. The formed 2-hydroxy-cinnamic acids thereafter bind within a very particular part of the enzyme active site, at its entrance, where a high variability of amino acid residues among the different mammalian CA isoforms is present, and where other inhibitors classes were not seen bound earlier. This explains why coumarins are among the most isoform-selective CA inhibitors known to date among the many chemotypes endowed with such biological activity. As coumarins are widespread secondary metabolites in some bacteria, plants, fungi, and ascidians, many such compounds from various natural sources have been investigated for their CA inhibitory properties and for possible biomedical applications, mainly as anticancer agents targeting hypoxic tumours.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Neurofarba Department, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
20
|
Campestre C, De Luca V, Carradori S, Grande R, Carginale V, Scaloni A, Supuran CT, Capasso C. Carbonic Anhydrases: New Perspectives on Protein Functional Role and Inhibition in Helicobacter pylori. Front Microbiol 2021; 12:629163. [PMID: 33815311 PMCID: PMC8017301 DOI: 10.3389/fmicb.2021.629163] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Our understanding of the function of bacterial carbonic anhydrases (CAs, EC 4.2.1.1) has increased significantly in the last years. CAs are metalloenzymes able to modulate CO2, HCO3 - and H+ concentration through their crucial role in catalysis of reversible CO2 hydration (CO2 + H2O ⇄ HCO3 - + H+). In all living organisms, CA activity is linked to physiological processes, such as those related to the transport and supply of CO2 or HCO3 -, pH homeostasis, secretion of electrolytes, biosynthetic processes and photosynthesis. These important processes cannot be ensured by the very low rate of the non-catalyzed reaction of CO2 hydration. It has been recently shown that CAs are important biomolecules for many bacteria involved in human infections, such as Vibrio cholerae, Brucella suis, Salmonella enterica, Pseudomonas aeruginosa, and Helicobacter pylori. In these species, CA activity promotes microorganism growth and adaptation in the host, or modulates bacterial toxin production and virulence. In this review, recent literature in this research field and some of the above-mentioned issues are discussed, namely: (i) the implication of CAs from bacterial pathogens in determining the microorganism growth and virulence; (ii) the druggability of these enzymes using classical CA inhibitors (CAIs) of the sulfonamide-type as examples; (iii) the role played by Helicobacter pylori CAs in the acid tolerance/adaptation of the microbe within the human abdomen; (iv) the role of CAs played in the outer membrane vesicles spawned by H. pylori in its planktonic and biofilm phenotypes; (v) the possibility of using H. pylori CAIs in combination with probiotic strains as a novel anti-ulcer treatment approach. The latter approach may represent an innovative and successful strategy to fight gastric infections in the era of increasing resistance of pathogenic bacteria to classical antibiotics.
Collapse
Affiliation(s)
- Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy.,Proteomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Naples, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Rossella Grande
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Carginale
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council (ISPAAM-CNR), Naples, Italy
| | - Claudiu T Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Polo Scientifico, Department of NEUROFARBA, University of Florence, Sesto Fiorentino, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| |
Collapse
|
21
|
Petreni A, De Luca V, Scaloni A, Nocentini A, Capasso C, Supuran CT. Anion inhibition studies of the Zn(II)-bound ι-carbonic anhydrase from the Gram-negative bacterium Burkholderia territorii. J Enzyme Inhib Med Chem 2021; 36:372-376. [PMID: 33390061 PMCID: PMC7782983 DOI: 10.1080/14756366.2020.1867122] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Burkholderia territorii, a Gram-negative bacterium, encodes for the ι-class carbonic anhydrase (CA, EC 4.2.1.1) BteCAι, which was recently characterised. It acts as a good catalyst for the hydration of CO2 to bicarbonate and protons, with a kcat value of 3.0 × 105 s-1 and kcat/KM value of 3.9 × 107 M-1 s-1. No inhibition data on this new class of enzymes are available to date. We report here an anion and small molecules inhibition study of BteCAι, which we prove to be a zinc(II)- and not manganese(II)-containing enzyme, as reported for diatom ι-CAs. The best inhibitors were sulphamic acid, stannate, phenylarsonic acid, phenylboronic acid and sulfamide (KI values of 6.2-94 µM), whereas diethyldithiocarbamate, tellurate, selenate, bicarbonate and cyanate were submillimolar inhibitors (KI values of 0.71-0.94 mM). The halides (except iodide), thiocyanate, nitrite, nitrate, carbonate, bisulphite, sulphate, hydrogensulfide, peroxydisulfate, selenocyanate, fluorosulfonate and trithiocarbonate showed KI values in the range of 3.1-9.3 mM.
Collapse
Affiliation(s)
- Andrea Petreni
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy.,Proteomics and Mass Spectrometry Laboratory, ISPAAM, CNR, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, CNR, Naples, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| |
Collapse
|
22
|
Supuran CT. Experimental Carbonic Anhydrase Inhibitors for the Treatment of Hypoxic Tumors. J Exp Pharmacol 2020; 12:603-617. [PMID: 33364855 DOI: 10.2147/jep.s265620] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022] Open
Abstract
Carbonic anhydrase (CA, EC 4.2.1.1) isoforms IX and XII are overexpressed in many hypoxic tumors as a consequence of the hypoxia inducible factor (HIF) activation cascade, being present in limited amounts in normal tissues. These enzymes together with many others are involved in the pH regulation and metabolism of hypoxic cancer cells, and were validated as antitumor targets recently. A multitude of targeting strategies against these enzymes have been proposed and are reviewed in this article. The small molecule inhibitors, small molecule drug conjugates (SMDCs), antibody-drug conjugates (ADACs) or cytokine-drug conjugates but not the monoclonal antibodies against CA IX/XII will be discussed. Relevant synthetic chemistry efforts, coupled with a multitude of preclinical studies, demonstrated that CA IX/XII inhibition leads to the inhibition of growth of primary tumors and metastases and depletes cancer stem cell populations, all factors highly relevant in clinical settings. One small molecule inhibitor, sulfonamide SLC-0111, is the most advanced candidate, having completed Phase I and being now in Phase Ib/II clinical trials for the treatment of advanced hypoxic solid tumors.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence 50019, Italy
| |
Collapse
|
23
|
Salbitani G, Del Prete S, Bolinesi F, Mangoni O, De Luca V, Carginale V, Donald WA, Supuran CT, Carfagna S, Capasso C. Use of an immobilised thermostable α-CA (SspCA) for enhancing the metabolic efficiency of the freshwater green microalga Chlorella sorokiniana. J Enzyme Inhib Med Chem 2020; 35:913-920. [PMID: 32223467 PMCID: PMC7170359 DOI: 10.1080/14756366.2020.1746785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is significant interest in increasing the microalgal efficiency for producing high-quality products that are commonly used as food additives in nutraceuticals. Some natural substances that can be extracted from algae include lipids, carbohydrates, proteins, carotenoids, long-chain polyunsaturated fatty acids, and vitamins. Generally, microalgal photoautotrophic growth can be maximised by optimising CO2 biofixation, and by adding sodium bicarbonate and specific bacteria to the microalgal culture. Recently, to enhance CO2 biofixation, a thermostable carbonic anhydrase (SspCA) encoded by the genome of the bacterium Sulfurihydrogenibium yellowstonense has been heterologously expressed and immobilised on the surfaces of bacteria. Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous metalloenzymes, which catalyse the physiologically reversible reaction of carbon dioxide hydration to bicarbonate and protons: CO2 + H2O ⇄ HCO3− + H+. Herein, we demonstrate for the first time that the fragments of bacterial membranes containing immobilised SspCA (M-SspCA) on their surfaces can be doped into the microalgal culture of the green unicellular alga, Chlorella sorokiniana, to significantly enhance the biomass, photosynthetic activity, carotenoids production, and CA activity by this alga. These results are of biotechnological interest because C. sorokiniana is widely used in many different areas, including photosynthesis research, human pharmaceutical production, aquaculture-based food production, and wastewater treatment.
Collapse
Affiliation(s)
| | - Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | | | - Olga Mangoni
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Vincenzo Carginale
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Claudiu T Supuran
- School of Chemistry, University of New South Wales, Sydney, Australia.,Department of NEUROFARB, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Simona Carfagna
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| |
Collapse
|
24
|
Angeli A, Prete SD, Ghobril C, Hitce J, Clavaud C, Marrat X, Donald WA, Capasso C, Supuran CT. Activation studies of the β-carbonic anhydrases from Malassezia restricta with amines and amino acids. J Enzyme Inhib Med Chem 2020; 35:824-830. [PMID: 32216477 PMCID: PMC7170391 DOI: 10.1080/14756366.2020.1743284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
The β-carbonic anhydrase (CA, EC 4.2.1.1) from the genome of the opportunistic pathogen Malassezia restricta (MreCA), which was recently cloned and characterised, herein has been investigated for enzymatic activation by a panel of amines and amino acids. Of the 24 compounds tested in this study, the most effective MreCA activators were L-adrenaline (KA of 15 nM), 2-aminoethyl-piperazine/morpholine (KAs of 0.25-0.33 µM), histamine, L-4-amino-phenylalanine, D-Phe, L-/D-DOPA, and L-/D-Trp (KAs of 0.32 - 0.90 µM). The least effective activators were L-/D-Tyr, L-Asp, L-/D-Glu, and L-His, with activation constants ranging between 4.04 and 12.8 µM. As MreCA is involved in dandruff and seborrhoeic dermatitis, these results are of interest to identify modulators of the activity of enzymes involved in the metabolic processes of such fungi.
Collapse
Affiliation(s)
- Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| | - Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | | | - Julien Hitce
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Cécile Clavaud
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Xavier Marrat
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Ozensoy Guler O, Supuran CT, Capasso C. Carbonic anhydrase IX as a novel candidate in liquid biopsy. J Enzyme Inhib Med Chem 2020; 35:255-260. [PMID: 31790601 PMCID: PMC6896409 DOI: 10.1080/14756366.2019.1697251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022] Open
Abstract
Among the diagnostic techniques for the identification of tumour biomarkers, the liquid biopsy is considered one that offers future research on precision diagnosis and treatment of tumours in a non-invasive manner. The approach consists of isolating tumor-derived components, such as circulating tumour cells (CTC), tumour cell-free DNA (ctDNA), and extracellular vesicles (EVs), from the patient peripheral blood fluids. These elements constitute a source of genomic and proteomic information for cancer treatment. Within the tumour-derived components of the body fluids, the enzyme indicated with the acronym CA IX and belonging to the superfamily of carbonic anhydrases (CA, EC 4.2.1.1) is a promising aspirant for checking tumours. CA IX is a transmembrane-CA isoform that is strongly overexpressed in many cancers being not much diffused in healthy tissues except the gastrointestinal tract. Here, it is summarised the role of CA IX as tumour-associated protein and its putative relationship in liquid biopsyfor diagnosing and monitoring cancer progression.
Collapse
Affiliation(s)
- Ozen Ozensoy Guler
- Department of Medical Biology, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Claudiu. T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| |
Collapse
|
26
|
Llanos MA, Sbaraglini ML, Villalba ML, Ruiz MD, Carrillo C, Alba Soto C, Talevi A, Angeli A, Parkkila S, Supuran CT, Gavernet L. A structure-based approach towards the identification of novel antichagasic compounds: Trypanosoma cruzi carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2020; 35:21-30. [PMID: 31619095 PMCID: PMC6807911 DOI: 10.1080/14756366.2019.1677638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/28/2022] Open
Abstract
Trypanosoma cruzi carbonic anhydrase (TcCA) has recently emerged as an interesting target for the design of new compounds to treat Chagas disease. In this study we report the results of a structure-based virtual screening campaign to identify novel and selective TcCA inhibitors. The combination of properly validated computational methodologies such as comparative modelling, molecular dynamics and docking simulations allowed us to find high potency hits, with KI values in the nanomolar range. The compounds also showed trypanocidal effects against T. cruzi epimastigotes and trypomastigotes. All the candidates are selective for inhibiting TcCA over the human isoform CA II, which is encouraging in terms of possible therapeutic safety and efficacy.
Collapse
Affiliation(s)
- Manuel A. Llanos
- Laboratory of Bioactive Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| | - María L. Sbaraglini
- Laboratory of Bioactive Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| | - María L. Villalba
- Laboratory of Bioactive Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| | - María D. Ruiz
- Instituto de Ciencias y Tecnología Dr. Cesar Milstein (ICT Milstein), Argentinean National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Carolina Carrillo
- Instituto de Ciencias y Tecnología Dr. Cesar Milstein (ICT Milstein), Argentinean National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Catalina Alba Soto
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
| | - Claudiu T. Supuran
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Luciana Gavernet
- Laboratory of Bioactive Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| |
Collapse
|
27
|
Nocentini A, Del Prete S, Mastrolorenzo MD, Donald WA, Capasso C, Supuran CT. Activation studies of the β-carbonic anhydrases from Escherichia coli with amino acids and amines. J Enzyme Inhib Med Chem 2020; 35:1379-1386. [PMID: 32576029 PMCID: PMC7748406 DOI: 10.1080/14756366.2020.1781845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 06/05/2020] [Indexed: 11/29/2022] Open
Abstract
A β-carbonic anhydrase (CA, EC 4.2.1.1) from the widespread bacterium Escherichia coli (EcoCAβ), encoded by the CynT2 gene, has been investigated for its catalytic properties and enzymatic activation by a panel of amino acids and amines. EcoCAβ showed a significant catalytic activity for the hydration of CO2 to bicarbonate and a proton, with a kinetic constant kcat of 5.3 × 105 s- and a Michaelis-Menten constant KM of 12.9 mM. The most effective EcoCAβ activators were L- and D-DOPA, L-Tyr, 4-amino-Phe, serotonin and L-adrenaline, with KAs from 2.76 to 10.7 µM. L-His, 2-pyridyl-methylamine, L-Asn and L-Gln were relatively weak activators (KAs from 36.0 to 49.5 µM). D-His, L- and D-Phe, L- and D-Trp, D-Tyr, histamine, dopamine, 2-(aminoethyl)pyridine/piperazine/morpholine, L-Asp, L- and D-Glu have KAs from 11.3 to 23.7 µM. Endogenous CA activators may play a role in bacterial virulence and colonisation of the host.
Collapse
Affiliation(s)
- Alessio Nocentini
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Italy
| | - Sonia Del Prete
- Department of Biology, Agriculture and Food sciences, CNR, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Margaret D. Mastrolorenzo
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Italy
- San Diego (UCSD), University of California, San Diego, CA, USA
| | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Clemente Capasso
- Department of Biology, Agriculture and Food sciences, CNR, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Claudiu T. Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Italy
- School of Chemistry, University of New South Wales, Sydney, Australia
| |
Collapse
|
28
|
Oguz M, Kalay E, Akocak S, Nocentini A, Lolak N, Boga M, Yilmaz M, Supuran CT. Synthesis of calix[4]azacrown substituted sulphonamides with antioxidant, acetylcholinesterase, butyrylcholinesterase, tyrosinase and carbonic anhydrase inhibitory action. J Enzyme Inhib Med Chem 2020; 35:1215-1223. [PMID: 32401067 PMCID: PMC7269057 DOI: 10.1080/14756366.2020.1765166] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
A series of novel calix[4]azacrown substituted sulphonamide Schiff bases was synthesised by the reaction of calix[4]azacrown aldehydes with different substituted primary and secondary sulphonamides. The obtained novel compounds were investigated as inhibitors of six human (h) isoforms of carbonic anhydrases (CA, EC 4.2.1.1). Their antioxidant profile was assayed by various bioanalytical methods. The calix[4]azacrown substituted sulphonamide Schiff bases were also investigated as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase enzymes, associated with several diseases such as Alzheimer, Parkinson, and pigmentation disorders. The new sulphonamides showed low to moderate inhibition against hCAs, AChE, BChE, and tyrosinase enzymes. However, some of them possessed relevant antioxidant activity, comparable with standard antioxidants used in the study.
Collapse
Affiliation(s)
- Mehmet Oguz
- Department of Chemistry, University of Selcuk, Konya, Turkey
- Department of Advanced Material and Nanotechnology, Selcuk University, Konya, Turkey
| | - Erbay Kalay
- Kars Vocational School, Kafkas University, Kars, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, Turkey
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, Turkey
| | - Mehmet Boga
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Mustafa Yilmaz
- Department of Chemistry, University of Selcuk, Konya, Turkey
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
29
|
Del Prete S, Nocentini A, Supuran CT, Capasso C. Bacterial ι-carbonic anhydrase: a new active class of carbonic anhydrase identified in the genome of the Gram-negative bacterium Burkholderia territorii. J Enzyme Inhib Med Chem 2020; 35:1060-1068. [PMID: 32314608 PMCID: PMC7191908 DOI: 10.1080/14756366.2020.1755852] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/05/2020] [Indexed: 01/30/2023] Open
Abstract
The carbonic anhydrases (CAs, EC 4.2.1.1) catalyse a simple but physiologically crucial reversible reaction, the carbon dioxide hydration with the production of bicarbonate and protons. In the last years, and especially, to the rapid emergence of the bacterial antibiotic resistance that is occurring worldwide, the understanding of the function of bacterial CAs has increased significantly. Recently, a new CA-class (ι-CA) was discovered in the marine diatom T. pseudonana. It has been reported that bacterial genomes may contain genes with relevant homology to the diatom ι-class CA. Still, the catalytic activity of the enzyme encoded by the gene was not investigated. Thus, herein, for the first time, we cloned, expressed, and purified the recombinant bacterial ι-CA (acronym BteCAι) identified in the genome of Burkholderia territorii. The recombinant BteCAι resulted in a good catalyst for the hydration of CO2 to bicarbonate and protons, with a kcat of 3.0 × 105 s -1 and kcat/KM of 3.9 × 107 M -1 s -1, and is also sensitive to inhibition by the sulphonamide acetazolamide. Furthermore, with the aid of the protonography, it has been demonstrated that BteCAι can be present as a dimer. This result is corroborated by the construction of a molecular model of BteCAι, which showed that the enzyme is formed by two equivalent monomers having a structure similar to a butterfly.
Collapse
Affiliation(s)
- Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Firenze, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| |
Collapse
|
30
|
Supuran CT, Capasso C. Antibacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin Ther Pat 2020; 30:963-982. [PMID: 32806966 DOI: 10.1080/13543776.2020.1811853] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The clinically licensed drugs used as antibiotics prevent the microbial growth interfering with the biosynthesis of proteins, nucleic acids, microorganism wall biosynthesis or wall permeability, and microbial metabolic pathways. A serious, emerging problem is the arisen of extensive drug resistance afflicting most countries worldwide. AREAS COVERED An exciting approach to fight drug resistance is the identification of essential enzymes encoded by pathogen genomes. Inhibition of such enzymes may impair microbial growth or virulence due to interference with crucial metabolic processes. Genome exploration of pathogenic and nonpathogenic microorganisms has revealed carbonic anhydrases (CAs, EC 4.2.1.1) as possible antibacterial targets. EXPERT OPINION Balancing the equilibrium between CO2 and HCO3 - is essential for microbial metabolism and is regulated by at least four classes of CAs. Classical CA inhibitors (CAIs) such as ethoxzolamide were shown to kill the gastric pathogen Helicobacter pylori in vitro, whereas acetazolamide and some of its more lipophilic derivatives were shown to be effective against vancomycin-resistant Enterococcus spp., with MICs in the range of 0.007-2 µg/mL, better than linezolid, the only clinically used agent available to date. Such results reinforce the rationale of considering existing and newly designed CAIs as antibacterials with an alternative mechanism of action.
Collapse
|
31
|
Abstract
Metalloenzymes such as the carbonic anhydrases (CAs, EC 4.2.1.1) possess highly specialized active sites that promote fast reaction rates and high substrate selectivity for the physiologic reaction that they catalyze, hydration of CO2 to bicarbonate and a proton. Among the eight genetic CA macrofamilies, α-CAs possess rather spacious active sites and show catalytic promiscuity, being esterases with many types of esters, but also acting on diverse small molecules such as cyanamide, carbonyl sulfide (COS), CS2, etc. Although artificial CAs have been developed with the intent to efficiently catalyse non-biologically related chemical transformations with high control of stereoselectivity, the activities of these enzymes were much lower when compared to natural CAs. Here, we report an overview on the catalytic activities of α-CAs as well as of enzymes which were mutated or artificially designed by incorporation of transition metal ions. In particular, the distinct catalytic mechanisms of the reductase, oxidase and metatheses-ase such as de novo designed CAs are discussed.
Collapse
|
32
|
Del Prete S, De Luca V, Nocentini A, Scaloni A, Mastrolorenzo MD, Supuran CT, Capasso C. Anion Inhibition Studies of the Beta-Carbonic Anhydrase from Escherichia coli. Molecules 2020; 25:E2564. [PMID: 32486444 PMCID: PMC7321114 DOI: 10.3390/molecules25112564] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
The interconversion of CO2 and HCO3- is catalyzed by a superfamily of metalloenzymes, known as carbonic anhydrases (CAs, EC 4.2.1.1), which maintain the equilibrium between dissolved inorganic CO2 and HCO3-. In the genome of Escherichia coli, a Gram-negative bacterium typically colonizing the lower intestine of warm-blooded organisms, the cyn operon gene includes the CynT gene, encoding for a β-CA, and CynS gene, encoding for the cyanase. CynT (β-CA) prevents the depletion of the cellular bicarbonate, which is further used in the reaction catalyzed by cyanase. A second β-CA (CynT2 or Can or yadF), as well as a γ and ι-CAs were also identified in the E. coli genome. CynT2 is essential for bacterial growth at atmospheric CO2 concentration. Here, we characterized the kinetic properties and the anion inhibition profiles of recombinant CynT2. The enzyme showed a good activity for the physiological CO2 hydratase reaction with the following parameters: kcat = 5.3 × 105 s-1 and kcat/KM = of 4.1 × 107 M-1 s-1. Sulfamide, sulfamate, phenylboronic acid, phenylarsonic acid, and diethyldithiocarbamate were the most effective CynT2 inhibitors (KI = 2.5 to 84 µM). The anions allowed for a detailed understanding of the interaction of inhibitors with the amino acid residues surrounding the catalytic pocket of the enzyme and may be used as leads for the design of more efficient and specific inhibitors.
Collapse
Affiliation(s)
- Sonia Del Prete
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (V.D.L.)
| | - Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (V.D.L.)
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, CNR, Via Argine 1085, 80147 Naples, Italy,
| | - Alessio Nocentini
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.N.); (M.D.M.)
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, CNR, Via Argine 1085, 80147 Naples, Italy,
| | - Margaret D. Mastrolorenzo
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.N.); (M.D.M.)
- University of California, San Diego (UCSD), 3425 Lebon Drive, Unit 918, San Diego, CA 92122, USA
| | - Claudiu T. Supuran
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.N.); (M.D.M.)
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (V.D.L.)
| |
Collapse
|
33
|
Vullo D, Lehneck R, Donald WA, Pöggeler S, Supuran CT. Anion Inhibition Studies of the β-Class Carbonic Anhydrase CAS3 from the Filamentous Ascomycete Sordaria macrospora. Metabolites 2020; 10:metabo10030093. [PMID: 32151102 PMCID: PMC7143076 DOI: 10.3390/metabo10030093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
CAS3 is a newly cloned cytosolic β-class carbonic anhydrase (CA, EC 4.2.1.1) from the filamentous ascomycete Sordaria macrospora. This enzyme has a high catalytic activity for the physiological CO2 hydration reaction and herein, we report the inhibition profile of CAS3 with anions and small molecules. The most effective CAS3 anions/small molecule inhibitors were diethyl-dithiocarbamate, sulfamide, sulfamate, phenyl boronic and phenyl arsonic acids, with KIs in the range of 0.89 mM–97 µM. Anions such as iodide, the pseudohalides, bicarbonate, carbonate, nitrate, nitrite, hydrogensulfide, stannate, selenate, tellurate, tetraborate, perrhenate, perruthenate, selenocyanide and trithiocarbonate were low millimolar CAS3 inhibitors. The light halides, sulfate, hydrogensulfite, peroxydisulfate, diphosphate, divanadate, perchlorate, tetrafluoroborate, fluorosulfonate and iminodisulfonate did not significantly inhibit this enzyme. These data may be useful for developing antifungals based on CA inhibition, considering the fact that many of the inhibitors reported here may be used as lead molecules and, by incorporating the appropriate organic scaffolds, potent nanomolar inhibitors could be developed.
Collapse
Affiliation(s)
- Daniela Vullo
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy;
| | - Ronny Lehneck
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University Göttingen, 37077 Gottingen, Germany;
| | - William A. Donald
- University of New South Wales, School of Chemistry, Sydney, NSW 2052, Australia;
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University Göttingen, 37077 Gottingen, Germany;
- Correspondence: (S.P.); (C.T.S.); Tel./Fax: +39-055-45737-29 (C.T.S.)
| | - Claudiu T. Supuran
- University of New South Wales, School of Chemistry, Sydney, NSW 2052, Australia;
- Neurofarba Dept., Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy
- Correspondence: (S.P.); (C.T.S.); Tel./Fax: +39-055-45737-29 (C.T.S.)
| |
Collapse
|
34
|
Al-Sanea MM, Elkamhawy A, Paik S, Bua S, Ha Lee S, Abdelgawad MA, Roh EJ, Eldehna WM, Supuran CT. Synthesis and biological evaluation of novel 3-(quinolin-4-ylamino)benzenesulfonamidesAQ3 as carbonic anhydrase isoforms I and II inhibitors. J Enzyme Inhib Med Chem 2019; 34:1457-1464. [PMID: 31411080 PMCID: PMC6713088 DOI: 10.1080/14756366.2019.1652282] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are crucial metalloenzymes that are involved in diverse bioprocesses. We report the synthesis and biological evaluation of novel series of benzenesulfonamides incorporating un/substituted ethyl quinoline-3-carboxylate moieties. The newly synthesised compounds were in vitro evaluated as inhibitors of the cytosolic human (h) isoforms hCA I and II. Both isoforms hCA I and II were inhibited by the quinolines reported here in variable degrees: hCA I was inhibited with KIs in the range of 0.966-9.091 μM, whereas hCA II in the range of 0.083-3.594 μM. The primary 7-chloro-6-flouro substituted sulphfonamide derivative 6e (KI = 0.083 μM) proved to be the most active quinoline in inhibiting hCA II, whereas, its secondary sulfonamide analog failed to inhibit the hCA II up to 10 μM, confirming the crucial role of the primary sulphfonamide group, as a zinc-binding group for CA inhibitory activity.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ahmed Elkamhawy
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sora Paik
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - So Ha Lee
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef, Egypt
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
35
|
Akocak S, Supuran CT. Activation of α-, β-, γ- δ-, ζ- and η- class of carbonic anhydrases with amines and amino acids: a review. J Enzyme Inhib Med Chem 2019; 34:1652-1659. [PMID: 31530034 PMCID: PMC6758604 DOI: 10.1080/14756366.2019.1664501] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Eight genetically distinct carbonic anhydrase (EC 4.2.1.1) enzyme families (α-, β-, γ- δ-, ζ-, η-, θ- and ι-CAs) were described to date. On the other hand, 16 mammalian α-CA isoforms are known to be involved in many diseases such as glaucoma, edema, epilepsy, obesity, hypoxic tumors, neuropathic pain, arthritis, neurodegeneration, etc. Although CA inhibitors were investigated for the management of a variety of such disorders, the activators just started to be investigated in detail for their in vivo effects. This review summarizes the activation profiles of α-, β, γ-, δ-, ζ- and η- CAs from various organisms (animals, fungi, protozoan, bacteria and archaea) with the most investigated classes of activators, the amines and the amino acids.
Collapse
Affiliation(s)
- Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, Turkey
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
36
|
Crystal structure and chemical inhibition of essential schistosome host-interactive virulence factor carbonic anhydrase SmCA. Commun Biol 2019; 2:333. [PMID: 31508507 PMCID: PMC6728359 DOI: 10.1038/s42003-019-0578-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/13/2019] [Indexed: 01/06/2023] Open
Abstract
The intravascular parasitic worm Schistosoma mansoni is a causative agent of schistosomiasis, a disease of great global public health significance. Here we identify an α-carbonic anhydrase (SmCA) that is expressed at the schistosome surface as determined by activity assays and immunofluorescence/immunogold localization. Suppressing SmCA expression by RNAi significantly impairs the ability of larval parasites to infect mice, validating SmCA as a rational drug target. Purified, recombinant SmCA possesses extremely rapid CO2 hydration kinetics (kcat: 1.2 × 106 s-1; kcat/Km: 1.3 × 108 M-1s-1). The enzyme’s crystal structure was determined at 1.75 Å resolution and a collection of sulfonamides and anions were tested for their ability to impede rSmCA action. Several compounds (phenylarsonic acid, phenylbaronic acid, sulfamide) exhibited favorable Kis for SmCA versus two human isoforms. Such selective rSmCA inhibitors could form the basis of urgently needed new drugs that block essential schistosome metabolism, blunt parasite virulence and debilitate these important global pathogens. Akram Da’dara et al. report the biochemical characterization of an α-carbonic anhydrase (SmCA) expressed at the surface of the parasitic worm Schistosoma mansoni. Along with the crystal structure of SmCA, they show the function of selective inhibitors in blocking essential schistosome metabolism.
Collapse
|
37
|
El-Azab AS, Abdel-Aziz AAM, Bua S, Nocentini A, AlSaif NA, Almehizia AA, Alanazi MM, Hefnawy MM, Supuran CT. New anthranilic acid-incorporating N-benzenesulfonamidophthalimides as potent inhibitors of carbonic anhydrases I, II, IX, and XII: Synthesis, in vitro testing, and in silico assessment. Eur J Med Chem 2019; 181:111573. [PMID: 31394463 DOI: 10.1016/j.ejmech.2019.111573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 02/08/2023]
Abstract
The carbonic anhydrase (CA) inhibitory activity of newly synthesized compounds 4-21 against the human CA (hCA) isoforms I, II, IX, and XII was measured and compared to that of standard sulfonamide inhibitors, acetazolamide (AAZ) and SLC-0111. Among this series; benzensulfonamides 6-11 gave the best potent hCA inhibitors with inhibition constants (KIs) ranging from 81.9 to 456.6 nM (AAZ and SLC-0111: KIs, 250.0 and 5080 nM, respectively). Compounds 6-11 proved to be effective hCA II inhibitors (KIs, 8.9-51.5 nM); they were almost equally potent to AAZ (KI, 12.0 nM) and had superior potency to SLC-0111 (KI, 960.0 nM). For hCA IX inhibition, compounds 6-11 proved to be potent inhibitors, with KI values of 3.9-36.0 nM, which were greater than or equal to that of AAZ and greater than that of SLC-0111 (KIs, 25.0 and 45.0 nM, respectively). For hCA XII inhibitory activity, compounds 6-11 displayed effective inhibition with KI values ranging from 4.6 to 86.3 nM and were therefore comparable to AAZ and SLC-0111 (KIs, 5.7 and 4.5 nM, respectively). Molecular docking studies of compounds 6, 7, 10, and 11 were conducted using the crystal structures of hCA isozymes I, II, IX, and XII to study their binding interactions for further lead optimization.
Collapse
Affiliation(s)
- Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Silvia Bua
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Nawaf A AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohamed M Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
38
|
Thacker PS, Shaikh P, Angeli A, Arifuddin M, Supuran CT. Synthesis and biological evaluation of novel 8-substituted quinoline-2-carboxamides as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2019; 34:1172-1177. [PMID: 31218888 PMCID: PMC6586119 DOI: 10.1080/14756366.2019.1626376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A series of novel 8-substituted-N-(4-sulfamoylphenyl)quinoline-2-carboxamides was synthesised by the reaction of 8-hydroxy-N-(4-sulfamoylphenyl) quinoline-2-carboxamide with alkyl and benzyl halides. The compounds were assayed for carbonic anhydrase (CA) inhibitory activity against four hCA isoforms, hCA I, hCA II, hCA IV, and hCA IX. Barring hCA IX, all the isoforms were inhibited from low to high nanomolar range. hCA I was inhibited in the range of 61.9–8126 nM, with compound 5h having an inhibition constant of KI = 61.9 nM. hCA II was inhibited in the range of 33.0–8759 nM, with compound 5h having an inhibition constant of 33.0 nM and compounds 5a and 5b having inhibition constants of 88.4 and 85.7 nM, respectively. hCA IV was inhibited in the range of 657.2–6757 nM. Hence, compound 5h, possessing low nanomolar hCA I and II inhibition, can be selected as a lead for the design of novel CA I and II inhibitors.
Collapse
Affiliation(s)
- Pavitra S Thacker
- a Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad , India
| | - Pirpasha Shaikh
- a Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad , India
| | - Andrea Angeli
- b Neurofarba Department, Section of Pharmaceutical Chemistry, University of Florence, Florence , Italy
| | - Mohammed Arifuddin
- a Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad , India
| | - Claudiu T Supuran
- b Neurofarba Department, Section of Pharmaceutical Chemistry, University of Florence, Florence , Italy
| |
Collapse
|
39
|
Del Prete S, Merlo R, Valenti A, Mattossovich R, Rossi M, Carginale V, Supuran CT, Perugino G, Capasso C. Thermostability enhancement of the α-carbonic anhydrase from Sulfurihydrogenibium yellowstonense by using the anchoring-and-self-labelling-protein-tag system (ASL tag). J Enzyme Inhib Med Chem 2019; 34:946-954. [PMID: 31039618 PMCID: PMC6493269 DOI: 10.1080/14756366.2019.1605991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are a superfamily of ubiquitous metalloenzymes present in all living organisms on the planet. They are classified into seven genetically distinct families and catalyse the hydration reaction of carbon dioxide to bicarbonate and protons, as well as the opposite reaction. CAs were proposed to be used for biotechnological applications, such as the post-combustion carbon capture processes. In this context, there is a great interest in searching CAs with robust chemical and physical properties. Here, we describe the enhancement of thermostability of the α-CA from Sulfurihydrogenibium yellowstonense (SspCA) by using the anchoring-and-self-labelling-protein-tag system (ASLtag). The anchored chimeric H5-SspCA was active for the CO2 hydration reaction and its thermostability increased when the cells were heated for a prolonged period at high temperatures (e.g. 70 °C). The ASLtag can be considered as a useful method for enhancing the thermostability of a protein useful for biotechnological applications, which often need harsh operating conditions.
Collapse
Affiliation(s)
- Sonia Del Prete
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Rosa Merlo
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Anna Valenti
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Rosanna Mattossovich
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Mosè Rossi
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Vincenzo Carginale
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Claudiu T Supuran
- b Neurofarba Department , University of Florence, Polo Scientifico , Sesto Fiorentino Firenze , Italy
| | - Giuseppe Perugino
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Clemente Capasso
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| |
Collapse
|
40
|
Rogato A, Del Prete S, Nocentini A, Carginale V, Supuran CT, Capasso C. Phaeodactylum tricornutum as a model organism for testing the membrane penetrability of sulphonamide carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2019; 34:510-518. [PMID: 30688123 PMCID: PMC6352938 DOI: 10.1080/14756366.2018.1559840] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Carbonic anhydrases (CAs) are ubiquitous metalloenzymes, which started to be investigated in detail in pathogenic, as well as non-pathogenic species since their pivotal role is to accelerate the physiological CO2 hydration/dehydration reaction significantly. Here, we propose the marine unicellular diatom Phaeodactylum tricornutum as a model organism for testing the membrane penetrability of CA inhibitors (CAIs). Seven inhibitors belonging to the sulphonamide type and possessing a diverse scaffold have been explored for their in vitro inhibition of the whole diatom CAs and the in vivo inhibitory effect on the growth of P. tricornutum. Interesting, inhibition of growth was observed, in vivo, demonstrating that this diatom is a good model for testing the cell wall penetrability of this class of pharmacological agents. Considering that many pathogens are difficult and dangerous to grow in the laboratory, the growth inhibition of P. tricornutum with different such CAIs may be subsequently used to design inhibition studies of CAs from pathogenic organisms.
Collapse
Affiliation(s)
- Alessandra Rogato
- a Institute of Bioscience and BioResources, CNR , Naples , Italy.,b Department of Integrative Marine Ecology , Stazione Zoologica Anton Dohrn , Naples , Italy
| | - Sonia Del Prete
- a Institute of Bioscience and BioResources, CNR , Naples , Italy
| | - Alessio Nocentini
- c Neurofarba Department, University of Florence, Polo Scientifico , Sesto Fiorentino , Florence , Italy
| | | | - Claudiu T Supuran
- c Neurofarba Department, University of Florence, Polo Scientifico , Sesto Fiorentino , Florence , Italy
| | - Clemente Capasso
- a Institute of Bioscience and BioResources, CNR , Naples , Italy
| |
Collapse
|
41
|
Krasavin M, Shetnev A, Baykov S, Kalinin S, Nocentini A, Sharoyko V, Poli G, Tuccinardi T, Korsakov M, Tennikova TB, Supuran CT. Pyridazinone-substituted benzenesulfonamides display potent inhibition of membrane-bound human carbonic anhydrase IX and promising antiproliferative activity against cancer cell lines. Eur J Med Chem 2019; 168:301-314. [PMID: 30826507 DOI: 10.1016/j.ejmech.2019.02.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 01/09/2023]
Abstract
An expanded set of pyridazine-containing benzene sulfonamides was investigated for inhibition of four human carbonic anhydrase isoforms, which revealed a pronounced inhibition trend toward hCA IX, a cancer-related, membrane-bound isoform of the enzyme. Comparison of antiproliferative effects of these compounds against cancer (PANC-1) and normal (ARPE-19) cells at 50 μM concentration narrowed the selection of compounds to the eight which displayed selective growth inhibition toward the cancer cells. More detailed investigation in concentration-dependent mode against normal (ARPE-19) and two cancer cell lines (PANC-1 and SK-MEL-2) identified two lead compounds one of which displayed a notable cytotoxicity toward pancreatic cancer cells while the other targeted the melanoma cells. These findings significantly expand the knowledge base concerning the hCA IX inhibitors whose inhibitory potency against a recombinant enzyme translates into selective anticancer activity under hypoxic conditions which are aimed to model the environment of a growing tumor.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation.
| | - Anton Shetnev
- The Ushinsky Yaroslavl State Pedagogical University, Yaroslavl, 150000, Russian Federation
| | - Sergey Baykov
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Stanislav Kalinin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Alessio Nocentini
- Neurofarba Department, Universita degli Studi di Firenze, Florence, Italy
| | - Vladimir Sharoyko
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | | | - Mikhail Korsakov
- The Ushinsky Yaroslavl State Pedagogical University, Yaroslavl, 150000, Russian Federation
| | - Tatiana B Tennikova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Claudiu T Supuran
- Neurofarba Department, Universita degli Studi di Firenze, Florence, Italy.
| |
Collapse
|
42
|
Sharma V, Kumar R, Bua S, Supuran CT, Sharma PK. Synthesis of novel benzenesulfonamide bearing 1,2,3-triazole linked hydroxy-trifluoromethylpyrazolines and hydrazones as selective carbonic anhydrase isoforms IX and XII inhibitors. Bioorg Chem 2019; 85:198-208. [DOI: 10.1016/j.bioorg.2019.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 12/28/2022]
|
43
|
Del Prete S, Bua S, Alasmary FAS, AlOthman Z, Tambutté S, Zoccola D, Supuran CT, Capasso C. Comparison of the Sulfonamide Inhibition Profiles of the α-Carbonic Anhydrase Isoforms (SpiCA1, SpiCA2 and SpiCA3) Encoded by the Genome of the Scleractinian Coral Stylophora pistillata. Mar Drugs 2019; 17:E146. [PMID: 30832211 PMCID: PMC6471618 DOI: 10.3390/md17030146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
The ubiquitous metalloenzymes carbonic anhydrases (CAs, EC 4.2.1.1) are responsible for the reversible hydration of CO₂ to bicarbonate (HCO₃-) and protons (H⁺). Bicarbonate may subsequently generate carbonate used in many functional activities by marine organisms. CAs play a crucial role in several physiological processes, e.g., respiration, inorganic carbon transport, intra and extra-cellular pH regulation, and bio-mineralization. Multiple transcript variants and protein isoforms exist in the organisms. Recently, 16 α-CA isoforms have been identified in the coral Stylophora pistillata. Here, we focalized the interest on three coral isoforms: SpiCA1 and SpiCA2, localized in the coral-calcifying cells; and SpiCA3, expressed in the cytoplasm of the coral cell layers. The three recombinant enzymes were heterologously expressed and investigated for their inhibition profiles with sulfonamides and sulfamates. The three coral CA isoforms differ significantly in their susceptibility to inhibition with sulfonamides. This study provides new insights into the coral physiology and the comprehension of molecular mechanisms involved in the bio-mineralization processes, since CAs interact with bicarbonate transporters, accelerating the trans-membrane bicarbonate movement and modulating the pH at both sides of the plasma membranes.
Collapse
Affiliation(s)
- Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Silvia Bua
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Fatmah A S Alasmary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.
| | - Sylvie Tambutté
- Department of Marine Biology, Centre Scientifique de Monaco, 8 Quai Antoine 1, 98000 Monaco, Monaco.
| | - Didier Zoccola
- Department of Marine Biology, Centre Scientifique de Monaco, 8 Quai Antoine 1, 98000 Monaco, Monaco.
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
44
|
Fattah TA, Bua S, Saeed A, Shabir G, Supuran CT. 3-Aminobenzenesulfonamides incorporating acylthiourea moieties selectively inhibit the tumor-associated carbonic anhydrase isoform IX over the off-target isoforms I, II and IV. Bioorg Chem 2019; 82:123-128. [DOI: 10.1016/j.bioorg.2018.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 01/21/2023]
|
45
|
Krasavin M, Shetnev A, Sharonova T, Baykov S, Kalinin S, Nocentini A, Sharoyko V, Poli G, Tuccinardi T, Presnukhina S, Tennikova TB, Supuran CT. Continued exploration of 1,2,4-oxadiazole periphery for carbonic anhydrase-targeting primary arene sulfonamides: Discovery of subnanomolar inhibitors of membrane-bound hCA IX isoform that selectively kill cancer cells in hypoxic environment. Eur J Med Chem 2018; 164:92-105. [PMID: 30594030 DOI: 10.1016/j.ejmech.2018.12.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 01/01/2023]
Abstract
An expanded set of diversely substituted 1,2,4-oxadiazole-containing primary aromatic sulfonamides was synthesized and tested for inhibition of human carbonic anhydrase I, II, IX and XII isoforms. The initial biochemical profiling revealed a significantly more potent inhibition of cancer-related, membrane-bound isoform hCA IX (reaching into submicromolar range), on top of potent inhibition of hCA XII that is another cancer target. The observed structure-activity relationships have been rationalized by molecular modeling. Comparative single-concentration profiling of the carbonic anhydrase inhibitors synthesized for antiproliferative effects against normal (ARPE-19) and cancer (PANC-1) cell lines under chemically induced hypoxia conditions revealed several candidate compounds selectively targeting cancer cells. More in-depth characterization of these leads revealed two structurally related compounds that showed promising selective cytotoxicity against pancreatic cancer (PANC-1) and melanoma (SK-MEL-2) cell lines.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation.
| | - Anton Shetnev
- The Ushinsky Yaroslavl State Pedagogical University, Yaroslavl, 150000, Russian Federation
| | - Tatyana Sharonova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Sergey Baykov
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Stanislav Kalinin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Alessio Nocentini
- Neurofarba Department, Universita degli Studi di Firenze, Florence, Italy
| | - Vladimir Sharoyko
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | | | - Sofia Presnukhina
- The Ushinsky Yaroslavl State Pedagogical University, Yaroslavl, 150000, Russian Federation
| | - Tatiana B Tennikova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Claudiu T Supuran
- Neurofarba Department, Universita degli Studi di Firenze, Florence, Italy.
| |
Collapse
|
46
|
Supuran CT. Carbon- versus sulphur-based zinc binding groups for carbonic anhydrase inhibitors? J Enzyme Inhib Med Chem 2018; 33:485-495. [PMID: 29390912 PMCID: PMC6009921 DOI: 10.1080/14756366.2018.1428572] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 11/25/2022] Open
Abstract
A set of compounds incorporating carbon-based zinc-binding groups (ZBGs), of the type PhX (X = COOH, CONH2, CONHNH2, CONHOH, CONHOMe), and the corresponding derivatives with sulphur(VI)-based ZBGs (X = SO3H, SO2NH2, SO2NHNH2, SO2NHOH, SO2NHOMe) were tested as inhibitors of all mammalian isoforms of carbonic anhydrase (CA, EC 4.2.1.1), CA I-XV. Three factors connected with the ZBG influenced the efficacy as CA inhibitor (CAI) of the investigated compounds: (i) the pKa of the ZBG; (ii) its geometry (tetrahedral, i.e. sulphur-based, versus trigonal, i.e. carbon-based ZBGs), and (iii) orientation of the organic scaffold induced by the nature of the ZBG. Benzenesulphonamide was the best inhibitor of all isoforms, but other ZBGs led to interesting inhibition profiles, although with an efficacy generally reduced when compared to the sulphonamide. The nature of the ZBG also influenced the CA inhibition mechanism. Most of these derivatives were zinc binders, but some of them (sulfonates, carboxylates) may interact with the enzyme by anchoring to the zinc-coordinated water molecule or by other inhibition mechanisms (occlusion of the active site entrance, out of the active site binding, etc.). Exploring structurally diverse ZBGs may lead to interesting new developments in the field of CAIs.
Collapse
Affiliation(s)
- Claudiu T. Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
47
|
Vullo D, Del Prete S, Osman SM, Alasmary FAS, AlOthman Z, Donald WA, Capasso C, Supuran CT. Comparison of the amine/amino acid activation profiles of the β- and γ-carbonic anhydrases from the pathogenic bacterium Burkholderia pseudomallei. J Enzyme Inhib Med Chem 2018; 33:25-30. [PMID: 29098887 PMCID: PMC6009869 DOI: 10.1080/14756366.2017.1387544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023] Open
Abstract
The β-class carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic bacterium Burkholderia pseudomallei, BpsCAβ, that is responsible for the tropical disease melioidosis was investigated for its activation with natural and non-natural amino acids and amines. Previously, the γ-CA from this bacterium has been investigated with the same library of 19 amines/amino acids, which show very potent activating effects on both enzymes. The most effective BpsCAβ activators were L- and D-DOPA, L- and D-Trp, L-Tyr, 4-amino-L-Phe, histamine, dopamine, serotonin, 2-pyridyl-methylamine, 1-(2-aminoethyl)-piperazine and L-adrenaline with KAs of 0.9-27 nM. Less effective activators were D-His, L- and D-Phe, D-Tyr, 2-(2-aminoethyl)pyridine and 4-(2-aminoethyl)-morpholine with KAs of 73 nM-3.42 µM. The activation of CAs from bacteria, such as BpsCAγ/β, has not been considered previously for possible biomedical applications. It would be of interest to perform studies in which bacteria are cultivated in the presence of CA activators, which may contribute to understanding processes connected with the virulence and colonization of the host by pathogenic bacteria.
Collapse
Affiliation(s)
- Daniela Vullo
- Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Università degliStudi di Firenze, Florence, Italy
| | - Sonia Del Prete
- CNR, Istituto di Bioscienze e Biorisorse, Napoli, Italy
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Sameh M. Osman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fatmah A. S. Alasmary
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
48
|
Berrino E, Bozdag M, Del Prete S, Alasmary FAS, Alqahtani LS, AlOthman Z, Capasso C, Supuran CT. Inhibition of α-, β-, γ-, and δ-carbonic anhydrases from bacteria and diatoms with N'-aryl-N-hydroxy-ureas. J Enzyme Inhib Med Chem 2018; 33:1194-1198. [PMID: 30044657 PMCID: PMC6060382 DOI: 10.1080/14756366.2018.1490733] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 11/09/2022] Open
Abstract
The inhibition of α-, β-, γ-, and δ-class carbonic anhydrases (CAs, EC 4.2.1.1) from bacteria (Vibrio cholerae and Porphyromonas gingivalis) and diatoms (Thalassiosira weissflogii) with a panel of N'-aryl-N-hydroxy-ureas is reported. The α-/β-CAs from V. cholerae (VchCAα and VchCAβ) were effectively inhibited by some of these derivatives, with KIs in the range of 97.5 nM - 7.26 µM and 52.5 nM - 1.81 µM, respectively, whereas the γ-class enzyme VchCAγ was less sensitive to inhibition (KIs of 4.75 - 8.87 µM). The β-CA from the pathogenic bacterium Porphyromonas gingivalis (PgiCAβ) was not inhibited by these compounds (KIs > 10 µM) whereas the corresponding γ-class enzyme (PgiCAγ) was effectively inhibited (KIs of 59.8 nM - 6.42 µM). The δ-CA from the diatom Thalassiosira weissflogii (TweCAδ) showed effective inhibition with these derivatives (KIs of 33.3 nM - 8.74 µM). As most of these N-hydroxyureas are also ineffective as inhibitors of the human (h) widespread isoforms hCA I and II (KIs > 10 µM), this class of derivatives may lead to the development of CA inhibitors selective for bacterial/diatom enzymes over their human counterparts and thus to anti-infectives or agents with environmental applications.
Collapse
Affiliation(s)
- Emanuela Berrino
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Murat Bozdag
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Sonia Del Prete
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
- CNR, Istituto di Bioscienze e Biorisorse, Napoli, Italy
| | - Fatmah A. S. Alasmary
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Linah S. Alqahtani
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Chemistry, King Faisal University, Alahsa, Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
49
|
Akocak S, Lolak N, Bua S, Supuran CT. Discovery of novel 1,3-diaryltriazene sulfonamides as carbonic anhydrase I, II, VII, and IX inhibitors. J Enzyme Inhib Med Chem 2018; 33:1575-1580. [PMID: 30296852 PMCID: PMC6179046 DOI: 10.1080/14756366.2018.1515933] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A series of new 1,3-diaryltriazene sulfonamides was synthesised by reaction of diazonium salt of metanilamide (3-aminobenzene sulfonamide) with substituted aromatic amines. The obtained new compounds were assayed as inhibitors of four physiologically and pharmacologically relevant human (h) isoforms of carbonic anhydrases (CA, EC 4.2.1.1), specifically, hCA I, hCA II, and hCA VII (cytosolic isoforms), as well as the tumour-associated membrane-bound isoform hCA IX. All isoforms investigated here were inhibited by the newly synthesised 1,3-diaryltriazene sulfonamide derivatives from the micromolar to the nanomolar range. The cytosolic isoforms were inhibited with Kis in the range of 92.3–8371.1 nM (hCA I), 4.3–9194.0 nM (hCA II), and 15.6–9477.8 nM (hCA VII), respectively. For the membrane-bound tumour-associated isoform hCA IX, the KI-s ranged between 50.8 and 9268.5 nM. The structure–activity relationship (SAR) with these newly synthesised metanilamide derivatives are discussed in detail.
Collapse
Affiliation(s)
- Suleyman Akocak
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Adiyaman University , Adiyaman , Turkey
| | - Nabih Lolak
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Adiyaman University , Adiyaman , Turkey
| | - Silvia Bua
- b NEUROFARBA Dept., Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| | - Claudiu T Supuran
- b NEUROFARBA Dept., Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| |
Collapse
|
50
|
Supuran CT. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert Opin Ther Pat 2018; 28:709-712. [PMID: 30217119 DOI: 10.1080/13543776.2018.1523897] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Claudiu T Supuran
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino (Firenze) , Italy
| |
Collapse
|