1
|
Sakolish C, Tsai HHD, Lin HC, Bajaj P, Villenave R, Ferguson SS, Stanko JP, Becker RA, Hewitt P, Chiu WA, Rusyn I. Comparative Analysis of Proximal Tubule Cell Sources for In Vitro Studies of Renal Proximal Tubule Toxicity. Biomedicines 2025; 13:563. [PMID: 40149543 PMCID: PMC11940618 DOI: 10.3390/biomedicines13030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: The kidneys are essential for eliminating drugs and chemicals from the human body and renal epithelial cells are particularly vulnerable to damage caused by xenobiotics and their metabolites. Drug-induced kidney toxicity is a major cause of drug attrition during preclinical and clinical development and the ability to predict renal toxicity remains a pressing challenge, necessitating more predictive in vitro models. However, the abundance of commercially available renal proximal tubule epithelial cell (RPTEC) sources complicates the selection of the most predictive cell types. Methods: This study compared a wide range of RPTEC sources, including primary cells (Lonza) and various RPTEC lines from different vendors, such as ciPTECs (Cell4Pharma), TERT1/RPTECs (ATCC), and HEK293 (GenoMembrane), including OAT1-overexpressing variants. HepG2 cells were included for a comparison of organ specificity. The different cells were cultured in 96- or 384-well plates and exposed to 12 drugs for 72 h at a concentration yielding a response (0.3-300 µM) to evaluate their ability to predict clinical outcomes. The CellTiterGlo® assay was used to measure cell viability, and transcriptome data from unexposed cells was analyzed using the TempO-seq® S1500+ platform. Results: Gene expression data showed that the primary kidney cells most closely matched the transcriptome of the human kidney medulla, followed by the TERT1 and ciPTEC lines, with the HEK lines showing the lowest similarity. The RPTEC sources showed clustering by cell type, with OAT1 overexpression driving changes in metabolic, detoxification, and immune pathways, especially in TERT1 cells. Cell viability data were used to determine points of departure (PODs) which were compared to human serum Cmax values to assess safety margins. The TERT1 and ciPTEC RPTEC lines demonstrated the highest predictive performance for nephrotoxicity, with OAT1 overexpression significantly enhancing sensitivity, accuracy, and overall predictive power (MCC scores: 0.764 and 0.667, respectively). In contrast, HepG2 cells showed the lowest performance across all metrics, highlighting the critical role of cell type and transporter expression in nephrotoxicity prediction. Conclusions: This study highlights important differences among RPTEC sources and their utility in drug safety studies of the renal proximal tubule. We show that while improved cell options for renal proximal tubule are needed, OAT1-overexpressing RPTECs are a superior model to the background cell type.
Collapse
Affiliation(s)
- Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (C.S.); (H.-H.D.T.); (H.-C.L.); (W.A.C.)
| | - Han-Hsuan D. Tsai
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (C.S.); (H.-H.D.T.); (H.-C.L.); (W.A.C.)
| | - Hsing-Chieh Lin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (C.S.); (H.-H.D.T.); (H.-C.L.); (W.A.C.)
| | - Piyush Bajaj
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, MA 02141, USA;
| | - Remi Villenave
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Stephen S. Ferguson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (S.S.F.); (J.P.S.)
| | - Jason P. Stanko
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (S.S.F.); (J.P.S.)
| | | | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, 64293 Darmstadt, Germany;
| | - Weihsueh A. Chiu
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (C.S.); (H.-H.D.T.); (H.-C.L.); (W.A.C.)
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (C.S.); (H.-H.D.T.); (H.-C.L.); (W.A.C.)
| |
Collapse
|
2
|
Wu X, Luo Y, Feng S, Ma H, Ke B, Wang K, Su Z, Yang D. Structures and membrane interactions of human OAT1 in complex with clinical used drugs. SCIENCE ADVANCES 2025; 11:eads5405. [PMID: 39951534 PMCID: PMC11827633 DOI: 10.1126/sciadv.ads5405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Organic anion transporters (OATs) in mammals mediate the renal excretion of numerous structurally diverse organic anionic compounds. Therapeutically inhibiting OATs has emerged as a strategy to modulate the elimination or retention of these substrates. Among them, OAT1 plays a pivotal role in the pharmacokinetics and drug-drug interactions of a wide range of prescription medications. Despite extensive structural investigations, the molecular structure, and basis of polyspecific anionic drug recognition of human OAT1 (hOAT1) have remained elusive. Here, we present cryogenic electron microscopy structures of hOAT1 and its complexes with the antiviral drug cidofovir and an FDA-approved type II diabetes medication glibenclamide, respectively. Our findings reveal that both cidofovir and glibenclamide bind to a central binding site, capturing the transporter in inward-facing conformations. These structures elucidate how specific residues within the central site orchestrate the binding of chemically diverse inhibitors and provide a structural basis for the drug recognition mechanism of hOAT1.
Collapse
Affiliation(s)
- Xuening Wu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Yongbo Luo
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Shijian Feng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Haiyun Ma
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Dongxue Yang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| |
Collapse
|
3
|
Hosooka A, Yasujima T, Murata A, Yamashiro T, Yuasa H. Identification of human-specific amino acid residues governing atenolol transport via organic cation transporter 2. Biochem Pharmacol 2024; 229:116514. [PMID: 39236937 DOI: 10.1016/j.bcp.2024.116514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Organic cation transporter 2 (OCT2/SLC22A2) is predominantly localized on the basolateral membranes of renal tubular epithelial cells and plays a crucial role in the renal secretion of various cationic drugs. Although variations in substrate selectivity among renal organic cation transport systems across species have been reported, the characteristics of OCT2 remain unclear. In this study, we demonstrated that atenolol, a β1-selective adrenergic antagonist, is transported almost exclusively by human OCT2, contrasting with OCT2s from other selected species. Using chimeric constructs between human OCT2 (hOCT2) and the highly homologous monkey OCT2 (monOCT2), along with site-directed mutagenesis, we identified non-conserved amino acids Val8, Ala31, Ala34, Tyr222, Tyr245, Ala270, Ile394, and Leu503 as pivotal for hOCT2-mediated atenolol transport. Kinetic analysis revealed that atenolol was transported by hOCT2 with a 12-fold lower affinity than MPP+, a typical OCT2 substrate. The inhibitory effect of atenolol on MPP+ transport was 6200-fold lower than that observed for MPP+ on atenolol transport. Additionally, we observed weaker inhibitory effects on MPP+ transport compared to atenolol transport with ten different OCT2 substrates. Altogether, this study suggests that eight hOCT2-specific amino acids constitute the low-affinity recognition site for atenolol transport, indicating differences in OCT2-mediated drug elimination between humans and highly homologous monkeys. Our findings underscore the importance of understanding species-specific differences in drug transport mechanisms, shedding light on potential variations in drug disposition and aiding in drug development.
Collapse
Affiliation(s)
- Akira Hosooka
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Tomoya Yasujima
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Ayano Murata
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Takahiro Yamashiro
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hiroaki Yuasa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|
4
|
Komaniecka N, Maroszek S, Drozdzik M, Oswald S, Drozdzik M. Transporter Proteins as Therapeutic Drug Targets-With a Focus on SGLT2 Inhibitors. Int J Mol Sci 2024; 25:6926. [PMID: 39000033 PMCID: PMC11241231 DOI: 10.3390/ijms25136926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Membrane transporters interact not only with endogenous substrates but are also engaged in the transport of xenobiotics, including drugs. While the coordinated function of uptake (solute carrier family-SLC and SLCO) and efflux (ATP-binding cassette family-ABC, multidrug and toxic compound extrusion family-MATE) transporter system allows vectorial drug transport, efflux carriers alone achieve barrier functions. The modulation of transport functions was proved to be effective in the treatment strategies of various pathological states. Sodium-glucose cotransporter-2 (SGLT2) inhibitors are the drugs most widely applied in clinical practice, especially in the treatment of diabetes mellitus and heart failure. Sodium taurocholate co-transporting polypeptide (NTCP) serves as virus particles (HBV/HDV) carrier, and inhibition of its function is applied in the treatment of hepatitis B and hepatitis D by myrcludex B. Inherited cholestatic diseases, such as Alagille syndrome (ALGS) and progressive familial intrahepatic cholestasis (PFIC) can be treated by odevixibat and maralixibat, which inhibit activity of apical sodium-dependent bile salt transporter (ASBT). Probenecid can be considered to increase uric acid excretion in the urine mainly via the inhibition of urate transporter 1 (URAT1), and due to pharmacokinetic interactions involving organic anion transporters 1 and 3 (OAT1 and OAT3), it modifies renal excretion of penicillins or ciprofloxacin as well as nephrotoxicity of cidofovir. This review discusses clinically approved drugs that affect membrane/drug transporter function.
Collapse
Affiliation(s)
- Nina Komaniecka
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland; (N.K.); (S.M.); (M.D.)
| | - Sonia Maroszek
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland; (N.K.); (S.M.); (M.D.)
| | - Maria Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland; (N.K.); (S.M.); (M.D.)
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland; (N.K.); (S.M.); (M.D.)
| |
Collapse
|
5
|
Parker JL, Kato T, Kuteyi G, Sitsel O, Newstead S. Molecular basis for selective uptake and elimination of organic anions in the kidney by OAT1. Nat Struct Mol Biol 2023; 30:1786-1793. [PMID: 37482561 PMCID: PMC10643130 DOI: 10.1038/s41594-023-01039-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023]
Abstract
In mammals, the kidney plays an essential role in maintaining blood homeostasis through the selective uptake, retention or elimination of toxins, drugs and metabolites. Organic anion transporters (OATs) are responsible for the recognition of metabolites and toxins in the nephron and their eventual urinary excretion. Inhibition of OATs is used therapeutically to improve drug efficacy and reduce nephrotoxicity. The founding member of the renal organic anion transporter family, OAT1 (also known as SLC22A6), uses the export of α-ketoglutarate (α-KG), a key intermediate in the Krebs cycle, to drive selective transport and is allosterically regulated by intracellular chloride. However, the mechanisms linking metabolite cycling, drug transport and intracellular chloride remain obscure. Here, we present cryogenic-electron microscopy structures of OAT1 bound to α-KG, the antiviral tenofovir and clinical inhibitor probenecid, used in the treatment of Gout. Complementary in vivo cellular assays explain the molecular basis for α-KG driven drug elimination and the allosteric regulation of organic anion transport in the kidney by chloride.
Collapse
Affiliation(s)
- Joanne L Parker
- Department of Biochemistry, University of Oxford, Oxford, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| | - Takafumi Kato
- Department of Biochemistry, University of Oxford, Oxford, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| | - Gabriel Kuteyi
- Department of Biochemistry, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Oleg Sitsel
- Department of Biochemistry, University of Oxford, Oxford, UK
- Max Planck Institute of Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Łapczuk-Romańska J, Droździk M, Oswald S, Droździk M. Kidney Drug Transporters in Pharmacotherapy. Int J Mol Sci 2023; 24:ijms24032856. [PMID: 36769175 PMCID: PMC9917665 DOI: 10.3390/ijms24032856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The kidney functions not only as a metabolite elimination organ but also plays an important role in pharmacotherapy. The kidney tubule epithelia cells express membrane carriers and transporters, which play an important role in drug elimination, and can determine drug nephrotoxicity and drug-drug interactions, as well as constituting direct drug targets. The above aspects of kidney transport proteins are discussed in the review.
Collapse
Affiliation(s)
- Joanna Łapczuk-Romańska
- Department of Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland
| | - Maria Droździk
- Medical Faculty, Medical University of Lodz, Tadeusza Kościuszki 4, 90-419 Lodz, Poland
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18051 Rostock, Germany
| | - Marek Droździk
- Department of Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland
- Correspondence:
| |
Collapse
|
7
|
Lye P, Bloise E, Imperio GE, Chitayat D, Matthews SG. Functional Expression of Multidrug-Resistance (MDR) Transporters in Developing Human Fetal Brain Endothelial Cells. Cells 2022; 11:2259. [PMID: 35883702 PMCID: PMC9323234 DOI: 10.3390/cells11142259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/20/2022] Open
Abstract
There is little information about the functional expression of the multidrug resistance (MDR) transporters P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2) in the developing blood−brain barrier (BBB). We isolated and cultured primary human fetal brain endothelial cells (hfBECs) from early and mid-gestation brains and assessed P-gp/ABCB1 and BCRP/ABCG2 expression and function, as well as tube formation capability. Immunolocalization of the von Willebrand factor (marker of endothelial cells), zonula occludens-1 and claudin-5 (tight junctions) was detected in early and mid-gestation-derived hfBECs, which also formed capillary-like tube structures, confirming their BEC phenotype. P-gp and BCRP immunostaining was detected in capillary-like tubes and in the cytoplasm and nucleus of hfBECs. P-gp protein levels in the plasma membrane and nuclear protein fractions, as well as P-gp protein/ABCB1 mRNA and BCRP protein levels decreased (p < 0.05) in hfBECs, from early to mid-gestation. No differences in P-gp or BCRP activity in hfBECs were observed between the two age groups. The hfBECs from early and mid-gestation express functionally competent P-gp and BCRP drug transporters and may thus contribute to the BBB protective phenotype in the conceptus from early stages of pregnancy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP-Binding Cassette Transporters/metabolism
- Brain/metabolism
- Drug Resistance, Multiple
- Endothelial Cells/metabolism
- Female
- Humans
- Neoplasm Proteins/metabolism
- Pregnancy
Collapse
Affiliation(s)
- Phetcharawan Lye
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.L.); (E.B.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.L.); (E.B.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Guinever E. Imperio
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for SickKids, University Toronto, Toronto, ON M5G 1X8, Canada
| | - Stephen G. Matthews
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.L.); (E.B.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
8
|
Saad AAA, Zhang F, Mohammed EAH, Wu X. Clinical Aspects of Drug–Drug Interaction and Drug Nephrotoxicity at Renal Organic Cation Transporters 2 (OCT2) and Multidrug and Toxin Exclusion 1, and 2-K (MATE1/MATE2-K). Biol Pharm Bull 2022; 45:382-393. [DOI: 10.1248/bpb.b21-00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Fan Zhang
- Department of Pharmacy, the First Hospital of Lanzhou University
| | | | - Xin’an Wu
- Department of Pharmacy, the First Hospital of Lanzhou University
| |
Collapse
|
9
|
Lopez Quiñones AJ, Vieira LS, Wang J. Clinical Applications and the Roles of Transporters in Disposition, Tumor Targeting, and Tissue Toxicity of meta-Iodobenzylguanidine (mIBG). Drug Metab Dispos 2022; 50:DMD-MR-2021-000707. [PMID: 35197314 PMCID: PMC9488973 DOI: 10.1124/dmd.121.000707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Transporters on the plasma membrane of tumor cells are promising molecular "Trojan horses" to deliver drugs and imaging agents into cancer cells. Radioiodine-labeled meta-iodobenzylguanidine (mIBG) is used as a diagnostic agent (123I-mIBG) and a targeted radiotherapy (131I-mIBG) for neuroendocrine cancers. mIBG enters cancer cells through the norepinephrine transporter (NET) where the radioactive decay of 131I causes DNA damage, cell death, and tumor necrosis. mIBG is predominantly eliminated unchanged by the kidney. Despite its selective uptake by neuroendocrine tumors, mIBG accumulates in several normal tissues and leads to tissue-specific radiation toxicities. Emerging evidences suggest that the polyspecific organic cation transporters play important roles in systemic disposition and tissue-specific uptake of mIBG. In particular, human organic cation transporter 2 (hOCT2) and toxin extrusion proteins 1 and 2-K (hMATE1/2-K) likely mediate renal secretion of mIBG whereas hOCT1 and hOCT3 may contribute to mIBG uptake into normal tissues such as the liver, salivary glands, and heart. This mini-review focuses on the clinical applications of mIBG in neuroendocrine cancers and the differential roles of NET, OCT and MATE transporters in mIBG disposition, response and toxicity. Understanding the molecular mechanisms governing mIBG transport in cancer and normal cells is a critical step for developing strategies to optimize the efficacy of 131I-mIBG while minimizing toxicity in normal tissues. Significance Statement Radiolabeled mIBG has been used as a diagnostic tool and as radiotherapy for neuroendocrine cancers and other diseases. NET, OCT and MATE transporters play differential roles in mIBG tumor targeting, systemic elimination, and accumulation in normal tissues. The clinical use of mIBG as a radiopharmaceutical in cancer diagnosis and treatment can be further improved by taking a holistic approach considering mIBG transporters in both cancer and normal tissues.
Collapse
Affiliation(s)
| | | | - Joanne Wang
- Dept. of Pharmaceutics, University of Washington, United States
| |
Collapse
|
10
|
Effects of Probenecid on Hepatic and Renal Disposition of Hexadecanedioate, an Endogenous Substrate of Organic Anion Transporting Polypeptide 1B in Rats. J Pharm Sci 2021; 110:2274-2284. [PMID: 33607188 DOI: 10.1016/j.xphs.2021.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 01/02/2023]
Abstract
The aim of the present study was to investigate changes in plasma concentrations and tissue distribution of endogenous substrates of organic anion transporting polypeptide (OATP) 1B, hexadecanedioate (HDA), octadecanedioate (ODA), tetradecanedioate (TDA), and coproporphyrin-III, induced by its weak inhibitor, probenecid (PBD), in rats. PBD increased the plasma concentrations of these four compounds regardless of bile duct cannulation, whereas liver-to-plasma (Kp,liver) and kidney-to-plasma concentration ratios of HDA and TDA were reduced. Similar effects of PBD on plasma concentrations and Kp,liver of HDA, ODA, and TDA were observed in kidney-ligated rats, suggesting a minor contribution of renal disposition to the overall distribution of these three compounds. Tissue uptake clearance of deuterium-labeled HDA (d-HDA) in liver was 16-fold higher than that in kidney, and was reduced by 80% by PBD. This was compatible with inhibition by PBD of d-HDA uptake in isolated rat hepatocytes. Such inhibitory effects of PBD were also observed in the human OATP1B1-mediated uptake of d-HDA. Overall, the disposition of HDA is mainly determined by hepatic OATP-mediated uptake, which is inhibited by PBD. HDA might, thus, be a biomarker for OATPs minimally affected by urinary and biliary elimination in rats.
Collapse
|
11
|
Pharmacokinetic drug–drug interactions: an insight into recent US FDA-approved drugs for prostate cancer. Bioanalysis 2020; 12:1647-1664. [DOI: 10.4155/bio-2020-0242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pharmacokinetic drug–drug interaction is a significant safety and efficiency concern as it results in considerable concentration changes. Drug–drug interactions are a substantial concern in anticancer drugs that possess a narrow therapeutic index. These interactions remain as the principal regulatory obstacle that can lead to termination in the preclinical stage, restrictions in the prescription, dosage adjustments or withdrawal of the drugs from the market. Drug metabolizing enzymes or transporters mediate the majority of clinically relevant drug interactions. Cancer diagnosed aged patients use multiple medications and are more prone to significant drug–drug interactions. This review provides detailed information on clinically relevant drug–drug interactions resulting from drug metabolism by enzymes and transporters with a particular emphasis on recent FDA approved antiprostate cancer drugs.
Collapse
|
12
|
Zou L, Matsson P, Stecula A, Ngo HX, Zur AA, Giacomini KM. Drug Metabolites Potently Inhibit Renal Organic Anion Transporters, OAT1 and OAT3. J Pharm Sci 2020; 110:347-353. [PMID: 32910949 DOI: 10.1016/j.xphs.2020.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
Abstract
Human OAT1 and OAT3 play major roles in renal drug elimination and drug-drug interactions. However, there is little information on the interactions of drug metabolites with transporters. The goal of this study was to characterize the interactions of drug metabolites with OAT1 and OAT3 and compare their potencies of inhibition with those of their corresponding parent drugs. Using HEK293 cells stably transfected with OAT1 and OAT3, 25 drug metabolites and their corresponding parent drugs were screened for inhibitory effects on OAT1-and OAT3-mediated 6-carboxyfluorescein uptake at a screening concentration of 200 μM for all but 3 compounds. 20 and 24 drug metabolites were identified as inhibitors (inhibition > 50%) of OAT1 and OAT3, respectively. Seven drug metabolites were potent inhibitors of either or both OAT1 and OAT3 with Ki values less than 1 μM. 22 metabolites were more potent inhibitors of OAT3 than OAT1. Importantly, one drug and four metabolites were predicted to inhibit OAT3 at unbound plasma concentrations achieved clinically (Cmax,u/Ki values ≥ 0.1). In conclusion, our study highlights the potential interactions of drug metabolites with OAT1 and OAT3 at clinically relevant concentrations, suggesting that drug metabolites may modulate therapeutic and adverse drug response by inhibiting renal drug transporters.
Collapse
Affiliation(s)
- Ling Zou
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, CA, USA
| | - Pär Matsson
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Adrian Stecula
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, CA, USA
| | - Huy X Ngo
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, CA, USA
| | - Arik A Zur
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, CA, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
13
|
Rimmler C, Lanckohr C, Akamp C, Horn D, Fobker M, Wiebe K, Redwan B, Ellger B, Koeck R, Hempel G. Physiologically based pharmacokinetic evaluation of cefuroxime in perioperative antibiotic prophylaxis. Br J Clin Pharmacol 2019; 85:2864-2877. [PMID: 31487057 PMCID: PMC6955413 DOI: 10.1111/bcp.14121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
Aims Adequate plasma concentrations of antibiotics during surgery are essential for the prevention of surgical site infections. We examined the pharmacokinetics of 1.5 g cefuroxime administered during induction of anaesthesia with follow‐up doses every 2.5 hours until the end of surgery. We built a physiologically based pharmacokinetic model with the aim to ensure adequate antibiotic plasma concentrations in a heterogeneous population. Methods A physiologically based pharmacokinetic model (PK‐Sim®/MoBi®) was developed to investigate unbound plasma concentrations of cefuroxime. Blood samples from 25 thoracic surgical patients were analysed with high‐performance liquid chromatography. To evaluate optimized dosing regimens, physiologically based pharmacokinetic model simulations were conducted. Results Dosing simulations revealed that a standard dosing regimen of 1.5 g every 2.5 hours reached the pharmacokinetic/pharmacodynamic target for Staphylococcus aureus. However, for Escherichia coli, >50% of the study participants did not reach predefined targets. Effectiveness of cefuroxime against E. coli can be improved by administering a 1.5 g bolus immediately followed by a continuous infusion of 3 g cefuroxime over 3 hours. Conclusion The use of cefuroxime for perioperative antibiotic prophylaxis to prevent staphylococcal surgical site infections appears to be effective with standard dosing of 1.5 g preoperatively and follow‐up doses every 2.5 hours. In contrast, if E. coli is relevant in surgeries, this dosing regimen appears insufficient. With our derived dose recommendations, we provide a solution for this issue.
Collapse
Affiliation(s)
- Christer Rimmler
- Department of Pharmaceutical and Medical Chemistry-Clinical Pharmacy, Muenster, Germany
| | - Christian Lanckohr
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Muenster, Muenster, Germany
| | - Ceren Akamp
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Muenster, Muenster, Germany
| | - Dagmar Horn
- Department of Pharmacy, University Hospital of Muenster, Muenster, Germany
| | - Manfred Fobker
- Center for Laboratory Medicine, University Hospital Muenster, Muenster, Germany
| | - Karsten Wiebe
- Department of Cardiothoracic Surgery, Division of Thoracic Surgery and Lung Transplantation, University Hospital Muenster, Muenster, Germany
| | - Bassam Redwan
- Department of Cardiothoracic Surgery, Division of Thoracic Surgery and Lung Transplantation, University Hospital Muenster, Muenster, Germany
| | - Bjoern Ellger
- Department of Anesthesiology, Intensive Care and Pain Medicine, Klinikum Westfalen, Dortmund, Germany
| | - Robin Koeck
- Institute of Hygiene, DRK Kliniken Berlin Westend, Berlin, Germany
| | - Georg Hempel
- Department of Pharmaceutical and Medical Chemistry-Clinical Pharmacy, Muenster, Germany
| |
Collapse
|
14
|
Liu X. Transporter-Mediated Drug-Drug Interactions and Their Significance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:241-291. [PMID: 31571167 DOI: 10.1007/978-981-13-7647-4_5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug transporters are considered to be determinants of drug disposition and effects/toxicities by affecting the absorption, distribution, and excretion of drugs. Drug transporters are generally divided into solute carrier (SLC) family and ATP binding cassette (ABC) family. Widely studied ABC family transporters include P-glycoprotein (P-GP), breast cancer resistance protein (BCRP), and multidrug resistance proteins (MRPs). SLC family transporters related to drug transport mainly include organic anion-transporting polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), organic cation/carnitine transporters (OCTNs), peptide transporters (PEPTs), and multidrug/toxin extrusions (MATEs). These transporters are often expressed in tissues related to drug disposition, such as the small intestine, liver, and kidney, implicating intestinal absorption of drugs, uptake of drugs into hepatocytes, and renal/bile excretion of drugs. Most of therapeutic drugs are their substrates or inhibitors. When they are comedicated, serious drug-drug interactions (DDIs) may occur due to alterations in intestinal absorption, hepatic uptake, or renal/bile secretion of drugs, leading to enhancement of their activities or toxicities or therapeutic failure. This chapter will illustrate transporter-mediated DDIs (including food drug interaction) in human and their clinical significances.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
15
|
Genetic Heterogeneity of SLC22 Family of Transporters in Drug Disposition. J Pers Med 2018; 8:jpm8020014. [PMID: 29659532 PMCID: PMC6023491 DOI: 10.3390/jpm8020014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
An important aspect of modern medicine is its orientation to achieve more personalized pharmacological treatments. In this context, transporters involved in drug disposition have gained well-justified attention. Owing to its broad spectrum of substrate specificity, including endogenous compounds and xenobiotics, and its strategical expression in organs accounting for drug disposition, such as intestine, liver and kidney, the SLC22 family of transporters plays an important role in physiology, pharmacology and toxicology. Among these carriers are plasma membrane transporters for organic cations (OCTs) and anions (OATs) with a marked overlap in substrate specificity. These two major clades of SLC22 proteins share a similar membrane topology but differ in their degree of genetic variability. Members of the OCT subfamily are highly polymorphic, whereas OATs have a lower number of genetic variants. Regarding drug disposition, changes in the activity of these variants affect intestinal absorption and target tissue uptake, but more frequently they modify plasma levels due to enhanced or reduced clearance by the liver and secretion by the kidney. The consequences of these changes in transport-associated function markedly affect the effectiveness and toxicity of the treatment in patients carrying the mutation. In solid tumors, changes in the expression of these transporters and the existence of genetic variants substantially determine the response to anticancer drugs. Moreover, chemoresistance usually evolves in response to pharmacological and radiological treatment. Future personalized medicine will require monitoring these changes in a dynamic way to adapt the treatment to the weaknesses shown by each tumor at each stage in each patient.
Collapse
|
16
|
Wagner DJ, Duan H, Chapron A, Lee RW, Wang J. Potent inhibition of human organic cation transporter 2 (hOCT2) by β-carboline alkaloids. Xenobiotica 2017; 47:1112-1120. [PMID: 27977936 PMCID: PMC5648609 DOI: 10.1080/00498254.2016.1271160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/07/2016] [Indexed: 02/08/2023]
Abstract
1. Beta-carbolines are indole alkaloids with a wide range of pharmacological and toxicological activities. Beta-carbolines are structurally related to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), a known substrate of organic cation transporters (OCTs). The goal of this study is to determine the interaction of β-carbolines with human OCT1, 2, and 3 (SLC22A1-3). 2. Dose-dependent inhibition studies were performed for five commercially available β-carbolines using a fluorescent substrate assay in HEK293 cells stably expressing hOCT1-3. The substrate potential was evaluated by uptake assays and the impact of active transport on cellular toxicity examined. 3. All tested β-carbolines potently inhibited hOCT2 with IC50 values in the sub- or low micromolar range. Harmaline is the most potent hOCT2 inhibitor (IC50 = 0.50 ± 0.08 μM). hOCT1 and hOCT3 are less sensitive to β-carboline inhibition. Harmaline, norharmanium, and 2,9-dimethyl-4,9-dihydro-3H-β-carbolinium accumulated 2- to 7-fold higher in cells expressing hOCT1-3. HEK293 cells expressing hOCT1-3 were 6.5- to 13-fold more sensitive to harmane and norharmanium toxicity. 4. Our data support a significant role of hOCT1-3 in tissue uptake and disposition of β-carbolines. Importantly, the potent inhibition of hOCT2 by β-carbolines also raises the concern of potential drug interactions between naturally occurring bioactive alkaloids and drugs eliminated by hOCT2.
Collapse
Affiliation(s)
- David J. Wagner
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Haichuan Duan
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Alenka Chapron
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Richard W. Lee
- School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Chu X, Chan GH, Evers R. Identification of Endogenous Biomarkers to Predict the Propensity of Drug Candidates to Cause Hepatic or Renal Transporter-Mediated Drug-Drug Interactions. J Pharm Sci 2017; 106:2357-2367. [DOI: 10.1016/j.xphs.2017.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/18/2022]
|
18
|
Feng B, Varma MV. Evaluation and Quantitative Prediction of Renal Transporter-Mediated Drug-Drug Interactions. J Clin Pharmacol 2017; 56 Suppl 7:S110-21. [PMID: 27385169 DOI: 10.1002/jcph.702] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 12/22/2022]
Abstract
With numerous drugs cleared renally, inhibition of uptake transporters localized on the basolateral membrane of renal proximal tubule cells, eg, organic anion transporters (OATs) and organic cation transporters (OCTs), may lead to clinically meaningful drug-drug interactions (DDIs). Additionally, clinical evidence for the possible involvement of efflux transporters, such as P-glycoprotein (P-gp) and multidrug and toxin extrusion protein 1/2-K (MATE1/2-K), in the renal DDIs is emerging. Herein, we review recent progress regarding mechanistic understanding of transporter-mediated renal DDIs as well as the quantitative predictability of renal DDIs using static and physiologically based pharmacokinetic (PBPK) models. Generally, clinical DDI data suggest that the magnitude of plasma exposure changes attributable to renal DDIs is less than 2-fold, unlike the DDIs associated with inhibition of cytochrome P-450s and/or hepatic uptake transporters. It is concluded that although there is a need for risk assessment early in drug development, current available data imply that safety concerns related to the renal DDIs are generally low. Nevertheless, consideration must be given to the therapeutic index of the victim drug and potential risk in a specific patient population (eg, renal impairment). Finally, in vitro transporter data and clinical pharmacokinetic parameters obtained from the first-in-human studies have proven useful in support of quantitative prediction of DDIs associated with inhibition of renal secretory transporters, OATs or OCTs.
Collapse
Affiliation(s)
- Bo Feng
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research & Development, Groton, CT, USA
| | - Manthena V Varma
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research & Development, Groton, CT, USA
| |
Collapse
|
19
|
Molecular properties associated with transporter-mediated drug disposition. Adv Drug Deliv Rev 2017; 116:92-99. [PMID: 28554577 DOI: 10.1016/j.addr.2017.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/20/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022]
Abstract
Membrane transporters play a key role in the absorption, distribution, clearance, elimination, and transport of drugs. Understanding the drug properties and structure activity relationships (SAR) for affinity to membrane transporters is critical to optimize clearance and pharmacokinetics during drug design. To facilitate the early identification of clearance mechanism, a framework named the extended clearance classification system (ECCS) was recently introduced. Using in vitro and physicochemical properties that are readily available in early drug discovery, ECCS has been successfully applied to identify major clearance mechanism and to implicate the role of membrane transporters in determining pharmacokinetics. While the crystal structures for most of the drug transporters are currently not available, ligand-based modeling approaches that use information obtained from the structure and molecular properties of the ligands have been applied to associate the drug-related properties and transporter-mediated disposition. The approach allows prospective prediction of transporter both substrate and/or inhibitor affinity and build quantitative structure-activity relationship (QSAR) to enable early optimization of pharmacokinetics, tissue distribution and drug-drug interaction risk. Drug design applications can be further improved through uncovering transporter protein crystal structure and generation of quality data to refine and develop viable predictive models.
Collapse
|
20
|
Mathialagan S, Rodrigues AD, Feng B. Evaluation of Renal Transporter Inhibition Using Creatinine as a Substrate In Vitro to Assess the Clinical Risk of Elevated Serum Creatinine. J Pharm Sci 2017; 106:2535-2541. [PMID: 28416419 DOI: 10.1016/j.xphs.2017.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/27/2017] [Accepted: 04/07/2017] [Indexed: 11/29/2022]
Abstract
Creatinine is a widely accepted biomarker for renal toxicity, but its renal clearance via transporter-mediated active secretion is significant. For a given new chemical entity, therefore, elevations in serum creatinine (SCr) can be caused by the inhibition of renal transporter(s) without renal toxicity. In the present study, an effort was made to assess the correlation between the inhibition of renal transporters in vitro and elevations in SCr. A total of 15 compounds were chosen based on their known effect on SCr and minimal impact on glomerular filtration rate. Their inhibition potencies against the major creatinine renal transporters, including organic cation transporter 2, organic anion transporter 2, and 2 forms of multidrug and toxin extrusion (MATE1 and MATE2K), were assessed in transporter-transfected cell lines using creatinine as a probe substrate. Collectively, the data suggest that the observed elevations in SCr can be attributed to the inhibition of renal transporter(s), but inhibition of renal transporters does not necessarily lead to elevated SCr. Thus, renal transporter inhibition data can be used to rationalize SCr changes. Additionally, differing renal transporter inhibition potencies using creatinine and metformin as probe substrates suggest that substrate-dependent inhibition exists for some compounds.
Collapse
Affiliation(s)
- Sumathy Mathialagan
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut 06340
| | - A David Rodrigues
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut 06340
| | - Bo Feng
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut 06340.
| |
Collapse
|
21
|
Yin J, Duan H, Wang J. Impact of Substrate-Dependent Inhibition on Renal Organic Cation Transporters hOCT2 and hMATE1/2-K-Mediated Drug Transport and Intracellular Accumulation. J Pharmacol Exp Ther 2016; 359:401-410. [PMID: 27758931 PMCID: PMC5118648 DOI: 10.1124/jpet.116.236158] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/26/2016] [Indexed: 01/28/2023] Open
Abstract
Renal transporter-mediated drug-drug interactions (DDIs) are of significant clinical concern, as they can adversely impact drug disposition, efficacy, and toxicity. Emerging evidence suggests that human renal organic cation transporter 2 (hOCT2) and multidrug and toxin extrusion proteins 1 and 2-K (hMATE1/2-K) exhibit substrate-dependent inhibition, but their impact on renal drug secretion and intracellular accumulation is unknown. Using metformin and atenolol as the probe substrates, we found that the classic inhibitors (e.g., cimetidine) of renal organic cation secretion were approximately 10-fold more potent for hOCT2 when atenolol was used, suggesting that atenolol is a more sensitive in vitro substrate for hOCT2 than metformin. In contrast, inhibition of hMATE1/2-K was influenced much less by the choice of substrate. Cimetidine is a much more potent inhibitor for hMATE1/2-K when metformin is the substrate but acts as an equally potent inhibitor of hOCT2 and hMATE1/2-K when atenolol is the substrate. Using hOCT2/hMATE1 double-transfected Madin-Darby canine kidney cells, we evaluated the impact of substrate-dependent inhibition on hOCT2/hMATE1-mediated transepithelial flux and intracellular drug accumulation. At clinically relevant concentrations, cimetidine dose dependently inhibited basal-to-apical flux of atenolol and metformin but impacted their intracellular accumulation differently, indicating that substrate-dependent inhibition may shift the major substrate-inhibitor interaction site between apical and basolateral transporters. Cimetidine is effective only when applied to the basal compartment. Our findings revealed the complex and dynamic nature of substrate-dependent inhibition of renal organic cation drug transporters and highlighted the importance of considering substrate-dependent inhibition in predicting transporter-mediated renal drug interaction, accumulation, and toxicity.
Collapse
Affiliation(s)
- Jia Yin
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Haichuan Duan
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| |
Collapse
|
22
|
Renal drug transporters and their significance in drug-drug interactions. Acta Pharm Sin B 2016; 6:363-373. [PMID: 27709005 PMCID: PMC5045553 DOI: 10.1016/j.apsb.2016.07.013] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/12/2022] Open
Abstract
The kidney is a vital organ for the elimination of therapeutic drugs and their metabolites. Renal drug transporters, which are primarily located in the renal proximal tubules, play an important role in tubular secretion and reabsorption of drug molecules in the kidney. Tubular secretion is characterized by high clearance capacities, broad substrate specificities, and distinct charge selectivity for organic cations and anions. In the past two decades, substantial progress has been made in understanding the roles of transporters in drug disposition, efficacy, toxicity and drug-drug interactions (DDIs). In the kidney, several transporters are involved in renal handling of organic cation (OC) and organic anion (OA) drugs. These transporters are increasingly recognized as the target for clinically significant DDIs. This review focuses on the functional characteristics of major human renal drug transporters and their involvement in clinically significant DDIs.
Collapse
Key Words
- ABC, ATP-binding cassette
- ATP, adenosine triphosphate
- AUC, area under the plasma concentration curve
- BBB, blood–brain barrier
- CHO, Chinese hamster ovary
- CL, plasma clearance
- CLR, renal clearance
- Cmax, maximum plasma concentration
- DDIs, drug–drug interactions
- Drug–drug interactions
- FDA, U.S. Food and Drug Administration
- GSH, glutathione
- HEK, human embryonic kidney
- IC50, half maximal inhibitory concentration
- ITC, International Transporter Consortium
- Ki, inhibitory constant
- MATE, multidrug and toxin extrusion protein
- MPP+, 1-methyl-4-phenylpyridimium
- MRP, multidrug resistance-associated protein
- MSD, membrane-spanning domain
- MW, molecular weight
- NBD, nucleotide-binding domain
- NME, new molecular entity
- NSAID, non-steroidal anti-inflammatory drugs
- Nephrotoxicity
- OA, organic anion
- OAT or Oat, organic anion transporters
- OATP or Oatp, organic anion-transporting peptide
- OC, organic cation
- OCT or Oct, organic cation transporter
- OCTN, Organic zwitterions/cation transporters
- Organic anions
- Organic cations
- P-gp, P-glycoprotein
- PAH, p-aminohippurate
- Renal drug transporters
- SLC, solute carrier
- SNP, single-nucleotide polymorphism
- TEA, tetraethylammonium
- TMD, transmembrane domain
- URAT, urate transporter
- fe, fraction of the absorbed dose excreted unchanged in urine
Collapse
|
23
|
Abe Y, Nakano Y, Kanazawa T, Furihata T, Endo T, Kobayashi M. Investigation of Drug-Drug Interactions Between Ritobegron, a Selective β3-Adrenoceptor Agonist, With Probenecid in Healthy Men. Clin Pharmacol Drug Dev 2015; 5:201-7. [DOI: 10.1002/cpdd.212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/30/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Yoshikazu Abe
- Pharmacokinetics Research Laboratories; Kissei Pharmaceutical Co., Ltd.; Nagano Japan
| | - Yuki Nakano
- Clinical Development Planning & Management Dept.; Kissei Pharmaceutical Co., Ltd.; Tokyo Japan
| | - Toru Kanazawa
- Toxicological Laboratories; Kissei Pharmaceutical Co., Ltd.; Nagano Japan
| | - Takao Furihata
- Clinical Development Planning & Management Dept.; Kissei Pharmaceutical Co., Ltd.; Tokyo Japan
| | - Takuro Endo
- Pharmacokinetics Research Laboratories; Kissei Pharmaceutical Co., Ltd.; Nagano Japan
| | - Mamoru Kobayashi
- Central Research Laboratories; Kissei Pharmaceutical Co., Ltd.; Nagano Japan
| |
Collapse
|
24
|
Koch KM, Smith DA, Botbyl J, Arya N, Briley LP, Cartee L, White JH, Beyer J, Dar MM, Chung HC, Chu Q, Bang YJ. Effect of lapatinib on oral digoxin absorption in patients. Clin Pharmacol Drug Dev 2015; 4:449-53. [PMID: 27137717 DOI: 10.1002/cpdd.189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/19/2015] [Indexed: 11/10/2022]
Abstract
The potential for an interaction between lapatinib and absorption of the P-glycoprotein (ABCB1) substrate digoxin at a therapeutic dose in breast cancer patients was characterized. Seventeen women with HER2-positive metastatic breast cancer received a single oral 0.5-mg dose of digoxin on days 1 and 9 and oral lapatinib 1500 mg once daily on days 2 through 9. Digoxin pharmacokinetic parameters were determined on day 1 (digoxin administration alone) and on day 9 (coadministration of lapatinib and digoxin), and parameters were compared to determine the effects of lapatinib on digoxin absorption. Concomitant medications that could affect ABCB1 were accounted for. Lapatinib 1500 mg/day increased digoxin absorption approximately 80%, implicating lapatinib inhibition of intestinal ABCB1-mediated efflux. In summary, coadministration of lapatinib with narrow therapeutic index drugs that are substrates of ABCB1 should be undertaken with caution and dose adjustment should be considered.
Collapse
Affiliation(s)
- Kevin M Koch
- GlaxoSmithKline, Research Triangle Park, NC, USA
| | | | | | - Nikita Arya
- GlaxoSmithKline, Research Triangle Park, NC, USA
| | | | | | | | | | - Mohammed M Dar
- GlaxoSmithKline, Research Triangle Park, NC, USA.,Current address: MedImmune, Inc., 35 West Watkins Mill Road, Gaithersburg, MD, 20878, USA
| | | | - Quincy Chu
- Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Yung-Jue Bang
- Seoul National University Hospital, Clinical Research Institute, Seoul, Korea
| |
Collapse
|
25
|
Mikkaichi T, Yoshigae Y, Masumoto H, Imaoka T, Rozehnal V, Fischer T, Okudaira N, Izumi T. Edoxaban transport via P-glycoprotein is a key factor for the drug's disposition. Drug Metab Dispos 2014; 42:520-8. [PMID: 24459178 DOI: 10.1124/dmd.113.054866] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Edoxaban (the free base of DU-176b), an oral direct factor Xa inhibitor, is mainly excreted unchanged into urine and feces. Because active membrane transport processes such as active renal secretion, biliary excretion, and/or intestinal secretion, and the incomplete absorption of edoxaban after oral administration have been observed, the involvement of drug transporters in the disposition of edoxaban was investigated. Using a bidirectional transport assay in human colon adenocarcinoma Caco-2 cell monolayers, we observed the vectorial transport of [(14)C]edoxaban, which was completely inhibited by verapamil, a strong P-glycoprotein (P-gp) inhibitor. In an in vivo study, an increased distribution of edoxaban to the brain was observed in Mdr1a/1b knockout mice when compared with wild-type mice, indicating that edoxaban is a substrate for P-gp. However, there have been no observations of significant transport of edoxaban by renal or hepatic uptake transporters, organic anion transporter (OAT)1, OAT3, organic cation transporter (OCT)2, or organic anion transporting polypeptide (OATP)1B1. Edoxaban exhibited no remarkable inhibition of OAT1, OAT3, OCT1, OCT2, OATP1B1, OATP1B3, or P-gp up to 30 μM; therefore, the risk of clinical drug-drug interactions due to any edoxaban-related transporter inhibition seems to be negligible. Our results demonstrate that edoxaban is a substrate of P-gp but not of other major uptake transporters tested. Because metabolism is a minor contributor to the total clearance of edoxaban and strong P-gp inhibitors clearly impact edoxaban transport, the P-gp transport system is a key factor for edoxaban's disposition.
Collapse
Affiliation(s)
- Tsuyoshi Mikkaichi
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan (T.M., Y.Y., T.Im., N.O., T.Iz.); Daiichi Sankyo Pharma Development, Edison, New Jersey, (H.M.); and Tissue and Cell Research Center Munich, Daiichi Sankyo Europe GmbH, Munich, Germany (V.R., T.F.)
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Macha S, Koenen R, Sennewald R, Schöne K, Hummel N, Riedmaier S, Woerle HJ, Salsali A, Broedl UC. Effect of Gemfibrozil, Rifampicin, or Probenecid on the Pharmacokinetics of the SGLT2 Inhibitor Empagliflozin in Healthy Volunteers. Clin Ther 2014; 36:280-90.e1. [DOI: 10.1016/j.clinthera.2014.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 11/25/2022]
|
27
|
Kunze A, Huwyler J, Poller B, Gutmann H, Camenisch G. In vitro-in vivo extrapolation method to predict human renal clearance of drugs. J Pharm Sci 2014; 103:994-1001. [PMID: 24549735 DOI: 10.1002/jps.23851] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 11/07/2022]
Abstract
Renal clearance is a key determinant of the elimination of drugs. To date, only few in vitro-in vivo extrapolation (IVIVE) approaches have been described to predict the renal organ clearance as the net result of glomerular filtration, tubular secretion, and tubular reabsorption. In this study, we measured in LLC-PK1 cells the transport of 20 compounds that cover all four classes of the Biopharmaceutical Drug Disposition System. These data were incorporated into a novel kidney model to predict all renal clearance processes in human. We showed that filtration and secretion were main contributors to the renal organ clearance for all compounds, whereas reabsorption was predominant for compounds assigned to classes 1 and 2. Our results suggest that anionic drugs were not significantly secreted in LLC-PK1 cells, resulting in under-predicted clearances. When all study compounds were included a high overall correlation between the reported and predicted renal organ clearances was obtained (R² = 0.83). The prediction accuracy in terms of percentage within twofold and threefold error was 70% and 95%, respectively. In conclusion, our novel IVIVE method allowed to predict the human renal organ clearance and the contribution of each underlying process.
Collapse
Affiliation(s)
- Annett Kunze
- Division of Drug Metabolism and Pharmacokinetics, Drug-Drug Interactions Section, Novartis Institutes for BioMedical Research, Basel, CH-4056, Switzerland; Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, CH-4056, Switzerland
| | | | | | | | | |
Collapse
|
28
|
Kikuchi R, Lao Y, Bow DAJ, Chiou WJ, Andracki ME, Carr RA, Voorman RL, De Morais SM. Prediction of clinical drug-drug interactions of veliparib (ABT-888) with human renal transporters (OAT1, OAT3, OCT2, MATE1, and MATE2K). J Pharm Sci 2013; 102:4426-32. [PMID: 24122511 DOI: 10.1002/jps.23737] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 08/30/2013] [Accepted: 09/09/2013] [Indexed: 01/11/2023]
Abstract
Veliparib (ABT-888) is largely eliminated as parent drug in human urine (70% of the dose). Renal unbound clearance exceeds glomerular filtration rate, suggesting the involvement of transporter-mediated active secretion. Clinically relevant pharmacokinetic interactions in the kidney have been associated with OAT1, OAT3, OCT2, MATE1, and MATE2K. In the present study, interactions of veliparib with these transporters were investigated. Veliparib inhibited OAT1, OAT3, OCT2, MATE1, and MATE2K with IC50 values of 1371, 505, 3913, 69.9, and 69.5 μM, respectively. The clinical unbound maximum plasma concentration of veliparib after single oral dose of 50 mg (0.45 μM) is manyfold lower than IC50 values for OAT1, OAT3, OCT2, MATE1, or MATE2K. These results indicate a low potential for drug-drug interaction (DDI) with OAT1/3, OCT2, or MATE1/2K. Additional studies demonstrated that veliparib is a substrate of OCT2. In Oct1/Oct2 double-knockout mice, the plasma exposure of veliparib was increased by 1.5-fold, and the renal clearance was decreased by 1.8-fold as compared with wild-type mice, demonstrating that organic cation transporters contribute to the renal elimination in vivo. In summary, the in vitro transporter data for veliparib predicts minimal potential for an OAT1/3-, OCT2-, and MATE1/2K-mediated DDI given the clinical exposure after single oral dose of 50 mg.
Collapse
Affiliation(s)
- Ryota Kikuchi
- Drug Metabolism and Pharmacokinetics, AbbVie Inc, North Chicago, Illinois 60064
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Krajcsi P. Drug-transporter interaction testing in drug discovery and development. World J Pharmacol 2013; 2:35-46. [DOI: 10.5497/wjp.v2.i1.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/25/2012] [Accepted: 01/30/2013] [Indexed: 02/06/2023] Open
Abstract
The human body consists of several physiological barriers that express a number of membrane transporters. For an orally absorbed drug the intestinal, hepatic, renal and blood-brain barriers are of the greatest importance. The ATP-binding cassette (ABC) transporters that mediate cellular efflux and the solute carrier transporters that mostly mediate cellular uptake are the two superfamilies responsible for membrane transport of vast majority of drugs and drug metabolites. The total number of human transporters in the two superfamilies exceeds 400, and about 40-50 transporters have been characterized for drug transport. The latest Food and Drug Administration guidance focuses on P-glycoprotein, breast cancer resistance protein, organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, organic cation transporter 2 (OCT2), and organic anion transporters 1 (OAT1) and OAT3. The European Medicines Agency’s shortlist additionally contains the bile salt export pump, OCT1, and the multidrug and toxin extrusion transporters, multidrug and toxin extrusion protein 1 (MATE1) and MATE2/MATE2K. A variety of transporter assays are available to test drug-transporter interactions, transporter-mediated drug-drug interactions, and transporter-mediated toxicity. The drug binding site of ABC transporters is accessible from the cytoplasm or the inner leaflet of the plasma membrane. Therefore, vesicular transport assays utilizing inside-out vesicles are commonly used assays, where the directionality of transport results in drugs being transported into the vesicle. Monolayer assays utilizing polarized cells expressing efflux transporters are the test systems suggested by regulatory agencies. However, in some monolayers, uptake transporters must be coexpressed with efflux transporters to assure detectable transport of low passive permeability drugs. For uptake transporters mediating cellular drug uptake, utilization of stable transfectants have been suggested. In vivo animal models complete the testing battery. Some issues, such as in vivo relevance, gender difference, age and ontogeny issues can only be addressed using in vivo models. Transporter specificity is provided by using knock-out or mutant models. Alternatively, chemical knock-outs can be employed. Compensatory changes are less likely when using chemical knock-outs. On the other hand, specific inhibitors for some uptake transporters are not available, limiting the options to genetic knock-outs.
Collapse
|
30
|
The Role of Transporters in Drug Development: Regulatory Science Perspectives from the FDA. TRANSPORTERS IN DRUG DEVELOPMENT 2013. [DOI: 10.1007/978-1-4614-8229-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
N-Methylnicotinamide Is an Endogenous Probe for Evaluation of Drug–Drug Interactions Involving Multidrug and Toxin Extrusions (MATE1 and MATE2-K). Clin Pharmacol Ther 2012; 92:635-41. [DOI: 10.1038/clpt.2012.138] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Abstract
Sodium glucose cotransporter 2 (SGLT2) inhibition is a novel and promising treatment for diabetes under late-stage clinical development. It generally is accepted that SGLT2 mediates 90% of renal glucose reabsorption. However, SGLT2 inhibitors in clinical development inhibit only 30-50% of the filtered glucose load. Why are they unable to inhibit 90% of glucose reabsorption in humans? We will try to provide an explanation to this puzzle in this perspective analysis of the unique pharmacokinetic and pharmacodynamic profiles of SGLT2 inhibitors in clinical trials and examine possible mechanisms and molecular properties that may be responsible.
Collapse
Affiliation(s)
- Jiwen (Jim) Liu
- Medicinal Chemistry, Amgen, Inc., South San Francisco, California
- Corresponding authors: Jiwen (Jim) Liu, , and Ralph A. DeFronzo,
| | - TaeWeon Lee
- Metabolic Disorders, Amgen, Inc., South San Francisco, California
| | - Ralph A. DeFronzo
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Corresponding authors: Jiwen (Jim) Liu, , and Ralph A. DeFronzo,
| |
Collapse
|
33
|
Burckhardt G. Drug transport by Organic Anion Transporters (OATs). Pharmacol Ther 2012; 136:106-30. [PMID: 22841915 DOI: 10.1016/j.pharmthera.2012.07.010] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 07/10/2012] [Indexed: 02/08/2023]
Abstract
Common to all so far functionally characterized Organic Anion Transporters (OATs) is their broad substrate specificity and their ability to exchange extracellular against intracellular organic anions. Many OATs occur in renal proximal tubules, the site of active drug secretion. Exceptions are murine Oat6 (nasal epithelium), human OAT7 (liver), and rat Oat8 (renal collecting ducts). In human kidneys, OAT1, OAT2, and OAT3 are localized in the basolateral membrane, and OAT4, OAT10, and URAT1 in the apical cell membrane of proximal tubule cells, respectively. In rats and mice, Oat1 and Oat3 are located basolaterally, and Oat2, Oat5, Oat9, Oat10, and Urat1 apically. Several classes of drugs interact with human OAT1-3, including ACE inhibitors, angiotensin II receptor antagonists, diuretics, HMG CoA reductase inhibitors, β-lactam antibiotics, antineoplastic and antiviral drugs, and uricosuric drugs. For most drugs, interaction was demonstrated in vitro by inhibition of OAT-mediated transport of model substrates; for some drugs, transport by OATs was directly proven. Based on IC₅₀ values reported in the literature, OAT1 and OAT3 show comparable affinities for diuretics, cephalosporins, and nonsteroidal anti-inflammatory drugs whereas OAT2 has a lower affinity to most of these compounds. Drug-drug interactions at OAT1 and OAT3 may retard renal drug secretion and cause untoward effects. OAT4, OAT10, and URAT1 in the apical membrane contribute to proximal tubular urate absorption, and OAT10 to nicotinate absorption. OAT4 is in addition able to release drugs, e.g. diuretics, into the tubule lumen.
Collapse
Affiliation(s)
- Gerhard Burckhardt
- Abteilung Vegetative Physiologie und Pathophysiologie, Zentrum Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| |
Collapse
|
34
|
Kell DB, Dobson PD, Oliver SG. Pharmaceutical drug transport: the issues and the implications that it is essentially carrier-mediated only. Drug Discov Today 2011; 16:704-14. [PMID: 21624498 DOI: 10.1016/j.drudis.2011.05.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/04/2011] [Accepted: 05/11/2011] [Indexed: 01/04/2023]
Abstract
All cells necessarily contain tens, if not hundreds, of carriers for nutrients and intermediary metabolites, and the human genome codes for more than 1000 carriers of various kinds. Here, we illustrate using a typical literature example the widespread but erroneous nature of the assumption that the 'background' or 'passive' permeability to drugs occurs in the absence of carriers. Comparison of the rate of drug transport in natural versus artificial membranes shows discrepancies in absolute magnitudes of 100-fold or more, with the carrier-containing cells showing the greater permeability. Expression profiling data show exactly which carriers are expressed in which tissues. The recognition that drugs necessarily require carriers for uptake into cells provides many opportunities for improving the effectiveness of the drug discovery process.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| | | | | |
Collapse
|
35
|
Cutler MJ, Urquhart BL, Velenosi TJ, Meyer Zu Schwabedissen HE, Dresser GK, Leake BF, Tirona RG, Kim RB, Freeman DJ. In vitro and in vivo assessment of renal drug transporters in the disposition of mesna and dimesna. J Clin Pharmacol 2011; 52:530-42. [PMID: 21505084 DOI: 10.1177/0091270011400414] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mesna and its dimer, dimesna, are coadministered for mitigation of ifosfamide- and cisplatin-induced toxicities, respectively. Dimesna is selectively reduced to mesna in the kidney, producing its protective effects. In vitro screens of uptake and efflux transporters revealed saturable uptake by renal organic anion transporters OAT1, OAT3, and OAT4. Efflux transporters breast cancer resistance protein; multidrug and toxin extrusion 1 (MATE1); multidrug resistance proteins MRP1, MRP2, MRP4, and MRP5; and P-glycoprotein (Pgp) significantly reduced dimesna accumulation. Further investigation demonstrated that renal apical efflux transporters MATE1, MRP2, and Pgp were also capable of mesna efflux. Administration of OAT inhibitor probenecid to healthy subjects significantly increased combined mesna and dimesna plasma exposure (91% ± 34%) while decreasing the renal clearance due to net secretion (67.0% ± 12.7%) and steady-state volume of distribution (45.2% ± 13.4%). Thus, the kidney represents a significant sink of total mesna, whereas function of renal drug transporters facilitates clearance in excess of glomerular filtration rate and likely the presence of active mesna in the urine. Loss of renal transporter function due to genetic variability or drug-drug interactions may decrease the efficacy of chemoprotectants, increasing the risk of ifosfamide- and cisplatin-induced toxicities.
Collapse
Affiliation(s)
- M J Cutler
- Department of Medicine, Division of Clinical Pharmacology, The University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Burckhardt G, Burckhardt BC. In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb Exp Pharmacol 2011:29-104. [PMID: 21103968 DOI: 10.1007/978-3-642-14541-4_2] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organic anion transporters 1-10 (OAT1-10) and the urate transporter 1 (URAT1) belong to the SLC22A gene family and accept a huge variety of chemically unrelated endogenous and exogenous organic anions including many frequently described drugs. OAT1 and OAT3 are located in the basolateral membrane of renal proximal tubule cells and are responsible for drug uptake from the blood into the cells. OAT4 in the apical membrane of human proximal tubule cells is related to drug exit into the lumen and to uptake of estrone sulfate and urate from the lumen into the cell. URAT1 is the major urate-absorbing transporter in the apical membrane and is a target for uricosuric drugs. OAT10, also located in the luminal membrane, transports nicotinate with high affinity and interacts with drugs. Major extrarenal locations of OATs include the blood-brain barrier for OAT3, the placenta for OAT4, the nasal epithelium for OAT6, and the liver for OAT2 and OAT7. For all transporters we provide information on cloning, tissue distribution, factors influencing OAT abundance, interaction with endogenous compounds and different drug classes, drug/drug interactions and, if known, single nucleotide polymorphisms.
Collapse
Affiliation(s)
- Gerhard Burckhardt
- Abteilung Vegetative Physiologie und Pathophysiologie, Zentrum Physiologie und Pathophysiologie, Göttingen, Germany.
| | | |
Collapse
|
37
|
Lai Y, Sampson KE, Balogh LM, Brayman TG, Cox SR, Adams WJ, Kumar V, Stevens JC. Preclinical and clinical evidence for the collaborative transport and renal secretion of an oxazolidinone antibiotic by organic anion transporter 3 (OAT3/SLC22A8) and multidrug and toxin extrusion protein 1 (MATE1/SLC47A1). J Pharmacol Exp Ther 2010; 334:936-44. [PMID: 20519552 DOI: 10.1124/jpet.110.170753] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
N-({(5S)-3-[4-(1,1-dioxidothiomorpholin-4-yl)-3,5-difluorophenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)acetamide (PNU-288034), an oxazolidinone antibiotic, was terminated in phase I clinical development because of insufficient exposure. Analysis of the drug pharmacokinetic and elimination profiles suggested that PNU-288034 undergoes extensive renal secretion in humans. The compound was well absorbed and exhibited approximately linear pharmacokinetics in the oral dose range of 100 to 1000 mg in human. PNU-288034 was metabolically stable in liver microsomes across species, and unchanged drug was cleared in the urine by an apparent active renal secretion process in rat and monkey (two to four times glomerular filtration rate) but not dog. In vitro studies conducted to characterize the transporters involved demonstrated PNU-288034 uptake by human organic anion transporter 3 (OAT3; K(m) = 44 +/- 5 microM) and human multidrug and toxin extrusion protein 1 (hMATE1; K(m) = 340 +/- 55 microM). The compound was also transported by multidrug resistance P-glycoprotein and breast cancer resistance protein. In contrast, human organic cation transporter 2, human OAT1, and hMATE2-K did not transport PNU-288034. Coadministration of PNU-288034 and the OAT3 inhibitor probenecid significantly increased PNU-288034 plasma area under the curve (170%) and reduced both plasma and renal clearance in monkey. Coadministration of PNU-288034 and cimetidine, a MATE1 inhibitor, also reduced plasma clearance in rat to a rate comparable with probenecid coadministration. Collectively, our results demonstrated a strong in vitro-in vivo correlation for active renal secretion coordinated through the vectorial transport process of OAT3 and MATE1, which ultimately resulted in limiting the systemic exposure of PNU-288034.
Collapse
Affiliation(s)
- Yurong Lai
- Departments of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, Pfizer Inc., St. Louis, Missouri, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed. In this article, we provide the recommendations of the International Transporter Consortium on these issues, and present decision trees that are intended to help guide clinical studies on the currently recognized most important drug transporter interactions. The recommendations are generally intended to support clinical development and filing of a new drug application. Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions (for example, exclusion and inclusion criteria), as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labelling.
Collapse
|
39
|
Jung N, Taubert D. Organic cation transporters and their roles in antiretroviral drug disposition. Expert Opin Drug Metab Toxicol 2010; 5:773-87. [PMID: 19519281 DOI: 10.1517/17425250902997959] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Understanding metabolising processes and drug-transporter interactions is particularly crucial to the management of patients with HIV infection, given the several antiretroviral drugs that must be taken lifelong and the use of other medications for HIV-related and non-HIV-related conditions. Several interactions of antiretroviral drugs with metabolising enzymes, especially cytochrome P450 and ATP-dependent transporter P-glycoprotein, have been described but the role of the organic cation transporters (OCTs) is less clearly defined. OBJECTIVE To review the relevance of the OCTs for antiretroviral drug disposition. METHODS Interactions of OCTs with antiretroviral drugs and evidence for clinical relevance are discussed. RESULTS/CONCLUSION Several antiretroviral drugs show relevant interactions with the OCTs in cell-based experiments and the OCTs are highly upregulated in HIV-infected patients. For evaluating the clinical significance, interaction studies in HIV patients and reliable in vitro models for delineation of in vivo effects are needed.
Collapse
Affiliation(s)
- Norma Jung
- University Hospital of Cologne, Department I of Internal Medicine, Cologne, Germany.
| | | |
Collapse
|
40
|
Obermeier M, Yao M, Khanna A, Koplowitz B, Zhu M, Li W, Komoroski B, Kasichayanula S, Discenza L, Washburn W, Meng W, Ellsworth BA, Whaley JM, Humphreys WG. In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans. Drug Metab Dispos 2010; 38:405-14. [PMID: 19996149 DOI: 10.1124/dmd.109.029165] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
(2S,3R,4R,5S,6R)-2-(3-(4-Ethoxybenzyl)-4-chlorophenyl)-6-hydroxymethyl-tetrahydro-2H-pyran-3,4,5-triol (dapagliflozin; BMS-512148) is a potent sodium-glucose cotransporter type II inhibitor in animals and humans and is currently under development for the treatment of type 2 diabetes. The preclinical characterization of dapagliflozin, to allow compound selection and prediction of pharmacological and dispositional behavior in the clinic, involved Caco-2 cell permeability studies, cytochrome P450 (P450) inhibition and induction studies, P450 reaction phenotyping, metabolite identification in hepatocytes, and pharmacokinetics in rats, dogs, and monkeys. Dapagliflozin was found to have good permeability across Caco-2 cell membranes. It was found to be a substrate for P-glycoprotein (P-gp) but not a significant P-gp inhibitor. Dapagliflozin was not found to be an inhibitor or an inducer of human P450 enzymes. The in vitro metabolic profiles of dapagliflozin after incubation with hepatocytes from mice, rats, dogs, monkeys, and humans were qualitatively similar. Rat hepatocyte incubations showed the highest turnover, and dapagliflozin was most stable in human hepatocytes. Prominent in vitro metabolic pathways observed were glucuronidation, hydroxylation, and O-deethylation. Pharmacokinetic parameters for dapagliflozin in preclinical species revealed a compound with adequate oral exposure, clearance, and elimination half-life, consistent with the potential for single daily dosing in humans. The pharmacokinetics in humans after a single dose of 50 mg of [(14)C]dapagliflozin showed good exposure, low clearance, adequate half-life, and no metabolites with significant pharmacological activity or toxicological concern.
Collapse
Affiliation(s)
- M Obermeier
- Department of Pharmaceutical Candidate Optimization-Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Pharmaceutical Research Institute, Princeton, New Jersey 08543, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
The International Transporter Consortium: A Collaborative Group of Scientists From Academia, Industry, and the FDA. Clin Pharmacol Ther 2010; 87:32-6. [DOI: 10.1038/clpt.2009.236] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Benedetti MS, Whomsley R, Poggesi I, Cawello W, Mathy FX, Delporte ML, Papeleu P, Watelet JB. Drug metabolism and pharmacokinetics. Drug Metab Rev 2009; 41:344-90. [PMID: 19601718 DOI: 10.1080/10837450902891295] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this article, aspects of absorption, distribution, metabolism, and excretion have been described bearing in mind the pathogenesis of allergic diseases and their possible therapeutic opportunities. The importance of the routes of administration of the different therapeutic groups has been emphasized. The classical aspects of drug metabolism and disposition related to oral administration have been reviewed, but special emphasis has been given to intranasal, cutaneous, transdermal, and ocular administration as well as to the absorption and the subsequent bioavailability of drugs. Drug-metabolizing enzymes and transporters present in extrahepatic tissues, such as nasal mucosa and the respiratory tract, have been particularly discussed. As marketed antiallergic drugs include both racemates and enantiomers, aspects of stereoselective absorption, distribution, metabolism, and excretion have been discussed. Finally, a new and promising methodology, microdosing, has been presented, although it has not yet been applied to drugs used in the treatment of allergic diseases.
Collapse
|
43
|
Varma MVS, Feng B, Obach RS, Troutman MD, Chupka J, Miller HR, El-Kattan A. Physicochemical Determinants of Human Renal Clearance. J Med Chem 2009; 52:4844-52. [DOI: 10.1021/jm900403j] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Manthena V. S. Varma
- Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut
| | - Bo Feng
- Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut
| | - R. Scott Obach
- Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut
| | - Matthew D. Troutman
- Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut
| | - Jonathan Chupka
- Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut
| | - Howard R. Miller
- Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut
| | - Ayman El-Kattan
- Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut
| |
Collapse
|
44
|
Xia L, Zhou M, Kalhorn TF, Ho HTB, Wang J. Podocyte-specific expression of organic cation transporter PMAT: implication in puromycin aminonucleoside nephrotoxicity. Am J Physiol Renal Physiol 2009; 296:F1307-13. [PMID: 19357181 DOI: 10.1152/ajprenal.00046.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Plasma membrane monoamine transporter (PMAT) is a novel polyspecific organic cation transporter that transports organic cations and the purine nucleoside, adenosine. PMAT is expressed in the kidney, but the specific localization and function of this transporter in renal cells are unclear. In this study, we developed a polyclonal antibody toward a 14-amino acid sequence in the last intracellular loop of PMAT and determined the precise cellular localization of PMAT in human and rat kidneys. Surprisingly, we found that the PMAT protein was predominantly expressed in the glomerulus with minimal expression in tubular cells. Within the glomerulus, dual-color immunofluorescence labeling showed that the PMAT protein was specifically localized to the visceral glomerular epithelial cells, i.e., podocytes. There was no significant PMAT immunoreactivity in mesangial or glomerular endothelial cells. We further showed that puromycin aminonucleoside (PAN), a classic podocyte toxin that induces massive proteinuria and severe glomerulopathy, is transported by PMAT. Expression of PMAT in Madin-Darby canine kidney cells significantly increased cell sensitivity to PAN. Decynium 22, a potent PMAT inhibitor, abolished PAN toxicity in PMAT-expressing cells. Together, our data suggest that PMAT is specifically expressed in podocytes and may play an important role in PAN-induced kidney injury.
Collapse
Affiliation(s)
- Li Xia
- Department of Pharmaceutics, H272J Health Sciences Bldg., Univ. of Washington, Seattle, WA 98195-7610, USA
| | | | | | | | | |
Collapse
|
45
|
Assessment of the renal toxicity of novel anti-inflammatory compounds using cynomolgus monkey and human kidney cells. Toxicology 2009; 258:56-63. [DOI: 10.1016/j.tox.2009.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Tsuda M, Terada T, Ueba M, Sato T, Masuda S, Katsura T, Inui KI. Involvement of human multidrug and toxin extrusion 1 in the drug interaction between cimetidine and metformin in renal epithelial cells. J Pharmacol Exp Ther 2009; 329:185-91. [PMID: 19164462 DOI: 10.1124/jpet.108.147918] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In human proximal tubules, organic cations are taken up from blood into cells by human organic cation transporter 2 [hOCT2/solute carrier (SLC) 22A2] and then eliminated into the lumen by apical H(+)/organic cation antiporters, human multidrug and toxin extrusion 1 (hMATE1/SLC47A1) and hMATE2-K (SLC47A2). To evaluate drug interactions of cationic drugs in the secretion process, epithelial cells engineered to express both hOCT2 and hMATE transporters are required to simultaneously evaluate drug interactions with renal basolateral and apical organic cation transporters. In the present study, therefore, we assessed the drug interaction between cimetidine and metformin with double-transfected Madin-Darby canine kidney cells stably expressing both hOCT2 and hMATE1 as an in vitro model of the proximal tubular epithelial cells. The basolateral-to-apical transport and intracellular accumulation of [(14)C]metformin by a double transfectant were markedly inhibited by 1 mM cimetidine at the basolateral side. On the other hand, 1 microM cimetidine at the basolateral side moderately decreased the basolateral-to-apical transport of [(14)C]metformin and significantly increased the intracellular accumulation of [(14)C]metformin from the basolateral side, suggesting that cimetidine at a low concentration inhibits apical hMATE1, rather than basolateral hOCT2. Actually, in concentration-dependent inhibition studies by a single transporter expression system, such as human embryonic kidney 293 stably expressing hMATE1, hMATE2-K, or hOCT2, cimetidine showed higher affinity for hMATEs than for hOCT2. These results suggest that apical hMATE1 is involved in drug interactions between cimetidine and cationic compounds in the proximal tubular epithelial cells.
Collapse
Affiliation(s)
- Masahiro Tsuda
- Department of Pharmacy, Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Ming X, Ju W, Wu H, Tidwell RR, Hall JE, Thakker DR. Transport of dicationic drugs pentamidine and furamidine by human organic cation transporters. Drug Metab Dispos 2009; 37:424-30. [PMID: 18971316 DOI: 10.1124/dmd.108.024083] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The antiparasitic activity of aromatic diamidine drugs, pentamidine and furamidine, depends on their entry into the pathogenic protozoa via membrane transporters. However, no such diamidine transporter has been identified in mammalian cells. The goal of this study is to investigate whether these dicationic drugs are substrates for human organic cation transporters (hOCTs, solute carrier family 22A1-3) and whether hOCTs play a role in their tissue distribution, elimination, and toxicity. Inhibitory and substrate activities of pentamidine and furamidine were studied in stably transfected Chinese hamster ovary (CHO) cells. The results of [(3)H]1-methyl-4-phenylpyridinium uptake study showed that pentamidine is a potent inhibitor for all three OCT isoforms (IC50 < 20 microM), whereas furamidine is a potent inhibitor for hOCT1 and hOCT3 (IC50 < 21 microM) but a less potent inhibitor for hOCT2 (IC50 = 189.2 microM). Both diamidines are good substrates for hOCT1 (Km = 36.4 and 6.1 microM, respectively), but neither is a substrate for hOCT2 or hOCT3. The cytotoxicity of pentamidine and furamidine was 4.4- and 9.3-fold greater, respectively, in CHO-hOCT1 cells compared with the mock cells. Ranitidine, an hOCT1 inhibitor, reversed this hOCT1-mediated potentiation of cytotoxicity. This is the first finding that dicationic drugs, such as pentamidine and furamidine, are substrates for hOCT1. In humans, aromatic diamidines are primarily eliminated in the bile but are distributed and cause toxicity in both liver and kidney. These transporters may play important roles in the disposition of aromatic diamidines in humans, as well as resultant drug-drug interactions and toxicity involving diamidine drugs.
Collapse
Affiliation(s)
- Xin Ming
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, 3309 Kerr Hall, CB 7360, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360, USA
| | | | | | | | | | | |
Collapse
|
48
|
Chu XY, Liang Y, Cai X, Cuevas-Licea K, Rippley RK, Kassahun K, Shou M, Braun MP, Doss GA, Anari MR, Evers R. Metabolism and renal elimination of gaboxadol in humans: role of UDP-glucuronosyltransferases and transporters. Pharm Res 2008; 26:459-68. [PMID: 19082692 DOI: 10.1007/s11095-008-9799-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 11/25/2008] [Indexed: 01/24/2023]
Abstract
PURPOSE Gaboxadol, a selective extrasynaptic agonist of the delta-containing gamma-aminobutyric acid type A (GABAA) receptor, is excreted in humans into the urine as parent drug and glucuronide conjugate. The goal of this study was to identify the UDP-Glucuronosyltransferase (UGT) enzymes and the transporters involved in the metabolism and active renal secretion of gaboxadol and its metabolite in humans.Methods. The structure of the glucuronide conjugate of gaboxadol in human urine was identified by LC/MS/MS. Human recombinant UGT isoforms were used to identify the enzymes responsible for the glucuronidation of gaboxadol. Transport of gaboxadol and its glucuronide was evaluated using cell lines and membrane vesicles expressing human organic anion transporters hOAT1 and hOAT3, organic cation transporter hOCT2, and the multidrug resistance proteins MRP2 and MRP4.Results. Our study indicated that the gaboxadol-O-glucuronide was the major metabolite excreted in human urine. UGT1A9, and to a lesser extent UGT1A6, UGT1A7 and UGT1A8, catalyzed the O-glucuronidation of gaboxadol in vitro. Gaboxadol was transported by hOAT1, but not by hOCT2, hOAT3, MRP2, and MRP4. Gaboxadol-O-glucuronide was transported by MRP4, but not MRP2.Conlusion. Gaboxadol could be taken up into the kidney by hOAT1 followed by glucuronidation and efflux of the conjugate into urine via MRP4.
Collapse
Affiliation(s)
- Xiao-Yan Chu
- DMPK Global Technologies, Merck & Co, Rahway, New Jersey, 07065, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dobson PD, Kell DB. Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule? Nat Rev Drug Discov 2008; 7:205-20. [PMID: 18309312 DOI: 10.1038/nrd2438] [Citation(s) in RCA: 335] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is generally thought that many drug molecules are transported across biological membranes via passive diffusion at a rate related to their lipophilicity. However, the types of biophysical forces involved in the interaction of drugs with lipid membranes are no different from those involved in their interaction with proteins, and so arguments based on lipophilicity could also be applied to drug uptake by membrane transporters or carriers. In this article, we discuss the evidence supporting the idea that rather than being an exception, carrier-mediated and active uptake of drugs may be more common than is usually assumed - including a summary of specific cases in which drugs are known to be taken up into cells via defined carriers - and consider the implications for drug discovery and development.
Collapse
Affiliation(s)
- Paul D Dobson
- School of Chemistry and Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | |
Collapse
|
50
|
Abstract
Patients with chronic kidney disease (CKD) constitute a population at high risk for adverse drug reactions and/or drug-drug interactions. Renal dysfunction-induced pathophysiological changes may alter both medication pharmacodynamics and handling. Most pharmacokinetic parameters are adversely affected by impaired kidney function, among which reduced glomerular filtration and altered tubular secretion and reabsorption lead to the most specific alterations. Dosages of drugs cleared by the kidney should usually be adjusted according to creatinine clearance. Recommended methods for maintenance dosing adjustments are dose reductions, lengthening the dosing interval, or both. Appropriate drug selection and dosing in patients with CKD is imperative to avoid drug adverse events and to ensure optimal patient outcomes.
Collapse
Affiliation(s)
- A J Scheen
- Service de Diabétologie, Nutrition et Maladies métaboliques et Unité de Pharmacologie clinique, Département de Médecine, CHU Sart Tilman, Liège, Belgique.
| |
Collapse
|