1
|
Seo H, Jeong G, Chun B. Impact of Diaphragm-Strengthening Core Training on Postural Stability in High-Intensity Squats. Life (Basel) 2024; 14:1612. [PMID: 39768320 PMCID: PMC11678388 DOI: 10.3390/life14121612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
This study analyzed the effects of an 8-week diaphragmatic core training program on postural stability during high-intensity squats and examined its efficacy in injury prevention and performance enhancement. Thirty-seven male participants were randomly assigned to three groups: diaphragmatic core training group (DCTG, n = 12), core training group (CTG, n = 13), and control group (CG, n = 12). Outcome measurements included diaphragm thickness, respiratory function (mean and maximal respiratory pressures), and squat postural stability (distance between the sacral and upper body center points, peak trunk extension moment, peak knee flexion moment, and dynamic postural stability index). Compared to both CTG and CG, DCTG demonstrated significantly greater improvements in diaphragm thickness (DCTG: 34.62% increase vs. CTG: 1.36% and CG: 3.62%, p < 0.001), mean respiratory pressure (DCTG: 18.88% vs. CTG: 1.31% and CG: 0.02%, p < 0.001), and maximal respiratory pressure (DCTG: 18.62% vs. CTG: 0.72% and CG: 1.90%, p < 0.001). DCTG also showed superior improvements in postural stability measures, including reductions in the distance between sacral and upper body center points (DCTG: -6.19% vs. CTG: -3.26% and CG: +4.55%, p < 0.05), peak trunk extension moment (DCTG: -15.22% vs. CTG: -5.29% and CG: +19.31%, p < 0.001), and dynamic postural stability index (DCTG: -28.13% vs. CTG: -21.43% and CG: no change, p < 0.001). No significant between-group differences were observed in peak knee flexion moment. Core training incorporating diaphragmatic strengthening was more effective than conventional training in improving postural stability during high-intensity squats. Core training programs, including diaphragmatic strengthening exercises, may contribute to injury prevention and performance enhancement in exercises requiring lumbar stability, such as squats.
Collapse
Affiliation(s)
- Hyun Seo
- Department of Sport and Leisure Studies, Graduate School, Korea University, Sejong 02841, Republic of Korea;
| | - Guyeol Jeong
- Department of Physical Education, Chosun University, Gwangju 61452, Republic of Korea;
| | - Buongo Chun
- Graduate School of Physical Education, Myongji University, Yongin 17058, Republic of Korea
| |
Collapse
|
2
|
Shi Q, Nie J, Tong TK, Zhang H, Kong Z. Effects of 5-Wk Repeated Sprint Training in Hypoxia on Global Inspiratory and Core Muscle Functions. J Sports Sci Med 2024; 23:767-777. [PMID: 39649562 PMCID: PMC11622060 DOI: 10.52082/jssm.2024.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/01/2024] [Indexed: 12/11/2024]
Abstract
Repeated-sprint training in hypoxia (RSH) has been shown to boost team-sport players' repeated-sprint ability (RSA). Whether players' global inspiratory muscle (IM) and core muscle (CM) functions would be altered concomitantly with RSH was not reported. This study was designed to compare the concomitant alternations in players' RSA and their IM and CM functions during a team-sport-specific intermittent exercise protocol (IEP) before and after the intervention. Twenty players were assigned into either RSH or control (CON) groups (n = 10 for each). RSH players participated in 5-wk RSH (15 sessions, 3 sets 5x5-s all-out treadmill sprints interspersed with 25-s passive recovery under the hypoxia of 13.5%) while CON players had no corresponding training. The changes in RSA between pre- and post-intervention, and the alterations in IM and CM functions that were revealed by maximum inspiratory mouth pressure (PImax) and sport-specific endurance plank test (SEPT) performance, respectively, between pre- and post-IEP and across pre- and post-intervention in the RSH group were compared with that of CON. Following the 5-wk RSH, players' RSA improved significantly (>6%, p < 0.05) while PImax and SEPT performance did not alter (P > 0.05). Nevertheless, PImax which declined markedly in pre-intervention IEP (pre-IEP 155.4 ± 22.7 vs post-IEP 140.6 ± 22.8 cmH2O, p < 0.05) was alleviated significantly in post-intervention IEP (152.2 ± 27.4 vs 152.6 ± 31.8, p > 0.05), while the concomitant declined SEPT performance in the pre-intervention IEP (155 ± 24.6 vs 98.1 ± 21.7 s, p < 0.05) was retained post intervention (170.7 ± 38.1 vs 100.5 ± 33.4, p < 0.05). For the CON, all variables were unchanged (p > 0.05). Such findings suggest that 5-wk RSH could enhance players' RSA but not global IM and CM functions. Nonetheless, the decline in PImax in pre-intervention IEP alleviated significantly post intervention led to a postulation that players' IM endurance, rather than strength, might improve with the 5-wk RSH regimen, while the possible improved IM endurance did not advance the fatigue resistance of CM.
Collapse
Affiliation(s)
- Qingde Shi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao S.A.R, China
| | - Jinlei Nie
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao S.A.R, China
| | - Tomas K Tong
- Dr. Stephen Hui Research Centre for Physical Recreation and Wellness, Hong Kong Baptist University, Hong Kong S.A.R, China
| | - Haifeng Zhang
- Physical Education College, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao S.A.R, China
| |
Collapse
|
3
|
Mello ESDF, Oliveira ALMB, Santanna TDC, Soares PPDS, Rodrigues GD. Updates in inspiratory muscle training for older adults: A systematic review. Arch Gerontol Geriatr 2024; 127:105579. [PMID: 39032314 DOI: 10.1016/j.archger.2024.105579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Systematic reviews support the benefits of inspiratory muscle training (IMT) for exercise performance. Recently, many health benefits from IMT have been reported in older adults. Therefore, this work reviewed the literature focusing on IMT effects beyond physical performance in older adults, such as cardiorespiratory, metabolic, and postural balance outcomes. Searches were conducted with the following terms: ("respiratory muscle training" OR "inspiratory muscle training") OR ("inspiratory muscle strength training") AND ("elderly" OR "older" OR "aging" OR "aging"), and using the databases: MEDLINE (PubMed), SCOPUS and EUROPE PMC. Of the 356 articles found, 13 matched the inclusion criteria after screening. Based on reviewed studies, four to eight weeks of IMT (Mostly from 50 % up to 75 % of MIP, 7 days/week) improve cardiac autonomic control at rest and post-exercise, cerebrovascular response to orthostatic stress, static and dynamic balance, blood pressure control, endothelial function, and oxidative stress in older adults. The benefits of IMT in cardiac autonomic and vascular functions are reversed after training cessation. It thus appears that IMT promotes broad physiological gains for the older population. It is necessary to carry out more randomized clinical trials on the subject to confirm the findings of this research.
Collapse
Affiliation(s)
- Elissa Silva de Farias Mello
- Department of Physiology and Pharmacology, Fluminense Federal University, Rua Prof. Hernani Pires de Melo 101, Niterói, Brazil
| | | | - Thais Dillinger Conway Santanna
- Department of Physiology and Pharmacology, Fluminense Federal University, Rua Prof. Hernani Pires de Melo 101, Niterói, Brazil
| | - Pedro Paulo da Silva Soares
- Department of Physiology and Pharmacology, Fluminense Federal University, Rua Prof. Hernani Pires de Melo 101, Niterói, Brazil
| | - Gabriel Dias Rodrigues
- Department of Physiology and Pharmacology, Fluminense Federal University, Rua Prof. Hernani Pires de Melo 101, Niterói, Brazil; Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy.
| |
Collapse
|
4
|
Reiser R, Brill AK, Nakas CT, Hefti U, Berger D, Perret Hoigné E, Kabitz HJ, Merz TM, Pichler Hefti J. Lung function parameters are associated with acute mountain sickness and are improved at high and extreme altitude. Respir Physiol Neurobiol 2024; 330:104318. [PMID: 39182634 DOI: 10.1016/j.resp.2024.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
At altitude, factors such as decreased barometric pressure, low temperatures, and acclimatization might affect lung function. The effects of exposure and acclimatization to high-altitude on lung function were assessed in 39 subjects by repetitive spirometry up to 6022 m during a high-altitude expedition. Subjects were classified depending on the occurrence of acute mountain sickness (AMS) and summit success to evaluate whether lung function relates to successful climb and risk of developing AMS. Peak expiratory flow (PEF), forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) increased with progressive altitude (max. +20.2 %pred, +9.3 %pred, and +6.7 %pred, all p<0.05). Only PEF improved with acclimatization (BC1 vs. BC2, +7.2 %pred, p=0.044). At altitude FEV1 (p=0.008) and PEF (p<0.001) were lower in the AMS group. The risk of developing AMS was associated with lower baseline PEF (p<0.001) and longitudinal changes in PEF (p=0.008) and FEV1 (p<0.001). Lung function was not related to summit success (7126 m). Improvement in PEF after acclimatization might indicate respiratory muscle adaptation.
Collapse
Affiliation(s)
- Reto Reiser
- Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Anne-Kathrin Brill
- Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Christos T Nakas
- Institute of Clinical Chemistry, Inselspital Bern, University Hospital and University of Bern, Switzerland; Laboratory of Biometry, University of Thessaly, Volos, Greece.
| | - Urs Hefti
- Swiss Sportclinic, Bern, Switzerland.
| | - David Berger
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Eveline Perret Hoigné
- Department of Pediatrics, Division of Child Neurology, University Children's Hospital Bern, University of Bern, Switzerland.
| | | | - Tobias M Merz
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland; Cardiovascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand.
| | - Jacqueline Pichler Hefti
- Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Switzerland; Swiss Sportclinic, Bern, Switzerland.
| |
Collapse
|
5
|
Michalica T, Březina J, Polach M, Born DP, Mališ J, Svozil Z, Kociánová E. Changes in Race Performance During the Underwater Phases of a 200 m Bi-Fins Race Simulation After Application of Respiratory Muscle Training-A Case Study in the Current World Record Holder. Sports (Basel) 2024; 12:306. [PMID: 39590908 PMCID: PMC11598143 DOI: 10.3390/sports12110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Maximal athletic performance can be limited by various factors, including restricted respiratory function. These limitations can be mitigated through targeted respiratory muscle training, as supported by numerous studies. However, the full potential of respiratory training in competitive finswimming has not been fully investigated. This case study aims to evaluate the effects of eight-week respiratory muscle training (RMT) on performance variability during the underwater phases of a 200 m bi-fins race simulation in an elite finswimmer (current world record holder and multiple world championship medalist). Performance variability was assessed based on pre-test, inter-test, and post-test data. Each measurement included pulmonary function and swim performance evaluations. In this study, underwater performance parameters, such as distance, time, velocity, and number of kicks, were assessed using video analysis synchronized with race timing and evaluated using the Dartfish software. The swimmer followed a 28-day training program with an Airofit PRO™ respiratory trainer between tests, with daily sessions targeting both inspiratory and expiratory muscles. The training involved 6-10 min of targeted exercises per day. Significant improvements were observed in Wilcoxon's paired-sample test between the pre-test and post-test results in terms of underwater distance (p = 0.012; d = 1.26), underwater time (p = 0.012; d = 1.26), and number of underwater kicks (p = 0.043; d = 1.01), resulting in a 14.23% longer underwater distance, 14.08% longer underwater time, and 14.94% increase in underwater kicks. Despite the increased distance and time, underwater velocity remained stable, indicating improved underwater performance efficiency. Despite some improvements, it is not possible to conclude that respiratory muscle training (RMT) can contribute to improved finswimming performance during the underwater phases of a 200 m bi-fins race simulation in this particular athlete's case. Further research with a larger sample size is necessary to fully understand the impact of RMT on finswimming performance.
Collapse
Affiliation(s)
- Tomáš Michalica
- Department of Social Science in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (T.M.); (J.B.); (M.P.); (J.M.); (Z.S.)
| | - Jakub Březina
- Department of Social Science in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (T.M.); (J.B.); (M.P.); (J.M.); (Z.S.)
- Umimplavat.cz, Analysis and Consultation for Swimming Technique and Race Performance, 198 00 Praha, Czech Republic
| | - Marek Polach
- Department of Social Science in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (T.M.); (J.B.); (M.P.); (J.M.); (Z.S.)
- Umimplavat.cz, Analysis and Consultation for Swimming Technique and Race Performance, 198 00 Praha, Czech Republic
| | - Dennis-Peter Born
- Swiss Swimming Federation, Swiss Development Hub for Strength and Conditioning in Swimming, CH-3048 Worblaufen, Switzerland;
| | - Jiří Mališ
- Department of Social Science in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (T.M.); (J.B.); (M.P.); (J.M.); (Z.S.)
| | - Zbyněk Svozil
- Department of Social Science in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (T.M.); (J.B.); (M.P.); (J.M.); (Z.S.)
| | - Eva Kociánová
- Department at University Hospital Olomouc, Palacký University Olomouc, 779 00 Olomouc, Czech Republic
| |
Collapse
|
6
|
Payán-Salcedo HA, Arias-Coronel F, Estela-Zape JL, Serna-Orozco MF. Diaphragmatic Ultrasonography in Sports Performance: A Systematic Review. Life (Basel) 2024; 14:1250. [PMID: 39459550 PMCID: PMC11508651 DOI: 10.3390/life14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
This paper aims to investigate and analyze the correlation between diaphragmatic parameters through ultrasonography and sports performance in various sports disciplines. This systematic review followed the PRISMA methodology. The search strategy was applied in the Medline database through Ovid, EMBASE, LILACS, the Cochrane Central Register of Controlled Trials, and Open Gray. Clinical trials, cohort, case-control, and cross-sectional studies were included, and animal experiments were excluded. A total of 388 studies were identified. After removing duplicates and screening titles and abstracts, sixteen studies were selected for full review, and six were included in the qualitative analysis. The results demonstrated a positive correlation between diaphragm excursion and thickness during inspiration with the anaerobic power, highlighting their importance in high-intensity performance. Additionally, one study reported a positive correlation between diaphragm thickness and aerobic power, suggesting the need for further research. The impact of inspiratory muscle training in Paralympic athletes was also evaluated, providing valuable insights into diaphragmatic adaptation in disabled populations. Ultrasonography is a feasible tool for evaluating the structure and function of the diaphragm, the main element of the respiratory process during sports practice. Its use could contribute to the evaluation and planning of sports training and be a possible indicator of performance improvement.
Collapse
Affiliation(s)
- Harold Andrés Payán-Salcedo
- Faculty of Health, Universidad Santiago de Cali, Cali 760024, Valle del Cauca, Colombia
- Research Group Salud y Movimiento, Universidad Santiago de Cali, Cali 760024, Valle del Cauca, Colombia
| | | | - Jose Luis Estela-Zape
- Faculty of Health, Universidad Santiago de Cali, Cali 760024, Valle del Cauca, Colombia
- Research Group Salud y Movimiento, Universidad Santiago de Cali, Cali 760024, Valle del Cauca, Colombia
| | - Maria Fernanda Serna-Orozco
- Faculty of Health, Universidad Santiago de Cali, Cali 760024, Valle del Cauca, Colombia
- Research Group Salud y Movimiento, Universidad Santiago de Cali, Cali 760024, Valle del Cauca, Colombia
| |
Collapse
|
7
|
Lang JE, Carrion VM, Bhammar DM, Howard JB, Armstrong SC. A Randomized Trial of Inspiratory Training in Children and Adolescents With Obesity. Child Obes 2024; 20:517-525. [PMID: 38696657 DOI: 10.1089/chi.2023.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Introduction: Children with obesity suffer excess dyspnea that contributes to sedentariness. Developing innovative strategies to increase exercise tolerance and participation in children with obesity is a high priority. Because inspiratory training (IT) has reduced dyspnea, we sought to assess IT in children with obesity. Methods: We conducted a 6-week randomized IT trial involving 8- to 17-year-olds with obesity. Participants were randomized 1:1 to either high [75% of maximal inspiratory pressure (MIP)] or low resistance control (15% of MIP) three times weekly. Assessments included adherence, patient satisfaction, and changes in inspiratory strength and endurance, dyspnea scores and total activity level. Results: Among 27 randomized, 24 (89%) completed the intervention. Total session adherence was 72% which did not differ between treatment groups. IT was safe, and more than 90% felt IT benefitted breathing and general health. IT led to a mean improvement (95% CI) in inspiratory strength measured by MIP of 10.0 cm H2O (-3.5, 23.6; paired t-test, p = 0.139) and inspiratory endurance of 8.9 (1.0, 16.8; paired t-test, p = 0.028); however, there was no significant difference between high- and low-treatment groups. IT led to significant reductions in dyspnea with daily activity (p < 0.001) and in prospectively reported dyspnea during exercise (p = 0.024). Among the high- versus low-treatment group, we noted a trend for reduced dyspnea with daily activity (p = 0.071) and increased daily steps (865 vs. -51, p = 0.079). Discussion: IT is safe and feasible for children with obesity and holds promise for reducing dyspnea and improving healthy activity in children with obesity. Breathe-Fit trial NCT05412134.
Collapse
Affiliation(s)
- Jason E Lang
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Veronica M Carrion
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Dharini M Bhammar
- Center for Tobacco Research, Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Janna B Howard
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Sarah C Armstrong
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
8
|
Kowalski T, Obmiński Z, Waleriańczyk W, Klusiewicz A. The acute effect of respiratory muscle training on cortisol, testosterone, and testosterone-to-cortisol ratio in well-trained triathletes - exploratory study. Respir Physiol Neurobiol 2024; 331:104353. [PMID: 39299616 DOI: 10.1016/j.resp.2024.104353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The study investigated acute changes in cortisol (C) and testosterone (T) associated with a popular RMT method, voluntary isocapnic hyperpnoea (VIH), in well-trained triathletes. 19 athletes (7 females, 12 males) performed a VIH training session with pre- and post- serum C and T measurements. Repeated measures ANOVA was employed to analyze hormone changes during VIH, with additional time-sex interaction. Pearson correlation coefficient has been computed to identify the relationship between hormonal changes and age, anthropometric indices, respiratory muscle strength, and training experience. There was a statistically significant effect for C changes (F = 13.101, p = 0.002, ηp2 = 0.421, ω2 = 0.08). The C concentration was significantly lower after VIH (Mean Difference = -32.49 ± 39.13 nmol*L-1). No significant effects for T, T/C ratio, and time-sex interactions were observed (p > 0.05). Amongst many, significant correlations between the percentage of body fat and changes in C (r=-0.464, p=0.045), body mass and changes in T (r=0.516, p=0.024), height and changes in T (r=0.509, p=0.026) were found. VIH significantly lowered C concentration. No significant effects for T, T/C ratio, and no between-sex differences were observed. Noteworthy individual variability was observed in all the monitored indices. Significant correlations were found between acute hormone changes associated with VIH and selected anthropometric indices. The study provides initial insight into VIH's role in athletes' hormonal balance to possibly guide exercise prescription, autoregulation, arousal state management, and recovery practices in athletes.
Collapse
Affiliation(s)
- Tomasz Kowalski
- Department of Physiology, Institute of Sport-National Research Institute, Warsaw, Poland.
| | - Zbigniew Obmiński
- Department of Endocrinology, Institute of Sport-National Research Institute, Warsaw, Poland
| | - Wojciech Waleriańczyk
- Department of Social Sciences, Institute of Sport-National Research Institute, Warsaw, Poland
| | - Andrzej Klusiewicz
- Józef Piłsudski University of Physical Education in Warsaw, Faculty of Physical Education and Health in Biala Podlaska, Department of Physiology and Biochemistry, Biala Podlaska, Poland
| |
Collapse
|
9
|
Kowalski T, Klusiewicz A, Rębiś K, Wilk A, Starczewski M. Comparative Study of Different Respiratory Muscle Training Methods: Effects on Cardiopulmonary Indices and Athletic Performance in Elite Short-Track Speedskaters. Life (Basel) 2024; 14:1159. [PMID: 39337942 PMCID: PMC11433565 DOI: 10.3390/life14091159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Respiratory muscle training (RMT) improves endurance performance, balance, and ability to repeat high-intensity exercise bouts, providing a rationale to be applied in short-track speedskating. To establish a preferable RMT method for short-track speedskating, the influence of inspiratory pressure threshold loading (IPTL) and voluntary isocapnic hyperpnoea (VIH) on cardiopulmonary indices and athletic performance was investigated. Sixteen elite short-track speedskaters completed 6 weeks of RMT based on IPTL or VIH. Wingate Anaerobic Tests (WAnTs), cardiopulmonary exercise tests (CPETs), spirometry assessments, and on-ice time trials were performed before and after RMT intervention. Repeated measures ANOVA was used to assess the differences between each method's influence. No statistically significant (p > 0.05) differences between RMT methods were found in performance during the WAnT, CPET, or specific on-ice time trials. Spirometry measures were similar between both methods. Significant effects were found for the interaction between maximum breathing frequency during CPET (BFmax) and method (p = 0.009), as well as for the interaction between BFMax, method, and sex (p = 0.040). BFmax decreased for IPTL and increased for VIH. The interaction between method and sex revealed that BFmax increased only in males performing VIH. Our findings suggest that IPTL and VIH lead to analogous effects in the study participants, highlighting a negligible practical disparity in the impact of different RMT methods in elite short-track speedskaters.
Collapse
Affiliation(s)
- Tomasz Kowalski
- Department of Physiology, Institute of Sport—National Research Institute, 01-982 Warsaw, Poland
| | - Andrzej Klusiewicz
- Department of Physical Education and Health in Biala Podlaska, Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education, 00-968 Warsaw, Poland
| | - Kinga Rębiś
- Department of Physiology, Institute of Sport—National Research Institute, 01-982 Warsaw, Poland
| | - Adrian Wilk
- Department of Physiology, Institute of Sport—National Research Institute, 01-982 Warsaw, Poland
| | - Michał Starczewski
- Faculty of Rehabilitation, Jozef Pilsudski University of Physical Education, 00-968 Warsaw, Poland
| |
Collapse
|
10
|
Ladriñán-Maestro A, Sánchez-Infante J, Martín-Vera D, Sánchez-Sierra A. Influence of an inspiratory muscle fatigue protocol on healthy youths on respiratory muscle strength and heart rate variability. A randomized controlled trial. Front Physiol 2024; 15:1457019. [PMID: 39247158 PMCID: PMC11377326 DOI: 10.3389/fphys.2024.1457019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction: Inspiratory muscle fatigue has been shown to have effects on the autonomic nervous system and physical condition. This study aimed to evaluate the influence of an inspiratory muscle fatigue protocol on respiratory muscle strength and heart rate variability in healthy youths. Materials and Methods: A randomized controlled clinical trial, employing double-blinding, was conducted with twenty-seven participants aged 18-45 years, non-smokers and engaged in sports activity at least three times a week for a minimum of 1 year. Participants were randomly assigned to three groups: Inspiratory Muscle Fatigue group, Activation group, and Control group. Measurements of heart rate variability, diaphragmatic ultrasound, and maximum inspiratory pressure were taken at two stages: before the intervention and immediately after treatment. Results: In our results with respect to baseline to post-treatment, the inspiratory muscle fatigue group showed lower values in the Sniff contraction velocity variable (10.96 cm/s ± 1.99-8.34 cm/s ± 1.23; p < 0.01) and higher values in the activation group (10.59 cm/s ± 0.89-12.66 cm/s ± 1.15; p < 0.01) with respect to the control group (10.27 cm/s ± 1.48-9.97 cm/s ± 1.42). On the other hand, the inspiratory muscle fatigue group showed higher values in the Low frequency variable (49.37 n.u. ± 13.91 to 69.48 n.u. ± 8.22; p < 0.01) and lower values in the activation group (57.92 n.u. ± 8.37 to 41.59 n.u. ± 11.21; p < 0.01) with respect to the control group (50.83 n.u. ± 17.30 to 52.10 n.u. ± 20.64). Additionally, significant correlations were found between respiratory variables and heart rate variability variables. Conclusion: Acute fatigue of the inspiratory musculature appears to negatively impact heart rate variability and inspiratory muscle strength in healthy youths. Clinical Trial Registration: https://clinicaltrials.gov/study/NCT06278714; Identifier: NCT06278714.
Collapse
Affiliation(s)
- Arturo Ladriñán-Maestro
- School for Doctoral Studies and Research, Universidad Europea de Madrid, Madrid, Spain
- Research Group on Exercise Therapy and Functional Rehabilitation, Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
- Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Jorge Sánchez-Infante
- Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain
- Department of Sport Sciences, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
- Physiotherapy Research Group of Toledo (GIFTO), Faculty of Physiotherapy and Nursing, Universidad de Castilla-La Mancha, Toledo, Spain
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Daniel Martín-Vera
- Research Group on Exercise Therapy and Functional Rehabilitation, Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Alberto Sánchez-Sierra
- Research Group on Exercise Therapy and Functional Rehabilitation, Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
- Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain
- Physiotherapy Research Group of Toledo (GIFTO), Faculty of Physiotherapy and Nursing, Universidad de Castilla-La Mancha, Toledo, Spain
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
- Clínica Sierra Varona SL, Toledo, Spain
- Department of Physical Therapy, Camilo José Cela University, Madrid, Spain
- Department of Physical Therapy, Universidad Alfonso X El Sabio, Villanueva de la Cañada, Spain
| |
Collapse
|
11
|
Qin L, Liu S, Hu S, Feng L, Wang H, Gong X, Xuan W, Lu T. The Effect of Inspiratory Muscle Training on Health-Related Fitness in College Students. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1088. [PMID: 39200697 PMCID: PMC11354152 DOI: 10.3390/ijerph21081088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024]
Abstract
In an era characterized by rapid economic growth and evolving lifestyles, college students encounter numerous challenges, encompassing academic pressures and professional competition. The respiratory muscle endurance capability is important for college students during prolonged aerobic exercise. Therefore, it is of great significance to explore an effective intervention to enhance the endurance level of college students. This study explores the transformative potential of inspiratory muscle training (IMT) to improve the physical functions of college students. This research comprised a group of 20 participants who underwent IMT integrated into their daily physical education classes or regular training sessions over an 8-week period, with 18 participants forming the control group. The IMT group adhered to the manufacturer's instructions for utilizing the PowerBreathe device. The findings indicated a significant positive effect on inspiratory muscle strength (p < 0.001), showing improvements in pulmonary function, exercise tolerance, cardiac function, and overall athletic performance. These results revealed the substantial benefits of IMT in enhancing physical fitness and promoting health maintenance among college students.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Xuan
- Department of Physical Education, Sports and Health Research Center, Tongji University, Shanghai 200092, China; (L.Q.); (S.L.); (S.H.); (L.F.); (H.W.); (X.G.)
| | - Tianfeng Lu
- Department of Physical Education, Sports and Health Research Center, Tongji University, Shanghai 200092, China; (L.Q.); (S.L.); (S.H.); (L.F.); (H.W.); (X.G.)
| |
Collapse
|
12
|
Ladriñán-Maestro A, Sánchez-Infante J, Martín-Vera D, Sánchez-Sierra A. Influence of an inspiratory muscle fatigue protocol on healthy youths on respiratory muscle strength, vertical jump performance and muscle oxygen saturation: a randomized controlled trial. J Transl Med 2024; 22:732. [PMID: 39103816 PMCID: PMC11301939 DOI: 10.1186/s12967-024-05555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Inspiratory muscle fatigue has been shown to have effects on limbs blood flow and physical performance. This study aimed to evaluate the influence of an inspiratory muscle fatigue protocol on respiratory muscle strength, vertical jump performance and muscle oxygen saturation in healthy youths. METHODS A randomized and double-blinded controlled clinical trial, was conducted. Twenty-four participants aged 18-45 years, non-smokers and engaged in sports activity at least three times a week for a minimum of one year were enrolled in this investigation. Participants were randomly assigned to three groups: Inspiratory Muscle Fatigue (IMFG), Activation, and Control. Measurements of vertical jump, diaphragmatic ultrasound, muscle oxygen saturation, and maximum inspiratory pressure were taken at two stages: before the intervention (T1) and immediately after treatment (T2). RESULTS The IMFG showed lower scores in muscle oxygen saturation and cardiorespiratory variables after undergoing the diaphragmatic fatigue intervention compared to the activation and control groups (p < 0.05). For the vertical jump variables, intragroup differences were found (p < 0.01), but no differences were shown between the three groups (p > 0.05). CONCLUSIONS Inspiratory muscle fatigue appears to negatively impact vertical jump performance, muscle oxygen saturation and inspiratory muscle strength in healthy youths. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT06271876. Date of registration 02/21/2024. https://clinicaltrials.gov/study/NCT06271876 .
Collapse
Affiliation(s)
- Arturo Ladriñán-Maestro
- School for Doctoral Studies and Research, Universidad Europea de Madrid, Madrid, Spain
- Research Group on Exercise Therapy and Functional Rehabilitation, Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
- Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Jorge Sánchez-Infante
- Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain
- Department of Sport Sciences, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670, Spain
- Physiotherapy Research Group of Toledo (GIFTO), Faculty of Physiotherapy and Nursing, Universidad de Castilla-La Mancha, Toledo, Spain
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Daniel Martín-Vera
- Research Group on Exercise Therapy and Functional Rehabilitation, Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, 28670, Spain
| | - Alberto Sánchez-Sierra
- Research Group on Exercise Therapy and Functional Rehabilitation, Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain.
- Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain.
- Physiotherapy Research Group of Toledo (GIFTO), Faculty of Physiotherapy and Nursing, Universidad de Castilla-La Mancha, Toledo, Spain.
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, 28670, Spain.
- Clínica Sierra Varona SL, Av Boladiez, 34, 45007, Toledo, Spain.
- Department of Physical Therapy, Camilo José Cela University, Madrid, Spain.
- Department of Physical Therapy , Universidad Alfonso X El Sabio, Villanueva de la Cañada, Spain.
| |
Collapse
|
13
|
Akinci B, Emirza Cilbir C, Kocyigit A, Kuran Aslan G. Respiratory Muscle Training in Para-Athletes: A Systematic Review on the Training Protocols and Effects on Reported Outcomes. J Sport Rehabil 2024:1-9. [PMID: 38996453 DOI: 10.1123/jsr.2023-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 07/14/2024]
Abstract
CONTEXT AND OBJECTIVES Respiratory muscle training (RMT) is considered an effective tool to improve cardiorespiratory limitations in athletes. The goals of this systematic review were to explore the role of RMT and its implementation within sport rehabilitation programs in para-athletes. EVIDENCE ACQUISITION Several databases were searched until January 2024. Eligible studies were independently reviewed by 2 reviewers. Quality assessment was made using the PEDro scale and version 2 of the Cochrane Risk-of-Bias Tool for Randomized Trials. Eight studies (a total of 108 participants) were selected for the analysis. EVIDENCE SYNTHESIS Five studies preferred using resistive loading, while 2 studies used normocapnic hyperpnea, and 1 study used threshold inspiratory muscle training. Respiratory functions (respiratory muscle strength and endurance, spirometry measures) and exercise performance were assessed as the main outcomes. Significant increases in respiratory muscle strength were reported in 5 studies. Two studies observed improvement in respiratory muscle endurance and 3 studies reported increased exercise capacity. CONCLUSIONS This review suggests that although RMT can enhance respiratory muscle strength and endurance, it should not be considered the primary method for boosting the exercise performance of para-athletes. Additional research is necessary to explore the impact of various RMT techniques on different outcomes from the perspective of sport rehabilitation in para-athletes.
Collapse
Affiliation(s)
- Buket Akinci
- Department of Physiotherapy and Rehabilitation (English), Faculty of Health Sciences, Biruni University, Istanbul, Turkey
| | - Cigdem Emirza Cilbir
- Department of Physiotherapy and Rehabilitation, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Kocyigit
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Goksen Kuran Aslan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
14
|
Al-Otaibi HM, Sartor F, Kubis HP. The influence of low resistance respiratory muscle training on pulmonary function and high intensity exercise performance. J Exerc Sci Fit 2024; 22:179-186. [PMID: 38495300 PMCID: PMC10937314 DOI: 10.1016/j.jesf.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024] Open
Abstract
Background/objectives Respiratory muscle training (RMT) was recognized as an effective means to improve respiratory muscle (RM) strength and enhance exercise performance. The purpose of this study was to examine the effect of low-intensity RMT on RM strength, pulmonary function, and performance. Methods Fourteen healthy active adults were assigned randomly to either a training or placebo group. The training group completed six weeks of RMT, which consisted of a first week, 1 set of 15 min/d, 5 d/wk at 10-25% of maximal inspiratory pressure (PImax), and the remaining 5 weeks, 2 sets of 15 min/d, 5 d/wk, at 30% PImax. The placebo group followed the same protocol but with almost no additional ventilatory resistance. Measurement of RM strength and endurance, spirometry, and endurance exercise performance were obtained before and after the RMT program. Results In the training group, PImax (+14%) and maximal expiratory pressure (PEmax, +27%), forced vital capacity (FVC, +3.6%), maximal oxygen uptake (VO2max, +11%), and time to exhaustion (Tlim90%, +25%) increased significantly from baseline values (P < 0.05). No significant changes were observed in the placebo group. Also, no significant interaction in maximum voluntary ventilation (MVV12), minute ventilation (VE), and respiratory rate (RR) were detected. Conclusions These data suggest that low-intensity RMT is an effective tool to improve RM strength, pulmonary elastic properties and endurance exercise performance.
Collapse
Affiliation(s)
- Hajed M. Al-Otaibi
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Francesco Sartor
- Department of Sport Science, School of Psychology and Sport Science, Bangor University, United Kingdom
- Department of Patient Care and Monitoring, Philips Research, Eindhoven, the Netherlands
| | - Hans-Peter Kubis
- Department of Sport Science, School of Psychology and Sport Science, Bangor University, United Kingdom
| |
Collapse
|
15
|
Kowalski T, Wilk A, Rębiś K, Lohse KM, Sadowska D, Klusiewicz A. Influence of voluntary isocapnic hyperpnoea on recovery after high-intensity exercise in elite short-track speedskaters - randomized controlled trial. BMC Sports Sci Med Rehabil 2024; 16:137. [PMID: 38902811 PMCID: PMC11188215 DOI: 10.1186/s13102-024-00927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Respiratory muscle training plays a significant role in reducing blood lactate concentration (bLa) and attenuating negative physiological stress reactions. Therefore, we investigated if voluntary isocapnic hyperpnoea (VIH) performed after a maximum anaerobic effort influences bLa and perceived fatigue level in well-trained speedskaters. 39 elite short-track speedskaters participated in a trial with two parallel groups: experimental and control. All the participants performed the Wingate Anaerobic Test (WAnT). The experimental group performed a VIH-based recovery protocol 20 min after exercise, the control group used passive recovery only. Blood samples were taken 3 and 30 min after the WAnT to measure bLa. Fatigue was self-appraised on a 0-10 perceived rating-of-fatigue (ROF) scale 3 and 30 min after the WAnT. Noteworthy, but not statistically significant changes between the experimental and control groups were observed for changes in bLa (p = 0.101). However, statistically significant changes between the groups were found for ROF (p = 0.003, ηp2 = 0.211, ω2 = 0.106). Moreover, statistically significant interactions between post-exercise bLa clearance and VO2max (p = 0.028) and inspiratory muscle strength (p = 0.040) were observed. Our findings provided preliminary insight that VIH may be an efficient recovery protocol after anaerobic exercise performed by elite athletes. The association between VO2max and post-exercise bLa clearance indicates the vital role of aerobic fitness in repeated-efforts ability in short-track speedskaters. The study was registered at ClinicalTrials.gov as NCT05994092 on 15th August 2023.
Collapse
Affiliation(s)
- Tomasz Kowalski
- Department of Physiology, Institute of Sport-National Research Institute, Warsaw, Poland.
| | - Adrian Wilk
- Department of Physiology, Institute of Sport-National Research Institute, Warsaw, Poland
| | - Kinga Rębiś
- Department of Physiology, Institute of Sport-National Research Institute, Warsaw, Poland
| | - Kim-Morgaine Lohse
- Centre for Digital Health Interventions, Department of Management, Technology, and Economics, ETH Zurich, Zurich, Switzerland
| | - Dorota Sadowska
- Department of Physiology, Institute of Sport-National Research Institute, Warsaw, Poland
| | - Andrzej Klusiewicz
- Faculty of Physical Education and Sport in Biala Podlaska, Department of Physiology and Biochemistry, Józef Piłsudski University of Physical Education in Warsaw, Biala Podlaska, Poland
| |
Collapse
|
16
|
Zhu H, Han X, Miao G, Yan Q. A preliminary exploration of the regression equation for performance in amateur half-marathon runners: a perspective based on respiratory muscle function. Front Physiol 2024; 15:1340513. [PMID: 38590694 PMCID: PMC10999560 DOI: 10.3389/fphys.2024.1340513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
This document presents a study on the relationship between physical characteristics, respiratory muscle capacity, and performance in amateur half-marathon runners. The aim of this study was to establish a preliminary predictive model to provide insights into training and health management for runners. Participants were recruited from the 2023 Beijing Olympic Forest Park Half-Marathon, comprising 233 individuals. Personal information including age, gender, height, weight, and other relevant factors were collected, and standardized testing methods were used to measure various parameters. Correlation analysis revealed significant associations between gender, height, weight, maximum expiratory pressure, maximal inspiratory pressure, and half-marathon performance. Several regression equations were developed to estimate the performance of amateur marathon runners, with a focus on gender, weight, maximum expiratory pressure, and height as predictive factors. The study found that respiratory muscle training can delay muscle fatigue and improve athletic performance. Evaluating the level of respiratory muscle capacity in marathon athletes is crucial for defining the potential speed limitations and achieving optimal performance. The information from this study can assist amateur runners in optimizing their training methods and maintaining their physical wellbeing.
Collapse
Affiliation(s)
- Houyuan Zhu
- China Institute of Sport Science, Beijing, China
- School of Physical Education, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Xiaowei Han
- School of Physical Education, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Guoqing Miao
- School of Physical Education, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Qi Yan
- China Institute of Sport Science, Beijing, China
| |
Collapse
|
17
|
Řehoř A, Novotný J, Bernaciková M, Paludo AC. Effect of respiratory muscle endurance training on performance and respiratory function in professional cyclists during the off-season. J Sports Med Phys Fitness 2024; 64:229-235. [PMID: 38059653 DOI: 10.23736/s0022-4707.23.15438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
BACKGROUND The study aimed to analyze the effect of respiratory muscle endurance training (RMT) on performance and respiratory function in professional road cyclists during the off-season period. METHODS Twenty professional road cyclists from the Czech Republic were divided into the control (CON) (N.=10) and the RMT (N.=10) groups. Cyclists from the RMT group accomplished 30 sessions over 10 weeks. Performance in the incremental cycling test and respiratory capacity via test were assessed before and after 10 weeks in both groups. The comparison between and within the groups was performed, together with effect size and delta % (P<0.05). RESULTS Significant effects on respiratory function during the exercise, on lung volume utilization at 90% of VO2max (TV-90%) and maximal voluntary ventilation (MVV) were found in RMT compared to the CON group, with a moderate effect size (0.71 and 0.61), and improvements of 13% and 14%, respectively. Parameters of performance in the cycling protocol and respiratory function at rest presented better values in the RMT group, however with no significance and in minor magnitude. CONCLUSIONS Using RMT during off-season benefits professional road cyclists by improving the major efficiency of respiratory function during progressive efforts. Therefore, the protocol of RMT could be used as an ergogenic aid during this period in order to maintain respiratory adaptations, optimizing the pre-season training. Adjustments can be made to improve the parameters outcomes.
Collapse
Affiliation(s)
- Aleš Řehoř
- Department of Physical Activities and Health Sciences, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic -
| | - Jan Novotný
- Department of Physical Activities and Health Sciences, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - Martina Bernaciková
- Department of Physical Activities and Health Sciences, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - Ana C Paludo
- Department of Sports Performance and Exercise Testing, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| |
Collapse
|
18
|
Salazar-Martínez E. Breathing Pattern Response after 6 Weeks of Inspiratory Muscle Training during Exercise. Adv Respir Med 2024; 92:58-65. [PMID: 38247552 PMCID: PMC10801573 DOI: 10.3390/arm92010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
(1) Background: The breathing pattern is defined as the relationship between the tidal volume (VT) and breathing frequency (BF) for a given VE. The aim of this study was to evaluate whether inspiratory muscle training influenced the response of the breathing pattern during an incremental effort in amateur cyclists. (2) Methods: Eighteen amateur cyclists completed an incremental test to exhaustion, and a gas analysis on a cycle ergometer and spirometry were conducted. Cyclists were randomly assigned to two groups (IMTG = 9; CON = 9). The IMTG completed 6 weeks of inspiratory muscle training (IMT) using a PowerBreathe K3® device at 50% of the maximum inspiratory pressure (Pimax). The workload was adjusted weekly. The CON did not carry out any inspiratory training during the experimental period. After the 6-week intervention, the cyclists repeated the incremental exercise test, and the gas analysis and spirometry were conducted. The response of the breathing pattern was evaluated during the incremental exercise test. (3) Results: The Pimax increased in the IMTG (p < 0.05; d = 3.1; +19.62%). Variables related to the breathing pattern response showed no differences between groups after the intervention (EXPvsCON; p > 0.05). Likewise, no differences in breathing pattern were found in the IMTG after training (PREvsPOST; p > 0.05). (4) Conclusions: IMT improved the strength of inspiratory muscles and sport performance in amateur cyclists. These changes were not attributed to alterations in the response of the breathing pattern.
Collapse
|
19
|
Sato S, Ishida K, Tanaka NI, Katayama K. Impact of high-intensity interval hyperpnea on aerobic energy release and inspiratory muscle fatigue. Respir Physiol Neurobiol 2024; 319:104170. [PMID: 37838229 DOI: 10.1016/j.resp.2023.104170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Respiratory muscle endurance training reportedly has beneficial effects on whole-body endurance performance. We produced a novel high-intensity interval (HII) protocol and characterized the associated physiological responses and respiratory muscle fatigue. Peak oxygen uptake of respiratory muscle (V̇O2peakRM) was estimated during the respiratory incremental test. The HII session consisted of five 3-minute hyperpnea periods at 100%V̇O2peakRM interspersed with 2-minute periods at 40%V̇O2peakRM (25 min total). The high-intensity continuous (HIC) session involved a single time-to-end bout of hyperpnea at 100%V̇O2peakRM. The moderate-intensity continuous (MIC) session involved 25 min of hyperpnea at 60% of maximal voluntary ventilation. V̇O2RM was recorded continuously, and maximal inspiratory pressure (PImax) was assessed before and after the sessions. HII session: V̇O2RM gradually increased as the sets proceeded, whereas PImax decreased significantly. HIC session: V̇O2RM increased progressively, and the time to end was 6.5 ± 0.5 min. PImax decreased significantly. MIC session: V̇O2RM did not change for 25 min, and PImax remained unchanged. The duration of V̇O2RM at near- and supra-maximal levels in the HII session (10 ± 1 min) was longer than that in the HIC session (4 ± 1 min). The decrease in PImax was larger in the HII session (-12 ± 3 %) than MIC session (-4 ± 3 %). The HII protocol is characterized by a longer time to maximally stimulate the aerobic energy system of respiratory muscle than the HIC protocol and greater inspiratory muscle fatigue than the traditional MIC protocol. These results suggest that the HII protocol could enhance the efficacy of respiratory muscle training programs.
Collapse
Affiliation(s)
- Suzuna Sato
- Graduate School of Education and Human Development, Nagoya University, Nagoya, Japan
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan; Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Noriko I Tanaka
- Graduate School of Education and Human Development, Nagoya University, Nagoya, Japan; Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan; Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| |
Collapse
|
20
|
Castro A, Catai AM, Rehder-Santos P, Signini ÉF, de Abreu RM, Da Silva CD, Dato CC, Oliveira RV, Ferreira AG. Insights into the Serum Metabolic Adaptations in Response to Inspiratory Muscle Training: A Metabolomic Approach Based on 1H NMR and UHPLC-HRMS/MS. Int J Mol Sci 2023; 24:16764. [PMID: 38069087 PMCID: PMC10706640 DOI: 10.3390/ijms242316764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Inspiratory muscle training (IMT) is known to promote physiological benefits and improve physical performance in endurance sports activities. However, the metabolic adaptations promoted by different IMT prescribing strategies remain unclear. In this work, a longitudinal, randomized, double-blind, sham-controlled, parallel trial was performed to investigate the effects of 11 weeks (3 days·week-1) of IMT at different exercise intensities on the serum metabolomics profile and its main regulated metabolic pathways. Twenty-eight healthy male recreational cyclists (30.4 ± 6.5 years) were randomized into three groups: sham (6 cm·H2O of inspiratory pressure, n = 7), moderate-intensity (MI group, 60% maximal inspiratory pressure (MIP), n = 11) and high-intensity (HI group, 85-90% MIP, n = 10). Blood serum samples were collected before and after 11 weeks of IMT and analyzed by 1H NMR and UHPLC-HRMS/MS. Data were analyzed using linear mixed models and metabolite set enrichment analysis. The 1H NMR and UHPLC-HRMS/MS techniques resulted in 46 and 200 compounds, respectively. These results showed that ketone body metabolism, fatty acid biosynthesis, and aminoacyl-tRNA biosynthesis were upregulated after IMT, while alpha linolenic acid and linoleic acid metabolism as well as biosynthesis of unsaturated fatty acids were downregulated. The MI group presented higher MIP, Tryptophan, and Valine levels but decreased 2-Hydroxybutyrate levels when compared to the other two studied groups. These results suggest an increase in the oxidative metabolic processes after IMT at different intensities with additional evidence for the upregulation of essential amino acid metabolism in the MI group accompanied by greater improvement in respiratory muscle strength.
Collapse
Affiliation(s)
- Alex Castro
- Department of Chemistry, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, Brazil;
- Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil
| | - Aparecida M. Catai
- Department of Physiotherapy, Universidade Federal de São Carlos (UFSCar), Sao Carlos 13565-905, Brazil; (A.M.C.); (P.R.-S.); (É.F.S.); (R.M.d.A.); (C.D.D.S.)
| | - Patrícia Rehder-Santos
- Department of Physiotherapy, Universidade Federal de São Carlos (UFSCar), Sao Carlos 13565-905, Brazil; (A.M.C.); (P.R.-S.); (É.F.S.); (R.M.d.A.); (C.D.D.S.)
| | - Étore F. Signini
- Department of Physiotherapy, Universidade Federal de São Carlos (UFSCar), Sao Carlos 13565-905, Brazil; (A.M.C.); (P.R.-S.); (É.F.S.); (R.M.d.A.); (C.D.D.S.)
| | - Raphael Martins de Abreu
- Department of Physiotherapy, Universidade Federal de São Carlos (UFSCar), Sao Carlos 13565-905, Brazil; (A.M.C.); (P.R.-S.); (É.F.S.); (R.M.d.A.); (C.D.D.S.)
| | - Claudio Donisete Da Silva
- Department of Physiotherapy, Universidade Federal de São Carlos (UFSCar), Sao Carlos 13565-905, Brazil; (A.M.C.); (P.R.-S.); (É.F.S.); (R.M.d.A.); (C.D.D.S.)
| | - Carla Cristina Dato
- Nutrition Course, Central Paulista University Center, Sao Carlos 13563-470, Brazil;
| | - Regina V. Oliveira
- Department of Chemistry, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, Brazil;
| | - Antônio G. Ferreira
- Department of Chemistry, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, Brazil;
| |
Collapse
|
21
|
Sogard AS, Mickleborough TD. The therapeutic role of inspiratory muscle training in the management of asthma: a narrative review. Am J Physiol Regul Integr Comp Physiol 2023; 325:R645-R663. [PMID: 37720997 DOI: 10.1152/ajpregu.00325.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Asthma is a disorder of the airways characterized by chronic airway inflammation, hyperresponsiveness, and variable recurring airway obstruction. Treatment options for asthma include pharmacological strategies, whereas nonpharmacological strategies are limited. Established pharmacological approaches to treating asthma may cause unwanted side effects and do not always afford adequate protection against asthma, possibly because of an individual's variable response to medications. A potential nonpharmacological intervention that is most available and cost effective is inspiratory muscle training (IMT), which is a technique targeted at increasing the strength and endurance of the diaphragm and accessory muscles of inspiration. Studies examining the impact of IMT on asthma have reported increases in inspiratory muscle strength and a reduction in the perception of dyspnea and medication use. However, because of the limited number of studies and discordant methods between studies more evidence is required to elucidate in individuals with asthma the efficacy of IMT on inspiratory muscle endurance, exercise capacity, asthma control, symptoms, and quality of life as well as in adolescents with differing severities of asthma. Large randomized controlled trials would be a significant step forward in clarifying the effectiveness of IMT in individuals with asthma. Although IMT may have favorable effects on inspiratory muscle strength, dyspnea, and medication use, the current evidence that IMT is an effective treatment for asthma is inconclusive.
Collapse
Affiliation(s)
- Abigail S Sogard
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, United States
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, United States
| |
Collapse
|
22
|
Kowalski T, Kasiak PS, Rebis K, Klusiewicz A, Granda D, Wiecha S. Respiratory muscle training induces additional stress and training load in well-trained triathletes-randomized controlled trial. Front Physiol 2023; 14:1264265. [PMID: 37841319 PMCID: PMC10576561 DOI: 10.3389/fphys.2023.1264265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Background: Respiratory muscle training (RMT) has been investigated in the context of improved athletic performance and pulmonary function. However, psychophysiological costs of RMT remain understudied. Voluntary isocapnic hyperpnoea (VIH) and inspiratory pressure threshold loading (IPTL) are widely applied RMT methods. The main purposes of this study were to assess whether RMT induces additional load on well-trained triathletes and determine differences in RMT-induced load between sexes and applied methods. Materials and Methods: 16 well-trained triathletes (n = 16, 56% males) underwent 6 weeks of VIH or IPTL program with progressive overload. Blood markers, subjective measures, cardiac indices, near-infrared spectroscopy indices, inspiratory muscle fatigue, and RMT-induced training load were monitored pre-, in and post-sessions. We used multiple ANOVA to investigate effects of sex, training method, and time on measured parameters. Results: There were significant interactions for acid-base balance (p = 0.04 for sex, p < 0.001 for method), partial carbon dioxide pressure (p = 0.03 for sex, p < 0.001 for method), bicarbonate (p = 0.01 for method), lactate (p < 0.001 for method), RMT-induced training load (p = 0.001 for method for single session, p = 0.03 for method per week), average heart rate (p = 0.03 for sex), maximum heart rate (p = 0.02 for sex), intercostales muscle oxygenation (p = 0.007 for testing week), and intercostales muscle oxygenation recovery (p = 0.003 for testing week and p = 0.007 for method). Conclusion: We found that RMT induced additional load in well-trained triathletes. Elicited changes in monitored variables depend on sex and training method. VIH significantly increased subjective training load measures. IPTL was associated with disbalance in blood gasometry, increase in lactate, and reports of headaches and dizziness. Both methods should be applied with consideration in high-performance settings.
Collapse
Affiliation(s)
- Tomasz Kowalski
- Department of Physiology, Institute of Sport—National Research Institute, Warsaw, Poland
| | | | - Kinga Rebis
- Department of Physiology, Institute of Sport—National Research Institute, Warsaw, Poland
| | - Andrzej Klusiewicz
- Department of Physical Education and Health in Biala Podlaska, Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, Biala Podlaska, Poland
| | - Dominika Granda
- Department of Nutrition Physiology and Dietetics, Institute of Sport—National Research Institute, Warsaw, Poland
| | - Szczepan Wiecha
- Department of Physical Education and Health in Biala Podlaska, Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, Biala Podlaska, Poland
| |
Collapse
|
23
|
Notter DA, Verges S, Renggli AS, Beltrami FG, Spengler CM. Similar effects on exercise performance following different respiratory muscle training programs in healthy young men. Sci Rep 2023; 13:16135. [PMID: 37752180 PMCID: PMC10522679 DOI: 10.1038/s41598-023-41580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Both respiratory muscle endurance training (RMET) and inspiratory resistive training (IMT) seem to increase whole-body exercise performance, but direct comparisons between the two are scarce. We hypothesized that the similarity of RMET to exercise-induced ventilation would induce larger improvements compared to IMT. Twenty-six moderately-trained men performed either 4 weeks of RMET, IMT or SHAM training. Before and after the interventions, respiratory muscle endurance, 3-km running time-trial performance and leg muscle fatigue after intense constant-load cycling (assessed with femoral nerve magnetic stimulation) were measured. Both RMET (+ 59%) and IMT (+ 38%) increased respiratory muscle endurance (both p < 0.01 vs. SHAM) but only IMT increased inspiratory strength (+ 32%, p < 0.001 vs. SHAM). 3-km time improved showing a main effect of training (p = 0.026), however with no differences between groups. Leg fatigue after cycling was not attenuated with training (p = 0.088 for group-training interaction). All groups showed a significant (~ 0.3 l) increase in average tidal volume during cycling exercise combined with a concomitant reduction in respiratory exertion. While RMET and IMT improved specific aspects of respiratory muscles performance, no benefits beyond SHAM were seen during whole-body exercise. Changes in respiratory sensations might be a result of altered breathing pattern.
Collapse
Affiliation(s)
- Dominic A Notter
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| | - Samuel Verges
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| | - Andrea S Renggli
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| | - Fernando G Beltrami
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Gloriastrasse 37/39, 8092, Zurich, Switzerland.
- Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Illidi CR, Romer LM, Johnson MA, Williams NC, Rossiter HB, Casaburi R, Tiller NB. Distinguishing science from pseudoscience in commercial respiratory interventions: an evidence-based guide for health and exercise professionals. Eur J Appl Physiol 2023; 123:1599-1625. [PMID: 36917254 PMCID: PMC10013266 DOI: 10.1007/s00421-023-05166-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/19/2023] [Indexed: 03/16/2023]
Abstract
Respiratory function has become a global health priority. Not only is chronic respiratory disease a leading cause of worldwide morbidity and mortality, but the COVID-19 pandemic has heightened attention on respiratory health and the means of enhancing it. Subsequently, and inevitably, the respiratory system has become a target of the multi-trillion-dollar health and wellness industry. Numerous commercial, respiratory-related interventions are now coupled to therapeutic and/or ergogenic claims that vary in their plausibility: from the reasonable to the absurd. Moreover, legitimate and illegitimate claims are often conflated in a wellness space that lacks regulation. The abundance of interventions, the range of potential therapeutic targets in the respiratory system, and the wealth of research that varies in quality, all confound the ability for health and exercise professionals to make informed risk-to-benefit assessments with their patients and clients. This review focuses on numerous commercial interventions that purport to improve respiratory health, including nasal dilators, nasal breathing, and systematized breathing interventions (such as pursed-lips breathing), respiratory muscle training, canned oxygen, nutritional supplements, and inhaled L-menthol. For each intervention we describe the premise, examine the plausibility, and systematically contrast commercial claims against the published literature. The overarching aim is to assist health and exercise professionals to distinguish science from pseudoscience and make pragmatic and safe risk-to-benefit decisions.
Collapse
Affiliation(s)
- Camilla R Illidi
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Montréal, QC, Canada
| | - Lee M Romer
- Division of Sport, Health and Exercise Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Michael A Johnson
- Exercise and Health Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, Nottinghamshire, UK
| | - Neil C Williams
- Exercise and Health Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, Nottinghamshire, UK
| | - Harry B Rossiter
- Institute of Respiratory Medicine and Exercise Physiology, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, CDCRC Building, Torrance, CA, 90502, USA
| | - Richard Casaburi
- Institute of Respiratory Medicine and Exercise Physiology, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, CDCRC Building, Torrance, CA, 90502, USA
| | - Nicholas B Tiller
- Institute of Respiratory Medicine and Exercise Physiology, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, CDCRC Building, Torrance, CA, 90502, USA.
| |
Collapse
|
25
|
Razi O, Teixeira AM, Tartibian B, Zamani N, Knechtle B. Respiratory issues in patients with multiple sclerosis as a risk factor during SARS-CoV-2 infection: a potential role for exercise. Mol Cell Biochem 2023; 478:1533-1559. [PMID: 36411399 PMCID: PMC9684932 DOI: 10.1007/s11010-022-04610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
Coronavirus disease-2019 (COVID-19) is associated with cytokine storm and is characterized by acute respiratory distress syndrome (ARDS) and pneumonia problems. The respiratory system is a place of inappropriate activation of the immune system in people with multiple sclerosis (MS), and this may cause damage to the lung and worsen both MS and infections.The concerns for patients with multiple sclerosis are because of an enhance risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The MS patients pose challenges in this pandemic situation, because of the regulatory defect of autoreactivity of the immune system and neurological and respiratory tract symptoms. In this review, we first indicate respiratory issues associated with both diseases. Then, the main mechanisms inducing lung damages and also impairing the respiratory muscles in individuals with both diseases is discussed. At the end, the leading role of physical exercise on mitigating respiratory issues inducing mechanisms is meticulously evaluated.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Ana Maria Teixeira
- Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001 St. Gallen, Switzerland
| |
Collapse
|
26
|
Bureau C, Van Hollebeke M, Dres M. Managing respiratory muscle weakness during weaning from invasive ventilation. Eur Respir Rev 2023; 32:220205. [PMID: 37019456 PMCID: PMC10074167 DOI: 10.1183/16000617.0205-2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 04/07/2023] Open
Abstract
Weaning is a critical stage of an intensive care unit (ICU) stay, in which the respiratory muscles play a major role. Weakness of the respiratory muscles, which is associated with significant morbidity in the ICU, is not limited to atrophy and subsequent dysfunction of the diaphragm; the extradiaphragmatic inspiratory and expiratory muscles also play important parts. In addition to the well-established deleterious effect of mechanical ventilation on the respiratory muscles, other risk factors such as sepsis may be involved. Weakness of the respiratory muscles can be suspected visually in a patient with paradoxical movement of the abdominal compartment. Measurement of maximal inspiratory pressure is the simplest way to assess respiratory muscle function, but it does not specifically take the diaphragm into account. A cut-off value of -30 cmH2O could identify patients at risk for prolonged ventilatory weaning; however, ultrasound may be better for assessing respiratory muscle function in the ICU. Although diaphragm dysfunction has been associated with weaning failure, this diagnosis should not discourage clinicians from performing spontaneous breathing trials and considering extubation. Recent therapeutic developments aimed at preserving or restoring respiratory muscle function are promising.
Collapse
Affiliation(s)
- Côme Bureau
- Sorbonne Université, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Service de Médecine Intensive et Réanimation, Département R3S, Paris, France
| | - Marine Van Hollebeke
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
- Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Martin Dres
- Sorbonne Université, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- AP-HP Sorbonne Université, Hôpital Pitié-Salpêtrière, Service de Médecine Intensive et Réanimation, Département R3S, Paris, France
| |
Collapse
|
27
|
Das A, Azarudheen S, Chandrasekaran B, Fernandes S, Davis F. The plausible effects of wearing face masks on sports performance - A scoping review. Sci Sports 2023; 38:S0765-1597(23)00133-8. [PMID: 38620146 PMCID: PMC10300654 DOI: 10.1016/j.scispo.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 12/29/2022] [Indexed: 04/17/2024]
Abstract
Objectives The objectives of this scoping review are to discuss, firstly, the positive aspects of wearing face masks during training (such as a barrier to COVID-19 transmission, air pollutant exposure, and adding load on respiratory resistance flow); secondly, the negative aspects (adverse effects on body temperature and hypoxia risks); and thirdly, the training responses of wearing face masks on aerobic and anaerobic performance. News Besides social distancing and hand hygiene, wearing a face mask is proposed to be the prime advocacy for virus containment. During the period of high risk of contamination, the return to sport guidelines proposed by international and national sport federations included wearing face masks during training sessions. However, it is necessary to discuss the pros and cons of wearing face masks during exercise. Prospects Although it was essential to wear a face mask during exercise or sport-specific training, there is conflicting evidence on the implications of the use of face masks on physical, physiological as well as psychological well-being or performance. Based on the conflicting empirical findings and anecdotal evidence, certain recommendations have been made for adequate use of face masks during exercise; both to break the chain of transmission and prevent the physiological compromise expected from wearing face masks during exercise. The present review can help stakeholders balance sport guidelines in the event of a respiratory virus pandemic with athlete safety. Conclusion Conflicting evidence of mechanistic links between the dose of exercise and the possible adverse effects associated with exercising with face masks is available. Adequately powered studies with strong methodological quality on appropriate selection of masks and usage based on the intensity, duration, and type of sport, age, and gender is needed now for the stakeholders to make informed decisions with respect to exercising with face masks.
Collapse
Affiliation(s)
- A Das
- Department of Sports Science and Yoga, Ramakrishna Mission Vivekananda Educational and Research Institute, Belur Math, Howrah, West Bengal, India
- Department of Exercise and Sports Sciences, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - S Azarudheen
- Department of Exercise and Sports Sciences, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
- Center for Sports Science, Medicine and Research, Manipal Academy of Higher Education, Manipal, India
| | - B Chandrasekaran
- Department of Exercise and Sports Sciences, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
- Center for Sports Science, Medicine and Research, Manipal Academy of Higher Education, Manipal, India
| | - S Fernandes
- Department of Exercise and Sports Sciences, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
- Center for Sports Science, Medicine and Research, Manipal Academy of Higher Education, Manipal, India
| | - F Davis
- Department of Exercise and Sports Sciences, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
- Center for Sports Science, Medicine and Research, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
28
|
Migliaccio GM, Russo L, Maric M, Padulo J. Sports Performance and Breathing Rate: What Is the Connection? A Narrative Review on Breathing Strategies. Sports (Basel) 2023; 11:sports11050103. [PMID: 37234059 DOI: 10.3390/sports11050103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Breathing is a natural and necessary process for humans. At the same time, the respiratory pace and frequency can vary so much, depending on the status of the subject. Specifically, in sports, breathing can have the effect of limiting performance from a physiological point of view, or, on the other hand, breathing can regulate the psychological status of the athletes. Therefore, the aim of this narrative review is to focus on the literature about the physiological and psychological aspects of breathing pace in sports performance, merging these two aspects because they are usually considered split, in order to create a new integrated vision of breathing and sports performance. Voluntary breathing can be divided into a slow or fast pace (VSB and VFB, respectively), and their effects on both the physiological and psychological parameters are very different. VSB can benefit athletes in a variety of ways, not just physically but mentally as well. It can help improve cardiovascular fitness, reduce stress and anxiety, and improve overall health and well-being, allowing athletes to maintain focus and concentration during training and competition. VFB is normal during physical training and competition, but away from training, if it is not voluntary, it can cause feelings of anxiety, panic, dizziness, and lightheadedness and trigger a stress response in the body, affecting the athlete's quality of life. In summary, the role of breathing in the performance of athletes should be considered, although no definitive data are available. The connection between breathing and sports performance is still unclear, but athletes can obtain benefits in focus and concentration using slow breathing strategies.
Collapse
Affiliation(s)
| | - Luca Russo
- Department of Human Sciences, Università Telematica degli Studi IUL, 50122 Florence, Italy
| | - Mike Maric
- Department of Performance, Sport Science Lab, 09131 Cagliari, Italy
| | - Johnny Padulo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
29
|
Held S, Rappelt L, Donath L. Acute and Chronic Performance Enhancement in Rowing: A Network Meta-analytical Approach on the Effects of Nutrition and Training. Sports Med 2023; 53:1137-1159. [PMID: 37097415 DOI: 10.1007/s40279-023-01827-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2023] [Indexed: 04/26/2023]
Abstract
INTRODUCTION This systematic review and network meta-analysis assessed via direct and indirect comparison the occurrence and magnitude of effects following different nutritional supplementation strategies and exercise interventions on acute and chronic rowing performance and its surrogates. METHODS PubMed, Web of Science, PsycNET and SPORTDiscus searches were conducted until March 2022 to identify studies that met the following inclusion criteria: (a) controlled trials, (b) rowing performance and its surrogate parameters as outcomes, and (c) peer-reviewed and published in English. Frequentist network meta-analytical approaches were calculated based on standardized mean differences (SMD) using random effects models. RESULTS 71 studies with 1229 healthy rowers (aged 21.5 ± 3.0 years) were included and two main networks (acute and chronic) with each two subnetworks for nutrition and exercise have been created. Both networks revealed low heterogeneity and non-significant inconsistency (I2 ≤ 35.0% and Q statistics: p ≥ 0.12). Based on P-score rankings, while caffeine (P-score 84%; SMD 0.43) revealed relevantly favorable effects in terms of acute rowing performance enhancement, whilst prior weight reduction (P-score 10%; SMD - 0.48) and extensive preload (P-score 18%; SMD - 0.34) impaired acute rowing performance. Chronic blood flow restriction training (P-score 96%; SMD 1.26) and the combination of β-hydroxy-β-methylbutyrate and creatine (P-score 91%; SMD 1.04) induced remarkably large positive effects, while chronic spirulina (P-score 7%; SMD - 1.05) and black currant (P-score 9%; SMD - 0.88) supplementation revealed impairment effects. CONCLUSION Homogeneous and consistent findings from numerous studies indicate that the choice of nutritional supplementation strategy and exercise training regimen are vital for acute and chronic performance enhancement in rowing.
Collapse
Affiliation(s)
- Steffen Held
- Department of Intervention Research in Exercise Training, Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany.
- Department of Sport and Management, IST University of Applied Sciences, Duesseldorf, Germany.
| | - Ludwig Rappelt
- Department of Intervention Research in Exercise Training, Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany
- Department of Movement and Training Science, University of Wuppertal, Wuppertal, Germany
| | - Lars Donath
- Department of Intervention Research in Exercise Training, Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany
| |
Collapse
|
30
|
Inspiratory Muscle Training Improves Maximal Inspiratory Pressure Without Increasing Performance in Elite Swimmers. Int J Sports Physiol Perform 2023; 18:320-325. [PMID: 36754056 DOI: 10.1123/ijspp.2022-0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/04/2022] [Accepted: 11/18/2022] [Indexed: 02/10/2023]
Abstract
PURPOSE To analyze the effect of inspiratory muscle training (IMT) on the maximal inspiratory mouth pressure (MIP) and performance of elite swimmers. METHODS Eight participants performed a 3000-m swimming test (T-3000), followed by blood lactate measurements at 1 and 5 minutes postexercise.. The testing protocol was carried out before and after 6 weeks of IMT, in which a high-volume IMT group (HV-IMT) (n = 4) performed IMT twice a day-in the morning in a seated position and in the afternoon in a concurrent session of IMT and core muscle training. Also, a low-volume IMT group (LV-IMT) (n = 4) performed IMT in the morning session only. RESULTS After the intervention, both groups improved their MIP, HV-IMT (132.75 [27.42] to 156.75 [21.88] cmH2O; P = .010; d = 0.967) and LV-IMT (149.25 [22.82] to 171.50 [23.74] cmH2O; P = .013; d = 0.955), without a significant difference between groups (P = .855). Regarding swimming performance, there were no changes between groups in the T-3000 (P = .472) or lactate removal rate (P = .104). CONCLUSION IMT increased inspiratory muscle strength in elite swimmers, but there was no association or meaningful impact on swimming performance.
Collapse
|
31
|
de Oliveira-Sousa SL, León-Garzón MC, Gacto-Sánchez M, Ibáñez-Vera AJ, Espejo-Antúnez L, León-Morillas F. Does Inspiratory Muscle Training Affect Static Balance in Soccer Players? A Pilot Randomized Controlled Clinical Trial. Healthcare (Basel) 2023; 11:healthcare11020262. [PMID: 36673630 PMCID: PMC9859380 DOI: 10.3390/healthcare11020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Inspiratory muscle training (IMT) is effective in improving postural stability and balance in different clinical populations. However, there is no evidence of these effects in soccer players. A single-blind, two-arm (1:1), randomized, placebo-controlled pilot study on 14 soccer players was performed with the main aim of assessing the effect of IMT on static balance, and secondarily, of examining changes in the respiratory muscle function. The experimental group (EG) received an IMT program with progressive intensity, from 20% to 80%, of the maximal inspiratory pressure (MIP). The sham group (SG) performed the same program with a fixed load of 20% of the MIP. Static balance and respiratory muscle function variables were assessed. A two-factor analysis of variance for repeated measures was used to assess differences after training. Statistical significance was set at p < 0.05. Significant increases were observed in the EG on length of sway under eyes open (from 2904.8 ± 640.0 to 3522.4 ± 509.0 mm, p = 0.012) and eyes closed (from 3166.2 ± 641.3 to 4173.3 ± 390.8 mm, p = 0.004). A significant increase in the maximal voluntary ventilation was observed for both groups (EG p = 0.005; SG p = 0.000). No significant differences existed between the groups. IMT did not improve the static balance in a sample of soccer players. Conducting a high-scale study is feasible and could refine the results and conclusions stemming from the current pilot study.
Collapse
Affiliation(s)
| | - Martha Cecilia León-Garzón
- Department of Physiotherapy, Jerónimos Campus, 135. Catholic University of Murcia UCAM, Guadalupe, 30107 Murcia, Spain
| | - Mariano Gacto-Sánchez
- Department of Physiotherapy, University of Murcia, 30003 Murcia, Spain
- Correspondence:
| | | | - Luis Espejo-Antúnez
- Department of Medical-Surgical Therapeutics, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Felipe León-Morillas
- Department of Physiotherapy, Jerónimos Campus, 135. Catholic University of Murcia UCAM, Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
32
|
Pałac M, Sikora D, Wolny T, Linek P. Relationship between respiratory muscles ultrasound parameters and running tests performance in adolescent football players. A pilot study. PeerJ 2023; 11:e15214. [PMID: 37090113 PMCID: PMC10117394 DOI: 10.7717/peerj.15214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Purpose Assessing the relationship between ultrasound imaging of respiratory muscles during tidal breathing and running tests (endurance and speed) in adolescent football players. Methods Ultrasound parameters of the diaphragm and intercostal muscles (shear modulus, thickness, excursion, and velocity), speed (30-m distance), and endurance parameters (multi-stage 20-m shuttle run test) were measured in 22 male adolescent football players. The relation between ultrasound and running tests were analysed by Spearman's correlation. Results Diaphragm shear modulus at the end of tidal inspiration was moderately negatively (R = - 0.49; p = 0.2) correlated with the speed score at 10 m. The diaphragm and intercostal muscle shear modulus ratio was moderately to strongly negatively correlated with the speed score at 10 m and 30 m (about R = - 0.48; p = 0.03). Diaphragm excursion was positively correlated with the speed score at 5 m (R = 0.46; p = 0.04) and 10 m (R = 0.52; p = 0.02). Diaphragm velocity was moderately positively correlated with the speed score at 5 m (R = 0.42; p = 0.06) and 30 m (R = 0.42; p = 0.07). Ultrasound parameters were not significantly related to all endurance parameters (R ≤ 0.36; p ≥ 0.11). Conclusions Ultrasound parameters of the respiratory muscles are related to speed score in adolescent football players. The current state of knowledge does not allow us to clearly define how important the respiratory muscles' ultrasound parameters can be in predicting some performance parameters in adolescent athletes.
Collapse
Affiliation(s)
- Małgorzata Pałac
- Musculoskeletal Elastography and Ultrasonography Laboratory, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Śląskie, Poland
- Musculoskeletal Diagnostic and Physiotherapy - Research Team, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Damian Sikora
- Musculoskeletal Elastography and Ultrasonography Laboratory, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Śląskie, Poland
| | - Tomasz Wolny
- Musculoskeletal Elastography and Ultrasonography Laboratory, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Śląskie, Poland
- Musculoskeletal Diagnostic and Physiotherapy - Research Team, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Paweł Linek
- Musculoskeletal Elastography and Ultrasonography Laboratory, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Śląskie, Poland
- Musculoskeletal Diagnostic and Physiotherapy - Research Team, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
33
|
Lin CH, Lee CW, Huang CH. Inspiratory Muscle Training Improves Aerobic Fitness in Active Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14722. [PMID: 36429439 PMCID: PMC9690705 DOI: 10.3390/ijerph192214722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Research on the effect of inspiratory muscle training (IMT) on exercise performance is inconsistent. IMT has not been applied to fit child athletes, who are more likely to develop inspiratory muscle fatigue, and, consequently, to benefit from IMT. Methods: Thirty children (mean age: 10.7 ± 1.2 years) were recruited and randomly assigned to a high-intensity (HG), a low-intensity (LG), or a control group (CG). For both training groups, a double-blind procedure was applied. In the HG, 80% of maximal inspiratory pressure (MIP) was used as the level of training intensity. The LG used 30% MIP. Training groups were trained at 6 breaths a set, 4 sets a day, totaling 24 breaths a day for 6 weeks. Exercise capacity outcomes include maximal and submaximal aerobic capacity, as measured as VO2max and distance from six-minute walk test (6MWD). Results show improvement in MIP, VO2max, and 6MWD only in the HG. MIP in the HG significantly increases from 108.7 (100.8-143.3) to 144.4 (130.0-175.6) cmH2O. VO2max in the HG increases from 43.0 (40.5-45) to 53.0 (46-63) mL·kg-1·min-1. The 6MWD increases from 792.0 (737.5-818.0) to 862.0 (798.5-953.5) m. Data are presented as median (interquartile range). No difference is found in the LG or CG. Conclusion: high-intensity IMT increases MIP, maximal, and submaximal exercise capacity in the HG, but no difference is found in the LG or CG. Therefore, high-intensity type of IMT improves aerobic fitness in fit children by appropriately applying inspiratory muscle strength training.
Collapse
Affiliation(s)
- Ching-Hsin Lin
- Division of Rehabilitation Technology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
| | - Chih-Wei Lee
- Department of Physical Therapy, Tzu Chi University, Hualien 970374, Taiwan
| | - Chien-Hui Huang
- Department of Physical Therapy, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
34
|
López-Pérez ME, Romero-Arenas S, Giráldez-García MA, Colomer-Poveda D, Márquez G. Acute psychophysiological responses during exercise while using resistive respiratory devices: A systematic review. Physiol Behav 2022; 256:113968. [PMID: 36155205 DOI: 10.1016/j.physbeh.2022.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
Abstract
Different studies have observed that respiratory muscle training (RMT) improve the endurance and strength of the respiratory muscles, having a positive impact on performance of endurance sports. Nevertheless, it remains to be clarified how to improve the efficiency of such training. The objective of this systematic review was to evaluate the acute physiological responses produced by training the respiratory muscles during exercise with flow resistive devices because such information may support us improve the efficiency of this type of training. A search in the Medline, Science Direct, Web of Science and Scopus databases was conducted, following the PRISMA guidelines. The methodological quality of the articles was assessed using the PEDro scale. Nineteen studies met the inclusion criteria and a total of 212 subjects were included in the studies. The RMT method used in all studies was flow resistive loading, whereas the constant load exercise was the most common type of exercise among the studies. The results obtained seem to indicate that the use of this type of training during exercise reduces the performance, the lactate (La-) values and the ventilation, whereas the end - tidal partial pressure of carbon dioxide (PCO2) is increased.
Collapse
Affiliation(s)
- María E López-Pérez
- Department of Physical Education, IES El Palmeral, Hermano Lázaro s/n, Vera, Almería 04620, Spain.
| | | | - Manuel A Giráldez-García
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruña, A Coruña, Spain
| | - David Colomer-Poveda
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruña, A Coruña, Spain
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruña, A Coruña, Spain
| |
Collapse
|
35
|
Komici K, D’Amico F, Verderosa S, Piomboni I, D’Addona C, Picerno V, Bianco A, Caiazzo A, Bencivenga L, Rengo G, Guerra G. Impact of Body Composition Parameters on Lung Function in Athletes. Nutrients 2022; 14:nu14183844. [PMID: 36145219 PMCID: PMC9500777 DOI: 10.3390/nu14183844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Given the potential risk of unhealthy weight management, the monitoring of body composition in athletes is advised. However, limited data reveal how body composition measurements can benefit athlete health and, in particular, respiratory function. The aim of this study is to evaluate the impact of body composition on pulmonary function in a population of adult athletes. Methods: Data from 435 competitive adult athletes regarding body compositions parameters and spirometry are retrospectively analyzed. Results: Our study population consists of 335 males and 100 female athletes. Muscle mass and fat-free mass are significantly and positively associated with forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) in the male and female population, while waist-to-height ratio is negatively associated with FEV1, FVC, and FEV1/FVC in the male population. In multivariable analysis, muscle mass and fat-free mass show significant association with FEV1 and FVC in both males and females (p < 0.05), and waist-to-height ratio is significantly and inversely associated with FEV1 and FVC in males (p < 0.05). Conclusions: Fat-free mass and muscle mass are positively and independently associated with FEV1 and FVC in athletes of both genders, and waist-to-height ratio is inversely associated with FEV1 and FVC only among male athletes. These findings suggest that body composition in athletes may be helpful in monitoring respiratory function.
Collapse
Affiliation(s)
- Klara Komici
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
- Exercise and Sports Medicine Unit, Antonio Cardarelli Hospital, 86100 Campobasso, Italy
- Correspondence: ; Tel.: +39-0874404739
| | - Fabio D’Amico
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
- Exercise and Sports Medicine Unit, Antonio Cardarelli Hospital, 86100 Campobasso, Italy
| | - Sofia Verderosa
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
- Exercise and Sports Medicine Unit, Antonio Cardarelli Hospital, 86100 Campobasso, Italy
| | - Iacopo Piomboni
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
| | - Carmine D’Addona
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
| | - Vito Picerno
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
| | - Antonio Bianco
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
- Exercise and Sports Medicine Unit, Antonio Cardarelli Hospital, 86100 Campobasso, Italy
| | - Andrea Caiazzo
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
- Exercise and Sports Medicine Unit, Antonio Cardarelli Hospital, 86100 Campobasso, Italy
| | - Leonardo Bencivenga
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Gérontopôle de Toulouse, Institut du Vieillissement, CHU de Toulouse, 31000 Toulouse, France
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Istituti Clinici Scientifici Maugeri SpA Società Benefit (ICS Maugeri SpA SB), 82037 Telese Terme, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
- Exercise and Sports Medicine Unit, Antonio Cardarelli Hospital, 86100 Campobasso, Italy
| |
Collapse
|
36
|
Stutz J, Casutt S, Spengler CM. Respiratory muscle endurance training improves exercise performance but does not affect resting blood pressure and sleep in healthy active elderly. Eur J Appl Physiol 2022; 122:2515-2531. [PMID: 36018510 PMCID: PMC9613745 DOI: 10.1007/s00421-022-05024-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022]
Abstract
Purpose Ageing is associated with increased blood pressure (BP), reduced sleep, decreased pulmonary function and exercise capacity. The main purpose of this study was to test whether respiratory muscle endurance training (RMET) improves these parameters. Methods Twenty-four active normotensive and prehypertensive participants (age: 65.8 years) were randomized and balanced to receive either RMET (N = 12) or placebo (PLA, N = 12). RMET consisted of 30 min of volitional normocapnic hyperpnea at 60% of maximal voluntary ventilation while PLA consisted of 1 inhalation day−1 of a lactose powder. Both interventions were performed on 4–5 days week−1 for 4–5 weeks. Before and after the intervention, resting BP, pulmonary function, time to exhaustion in an incremental respiratory muscle test (incRMET), an incremental treadmill test (IT) and in a constant-load treadmill test (CLT) at 80% of peak oxygen consumption, balance, sleep at home, and body composition were assessed. Data was analyzed with 2 × 2 mixed ANOVAs. Results Compared to PLA, there was no change in resting BP (independent of initial resting BP), pulmonary function, IT performance, sleep, body composition or balance (all p > 0.05). Performance significantly increased in the incRMET (+ 6.3 min) and the CLT (+ 3.2 min), resulting in significant interaction effects (p < 0.05). Conclusion In the elderly population, RMET might be used to improve respiratory and whole body endurance performance either as an adjunct to physical exercise training or as a replacement thereof for people not being able to intensively exercise even if no change in BP or sleep may be expected.
Collapse
Affiliation(s)
- Jan Stutz
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Selina Casutt
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
37
|
Manchado-Gobatto FB, Torres RS, Marostegan AB, Rasteiro FM, Hartz CS, Moreno MA, Pinto AS, Gobatto CA. Complex Network Model Reveals the Impact of Inspiratory Muscle Pre-Activation on Interactions among Physiological Responses and Muscle Oxygenation during Running and Passive Recovery. BIOLOGY 2022; 11:biology11070963. [PMID: 36101345 PMCID: PMC9311794 DOI: 10.3390/biology11070963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary Different warm-ups can be used to improve physical and sports performance. Among these strategies, we can include the pre-activation of the inspiratory muscles. Our study aimed to investigate this pre-activation model in high-intensity running performance and recovery using an integrative computational analysis called a complex network. The participants in this study underwent four sessions. The first and second sessions were performed to explain the procedures, characterize them and determine the individualized pre-activation intensity (40% of the maximum inspiratory pressure). Subsequently, on different days, the subjects were submitted to high-intensity tethered runs on a non-motorized treadmill with monitoring of the physiological responses during and after this effort. To understand the impacts of the pre-activation of inspiratory muscles on the organism, we studied the centrality metrics obtained by complex networks, which help in the interpretation of data in a more integrated way. Our results revealed that the graphs generated by this analysis were altered when inspiratory muscle pre-activation was applied, emphasizing muscle oxygenation responses in the leg and arm. Blood lactate also played an important role, especially after our inspiratory muscle strategy. Our findings confirm that the pre-activation of inspiratory muscles promotes modulations in the organism, better integrating physiological responses, which could increase performance and improve recovery. Abstract Although several studies have focused on the adaptations provided by inspiratory muscle (IM) training on physical demands, the warm-up or pre-activation (PA) of these muscles alone appears to generate positive effects on physiological responses and performance. This study aimed to understand the effects of inspiratory muscle pre-activation (IMPA) on high-intensity running and passive recovery, as applied to active subjects. In an original and innovative investigation of the impacts of IMPA on high-intensity running, we proposed the identification of the interactions among physical characteristics, physiological responses and muscle oxygenation in more and less active muscle to a running exercise using a complex network model. For this, fifteen male subjects were submitted to all-out 30 s tethered running efforts preceded or not preceded by IMPA, composed of 2 × 15 repetitions (1 min interval between them) at 40% of the maximum individual inspiratory pressure using a respiratory exercise device. During running and recovery, we monitored the physiological responses (heart rate, blood lactate, oxygen saturation) and muscle oxygenation (in vastus lateralis and biceps brachii) by wearable near-infrared spectroscopy (NIRS). Thus, we investigated four scenarios: two in the tethered running exercise (with or without IMPA) and two built into the recovery process (after the all-out 30 s), under the same conditions. Undirected weighted graphs were constructed, and four centrality metrics were analyzed (Degree, Betweenness, Eigenvector, and Pagerank). The IMPA (40% of the maximum inspiratory pressure) was effective in increasing the peak and mean relative running power, and the analysis of the complex networks advanced the interpretation of the effects of physiological adjustments related to the IMPA on exercise and recovery. Centrality metrics highlighted the nodes related to muscle oxygenation responses (in more and less active muscles) as significant to all scenarios, and systemic physiological responses mediated this impact, especially after IMPA application. Our results suggest that this respiratory strategy enhances exercise, recovery and the multidimensional approach to understanding the effects of physiological adjustments on these conditions.
Collapse
Affiliation(s)
- Fúlvia Barros Manchado-Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira 13484-350, Brazil; (A.B.M.); (F.M.R.); (C.A.G.)
- Correspondence:
| | - Ricardo Silva Torres
- Department of ICT and Natural Sciences, Norwegian University of Science and Technology, 6009 Ålesund, Norway;
| | - Anita Brum Marostegan
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira 13484-350, Brazil; (A.B.M.); (F.M.R.); (C.A.G.)
| | - Felipe Marroni Rasteiro
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira 13484-350, Brazil; (A.B.M.); (F.M.R.); (C.A.G.)
| | - Charlini Simoni Hartz
- Postgraduate Program in Human Movement Sciences, Methodist University of Piracicaba, Piracicaba 13400-000, Brazil; (C.S.H.); (M.A.M.)
| | - Marlene Aparecida Moreno
- Postgraduate Program in Human Movement Sciences, Methodist University of Piracicaba, Piracicaba 13400-000, Brazil; (C.S.H.); (M.A.M.)
| | - Allan Silva Pinto
- Department of Sport Sciences, Faculty of Physical Education, University of Campinas, Campinas 13083-851, Brazil;
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas 13083-970, Brazil
| | - Claudio Alexandre Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira 13484-350, Brazil; (A.B.M.); (F.M.R.); (C.A.G.)
| |
Collapse
|
38
|
Breathing, (S)Training and the Pelvic Floor—A Basic Concept. Healthcare (Basel) 2022; 10:healthcare10061035. [PMID: 35742086 PMCID: PMC9222935 DOI: 10.3390/healthcare10061035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Background: The current scientific literature is inconsistent regarding the potential beneficial or deleterious effects of high-intensity physical activities on the pelvic floor (PF) in women. So far, it has not been established with certainty whether disparate breathing mechanisms may exert short- or long-term influence on the PF function in this context, although based on the established physiological interrelationship of breathing with PF activation, this seems plausible. Objective: To propose a basic concept of the influence of different breathing patterns on the PF during strenuous physical efforts. Methodical approaches: Review of the recent literature, basic knowledge of classical western medicine regarding the principles of muscle physiology and the biomechanics of breathing, additional schematic illustrations, and magnetic resonance imaging (MRI) data corroborate the proposed concept and exemplify the consequences of strenuous efforts on the PF in relation to respective breathing phases. Conclusion: The pelvic floor muscles (PFMs) physiologically act as expiratory muscles in synergy with the anterolateral abdominal muscles, contracting during expiration and relaxing during inspiration. Obviously, a strenuous physical effort requires an expiratory motor synergy with the PFM and abdominal muscles in a co-contracted status to train the PFM and protect the PF against high intra-abdominal pressure (IAP). Holding breath in an inspiratory pattern during exertion stresses the PF because the high IAP impinges on the relaxed, hence insufficiently protected, PFMs. It seems conceivable that such disadvantageous breathing, if performed regularly and repeatedly, may ultimately cause PF dysfunction. At any rate, future research needs to take into account the respective breathing cycles during measurements and interventions addressing PFM function.
Collapse
|
39
|
Brian MS, Carmichael RD, Berube FR, Blake DT, Stuercke HR, Matthews EL. The effects of a respiratory training mask on steady-state oxygen consumption at rest and during exercise. Physiol Int 2022; 109:278-292. [PMID: 35575988 DOI: 10.1556/2060.2022.00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/12/2022] [Accepted: 03/09/2022] [Indexed: 02/18/2024]
Abstract
No studies have directly measured ventilatory and metabolic responses while wearing a respiratory training mask (RTM) at rest and during exercise. Eleven aerobically fit adults (age: 21 ± 1 years) completed a randomized cross-over study while wearing an RTM or control mask during cycling at 50% Wmax. An RTM was retrofitted with a gas collection tube and set to the manufacturer's "altitude resistance" setting of 6,000 ft (1,800 m). Metabolic gas analysis, ratings of perceived exertion, and oxygen saturation (SpO2) were measured during rest and cycling exercise. The RTM did not affect metabolic, ventilation, and SpO2 at rest compared to the control mask (all, effect of condition: P > 0.05). During exercise, the RTM blunted respiratory rate and minute ventilation (effect of condition: P < 0.05) compared to control. Similar increases in VO2 and VCO2 were observed in both conditions (both, effect of condition: P > 0.05). However, the RTM led to decreased fractional expired O2 and increased fractional expired CO2 (effect of condition: P < 0.05) compared to the control mask. In addition, the RTM decreased SpO2 and increased RPE (both, effect of condition: P < 0.05) during exercise. Despite limited influence on ventilation and metabolism at rest, the RTM reduces ventilation and disrupts gas concentrations during exercise leading to modest hypoxemia.
Collapse
Affiliation(s)
- Michael S Brian
- 1 Department of Health and Human Performance, Plymouth State University, Plymouth, NH, USA
- 2 Department of Kinesiology, University of New Hampshire, Durham, NH, USA
| | - Ryanne D Carmichael
- 1 Department of Health and Human Performance, Plymouth State University, Plymouth, NH, USA
| | - Felicia R Berube
- 1 Department of Health and Human Performance, Plymouth State University, Plymouth, NH, USA
| | - Daniel T Blake
- 1 Department of Health and Human Performance, Plymouth State University, Plymouth, NH, USA
| | - Hunter R Stuercke
- 1 Department of Health and Human Performance, Plymouth State University, Plymouth, NH, USA
| | - Evan L Matthews
- 3 Department of Exercise Science and Physical Education, Montclair State University, Montclair, NJ, USA
| |
Collapse
|
40
|
Marko D, Bahenský P, Bunc V, Grosicki GJ, Vondrasek JD. Does Wim Hof Method Improve Breathing Economy during Exercise? J Clin Med 2022; 11:jcm11082218. [PMID: 35456308 PMCID: PMC9028328 DOI: 10.3390/jcm11082218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: Breathing economy during endurance sports plays a major role in performance. Poor breathing economy is mainly characterized by excessive breathing frequency (BF) and low tidal volume (VT) due to shallow breathing. The purpose of this study was to evaluate whether a 4 week intervention based on the Wim Hof breathing method (WHBM) would improve breathing economy during exercise in adolescent runners. (2) Methods: 19 adolescent (16.6 ± 1.53 years) middle- and long-distance runners (11 boys and 8 girls) participated in the study. Participants were randomly divided into experimental (n = 11) and control groups (n = 8). The study was set in the transition period between competitive race seasons and both groups had a similar training program in terms of running volume and intensity over the course of the study. The experimental group performed breathing exercises every day (~20 min/day) for 4 weeks. The control group did not perform any kind of breathing exercise. The breathing exercises consisted of three sets of controlled hyperventilation and consecutive maximum breath holds. Before and after the intervention, participants performed incremental cycle ergometer testing sessions consisting of two minute stages at 1, 2, 3, and 4 W·kg−1 with breath-by-breath metabolic analysis. During the testing sessions, BF, VT, and minute ventilation (VE) were assessed and compared. (3) Results: There were no statistically significant differences (p > 0.05) in BF, VT, or VE between experimental and control groups before or after the intervention. A nonsignificant small-to-large effect for an increase in VE and BF in both groups following the 4 week intervention period was observed, possibly due to a reduction in training volume and intensity owing to the down period between competitive seasons. (4) Conclusions: The 4 week intervention of WHBM did not appear to alter parameters of breathing economy during a maximal graded exercise test in adolescent runners.
Collapse
Affiliation(s)
- David Marko
- Sports Motor Skills Laboratory, Faculty of Sports, Physical Training and Education, Charles University, 162 52 Prague, Czech Republic; (D.M.); (V.B.)
| | - Petr Bahenský
- Department of Sports Studies, Faculty of Education, University of South Bohemia, 371 15 Ceske Budejovice, Czech Republic
- Correspondence: ; Tel.: +42-038-777-3171
| | - Václav Bunc
- Sports Motor Skills Laboratory, Faculty of Sports, Physical Training and Education, Charles University, 162 52 Prague, Czech Republic; (D.M.); (V.B.)
| | - Gregory J. Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University, Savannah, GA 31419, USA; (G.J.G.); (J.D.V.)
| | - Joseph D. Vondrasek
- Biodynamics and Human Performance Center, Georgia Southern University, Savannah, GA 31419, USA; (G.J.G.); (J.D.V.)
| |
Collapse
|
41
|
Vieira KJV, Carvalho LC, Carvalho Borges JB, José dos Reis C, Iunes DH. The respiratory effects of a Pilates method protocol: Randomized clinical trial. J Bodyw Mov Ther 2022; 32:149-155. [DOI: 10.1016/j.jbmt.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/25/2022] [Accepted: 04/16/2022] [Indexed: 11/28/2022]
|
42
|
The Effect of Inspiratory Muscle Training on the Pulmonary Function in Mixed Martial Arts and Kickboxing Athletes. J Hum Kinet 2022; 81:53-63. [PMID: 35291646 PMCID: PMC8884863 DOI: 10.2478/hukin-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inspiratory muscle training (IMT) has found its way into athletes’ routine as a promising way of improving pulmonary function in combination with standard training. The objective of the study was to examine the effects of resistive IMT on the pulmonary function variables in athletes of two combat sports, i.e., mixed martial arts (MMA) and kickboxing. Fourteen kickboxing and 12 MMA male athletes qualified for the study. They were randomly assigned into experimental and control groups. While both groups participated in their standard training, the experimental group additionally participated in IMT which consisted of 30 breaths twice a day for 6 weeks. The pulmonary functions were measured at baseline and after 6 weeks of IMT. The addition of IMT to standard training increased significantly the forced expiratory volume in the first second to vital capacity ratio (FEV1/VC), and the maximum voluntary ventilation (MVV) (p < 0.05) with changes of 5.7%, and 28.6%, respectively, in MMA athletes. The kickboxing group showed no significant changes. The interaction of the sport discipline and IMT intervention yielded a strong significant change in the MVV (F(1, 11) = 14.53, p < 0.01), and FEV1/VC (F(1, 11) = 20.67, p < 0.01) to the benefit of MMA athletes in comparison with kickboxing athletes. Combining resistive IMT for 6 weeks with standard training was effective to improve some pulmonary functions in MMA athletes, but did not lead to additional gains in kickboxing athletes.
Collapse
|
43
|
Shei RJ, Paris HL, Sogard AS, Mickleborough TD. Time to Move Beyond a "One-Size Fits All" Approach to Inspiratory Muscle Training. Front Physiol 2022; 12:766346. [PMID: 35082689 PMCID: PMC8784843 DOI: 10.3389/fphys.2021.766346] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Inspiratory muscle training (IMT) has been studied as a rehabilitation tool and ergogenic aid in clinical, athletic, and healthy populations. This technique aims to improve respiratory muscle strength and endurance, which has been seen to enhance respiratory pressure generation, respiratory muscle weakness, exercise capacity, and quality of life. However, the effects of IMT have been discrepant between populations, with some studies showing improvements with IMT and others not. This may be due to the use of standardized IMT protocols which are uniformly applied to all study participants without considering individual characteristics and training needs. As such, we suggest that research on IMT veer away from a standardized, one-size-fits-all intervention, and instead utilize specific IMT training protocols. In particular, a more personalized approach to an individual's training prescription based upon goals, needs, and desired outcomes of the patient or athlete. In order for the coach or practitioner to adjust and personalize a given IMT prescription for an individual, factors, such as frequency, duration, and modality will be influenced, thus inevitably affecting overall training load and adaptations for a projected outcome. Therefore, by integrating specific methods based on optimization, periodization, and personalization, further studies may overcome previous discrepancies within IMT research.
Collapse
Affiliation(s)
- Ren-Jay Shei
- Global Medical Department, Mallinckrodt Pharmaceuticals Company, Hampton, NJ, United States
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Abigail S Sogard
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States
| |
Collapse
|
44
|
Krause-Sorio B, An E, Aguila AP, Martinez F, Aysola RS, Macey PM. Inspiratory Muscle Training for Obstructive Sleep Apnea: Protocol Development and Feasibility of Home Practice by Sedentary Adults. Front Physiol 2021; 12:737493. [PMID: 34803729 PMCID: PMC8599350 DOI: 10.3389/fphys.2021.737493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/12/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Inspiratory muscle training (IMT) may improve respiratory and cardiovascular functions in obstructive sleep apnea (OSA) and is a potential alternative or adjunct treatment to continuous positive airway pressure (CPAP). IMT protocols were originally designed for athletes, however, we found some OSA patients could not perform the exercise, so we aimed for a more OSA-friendly protocol. Our feasibility criteria included (1) participants successfully managing the technique at home; (2) participants completing daily practice sessions and recording data logs; and (3) capturing performance plateaus to determine an optimal length of the intervention. Methods: Five sedentary OSA patients participated in this feasibility study (three men, mean age = 61.6 years, SD = 10.2). Using a digital POWERbreathe K4 or K5 device, participants performed 30 daily inhalations against a resistance set at a percentage of maximum, recalculated weekly. Participants were willing to perform one but not two daily practice sessions. Intervention parameters from common IMT protocols were adapted according to ability and subjective feedback. Some were unable to perform the typically used 75% of maximum inspiratory resistance so we lowered the target to 65%. The technique required some practice; therefore, we introduced a practice week with a 50% target. After an initial 8 weeks, the intervention was open-ended and training continued until all participants demonstrated at least one plateau of inspiratory strength (2 weeks without strength gain). Weekly email and phone reminders ensured that participants completed all daily sessions and logged data in their online surveys. Weekly measures of inspiratory resistance, strength, volume, and flow were recorded. Results: Participants successfully completed the practice and subsequent 65% IMT resistance targets daily for 13 weeks. Inspiratory strength gains showed plateaus in all subjects by the end of 10 weeks of training, suggesting 12 weeks plus practice would be sufficient to achieve and capture maximum gains. Participants reported no adverse effects. Conclusion: We developed and tested a 13-week IMT protocol in a small group of sedentary, untreated OSA patients. Relative to other IMT protocols, we successfully implemented reduced performance requirements, a practice week, and an extended timeframe. This feasibility study provides the basis for a protocol for clinical trials on IMT in OSA.
Collapse
Affiliation(s)
- Beatrix Krause-Sorio
- UCLA School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Eunjoo An
- UCLA School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Andrea P Aguila
- UCLA School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Fernando Martinez
- UCLA School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ravi S Aysola
- Division of Pulmonary and Critical Care, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul M Macey
- UCLA School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
45
|
Niederseer D, Walser R, Schmied C, Dela F, Gräni C, Bohm P, Müller E, Niebauer J. Effects of a 12-Week Recreational Skiing Program on Cardio-Pulmonary Fitness in the Elderly: Results from the Salzburg Skiing in the Elderly Study (SASES). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111378. [PMID: 34769896 PMCID: PMC8583387 DOI: 10.3390/ijerph182111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To investigate whether recreational alpine skiing in the elderly can improve cardio-pulmonary fitness. DESIGN Randomized controlled study with pre-post repeated measurements. METHODS A total of 48 elderly participants (60-76 years) were randomly assigned to either participate in a 12-week guided recreational skiing program (intervention group, IG, average of 28.5 ± 2.6 skiing days) or to continue a sedentary ski-free lifestyle (control group, CG). Cardio-pulmonary exercise testing (CPET) and pulmonary function testing were performed in both groups before (PRE) and after (POST) the intervention/control period to compare parameters PRE vs. POST CPET. RESULTS At baseline, IG and CG did not differ significantly with respect to CPET and pulmonary function parameters. At POST, several measures of maximal exercise capacity and breathing economy were significantly improved in IG as compared to CG: maximal oxygen capacity (IG: 33.8 ± 7.9; CG: 28.7 ± 5.9 mL/min/kg; p = 0.030), maximal carbon dioxide production (IG: 36.2 ± 7.7; CG: 31.8 ± 6.5 mL/min/kg; p = 0.05), maximal oxygen pulse (IG: 16.8 ± 4.2; CG: 13.2 ± 4 mL/heart beat; p = 0.010), maximal minute ventilation (IG: 96.8 ± 17.8; CG: 81.3 ± 21.9 l/min; p = 0.025), and maximal metabolic equivalent of task (METs, IG: 9.65 ± 2.26; CG: 8.19 ± 1.68 METs; p = 0.029). Except for oxygen pulse, these significant changes could also be observed at the anaerobic threshold. Maximal heart rate and pulmonary function parameters remained essentially unchanged. CONCLUSION Regular recreational skiing improves cardio-pulmonary fitness along with breathing economy and thus can contribute to a heart-healthy lifestyle for the elderly.
Collapse
Affiliation(s)
- David Niederseer
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (R.W.); (C.S.); (P.B.)
- Institute of Sports Medicine, Prevention and Rehabilitation, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria;
- Correspondence: ; Tel.: +41-(0)44-253-94-71; Fax: +41-(0)44-255-44-01
| | - Roman Walser
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (R.W.); (C.S.); (P.B.)
| | - Christian Schmied
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (R.W.); (C.S.); (P.B.)
| | - Flemming Dela
- Department of Geriatrics, Bispebjerg-Frederiksberg University Hospital, DK-2400NV Copenhagen, Denmark;
- Xlab, Department of Biomedicine, University of Copenhagen, DK-2200N Copenhagen, Denmark
| | - Christoph Gräni
- Department of Cardiology, Bern University Hospital, 3010 Bern, Switzerland;
| | - Philipp Bohm
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (R.W.); (C.S.); (P.B.)
| | - Erich Müller
- Department of Sport Science and Kinesiology, University of Salzburg, 5020 Salzburg, Austria;
| | - Josef Niebauer
- Institute of Sports Medicine, Prevention and Rehabilitation, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria;
| |
Collapse
|
46
|
Bairapareddy KC, Augustine A, Alaparthi GK, Hegazy F, Shousha TM, Ali SA, Nagaraja R, Chandrasekaran B. Maximal Respiratory Pressures and Maximum Voluntary Ventilation in Young Arabs: Association with Anthropometrics and Physical Activity. J Multidiscip Healthc 2021; 14:2923-2930. [PMID: 34703244 PMCID: PMC8524059 DOI: 10.2147/jmdh.s333710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
Background Maximum inspiratory pressure (MIP), maximum expiratory pressure (MEP) and maximum voluntary ventilation (MVV) measurements assist in determining the respiratory muscle strength and endurance. These determinants of respiratory muscles vary significantly by age, gender, height, and ethnic origin. Normative values for maximum respiratory pressures (MRPs) and MVV would aid in evaluating respiratory muscle function in athletes, estimating performance, and assisting in rehabilitation. In addition, the reference values may aid in determining the efficacy of therapeutic interventions in young people with chronic respiratory diseases. The purpose of this study was to see how respiratory muscle strength indices correlated with anthropometric and physical activity characteristics in young Arabs. Methodology The study included 80 male volunteers and 85 female volunteers ranging in age from 18 to 30 years. MicroRPM was used to measure MIP and MEP, and pulmonary function test data, including MVV values, were recorded. All subjects completed the Global Physical Activity Questionnaire (GPAQ) and anthropometric measurements. Unpaired t-tests or Mann–Whitney U-tests were used to determine male-female differences. Using the Pearson correlation coefficient and Spearman Rho correlation coefficient tests, MIP and MEP values were correlated with body composition and physical activity. Using stepwise multiple linear regression analysis, the relationships between respiratory function (MVV, MIP, and MEP) and PFT values (FVC, FEV1, and FEV1/FVC), physical activity, and sedentary behavior were investigated. Results MIP, MEP, and MVV values were significantly lower in females than in males. MIP, MEP, and MVV values had a moderate correlation with forced vital capacity, forced expiratory volume in 1 second, and height, but not with weight, BMI, or GPAQ. Age, gender, and body mass index were found to be significant predictors of maximal respiratory pressures in a young Arab population. Conclusion Maximum respiratory pressures and maximal voluntary ventilation were significantly lower in young Arabs than in other ethnic groups; these values were influenced by gender and height but not by levels of physical activity.
Collapse
Affiliation(s)
| | - Anulucia Augustine
- Department of Cardiovascular and Respiratory Physiotherapy, MGM College of Physiotherapy, Navi Mumbai, Maharashtra, India
| | - Gopala Krishna Alaparthi
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Fatma Hegazy
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Tamer Mohamed Shousha
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| | - Sara Atef Ali
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ravishankar Nagaraja
- Department of Biostatistics, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
| | - Baskaran Chandrasekaran
- Department of Exercise Sciences and Sports, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
47
|
Effect of Moderate- or High-Intensity Inspiratory Muscle Strength Training on Maximal Inspiratory Mouth Pressure and Swimming Performance in Highly Trained Competitive Swimmers. Int J Sports Physiol Perform 2021; 17:343-349. [PMID: 34686614 DOI: 10.1123/ijspp.2021-0119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/24/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Inspiratory muscle strength training (IMST) can improve exercise performance. Increased maximal inspiratory mouth pressure (MIP) could be beneficial for swimmers to enhance their performance. This study aimed to clarify the effect of high-intensity IMST for 6 weeks on MIP and swimming performance in highly trained competitive swimmers. METHODS Thirty male highly trained competitive swimmers were assigned to high-intensity IMST (HI; n = 10), moderate-intensity IMST (MOD; n = 10), and control (n = 10) groups. The 6-week IMST intervention comprised twice daily sessions for 6 d/wk at inspiratory pressure threshold loads equivalent to 75% MIP (HI) and 50% MIP (MOD). Before and after the intervention, MIP and swimming performance were assessed. Swimming performance was evaluated in free and controlled frequency breathing 100-m freestyle swimming time trials in a 25-m pool. For controlled frequency breathing, participants took 1 breath every 6 strokes. RESULTS The MIP values after 2 and 6 weeks of IMST in the HI and MOD groups were significantly higher than those before IMST (P = .0001). The magnitudes of the MIP increases after 6 weeks of IMST did not differ between the HI (13.4% [8.7%]) and MOD (13.1% [10.1%]) groups (P = .44). The 100-m freestyle swimming times under the controlled frequency condition were significantly shorter after IMST than those before IMST in both the HI (P = .046) and MOD (P = .042) groups. CONCLUSIONS Inspiratory pressure threshold load equivalent to 50% MIP could be sufficient to improve MIP and swimming performance under the controlled frequency breathing condition in highly trained competitive swimmers.
Collapse
|
48
|
Effects of the Elevation Training Mask® 2.0 on dyspnea and respiratory muscle mechanics, electromyography, and fatigue during exhaustive cycling in healthy humans. J Sci Med Sport 2021; 25:167-172. [PMID: 34538564 DOI: 10.1016/j.jsams.2021.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Examine the effects of the Elevation Training Mask® 2.0 (ETM) on dyspnea, and respiratory muscle function and fatigue during exercise. DESIGN Randomized crossover. METHODS 10 healthy participants completed 2 time-to-exhaustion (TTE) cycling tests while wearing the ETM or under a sham control condition. During the sham, participants were told they were breathing air equivalent to "9000 ft" (matched to the selected resistance valves on the ETM according to the manufacturer), but they were breathing room air. Dyspnea and leg discomfort were assessed using the modified 0-10 category-ratio Borg scale. Qualitative dyspnea descriptors at peak exercise were selected from a list of 15. Crural diaphragmatic electromyography (EMGdi) and transdiaphragmatic pressure (Pdi) were measured via a multipair esophageal electrode balloon catheter. Participants performed maximal respiratory maneuvers before and after exercise to estimate the degree of respiratory muscle fatigue. RESULTS Exercise with the ETM resulted in a significant decrease in TTE (p = 0.015), as well as increased dyspnea at baseline (p = 0.032) and during the highest equivalent submaximal exercise time (p = 0.0001). The increase in dyspnea with the ETM was significantly correlated with the decrease in exercise time (r = 0.73, p = 0.020). EMGdi and Pdi were significantly increased with the ETM at all time points (all p < 0.05). There was a significant increase in the selection frequency of "my breath does not go in all the way" at peak exercise with the ETM (p = 0.02). The ETM did not induce respiratory muscle fatigue. CONCLUSIONS Exercising with the ETM appears to decrease exercise performance, in part, by increasing the sensation of dyspnea.
Collapse
|
49
|
Chambault J, Grand G, Kayser B. Sex-Specific Effects of Respiratory Muscle Endurance Training on Cycling Time Trial Performance in Normoxia and Hypoxia. Front Physiol 2021; 12:700620. [PMID: 34421638 PMCID: PMC8378271 DOI: 10.3389/fphys.2021.700620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives: We tested the hypotheses that respiratory muscle endurance training (RMET) improves endurance cycling performance differently in women and men and more so in hypoxia than in normoxia. Design: A prospective pre-post cross-over study with two testing conditions. Methods: Healthy and active women (seven, 24 ± 4 years, mean ± standard deviation [SD]) and men (seven, 27 ± 5 years) performed incremental cycling to determine maximum oxygen consumption (VO2peak) and power output (Wpeak) and on different days two 10-km cycling time trials (TTs) in normoxia and normobaric hypoxia (FiO2, 0.135, ~3,500 m equivalent), in a balanced randomized order. Next they performed supervised RMET in normoxia (4 weeks, 5 days/week, 30 min/day eucapnic hyperpnea at ~60% predicted maximum voluntary ventilation) followed by identical post-tests. During TTs, heart rate, ear oximetry reading, and Wpeak were recorded. Results: The VO2peak and Wpeak values were unchanged after RMET. The TT was improved by 7 ± 6% (p < 0.001) in normoxia and 16 ± 6% (p < 0.001) in hypoxia. The difference between normoxic and hypoxic TT was smaller after RMET as compared with that before RMET (14% vs. 21%, respectively, p < 0.001). All effects were greater in women (p < 0.001). The RMET did not change the heart rate or ear oximetry reading during TTs. Conclusion: We found a greater effect of RMET on cycling TT performance in women than in men, an effect more pronounced in hypoxia. These findings are congruent with the contention of a more pronounced performance-limiting role of the respiratory system during endurance exercise in hypoxia compared with normoxia and more so in women whose respiratory system is undersized compared with that of men.
Collapse
Affiliation(s)
- Julie Chambault
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégorine Grand
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
50
|
León-Morillas F, León-Garzón MC, Del Mar Martínez-García M, Reina-Abellán J, Palop-Montoro MV, de Oliveira-Sousa SL. Effects of respiratory muscle training in soccer players: a systematic review with a meta-analysis. SPORTVERLETZUNG-SPORTSCHADEN 2021; 35:154-164. [PMID: 34261153 DOI: 10.1055/a-1524-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Respiratory muscle training can improve strength and reduce respiratory muscle fatigue during high-intensity exercise. Little is known about the existing evidence in soccer players. A systematic review with a meta-analysis was performed to analyse the existing evidence on the effects of respiratory muscle training in soccer players. Two independent researchers reviewed 17 databases until July 2019. Inclusion criteria were controlled clinical trials (randomised or not), soccer players (professional or recreational), females and/or males, and respiratory muscle training compared with simulated or regular training groups. The methodological quality and quality of evidence were evaluated with the Cochrane Collaboration Tool and GRADE score, respectively. Statistical analysis was performed using the integral meta-analysis 3.3.070. Nine studies met the eligibility criteria. The meta-analysis was performed for eight variables related to respiratory muscle function, lung function and sports performance. Respiratory muscle training provided a significant improvement compared with simulated or regular training in maximal inspiratory buccal pressure (6 studies, SDM = 0.89; 95 % CI = 0.42, 1.35) and maximum consumption of oxygen (3 studies, SDM = 0.92; 95 % CI = 0.24; 1.61). No significant improvements were observed for other variables. The quality of the evidence was rated as low or very low.
Collapse
|