1
|
Duque-Wilckens N, Maradiaga N, Szu-Ying Y, Joseph D, Srinavasan V, Thelen K, Sotomayor F, Durga K, Nestler E, Moeser AJ, Robison AJ. Activity-dependent FosB gene expression negatively regulates mast cell functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592755. [PMID: 38766119 PMCID: PMC11100602 DOI: 10.1101/2024.05.06.592755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Mast cells are innate immune cells that play a crucial role in numerous physiological processes across tissues by releasing pre-stored and newly synthesized mediators in response to stimuli, an activity largely driven by changes in gene expression. Given their widespread influence, dysfunction in mast cells can contribute to a variety of pathologies including allergies, long COVID, and autoimmune and neuroinflammatory disorders. Despite this, the specific transcriptional mechanisms that control mast cell mediator release remain poorly understood, significantly hindering the development of effective therapeutic strategies. We found that the two proteins encoded by the transcription factor FosB, FOSB and the highly stable variant ΔFOSB, are robustly expressed upon stimulation in both murine and human mast cell progenitors. Motivated by these findings, we generated a novel mouse model with targeted ablation of FosB gene expression specifically in mast cells (MC FosB- ) by crossing a mast cell-specific Cre reporter line (Mcpt5-Cre) with a Cre-dependent floxed FosB mouse lines. We found that mast cell progenitors derived from MC FosB- mice, compared to wild types (WT), exhibit baseline increased histamine content and vesicle numbers. Additionally, they show enhanced calcium mobilization, degranulation, and histamine release following allergy-related IgE-mediated stimulation, along with heightened IL-6 release in response to infection-like LPS stimulation. In vivo experiments with IgE- mediated and LPS challenges revealed that MC FosB- mice experience greater drops in body temperature, heightened activation of tissue-resident mast cells, and increased release of pro-inflammatory mediators compared to their WT counterparts. These findings suggest that FosB products play a crucial regulatory role in moderating stimulus-induced mast cell activation in response to both IgE and LPS stimuli. Lastly, by integrating CUT&RUN and RNAseq data, we identified several genes targeted by ΔFOSB that could mediate these observed effects, including Mir155hg, CLCF1, DUSP4, and Trib1. Together, this study provides the first evidence that FOSB/ΔFOSB modulate mast cell functions and provides a new possible target for therapeutic interventions aimed at ameliorating mast cell-related diseases.
Collapse
|
2
|
Vizin RC, Almeida MC, Soriano RN, Romanovsky AA. Selection of preferred thermal environment and cold-avoidance responses in rats rely on signals transduced by the dorsal portion of the lateral funiculus of the spinal cord. Temperature (Austin) 2023; 10:121-135. [PMID: 37187830 PMCID: PMC10177698 DOI: 10.1080/23328940.2023.2191378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 05/17/2023] Open
Abstract
Thermoregulatory behaviors are powerful effectors for core body temperature (Tc) regulation. We evaluated the involvement of afferent fibers ascending through the dorsal portion of the lateral funiculus (DLF) of the spinal cord in "spontaneous" thermal preference and thermoregulatory behaviors induced by thermal and pharmacological stimuli in a thermogradient apparatus. In adult Wistar rats, the DLF was surgically severed at the first cervical vertebra bilaterally. The functional effectiveness of funiculotomy was verified by the increased latency of tail-flick responses to noxious cold (-18°C) and heat (50°C). In the thermogradient apparatus, funiculotomized rats showed a higher variability of their preferred ambient temperature (Tpr) and, consequently, increased Tc fluctuations, as compared to sham-operated rats. The cold-avoidance (warmth-seeking) response to moderate cold (whole-body exposure to ~17°C) or epidermal menthol (an agonist of the cold-sensitive TRPM8 channel) was attenuated in funiculotomized rats, as compared to sham-operated rats, and so was the Tc (hyperthermic) response to menthol. In contrast, the warmth-avoidance (cold-seeking) and Tc responses of funiculotomized rats to mild heat (exposure to ~28°C) or intravenous RN-1747 (an agonist of the warmth-sensitive TRPV4; 100 μg/kg) were unaffected. We conclude that DLF-mediated signals contribute to driving spontaneous thermal preference, and that attenuation of these signals is associated with decreased precision of Tc regulation. We further conclude that thermally and pharmacologically induced changes in thermal preference rely on neural, presumably afferent, signals that travel in the spinal cord within the DLF. Signals conveyed by the DLF are important for cold-avoidance behaviors but make little contribution to heat-avoidance responses.
Collapse
Affiliation(s)
- Robson C.L. Vizin
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Dignity Health, Phoenix, AZ, USA
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Maria C. Almeida
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Dignity Health, Phoenix, AZ, USA
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Renato N. Soriano
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Dignity Health, Phoenix, AZ, USA
- Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, MG, Brazil
| | - Andrej A. Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Dignity Health, Phoenix, AZ, USA
- School of Molecular Sciences, University of Arizona, Tempe, AZ, USA
- Zharko Pharma, Inc, Olympia, WA, USA
| |
Collapse
|
3
|
Xu J, Gao W, He T, Yao L, Wu H, Chen Z, Lai Y, Chen Y, Zhang J. The hyperthermic response to intra-preoptic area administration of agmatine in male rats. J Therm Biol 2023; 113:103529. [PMID: 37055134 DOI: 10.1016/j.jtherbio.2023.103529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Agmatine is an endogenous biogenic amine that exerts various effects on the central nervous system. The hypothalamic preoptic area (POA, thermoregulatory command center) has high agmatine immunoreactivity. In this study, in conscious and anesthetized male rats, agmatine microinjection into the POA induced hyperthermic responses associated with increased heat production and locomotor activity. Intra-POA administration of agmatine increased the locomotor activity, the brown adipose tissue temperature and rectum temperature, and induced shivering as demonstrated by increased neck muscle electromyographic activity. However, intra-POA administration of agmatine almost had no impact on the tail temperature of anesthetized rats. Furthermore, there were regional differences in the response to agmatine in the POA. The most effective sites for the microinjection of agmatine to elicit hyperthermic responses were localized in the medial preoptic area (MPA). Agmatine microinjection into the median preoptic nucleus (MnPO) and lateral preoptic nucleus (LPO) had a minimal effect on the mean core temperature. Analysis of the in vitro discharge activity of POA neurons in brain slices when perfused with agmatine showed that agmatine inhibited most warm-sensitive but not temperature-insensitive neurons in the MPA. However, regardless of thermosensitivity, the majority of MnPO and LPO neurons were not responsive to agmatine. The results demonstrated that agmatine injection into the POA of male rats, especially the MPA, induced hyperthermic responses, which may be associated with increased BAT thermogenesis, shivering and locomotor activity by inhibiting warm-sensitive neurons.
Collapse
|
4
|
Andrade MT, Goulart KNO, Barbosa NHS, Soares DD, Andrade AGP, Gonçalves DAP, Mendes TT, Coimbra CC, Wanner SP. Core body temperatures of rats subjected to treadmill exercise to fatigue or exhaustion: The journal Temperature toolbox. Temperature (Austin) 2022; 10:287-312. [PMID: 37554383 PMCID: PMC10405761 DOI: 10.1080/23328940.2022.2115274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022] Open
Abstract
This study systematically reviewed the literature reporting the changes in rats' core body temperature (TCORE) induced by either incremental- or constant-speed running to fatigue or exhaustion. In addition, multiple linear regression analyses were used to determine the factors contributing to the TCORE values attained when exercise was interrupted. Four databases (EMBASE, PubMed, SPORTDiscus, and Web of Science) were searched in October 2021, and this search was updated in August 2022. Seventy-two studies (n = 1,538 rats) were included in the systematic review. These studies described heterogeneous experimental conditions; for example, the ambient temperature ranged from 5 to 40°C. The rats quit exercising with TCORE values varying more than 8°C among studies, with the lowest and highest values corresponding to 34.9°C and 43.4°C, respectively. Multiple linear regression analyses indicated that the ambient temperature (p < 0.001), initial TCORE (p < 0.001), distance traveled (p < 0.001; only incremental exercises), and running speed and duration (p < 0.001; only constant exercises) contributed significantly to explaining the variance in the TCORE at the end of the exercise. In conclusion, rats subjected to treadmill running exhibit heterogeneous TCORE when fatigued or exhausted. Moreover, it is not possible to determine a narrow range of TCORE associated with exercise cessation in hyperthermic rats. Ambient temperature, initial TCORE, and physical performance-related variables are the best predictors of TCORE at fatigue or exhaustion. From a broader perspective, this systematic review provides relevant information for selecting appropriate methods in future studies designed to investigate exercise thermoregulation in rats.
Collapse
Affiliation(s)
- Marcelo T. Andrade
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Karine N. O. Goulart
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nicolas H. S. Barbosa
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danusa D. Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - André G. P. Andrade
- Biomechanics Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dawit A. P. Gonçalves
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thiago T. Mendes
- Department of Physical Education, Faculty of Education, Universidade Federal da Bahia, Salvador, Brazil
| | - Cândido C. Coimbra
- Laboratory of Endocrinology and Metabolism, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Samuel P. Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
5
|
James CM, Olejniczak SH, Repasky EA. How murine models of human disease and immunity are influenced by housing temperature and mild thermal stress. Temperature (Austin) 2022; 10:166-178. [PMID: 37332306 PMCID: PMC10274546 DOI: 10.1080/23328940.2022.2093561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 10/17/2022] Open
Abstract
At the direction of The Guide and Use of Laboratory Animals, rodents in laboratory facilities are housed at ambient temperatures between 20°C and 26°C, which fall below their thermoneutral zone (TNZ). TNZ is identified as a range of ambient temperatures that allow an organism to regulate body temperature without employing additional thermoregulatory processes (e.g. metabolic heat production driven by norepinephrine), thus leading to mild, chronic cold stress. For mice, this chronic cold stress leads to increased serum levels of the catecholamine norepinephrine, which has direct effects on various immune cells and several aspects of immunity and inflammation. Here, we review several studies that have revealed that ambient temperature significantly impacts outcomes in various murine models of human diseases, particularly those in which the immune system plays a major role in its pathogenesis. The impact of ambient temperature on experimental outcomes raises questions regarding the clinical relevance of some murine models of human disease, since studies examining rodents housed within thermoneutral ambient temperatures revealed that rodent disease pathology more closely resembled that of humans. Unlike laboratory rodents, humans can modify their surroundings accordingly - by adjusting their clothing, the thermostat, or their physical activity - to live within the appropriate TNZ, offering a possible explanation for why many studies using murine models of human disease conducted at thermoneutrality better represent patient outcomes. Thus, it is strongly recommended that ambient housing temperature in such studies be consistently and accurately reported and recognized as an important experimental variable.
Collapse
Affiliation(s)
- Caitlin M. James
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | |
Collapse
|
6
|
Patel AR, Frikke-Schmidt H, Bezy O, Sabatini PV, Rittig N, Jessen N, Myers MG, Seeley RJ. LPS induces rapid increase in GDF15 levels in mice, rats, and humans but is not required for anorexia in mice. Am J Physiol Gastrointest Liver Physiol 2022; 322:G247-G255. [PMID: 34935522 PMCID: PMC8799390 DOI: 10.1152/ajpgi.00146.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Growth differentiation factor 15 (GDF15), a TGFβ superfamily cytokine, acts through its receptor, cell line-derived neurotrophic factorfamily receptor α-like (GFRAL), to suppress food intake and promote nausea. GDF15 is broadly expressed at low levels but increases in states of disease such as cancer, cachexia, and sepsis. Whether GDF15 is necessary for inducing sepsis-associated anorexia and body weight loss is currently unclear. To test this we used a model of moderate systemic infection in GDF15KO and GFRALKO mice with lipopolysaccharide (LPS) treatment to define the role of GDF15 signaling in infection-mediated physiologic responses. Since physiological responses to LPS depend on housing temperature, we tested the effects of subthermoneutral and thermoneutral conditions on eliciting anorexia and inducing GDF15. Our data demonstrate a conserved LPS-mediated increase in circulating GDF15 levels in mouse, rat, and human. However, we did not detect differences in LPS-induced anorexia between WT and GDF15KO or GFRALKO mice. Furthermore, there were no differences in anorexia or circulating GDF15 levels at either thermoneutral or subthermoneutral housing conditions in LPS-treated mice. These data demonstrate that GDF15 is not necessary to drive food intake suppression in response to moderate doses of LPS.NEW & NOTEWORTHY Although many responses to LPS depend on housing temperature, the anorexic response to LPS does not. LPS results in a potent and rapid increase in circulating levels of GDF15 in mice, rats, and humans. Nevertheless, GDF15 and its receptor (GFRAL) are not required for the anorexic response to systemic LPS administration. The anorexic response to LPS likely involves a myriad of complex physiological alterations.
Collapse
Affiliation(s)
- Anita R Patel
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan.,Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Olivier Bezy
- Was Internal Medicine Research Unit, Pfizer Inc., Cambridge, Massachusetts
| | - Paul V Sabatini
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Nikolaj Rittig
- Department of Diabetes and Hormone Diseases, Aarhus University Hospital, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Jessen
- Department of Diabetes and Hormone Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Martin G Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
7
|
Keringer P, Furedi N, Gaszner B, Miko A, Pakai E, Fekete K, Olah E, Kelava L, Romanovsky AA, Rumbus Z, Garami A. The hyperthermic effect of central cholecystokinin is mediated by the cyclooxygenase-2 pathway. Am J Physiol Endocrinol Metab 2022; 322:E10-E23. [PMID: 34779255 DOI: 10.1152/ajpendo.00223.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholecystokinin (CCK) increases core body temperature via CCK2 receptors when administered intracerebroventricularly (icv). The mechanisms of CCK-induced hyperthermia are unknown, and it is also unknown whether CCK contributes to the fever response to systemic inflammation. We studied the interaction between central CCK signaling and the cyclooxygenase (COX) pathway. Body temperature was measured in adult male Wistar rats pretreated with intraperitoneal infusion of the nonselective COX enzyme inhibitor metamizol (120 mg/kg) or a selective COX-2 inhibitor, meloxicam, or etoricoxib (10 mg/kg for both) and, 30 min later, treated with intracerebroventricular CCK (1.7 µg/kg). In separate experiments, CCK-induced neuronal activation (with and without COX inhibition) was studied in thermoregulation- and feeding-related nuclei with c-Fos immunohistochemistry. CCK increased body temperature by ∼0.4°C from 10 min postinfusion, which was attenuated by metamizol. CCK reduced the number of c-Fos-positive cells in the median preoptic area (by ∼70%) but increased it in the dorsal hypothalamic area and in the rostral raphe pallidus (by ∼50% in both); all these changes were completely blocked with metamizol. In contrast, CCK-induced satiety and neuronal activation in the ventromedial hypothalamus were not influenced by metamizol. CCK-induced hyperthermia was also completely blocked with both selective COX-2 inhibitors studied. Finally, the CCK2 receptor antagonist YM022 (10 µg/kg icv) attenuated the late phases of fever induced by bacterial lipopolysaccharide (10 µg/kg; intravenously). We conclude that centrally administered CCK causes hyperthermia through changes in the activity of "classical" thermoeffector pathways and that the activation of COX-2 is required for the development of this response.NEW & NOTEWORTHY An association between central cholecystokinin signaling and the cyclooxygenase-prostaglandin E pathway has been proposed but remained poorly understood. We show that the hyperthermic response to the central administration of cholecystokinin alters the neuronal activity within efferent thermoeffector pathways and that these effects are fully blocked by the inhibition of cyclooxygenase. We also show that the activation of cyclooxygenase-2 is required for the hyperthermic effect of cholecystokinin and that cholecystokinin is a modulator of endotoxin-induced fever.
Collapse
Affiliation(s)
- Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Nora Furedi
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Balazs Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Alexandra Miko
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Emoke Olah
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | | | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
8
|
Shiraki C, Horikawa R, Oe Y, Fujimoto M, Okamoto K, Kurganov E, Miyata S. Role of TRPM8 in switching between fever and hypothermia in adult mice during endotoxin-induced inflammation. Brain Behav Immun Health 2021; 16:100291. [PMID: 34589786 PMCID: PMC8474285 DOI: 10.1016/j.bbih.2021.100291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 01/11/2023] Open
Abstract
Transient receptor potential melastatin 8 (TRPM8) functions in the sensing of noxious and innocuous colds; however, its significance in pathogen-induced thermoregulation remains unclear. In the present study, we investigated the role of TRPM8 in the regulation of endotoxin-induced body temperature control. The peripheral administration of low-dose lipopolysaccharide (LPS) at 50 μg/kg generated fever in wild-type (WT) mice, whereas it caused hypothermia in TRPM8 knockout (KO) animals. LPS-induced sickness responses such as decrease in body weight, and food and water intake were not different between WT and TRPM8 KO mice. TRPM8 KO mice exhibited more severe hypothermia and lower locomotor activity following the peripheral administration of high-dose LPS at 5 mg/kg compared with WT ones. An intracerebroventricular (i.c.v.) injection of either LPS at 3.6 μg/kg or interleukin-1β at 400 ng/kg elicited hypothermia in TRPM8 KO mice, in contrast to fever in WT animals. The peripheral administration of zymosan at 3 mg/kg also induced hypothermia in contrast to fever in WT mice. An i.c.v. injection of prostaglandin E2 at 16 or 160 nmol/kg induced normal fever in both WT and TRPM8 KO mice. Infrared thermography showed significant decline of the interscapular skin temperature that estimates temperature of the brown adipose tissue, regardless of no alteration of its temperature in WT animals. Fos immunohistochemistry showed stronger Fos activation of hypothalamic thermoregulation-associated nuclei in TRPM8 KO mice compared with WT animals following the peripheral administration of low-dose LPS. Therefore, the present study indicates that TRPM8 is necessary for switching between fever and hypothermia during endotoxin-induced inflammation.
Collapse
Affiliation(s)
- Chinatsu Shiraki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ririka Horikawa
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuzuki Oe
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Momoka Fujimoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kaho Okamoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Erkin Kurganov
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
9
|
Physiological and Behavioral Mechanisms of Thermoregulation in Mammals. Animals (Basel) 2021; 11:ani11061733. [PMID: 34200650 PMCID: PMC8227286 DOI: 10.3390/ani11061733] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
This review analyzes the main anatomical structures and neural pathways that allow the generation of autonomous and behavioral mechanisms that regulate body heat in mammals. The study of the hypothalamic neuromodulation of thermoregulation offers broad areas of opportunity with practical applications that are currently being strengthened by the availability of efficacious tools like infrared thermography (IRT). These areas could include the following: understanding the effect of climate change on behavior and productivity; analyzing the effects of exercise on animals involved in sporting activities; identifying the microvascular changes that occur in response to fear, pleasure, pain, and other situations that induce stress in animals; and examining thermoregulating behaviors. This research could contribute substantially to understanding the drastic modification of environments that have severe consequences for animals, such as loss of appetite, low productivity, neonatal hypothermia, and thermal shock, among others. Current knowledge of these physiological processes and complex anatomical structures, like the nervous systems and their close relation to mechanisms of thermoregulation, is still limited. The results of studies in fields like evolutionary neuroscience of thermoregulation show that we cannot yet objectively explain even processes that on the surface seem simple, including behavioral changes and the pathways and connections that trigger mechanisms like vasodilatation and panting. In addition, there is a need to clarify the connection between emotions and thermoregulation that increases the chances of survival of some organisms. An increasingly precise understanding of thermoregulation will allow us to design and apply practical methods in fields like animal science and clinical medicine without compromising levels of animal welfare. The results obtained should not only increase the chances of survival but also improve quality of life and animal production.
Collapse
|
10
|
Komegae EN, Fonseca MT, Steiner AA. Diet-induced obesity attenuates the hypothermic response to lipopolysaccharide independently of TNF-α production. Temperature (Austin) 2020; 7:270-276. [PMID: 33123620 DOI: 10.1080/23328940.2019.1707155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Life-threatening infections (sepsis) are usually associated with co-morbidities, among which obesity deserves attention. Here, we evaluated whether and how obesity affects the switch from fever to hypothermia that occurs in the most severe cases of sepsis, which is thought to provide physiological support for a change in host defense strategy from resistance to tolerance. Obesity was induced by keeping rats on a high-fat diet for 32-34 weeks. The hypothermia induced by a high dose of bacterial lipopolysaccharide (LPS, 300 μg/animal, i.a.) was attenuated in the obese rats, as compared to their low-fat diet counterparts. Surprisingly, such attenuation occurred in spite of an enhancement in the circulating level of TNF-α, the most renowned mediator of LPS-induced hypothermia. Hence, it seems that factors counteracting not the production, but rather the action of TNF-α are at play in rats with diet-induced obesity. One of these factors might be IL-1β, a febrigenic mediator that also had its circulating levels augmented in the obese rats challenged with LPS. Taken together with previous reports of diet-induced obesity enhancing the fever induced by lower doses of LPS, the results of the present study indicate that obesity biases host defense toward a fever/resistance strategy, in lieu of a hypothermia/tolerance strategy.
Collapse
Affiliation(s)
- Evilin N Komegae
- Neuroimmunology of Sepsis Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Monique T Fonseca
- Neuroimmunology of Sepsis Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre A Steiner
- Neuroimmunology of Sepsis Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
da Conceição EPS, Morrison SF, Cano G, Chiavetta P, Tupone D. Median preoptic area neurons are required for the cooling and febrile activations of brown adipose tissue thermogenesis in rat. Sci Rep 2020; 10:18072. [PMID: 33093475 PMCID: PMC7581749 DOI: 10.1038/s41598-020-74272-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/25/2020] [Indexed: 02/08/2023] Open
Abstract
Within the central neural circuitry for thermoregulation, the balance between excitatory and inhibitory inputs to the dorsomedial hypothalamus (DMH) determines the level of activation of brown adipose tissue (BAT) thermogenesis. We employed neuroanatomical and in vivo electrophysiological techniques to identify a source of excitation to thermogenesis-promoting neurons in the DMH that is required for cold defense and fever. Inhibition of median preoptic area (MnPO) neurons blocked the BAT thermogenic responses during both PGE2-induced fever and cold exposure. Disinhibition or direct activation of MnPO neurons induced a BAT thermogenic response in warm rats. Blockade of ionotropic glutamate receptors in the DMH, or brain transection rostral to DMH, blocked cold-evoked or NMDA in MnPO-evoked BAT thermogenesis. RNAscope technique identified a glutamatergic population of MnPO neurons that projects to the DMH and expresses c-Fos following cold exposure. These discoveries relative to the glutamatergic drive to BAT sympathoexcitatory neurons in DMH augment our understanding of the central thermoregulatory circuitry in non-torpid mammals. Our data will contribute to the development of novel therapeutic approaches to induce therapeutic hypothermia for treating drug-resistant fever, and for improving glucose and energy homeostasis.
Collapse
Affiliation(s)
- Ellen Paula Santos da Conceição
- Department of Neurological Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Shaun F Morrison
- Department of Neurological Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Georgina Cano
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Pierfrancesco Chiavetta
- Department of Neurological Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Domenico Tupone
- Department of Neurological Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA. .,Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
12
|
Amorim MR, Moreira DA, Santos BM, Ferrari GD, Nogueira JE, de Deus JL, Alberici LC, Branco LGS. Increased lipopolysaccharide-induced hypothermia in neurogenic hypertension is caused by reduced hypothalamic PGE 2 production and increased heat loss. J Physiol 2020; 598:4663-4680. [PMID: 32749717 DOI: 10.1113/jp280321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/31/2020] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS The mechanisms involved in hypothermia and fever during systemic inflammation (SI) remain largely unknown. Our data support the contention that brain-mediated mechanisms are different in hypertension during SI. Considering that, clinically, it is not easy to assess all mechanisms involved in cardiovascular and thermoregulatory control during SI, the present study sheds light on these integrated mechanisms that may be triggered simultaneously in septic hypertensive patients. The result obtained demonstrate that, in lipopolysaccharide-induced SI, an increased hypothermia is observed in neurogenic hypertension, which is caused by reduced hypothalamic prostaglandin E2 production and increased heat loss in conscious rats. Therefore, the results of the present study provide useful insight for clinical trials evaluating the thermoregulatory outcomes of septic patients with hypertension. ABSTRACT Hypertension is a prevalent disease characterized by autonomic-induced elevated and sustained blood pressure levels and abnormal body core temperature (Tb) regulation. The present study aimed to determine the brain-mediated mechanisms involved in the thermoregulatory changes observed during lipopolysaccharide (LPS)-induced systemic inflammation (SI; at a septic-like model) in spontaneously hypertensive rats (SHR). We combined Tb and skin temperature (Tsk) analysis, assessment of prostaglandin (PG) E2 levels (the proximal mediator of fever) in the anteroventral region of the hypothalamus (AVPO; an important site for Tb control), oxygen consumption analysis, cardiovascular recordings, assays of inflammatory markers, and evaluation of oxidative stress in the plasma and brain of male Wistar rats and SHR that had received LPS (1.5 mg kg-1 ) or saline. LPS induced hypothermia followed by fever in Wistar rats, whereas, in SHR, a maintained hypothermia without fever were observed. These thermoregulatory responses were associated with an increased heat loss in SHR compared to Wistar rats. We measured LPS-induced increased PGE2 levels in the AVPO in Wistar rats, but not in SHR. The LPS-induced drop in blood pressure was higher in SHR than in Wistar rats. Furthermore, LPS-induced plasma and brain [regions involved in autonomic control: nucleus tractus solitarius (NTS) and rostral ventrolateral medulla (RVLM)] cytokine surges were blunted, whereas oxidative stress was higher in SHR. LPS-induced SI leads to blunted cytokine surges both systemically (plasma) and centrally (NTS and RVLM) and reduced hypothalamic PGE2 production, which are all associated with increased hypothermia mediated by increased heat loss, but not by heat production, in SHR.
Collapse
Affiliation(s)
- Mateus R Amorim
- Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Diego A Moreira
- Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bruna M Santos
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gustavo D Ferrari
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jonatas E Nogueira
- School of Physical Education and Sports of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Júnia L de Deus
- Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,The Solomon H. Snyder. Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Luciane C Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz G S Branco
- Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
13
|
Bertamino A, Ostacolo C, Medina A, Di Sarno V, Lauro G, Ciaglia T, Vestuto V, Pepe G, Basilicata MG, Musella S, Smaldone G, Cristiano C, Gonzalez-Rodriguez S, Fernandez-Carvajal A, Bifulco G, Campiglia P, Gomez-Monterrey I, Russo R. Exploration of TRPM8 Binding Sites by β-Carboline-Based Antagonists and Their In Vitro Characterization and In Vivo Analgesic Activities. J Med Chem 2020; 63:9672-9694. [PMID: 32787109 PMCID: PMC8009520 DOI: 10.1021/acs.jmedchem.0c00816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Transient
receptor potential melastatin 8 (TRPM8) ion channel represents
a valuable pharmacological option for several therapeutic areas. Here,
a series of conformationally restricted derivatives of the previously
described TRPM8 antagonist N,N′-dibenzyl
tryptophan 4 were prepared and characterized in vitro
by Ca2+-imaging and patch-clamp electrophysiology assays.
Molecular modeling studies led to identification of a broad and well-defined
interaction network of these derivatives inside the TRPM8 binding
site, underlying their antagonist activity. The (5R,11aS)-5-(4-chlorophenyl)-2-(4-fluorobenzyl)-5,6,11,11a-tetrahydro-1H-imidazo[1′,5′:1,6]pyrido[3,4-b]indole-1,3(2H)-dione (31a) emerged as a potent (IC50 = 4.10 ± 1.2 nM), selective,
and metabolically stable TRPM8 antagonist. In vivo, 31a showed significant target coverage in an icilin-induced WDS (at
11.5 mg/kg ip), an oxaliplatin-induced cold allodynia (at 10–30
μg sc), and CCI-induced thermal hyperalgesia (at 11.5 mg/kg
ip) mice models. These results confirm the tryptophan moiety as a
solid pharmacophore template for the design of highly potent modulators
of TRPM8-mediated activities.
Collapse
Affiliation(s)
- Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Alicia Medina
- IDiBE, Universitas Miguel Herna'ndez, Avda de la Universidad, 032020 Elche, Spain
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | | | - Simona Musella
- European Biomedical Research Institute (EBRIS), Via S. De Renzi 50, 84125 Salerno, Italy
| | - Gerardina Smaldone
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Claudia Cristiano
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | | | | | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy.,European Biomedical Research Institute (EBRIS), Via S. De Renzi 50, 84125 Salerno, Italy
| | - Isabel Gomez-Monterrey
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Roberto Russo
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
14
|
Amorim MR, de Deus JL, Pereira CA, da Silva LEV, Borges GS, Ferreira NS, Batalhão ME, Antunes-Rodrigues J, Carnio EC, Tostes RC, Branco LGS. Baroreceptor denervation reduces inflammatory status but worsens cardiovascular collapse during systemic inflammation. Sci Rep 2020; 10:6990. [PMID: 32332859 PMCID: PMC7181760 DOI: 10.1038/s41598-020-63949-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Beyond the regulation of cardiovascular function, baroreceptor afferents play polymodal roles in health and disease. Sepsis is a life-threatening condition characterized by systemic inflammation (SI) and hemodynamic dysfunction. We hypothesized that baroreceptor denervation worsens lipopolysaccharide (LPS) induced-hemodynamic collapse and SI in conscious rats. We combined: (a) hemodynamic and thermoregulatory recordings after LPS administration at a septic-like non-lethal dose (b) analysis of the cardiovascular complexity, (c) evaluation of vascular function in mesenteric resistance vessels, and (d) measurements of inflammatory cytokines (plasma and spleen). LPS-induced drop in blood pressure was higher in sino-aortic denervated (SAD) rats. LPS-induced hemodynamic collapse was associated with SAD-dependent autonomic disbalance. LPS-induced vascular dysfunction was not affected by SAD. Surprisingly, SAD blunted LPS-induced surges of plasma and spleen cytokines. These data indicate that baroreceptor afferents are key to alleviate LPS-induced hemodynamic collapse, affecting the autonomic control of cardiovascular function, without affecting resistance blood vessels. Moreover, baroreflex modulation of the LPS-induced SI and hemodynamic collapse are not dependent of each other given that baroreceptor denervation worsened hypotension and reduced SI.
Collapse
Affiliation(s)
- Mateus R Amorim
- Dental School of Ribeirão Preto, 14040-904, University of São Paulo, São Paulo, Brazil.
| | - Júnia L de Deus
- Dental School of Ribeirão Preto, 14040-904, University of São Paulo, São Paulo, Brazil
| | - Camila A Pereira
- Ribeirão Preto Medical School, 14049-900, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz E V da Silva
- Ribeirão Preto Medical School, 14049-900, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gabriela S Borges
- Ribeirão Preto Medical School, 14049-900, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nathanne S Ferreira
- Ribeirão Preto Medical School, 14049-900, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcelo E Batalhão
- Nursing School of Ribeirão Preto, 14040-902, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José Antunes-Rodrigues
- Ribeirão Preto Medical School, 14049-900, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Evelin C Carnio
- Nursing School of Ribeirão Preto, 14040-902, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rita C Tostes
- Ribeirão Preto Medical School, 14049-900, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz G S Branco
- Dental School of Ribeirão Preto, 14040-904, University of São Paulo, São Paulo, Brazil. .,Ribeirão Preto Medical School, 14049-900, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
15
|
Eskilsson A, Shionoya K, Enerbäck S, Engblom D, Blomqvist A. The generation of immune-induced fever and emotional stress-induced hyperthermia in mice does not involve brown adipose tissue thermogenesis. FASEB J 2020; 34:5863-5876. [PMID: 32144818 DOI: 10.1096/fj.201902945r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 11/11/2022]
Abstract
We examined the role of brown adipose tissue (BAT) for fever and emotional stress-induced hyperthermia. Wild-type and uncoupling protein-1 (UCP-1) knockout mice were injected with lipopolysaccharide intraperitoneally or intravenously, or subjected to cage exchange, and body temperature monitored by telemetry. Both genotypes showed similar febrile responses to immune challenge and both displayed hyperthermia to emotional stress. Neither procedure resulted in the activation of BAT, such as the induction of UCP-1 or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA, or reduced BAT weight and triglyceride content. In contrast, in mice injected with a β3 agonist, UCP-1 and PGC-1α were strongly induced, and BAT weight and triglyceride content reduced. Both lipopolysaccharide and the β3 agonist, and emotional stress, induced UCP-3 mRNA in skeletal muscle. A β3 antagonist did not attenuate lipopolysaccharide-induced fever, but augmented body temperature decrease and inhibited BAT activation when mice were exposed to cold. An α1 /α2b antagonist or a 5HT1A agonist, which inhibit vasoconstriction, abolished lipopolysaccharide-induced fever, but had no effect on emotional stress-induced hyperthermia. These findings demonstrate that in mice, UCP-1-mediated BAT thermogenesis does not take part in inflammation-induced fever, which is dependent on peripheral vasoconstriction, nor in stress-induced hyperthermia. However, both phenomena may involve UCP-3-mediated muscle thermogenesis.
Collapse
Affiliation(s)
- Anna Eskilsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kiseko Shionoya
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sven Enerbäck
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - David Engblom
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anders Blomqvist
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
16
|
Steiner AA, Romanovsky AA. Energy Trade-offs in Host Defense: Immunology Meets Physiology. Trends Endocrinol Metab 2019; 30:875-878. [PMID: 31668960 DOI: 10.1016/j.tem.2019.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023]
Abstract
Host defense relies not only on microbicidal mechanisms (resistance), but also on management of collateral damage (tolerance). Here, we discuss how this immunology concept converges with a physiology-born theory on the dichotomy of thermometabolic responses in infection (fever versus hypothermia), yielding a model of immunity that transcends discipline barriers.
Collapse
Affiliation(s)
- Alexandre A Steiner
- Neuroimmunology of Sepsis Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508, Brazil.
| | - Andrej A Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| |
Collapse
|
17
|
Tan CL, Knight ZA. Regulation of Body Temperature by the Nervous System. Neuron 2019; 98:31-48. [PMID: 29621489 DOI: 10.1016/j.neuron.2018.02.022] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 01/24/2023]
Abstract
The regulation of body temperature is one of the most critical functions of the nervous system. Here we review our current understanding of thermoregulation in mammals. We outline the molecules and cells that measure body temperature in the periphery, the neural pathways that communicate this information to the brain, and the central circuits that coordinate the homeostatic response. We also discuss some of the key unresolved issues in this field, including the following: the role of temperature sensing in the brain, the molecular identity of the warm sensor, the central representation of the labeled line for cold, and the neural substrates of thermoregulatory behavior. We suggest that approaches for molecularly defined circuit analysis will provide new insight into these topics in the near future.
Collapse
Affiliation(s)
- Chan Lek Tan
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158.
| |
Collapse
|
18
|
Drummond LR, Kunstetter AC, Campos HO, Vaz FF, Drummond FR, Andrade AG, Coimbra CC, Natali AJ, Wanner SP, Prímola-Gomes TN. Spontaneously hypertensive rats have greater impairments in regulating abdominal temperature than brain cortex temperature following physical exercise. J Therm Biol 2019; 83:30-36. [DOI: 10.1016/j.jtherbio.2019.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022]
|
19
|
Conceição EPS, Madden CJ, Morrison SF. Neurons in the rat ventral lateral preoptic area are essential for the warm-evoked inhibition of brown adipose tissue and shivering thermogenesis. Acta Physiol (Oxf) 2019; 225:e13213. [PMID: 30365209 PMCID: PMC6686665 DOI: 10.1111/apha.13213] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/25/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
AIM To determine the role of neurons in the ventral part of the lateral preoptic area (vLPO) in CNS thermoregulation. METHODS In vivo electrophysiological and neuropharmacological were used to evaluate the contribution of neurons in the vLPO to the regulation of brown adipose tissue (BAT) thermogenesis and muscle shivering in urethane/chloralose-anaesthetized rats. RESULTS Nanoinjections of NMDA targeting the medial preoptic area (MPA) and the vLPO suppressed the cold-evoked BAT sympathetic activity (SNA), reduced the BAT temperature (TBAT ), expired CO2 , mean arterial pressure (MAP), and heart rate. Inhibition of vLPO neurons with muscimol or AP5/CNQX elicited increases in BAT SNA, TBAT , tachycardia, and small elevations in MAP. The BAT thermogenesis evoked by AP5/CNQX in vLPO was inhibited by the activation of MPA neurons. The inhibition of BAT SNA by vLPO neurons does not require a GABAergic input to dorsomedial hypothalamus (DMH), but MPA provides a GABAergic input to DMH. The activation of vLPO neurons inhibits the BAT thermogenesis evoked by NMDA in the rostral raphe pallidus (rRPa), but not that after bicuculline in rRPa. The BAT thermogenesis elicited by vLPO inhibition is dependent on glutamatergic inputs to DMH and rRPa, but these excitatory inputs do not arise from MnPO neurons. The activation of neurons in the vLPO also inhibits cold- and prostaglandin-evoked muscle shivering, and vLPO inhibition is sufficient to evoke shivering. CONCLUSION The vLPO contains neurons that are required for the warm ambient-evoked inhibition of muscle shivering and of BAT thermogenesis, mediated through a direct or indirect GABAergic input to rRPa from vLPO.
Collapse
Affiliation(s)
- Ellen P S Conceição
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
20
|
Carlin JL, Jain S, Duroux R, Suresh RR, Xiao C, Auchampach JA, Jacobson KA, Gavrilova O, Reitman ML. Activation of adenosine A 2A or A 2B receptors causes hypothermia in mice. Neuropharmacology 2018; 139:268-278. [PMID: 29548686 PMCID: PMC6067974 DOI: 10.1016/j.neuropharm.2018.02.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/26/2018] [Accepted: 02/28/2018] [Indexed: 12/25/2022]
Abstract
Extracellular adenosine is a danger/injury signal that initiates protective physiology, such as hypothermia. Adenosine has been shown to trigger hypothermia via agonism at A1 and A3 adenosine receptors (A1AR, A3AR). Here, we find that adenosine continues to elicit hypothermia in mice null for A1AR and A3AR and investigated the effect of agonism at A2AAR or A2BAR. The poorly brain penetrant A2AAR agonists CGS-21680 and PSB-0777 caused hypothermia, which was not seen in mice lacking A2AAR. MRS7352, a likely non-brain penetrant A2AAR antagonist, inhibited PSB-0777 hypothermia. While vasodilation is probably a contributory mechanism, A2AAR agonism also caused hypometabolism, indicating that vasodilation is not the sole mechanism. The A2BAR agonist BAY60-6583 elicited hypothermia, which was lost in mice null for A2BAR. Low intracerebroventricular doses of BAY60-6583 also caused hypothermia, indicating a brain site of action, with neuronal activation in the preoptic area and paraventricular nucleus of the hypothalamus. Thus, agonism at any one of the canonical adenosine receptors, A1AR, A2AAR, A2BAR, or A3AR, can cause hypothermia. This four-fold redundancy in adenosine-mediated initiation of hypothermia may reflect the centrality of hypothermia as a protective response.
Collapse
Affiliation(s)
- Jesse Lea Carlin
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Shalini Jain
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Romain Duroux
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - R Rama Suresh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - John A Auchampach
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Abstract
Fever is a common symptom of infectious and inflammatory disease. It is well-established that prostaglandin E2 is the final mediator of fever, which by binding to its EP3 receptor subtype in the preoptic hypothalamus initiates thermogenesis. Here, we review the different hypotheses on how the presence of peripherally released pyrogenic substances can be signaled to the brain to elicit fever. We conclude that there is unequivocal evidence for a humoral signaling pathway by which proinflammatory cytokines, through their binding to receptors on brain endothelial cells, evoke fever by eliciting prostaglandin E2 synthesis in these cells. The evidence for a role for other signaling routes for fever, such as signaling via circumventricular organs and peripheral nerves, as well as transfer into the brain of peripherally synthesized prostaglandin E2 are yet far from conclusive. We also review the efferent limb of the pyrogenic pathways. We conclude that it is well established that prostaglandin E2 binding in the preoptic hypothalamus produces fever by disinhibition of presympathetic neurons in the brain stem, but there is yet little understanding of the mechanisms by which factors such as nutritional status and ambient temperature shape the response to the peripheral immune challenge.
Collapse
Affiliation(s)
- Anders Blomqvist
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden
| | - David Engblom
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden
| |
Collapse
|
22
|
Vichaya EG, Dantzer R. Inflammation-induced motivational changes: Perspective gained by evaluating positive and negative valence systems. Curr Opin Behav Sci 2018; 22:90-95. [PMID: 29888301 PMCID: PMC5987547 DOI: 10.1016/j.cobeha.2018.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammation can profoundly impact motivated behavior, as is the case with inflammation-induced depression. By evaluating objectively measurable basic neurobehavioral processes involved in motivation, recent research indicates that inflammation generally reduces approach motivation and enhances avoidance motivation. Increased effort valuation largely mediates the effects of inflammation on approach motivation. Changes in reward valuation are not uniformly observed in approach motivation. However, inflammation increases the averseness of negative stimuli. Within the context of both approach and avoidance motivation, inflammation appears to enhance the contrast between concurrently presented stimuli. While changes in both approach and avoidance motivation appear to be mediated by midbrain dopaminergic neurotransmission to the ventral striatum, it is unclear if the enhanced contrast is mediated by the same system.
Collapse
Affiliation(s)
- Elisabeth G. Vichaya
- Division of Internal Medicine, Department of Symptom Research,
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384,
Houston, TX 77030, USA
| | - Robert Dantzer
- Division of Internal Medicine, Department of Symptom Research,
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384,
Houston, TX 77030, USA
| |
Collapse
|
23
|
Garami A, Pakai E, McDonald HA, Reilly RM, Gomtsyan A, Corrigan JJ, Pinter E, Zhu DXD, Lehto SG, Gavva NR, Kym PR, Romanovsky AA. TRPV1 antagonists that cause hypothermia, instead of hyperthermia, in rodents: Compounds' pharmacological profiles, in vivo targets, thermoeffectors recruited and implications for drug development. Acta Physiol (Oxf) 2018; 223:e13038. [PMID: 29352512 PMCID: PMC6032921 DOI: 10.1111/apha.13038] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 01/03/2023]
Abstract
AIM Thermoregulatory side effects hinder the development of transient receptor potential vanilloid-1 (TRPV1) antagonists as new painkillers. While many antagonists cause hyperthermia, a well-studied effect, some cause hypothermia. The mechanisms of this hypothermia are unknown and were studied herein. METHODS Two hypothermia-inducing TRPV1 antagonists, the newly synthesized A-1165901 and the known AMG7905, were used in physiological experiments in rats and mice. Their pharmacological profiles against rat TRPV1 were studied in vitro. RESULTS Administered peripherally, A-1165901 caused hypothermia in rats by either triggering tail-skin vasodilation (at thermoneutrality) or inhibiting thermogenesis (in the cold). A-1165901-induced hypothermia did not occur in rats with desensitized (by an intraperitoneal dose of the TRPV1 agonist resiniferatoxin) sensory abdominal nerves. The hypothermic responses to A-1165901 and AMG7905 (administered intragastrically or intraperitoneally) were absent in Trpv1-/- mice, even though both compounds evoked pronounced hypothermia in Trpv1+/+ mice. In vitro, both A-1165901 and AMG7905 potently potentiated TRPV1 activation by protons, while potently blocking channel activation by capsaicin. CONCLUSION TRPV1 antagonists cause hypothermia by an on-target action: on TRPV1 channels on abdominal sensory nerves. These channels are tonically activated by protons and drive the reflectory inhibition of thermogenesis and tail-skin vasoconstriction. Those TRPV1 antagonists that cause hypothermia further inhibit these cold defences, thus decreasing body temperature. SIGNIFICANCE TRPV1 antagonists (of capsaicin activation) are highly unusual in that they can cause both hyper- and hypothermia by modulating the same mechanism. For drug development, this means that both side effects can be dealt with simultaneously, by minimizing these compounds' interference with TRPV1 activation by protons.
Collapse
Affiliation(s)
- A. Garami
- Systemic Inflammation Laboratory (FeverLab); Trauma Research; St. Joseph's Hospital and Medical Center; Phoenix AZ USA
- Institute for Translational Medicine; Medical School; University of Pecs; Pecs Hungary
| | - E. Pakai
- Systemic Inflammation Laboratory (FeverLab); Trauma Research; St. Joseph's Hospital and Medical Center; Phoenix AZ USA
- Institute for Translational Medicine; Medical School; University of Pecs; Pecs Hungary
| | - H. A. McDonald
- Neuroscience Research; Global Pharmaceutical Research and Development; AbbVie; North Chicago IL USA
| | - R. M. Reilly
- Neuroscience Research; Global Pharmaceutical Research and Development; AbbVie; North Chicago IL USA
| | - A. Gomtsyan
- Neuroscience Research; Global Pharmaceutical Research and Development; AbbVie; North Chicago IL USA
| | - J. J. Corrigan
- Systemic Inflammation Laboratory (FeverLab); Trauma Research; St. Joseph's Hospital and Medical Center; Phoenix AZ USA
| | - E. Pinter
- Department of Pharmacology and Pharmacotherapy; Medical School and Janos Szentagothai Research Centre; University of Pecs; Pecs Hungary
| | - D. X. D. Zhu
- Department of Neuroscience; Amgen; Thousand Oaks CA USA
| | - S. G. Lehto
- Department of Neuroscience; Amgen; Thousand Oaks CA USA
| | - N. R. Gavva
- Department of Neuroscience; Amgen; Thousand Oaks CA USA
| | - P. R. Kym
- Neuroscience Research; Global Pharmaceutical Research and Development; AbbVie; North Chicago IL USA
| | - A. A. Romanovsky
- Systemic Inflammation Laboratory (FeverLab); Trauma Research; St. Joseph's Hospital and Medical Center; Phoenix AZ USA
| |
Collapse
|
24
|
Mohammed M, Madden CJ, Burchiel KJ, Morrison SF. Preoptic area cooling increases the sympathetic outflow to brown adipose tissue and brown adipose tissue thermogenesis. Am J Physiol Regul Integr Comp Physiol 2018; 315:R609-R618. [PMID: 29897823 DOI: 10.1152/ajpregu.00113.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Modest cold exposures are likely to activate autonomic thermogenic mechanisms due to activation of cutaneous thermal afferents, whereas central thermosensitive neurons set the background tone on which this afferent input is effective. In addition, more prolonged or severe cold exposures that overwhelm cold defense mechanisms would directly activate thermosensitive neurons within the central nervous system. Here, we examined the involvement of the canonical brown adipose tissue (BAT) sympathoexcitatory efferent pathway in the response to direct local cooling of the preoptic area (POA) in urethane-chloralose-anesthetized rats. With skin temperature and core body temperature maintained between 36 and 39°C, cooling POA temperature by ~1-4°C evoked increases in BAT sympathetic nerve activity (SNA), BAT temperature, expired CO2, and heart rate. POA cooling-evoked responses were inhibited by nanoinjections of ionotropic glutamate receptor antagonists or the GABAA receptor agonist muscimol into the median POA or by nanoinjections of ionotropic glutamate receptor antagonists into the dorsomedial hypothalamic nucleus (bilaterally) or into the raphe pallidus nucleus. These results demonstrate that direct cooling of the POA can increase BAT SNA and thermogenesis via the canonical BAT sympathoexcitatory efferent pathway, even in the face of warm thermal input from the skin and body core.
Collapse
Affiliation(s)
- Mazher Mohammed
- Department of Neurological Surgery, Oregon Health & Science University , Portland, Oregon
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health & Science University , Portland, Oregon
| | - Kim J Burchiel
- Department of Neurological Surgery, Oregon Health & Science University , Portland, Oregon
| | - Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
25
|
Abstract
Heat exchange processes between the body and the environment are introduced. The definition of the thermoneutral zone as the ambient temperature range within which body temperature (Tb) regulation is achieved only by nonevaporative processes is explained. Thermoreceptors, thermoregulatory effectors (both physiologic and behavioral), and neural pathways and Tb signals that connect receptors and effectors into a thermoregulation system are reviewed. A classification of thermoeffectors is proposed. A consensus concept is presented, according to which the thermoregulation system is organized as a dynamic federation of independent thermoeffector loops. While the activity of each effector is driven by a unique combination of deep (core) and superficial (shell) Tbs, the regulated variable of the system can be viewed as a spatially distributed Tb with a heavily represented core and a lightly represented shell. Core Tb is the main feedback; it is always negative. Shell Tbs (mostly of the hairy skin) represent the auxiliary feedback, which can be negative or positive, and which decreases the system's response time and load error. Signals from the glabrous (nonhairy) skin about the temperature of objects in the environment serve as feedforward signals for various behaviors. Physiologic effectors do not use feedforward signals. The system interacts with other homeostatic systems by "meshing" with their loops. Coordination between different thermoeffectors is achieved through the common controlled variable, Tb. The term balance point (not set point) is used for a regulated level of Tb. The term interthreshold zone is used for a Tb range in which no effectors are activated. Thermoregulatory states are classified, based on whether: Tb is increased (hyperthermia) or decreased (hypothermia); the interthreshold zone is narrow (homeothermic type of regulation) or wide (poikilothermic type); and the balance point is increased (fever) or decreased (anapyrexia). During fever, thermoregulation can be either homeothermic or poikilothermic; anapyrexia is always a poikilothermic state. The biologic significance of poikilothermic states is discussed. As an example of practical applications of the concept presented, thermopharmacology is reviewed. Thermopharmacology uses drugs to modulate specific temperature signals at the level of a thermoreceptor (transient receptor potential channel).
Collapse
|
26
|
Abstract
The processes of thermoregulation are roughly divided into two categories: autonomic and behavioral. Behavioral thermoregulation alone does not have the capacity to regulate core temperature, as autonomic thermoregulation. However, behavioral thermoregulation is often utilized to maintain core temperature in a normal environment and is critical for surviving extreme environments. Thermal comfort, i.e., the hedonic component of thermal perception, is believed to be important for initiating and/or activating behavioral thermoregulation. However, the mechanisms involved are not fully understood. Thermal comfort is usually obtained when thermal stimuli to the skin restore core temperature to a regulated level. Conversely, thermal discomfort is produced when thermal stimuli result in deviations of core temperature away from a regulated level. Regional differences in the thermal sensitivity of the skin, hypohydration, and adaptation of the skin may affect thermal perception. Thermal comfort and discomfort seem to be determined by brain mechanisms, not by peripheral mechanisms such as thermal sensing by the skin. The insular and cingulate cortices may play a role in assessing thermal comfort and discomfort. In addition, brain sites involved in decision making may trigger behavioral responses to environmental changes.
Collapse
Affiliation(s)
- Kei Nagashima
- Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, Saitama, Japan.
| | - Ken Tokizawa
- National Institute of Occupational Safety and Health, Tokyo, Japan
| | - Shuri Marui
- Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
27
|
Garami A, Steiner AA, Romanovsky AA. Fever and hypothermia in systemic inflammation. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:565-597. [PMID: 30459026 DOI: 10.1016/b978-0-444-64074-1.00034-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systemic inflammation-associated syndromes (e.g., sepsis and septic shock) often have high mortality and remain a challenge in emergency medicine. Systemic inflammation is usually accompanied by changes in body temperature: fever or hypothermia. In animal studies, systemic inflammation is often modeled by administering bacterial lipopolysaccharide, which triggers autonomic and behavioral thermoeffector responses and causes either fever or hypothermia, depending on the dose and ambient temperature. Fever and hypothermia are regulated changes of body temperature, which correspond to mild and severe forms of systemic inflammation, respectively. Mediators of fever and hypothermia are called endogenous pyrogens and cryogens; they are produced when the innate immune system recognizes an infectious pathogen. Upon an inflammatory challenge, hepatic and pulmonary macrophages (and later brain endothelial cells) start to release lipid mediators, of which prostaglandin (PG) E2 plays the key role, and cytokines. Blood PGE2 enters the brain and triggers fever. At later stages of fever, PGE2 synthesized within the blood-brain barrier maintains fever. In both cases, PGE2 is synthesized by cyclooxygenase-2 and microsomal PGE2synthase-1. Mediators of hypothermia are not well established. Both fever and hypothermia are beneficial host defense responses. Based on evidence from studies in laboratory animals and clinical trials in humans, fever is beneficial for fighting mild infection. Based mainly on animal studies, hypothermia is beneficial in severe systemic inflammation and infection.
Collapse
Affiliation(s)
- Andras Garami
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary.
| | - Alexandre A Steiner
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrej A Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
28
|
Abstract
The major symptoms of motion sickness are well known and include facial pallor, nausea and vomiting, and sweating, but it is poorly recognized that they actually reflect severely perturbed thermoregulation. Thus, the purpose of this chapter is to present and discuss existing data related to this subject. While hypothermia during seasickness was first noted nearly 150 years ago, detailed studies of this phenomenon were conducted only during the last two decades. Our own research confirmed that motion sickness-induced hypothermia is quite broadly expressed phylogenetically as, besides humans, it could be provoked in several other animals (rats, musk shrews, and mice). Evidence from human and animal experiments indicates that the physiologic mechanisms responsible for the motion sickness-induced hypothermia include cutaneous vasodilation and sweating (leading to an increase of heat loss) and reduced thermogenesis. Together, these results suggest that motion sickness triggers a highly coordinated physiologic response aiming to reduce body temperature. The chapter is concluded by presenting hypotheses of how and why motion sickness evokes this hypothermic response.
Collapse
Affiliation(s)
- Eugene Nalivaiko
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
29
|
Abstract
Of somatosensory modalities cold is one of the more ambiguous percepts, evoking the pleasant sensation of cooling, the stinging bite of cold pain, and welcome relief from chronic pain. Moreover, unlike the precipitous thermal thresholds for heat activation of thermosensitive afferent neurons, thresholds for cold fibers are across a range of cool to cold temperatures that spans over 30°C. Until recently, how cold produces this myriad of biologic effects was unknown. However, recent advances in our understanding of cold mechanisms at the behavioral, physiologic, and cellular level have begun to provide insights into this sensory modality. The identification of a number of ion channels that either serve as the principal detectors of a cold stimulus in the peripheral nervous system, or are part of a differential expression pattern of channels that maintain cell excitability in the cold, endows select neurons with properties that are amenable to electric signaling in the cold. This chapter highlights the current understanding of the molecules involved in cold transduction in the mammalian peripheral nervous system, as well as presenting a hypothetic model to account for the broad range of cold thermal thresholds and distinct functions of cold fibers in perception, pain, and analgesia.
Collapse
Affiliation(s)
- David D McKemy
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
30
|
Abstract
Stress affects core body temperature (Tc). Many kinds of stress induce transient, monophasic hyperthermia, which diminishes gradually if the stressor is terminated. Stronger stressors produce a longer-lasting effect. Repeated/chronic stress induces anticipatory hyperthermia, reduces diurnal changes in Tc, or slightly increases Tc throughout the day. Animals that are exposed to chronic stress or a cold environment exhibit an enhanced hyperthermic response to a novel stress. These changes persist for several days after cessation of stress exposure. In contrast, long-lasting inescapable stress sometimes induces hypothermia. In healthy humans, psychologic stress induces slight increases in Tc, which are within the normal range of Tc or just above it. Some individuals, however, develop extremely high Tc (up to 41°C) when they are exposed to emotional events or show persistent low-grade high Tc (37-38°C) during or after chronic stress situations. In addition to the nature of the stressor itself, such stress-induced thermal responses are modulated by sex, age, ambient temperature, cage mates, past stressful experiences and cold exposure, and coping. Stress-induced hyperthermia is driven by mechanisms distinct from infectious fever, which requires inflammatory mediators. However, both stress and infection activate the dorsomedial hypothalamus-rostral medullary raphe region-sympathetic nerve axis to increase Tc.
Collapse
Affiliation(s)
- Takakazu Oka
- Department of Psychosomatic Medicine, International University of Health and Welfare Hospital, Tochigi-ken, Japan.
| |
Collapse
|
31
|
Bud Craig AD. Central neural substrates involved in temperature discrimination, thermal pain, thermal comfort, and thermoregulatory behavior. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:317-338. [PMID: 30454598 DOI: 10.1016/b978-0-444-63912-7.00019-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A phylogenetically novel pathway that emerged with primate encephalization is described, which conveys high-fidelity cutaneous thermosensory activity in "labeled lines" to a somatotopic map in the dorsal posterior insular cortex. It originates in lamina I of the superficial dorsal horn and ascends by way of the lateral spinothalamic tract and a distinct region in posterolateral thalamus. It evolved from the homeostatic sensory activity that represents the physiologic (interoceptive) condition of the body and drives the central autonomic network, which underlies all affective feelings from the body. Accordingly, human discriminative thermal sensations are accompanied by thermally motivated behaviors and thermal feelings of comfort or discomfort (unless neutral), which evidence suggests are associated with activity in the insular, cingulate, and orbitofrontal cortices, respectively. Yet, the substrates for thermoregulatory behavior have not been established, and several strong candidates (including the hypothalamus and the bed nucleus of the stria terminalis) are discussed. Finally, the neural underpinnings for relationships between thermal affect and social feelings (warm-positive/cold-negative) are addressed, including the association of hyperthermia with clinical depression.
Collapse
Affiliation(s)
- Arthur D Bud Craig
- Atkinson Research Laboratory, Barrow Neurological Institute, Phoenix, AZ, United States.
| |
Collapse
|
32
|
Morrison SF. Efferent neural pathways for the control of brown adipose tissue thermogenesis and shivering. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:281-303. [PMID: 30454595 DOI: 10.1016/b978-0-444-63912-7.00017-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The fundamental central neural circuits for thermoregulation orchestrate behavioral and autonomic repertoires that maintain body core temperature during thermal challenges that arise from either the ambient or the internal environment. This review summarizes our understanding of the neural pathways within the fundamental thermoregulatory reflex circuitry that comprise the efferent (i.e., beyond thermosensory) control of brown adipose tissue (BAT) and shivering thermogenesis: the motor neuron systems consisting of the BAT sympathetic preganglionic neurons and BAT sympathetic ganglion cells, and the alpha- and gamma-motoneurons; the premotor neurons in the region of the rostral raphe pallidus, and the thermogenesis-promoting neurons in the dorsomedial hypothalamus/dorsal hypothalamic area. Also included are inputs to, and neurochemical modulators of, these efferent neuronal populations that could influence their activity during thermoregulatory responses. Signals of metabolic status can be particularly significant for the energy-hungry thermoeffectors for heat production.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, United States.
| |
Collapse
|
33
|
Kunstetter AC, Barbosa NHS, Moraes MM, Pinto VA, Soares DD, Pires W, Wanner SP. Pre-exercise exposure to the treadmill setup changes the cardiovascular and thermoregulatory responses induced by subsequent treadmill running in rats. Temperature (Austin) 2017; 5:109-122. [PMID: 30377632 DOI: 10.1080/23328940.2017.1388343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022] Open
Abstract
Different methodological approaches have been used to conduct experiments with rats subjected to treadmill running. Some experimenters have exposed rats to the treadmill setup before initiating exercise to minimize the influences of handling and being placed in an anxiety-inducing environment on the physiological responses to subsequent running. Other experimenters have subjected rats to exercise immediately after placing them on the treadmill. Thus, the present study aimed to evaluate the effects of pre-exercise exposure to the treadmill on physical performance and cardiovascular and thermoregulatory responses during subsequent exercise. Male Wistar rats were subjected to fatiguing incremental-speed exercise at 24°C immediately after being placed on the treadmill or after being exposed to the treadmill for 70 min following removal from their home cages. Core body temperature (TCORE), tail-skin temperature (TSKIN), heart rate (HR) and mean arterial pressure (MAP) were recorded throughout the experiments. Rats exposed to the treadmill started exercise with higher TCORE, lower HR and MAP, and unaltered TSKIN. This exposure did not influence performance, but it markedly affected the exercise-induced increases in the four physiological parameters evaluated; for example, the TSKIN increased earlier and at a higher TCORE. Moreover, previous treadmill exposure notably allowed expected exercise-induced changes in cardiovascular parameters to be observed. Collectively, these data indicate that pre-exercise exposure to the treadmill induces important effects on physiological responses during subsequent treadmill running. The present data are particularly relevant for researchers planning experiments involving physical exercise and the recording of physiological parameters in rats.
Collapse
Affiliation(s)
- Ana C Kunstetter
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Nicolas H S Barbosa
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Michele M Moraes
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Valéria A Pinto
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Danusa D Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Washington Pires
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil.,Department of Physical Education, Institute of Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares (MG), Brazil
| | - Samuel P Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| |
Collapse
|
34
|
Flatow EA, Komegae EN, Fonseca MT, Brito CF, Musteata FM, Antunes-Rodrigues J, Steiner AA. Elucidating the role of leptin in systemic inflammation: a study targeting physiological leptin levels in rats and their macrophages. Am J Physiol Regul Integr Comp Physiol 2017; 313:R572-R582. [DOI: 10.1152/ajpregu.00171.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 01/24/2023]
Abstract
To elucidate the role of leptin in acute systemic inflammation, we investigated how its infusion at low, physiologically relevant doses affects the responses to bacterial lipopolysaccharide (LPS) in rats subjected to 24 h of food deprivation. Leptin was infused subcutaneously (0–20 μg·kg−1·h−1) or intracerebroventricularly (0–1 μg·kg−1·h−1). Using hypothermia and hypotension as biomarkers of systemic inflammation, we identified the phase extending from 90 to 240 min post-LPS as the most susceptible to modulation by leptin. In this phase, leptin suppressed the rise in plasma TNF-α and accelerated the recoveries from hypothermia and hypotension. Suppression of TNF-α was not accompanied by changes in other cytokines or prostaglandins. Leptin suppressed TNF-α when infused peripherally but not when infused into the brain. Importantly, the leptin dose that suppressed TNF-α corresponded to the lowest dose that limited food consumption; this dose elevated plasma leptin within the physiological range (to 5.9 ng/ml). We then conducted in vitro experiments to investigate whether an action of leptin on macrophages could parallel our in vivo observations. The results revealed that, when sensitized by food deprivation, LPS-stimulated peritoneal macrophages can be inhibited by leptin at concentrations that are lower than those reported to promote cytokine release. It is concluded that physiological levels of leptin do not exert a proinflammatory effect but rather an anti-inflammatory effect involving selective suppression of TNF-α via an action outside the brain. The mechanism of this effect might involve a previously unrecognized, suppressive action of leptin on macrophage subpopulations sensitized by food deprivation, but future studies are warranted.
Collapse
Affiliation(s)
- Elizabeth A. Flatow
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Evilin N. Komegae
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Monique T. Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Camila F. Brito
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Florin M. Musteata
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York; and
| | - José Antunes-Rodrigues
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Alexandre A. Steiner
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|