1
|
Haque A, Zaman V, Drasites KP, Matzelle D, Sawant S, Vertegel A, Varma A, Banik NL. Induction of Neural Differentiation and Protection by a Novel Slow-Release Nanoparticle Estrogen Construct in a Rat Model of Spinal Cord Injury. Neurochem Res 2024; 50:41. [PMID: 39613948 PMCID: PMC11607007 DOI: 10.1007/s11064-024-04289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
Spinal cord injury (SCI) is a complex debilitating condition leading to permanent life-long neurological deficits. Estrogen (E2) treatment is known to be neuroprotectant in SCI. This hormone is highly pleiotropic and has been shown to decrease apoptosis, modulate calcium signaling, regulate growth factor expression, act as an anti-inflammatory, and drive angiogenesis. These beneficial effects were found in our earlier study at the low dose of 10 µg/kg E2 in rats. However, the dose remains non-physiologic, which poses a safety hurdle for clinical use. Thus, we recently devised/constructed a fast release nanoparticle (NP) estrogen embedded (FNP-E2) construct and tested a focal delivery system in a contused SCI rat model which showed protection in the short run. In the current study, we have developed a novel slow-release NP estrogen (SNP-E2) delivery system that shows sustained release of E2 in the injured spinal cord and no systemic exposure in the host. The study of E2 release and kinetics of this SNP-E2 construct in vitro and in vivo supported this claim. Delivery of E2 to the injured spinal cord via this approach reduced inflammation and gliosis, and induced microglial differentiation of M1 to M2 in rats after SCI. Analysis of spinal cord samples showed improved myelination and survival signals (AKT) as demonstrated by western blot analysis. SNP-E2 treatment also induced astrocytic differentiation into neuron-like (MAP2/NeuN) cells, supported the survival of oligodendrocyte precursor cells (OPC), and improved bladder and locomotor function in rats following SCI. These data suggest that this novel delivery strategy of SNP-E2 to the injured spinal cord may provide a safe and effective therapeutic approach to treat individuals suffering from SCI.
Collapse
Affiliation(s)
- Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA.
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA.
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA
| | - Kelsey P Drasites
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Denise Matzelle
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA
| | - Sushant Sawant
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Alexey Vertegel
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Abhay Varma
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Naren L Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA.
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA.
| |
Collapse
|
2
|
Hu X, Zhu Q, Lou T, Hu Q, Li H, Xu Y, Niu X, He L, Huang H, Qiu M, Shen Y, Jia JM, Tao Y. Pan-ErbB inhibition impairs cognition via disrupting myelination and aerobic glycolysis in oligodendrocytes. Proc Natl Acad Sci U S A 2024; 121:e2405152121. [PMID: 39475641 PMCID: PMC11551437 DOI: 10.1073/pnas.2405152121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/25/2024] [Indexed: 11/07/2024] Open
Abstract
White matter (WM) abnormalities are an emerging feature of schizophrenia, yet the underlying pathophysiological mechanisms are largely unknown. Disruption of ErbB signaling, which is essential for peripheral myelination, has been genetically associated with schizophrenia and WM lesions in schizophrenic patients. However, the roles of ErbB signaling in oligodendrocytes remain elusive. Here, we used an in vivo pan-ErbB inhibition strategy and demonstrated the functions of endogenous ErbB receptors in oligodendrocytes. Through analyses of the cellular, histological, biochemical, behavioral, and electrophysiological differences in mice with manipulated ErbB activities in oligodendrocytes at different differentiation stages, we found that ErbB signaling regulates myelination and aerobic glycolysis in oligodendrocytes, and both functions are required for working memory. ErbB inhibition in oligodendrocytes at early differentiation stages induces hypomyelination by suppressing the myelinating capacity of newly formed oligodendrocytes. In contrast, ErbB inhibition in mature oligodendrocytes alters neither myelination nor oligodendrocyte numbers, but accelerates axonal conduction decline under energy stress. Mechanistically, ErbB inhibition attenuates K-Ras activities, leading to the reduced expression of lactate dehydrogenase A that promotes aerobic glycolysis in mature oligodendrocytes. Supplementation of L-lactate restores axonal conduction and working memory capacity that are suppressed by ErbB inhibition in mature oligodendrocytes. These findings emphasize the indispensable roles of ErbB signaling in WM integrity and function and provide insights into the multifaceted contributions of WM abnormalities to cognitive impairment.
Collapse
Affiliation(s)
- Xu Hu
- College of Life Sciences, Zhejiang University, Hangzhou310058, China
- Department of Physiology, School of Medicine, Southeast University, Nanjing210009, China
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing210009, China
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou310024, China
| | - Qingyu Zhu
- Department of Physiology, School of Medicine, Southeast University, Nanjing210009, China
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing210009, China
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Tianjie Lou
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Qianqian Hu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Huashun Li
- Department of Physiology, School of Medicine, Southeast University, Nanjing210009, China
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing210009, China
| | - Yijia Xu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Xiaojie Niu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Li He
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Hao Huang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Mengsheng Qiu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Ying Shen
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Jie-Min Jia
- College of Life Sciences, Zhejiang University, Hangzhou310058, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou310024, China
| | - Yanmei Tao
- Department of Physiology, School of Medicine, Southeast University, Nanjing210009, China
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing210009, China
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| |
Collapse
|
3
|
Wright B, King S, Suphioglu C. The Importance of Phosphoinositide 3-Kinase in Neuroinflammation. Int J Mol Sci 2024; 25:11638. [PMID: 39519189 PMCID: PMC11546674 DOI: 10.3390/ijms252111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Neuroinflammation, characterised by the activation of immune cells in the central nervous system (CNS), plays a dual role in both protecting against and contributing to the progression of neurodegenerative diseases, such as Alzheimer's disease (AD) and multiple sclerosis (MS). This review explores the role of phosphoinositide 3-kinase (PI3K), a key enzyme involved in cellular survival, proliferation, and inflammatory responses, within the context of neuroinflammation. Two PI3K isoforms of interest, PI3Kγ and PI3Kδ, are specific to the regulation of CNS cells, such as microglia, astrocytes, neurons, and oligodendrocytes, influencing pathways, such as Akt, mTOR, and NF-κB, that control cytokine production, immune cell activation, and neuroprotection. The dysregulation of PI3K signalling is implicated in chronic neuroinflammation, contributing to the exacerbation of neurodegenerative diseases. Preclinical studies show promise in targeting neuronal disorders using PI3K inhibitors, such as AS605240 (PI3Kγ) and idelalisib (PI3Kδ), which have reduced inflammation, microglial activation, and neuronal death in in vivo models of AD. However, the clinical translation of these inhibitors faces challenges, including blood-brain barrier (BBB) permeability, isoform specificity, and long-term safety concerns. This review highlights the therapeutic potential of PI3K modulation in neuroinflammatory diseases, identifying key gaps in the current research, particularly in the need for brain-penetrating and isoform-specific inhibitors. These findings underscore the importance of future research to develop targeted therapies that can effectively modulate PI3K activity and provide neuroprotection in chronic neurodegenerative disorders.
Collapse
Affiliation(s)
- Brock Wright
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia; (B.W.); (S.K.)
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| | - Samuel King
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia; (B.W.); (S.K.)
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| | - Cenk Suphioglu
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia; (B.W.); (S.K.)
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| |
Collapse
|
4
|
Guo Z, Liu B, Wei Y, Wang H, Zhang Q, Hong X. The multifaceted role of quaking protein in neuropsychiatric disorders and tumor progression. Front Neurosci 2024; 18:1341114. [PMID: 39479357 PMCID: PMC11521838 DOI: 10.3389/fnins.2024.1341114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/11/2024] [Indexed: 11/02/2024] Open
Abstract
The Quaking protein (QKI) belongs to the STAR protein family and plays a significant role in the development of the nervous system. It serves as a crucial regulator in the processes of tumor progression and cardiovascular system development. Within the central nervous system, QKI has been associated with the onset and progression of numerous neuropsychiatric disorders, including schizophrenia, depression, ataxia, and Alzheimer's disease. In malignant tumors, the methylation of the QKI promoter inhibits its expression. QKI primarily involves in the generation, stability, and selective splicing of non-coding RNA, as well as in mRNA translation. The role of QKI in the tumor microenvironment should not be overlooked. Especially in Glioblastoma Multiforme (GBM), although QKI is not the primary mutation, it still plays a vital role in maintaining the stemness of GBM. However, the mechanisms and further studies on this topic demand extensive basic and clinical trials.
Collapse
Affiliation(s)
- Zeshang Guo
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Liu
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Ying Wei
- Department of Radiology, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - HeFei Wang
- Cancer Center, First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Qingquan Zhang
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Emamnejad R, Pagnin M, Petratos S. The iron maiden: Oligodendroglial metabolic dysfunction in multiple sclerosis and mitochondrial signaling. Neurosci Biobehav Rev 2024; 164:105788. [PMID: 38950685 DOI: 10.1016/j.neubiorev.2024.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease, governed by oligodendrocyte (OL) dystrophy and central nervous system (CNS) demyelination manifesting variable neurological impairments. Mitochondrial mechanisms may drive myelin biogenesis maintaining the axo-glial unit according to dynamic requisite demands imposed by the axons they ensheath. The promotion of OL maturation and myelination by actively transporting thyroid hormone (TH) into the CNS and thereby facilitating key transcriptional and metabolic pathways that regulate myelin biogenesis is fundamental to sustain the profound energy demands at each axo-glial interface. Deficits in regulatory functions exerted through TH for these physiological roles to be orchestrated by mature OLs, can occur in genetic and acquired myelin disorders, whereby mitochondrial efficiency and eventual dysfunction can lead to profound oligodendrocytopathy, demyelination and neurodegenerative sequelae. TH-dependent transcriptional and metabolic pathways can be dysregulated during acute and chronic MS lesion activity depriving OLs from critical acetyl-CoA biochemical mechanisms governing myelin lipid biosynthesis and at the same time altering the generation of iron metabolism that may drive ferroptotic mechanisms, leading to advancing neurodegeneration.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| |
Collapse
|
6
|
Sawaguchi S, Ishida M, Miyamoto Y, Yamauchi J. Hypomyelination Leukodystrophy 16 (HLD16)-Associated Mutation p.Asp252Asn of TMEM106B Blunts Cell Morphological Differentiation. Curr Issues Mol Biol 2024; 46:8088-8103. [PMID: 39194695 DOI: 10.3390/cimb46080478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Transmembrane protein 106B (TMEM106B), which is a type II transmembrane protein, is believed to be involved in intracellular dynamics and morphogenesis in the lysosome. TMEM106B is known to be a risk factor for frontotemporal lobar degeneration and has been recently identified as the receptor needed for the entry of SARS-CoV-2, independently of angiotensin-converting enzyme 2 (ACE2). A missense mutation, p.Asp252Asn, of TMEM106B is associated with hypomyelinating leukodystrophy 16 (HLD16), which is an oligodendroglial cell-related white matter disorder causing thin myelin sheaths or myelin deficiency in the central nervous system (CNS). However, it remains to be elucidated how the mutated TMEM106B affects oligodendroglial cells. Here, we show that the TMEM106B mutant protein fails to exhibit lysosome distribution in the FBD-102b cell line, an oligodendroglial precursor cell line undergoing differentiation. In contrast, wild-type TMEM106B was indeed localized in the lysosome. Cells harboring wild-type TMEM106B differentiated into ones with widespread membranes, whereas cells harboring mutated TMEM106B failed to differentiate. It is of note that the output of signaling through the lysosome-resident mechanistic target of rapamycin (mTOR) was greatly decreased in cells harboring mutated TMEM106B. Furthermore, treatment with hesperetin, a citrus flavonoid known as an activator of mTOR signaling, restored the molecular and cellular phenotypes induced by the TMEM106B mutant protein. These findings suggest the potential pathological mechanisms underlying HLD16 and their amelioration.
Collapse
Affiliation(s)
- Sui Sawaguchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Miki Ishida
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
7
|
Emery B, Wood TL. Regulators of Oligodendrocyte Differentiation. Cold Spring Harb Perspect Biol 2024; 16:a041358. [PMID: 38503504 PMCID: PMC11146316 DOI: 10.1101/cshperspect.a041358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.
Collapse
Affiliation(s)
- Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| |
Collapse
|
8
|
Balboni N, Babini G, Poeta E, Protti M, Mercolini L, Magnifico MC, Barile SN, Massenzio F, Pignataro A, Giorgi FM, Lasorsa FM, Monti B. Transcriptional and metabolic effects of aspartate-glutamate carrier isoform 1 (AGC1) downregulation in mouse oligodendrocyte precursor cells (OPCs). Cell Mol Biol Lett 2024; 29:44. [PMID: 38553684 PMCID: PMC10979587 DOI: 10.1186/s11658-024-00563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Aspartate-glutamate carrier isoform 1 (AGC1) is a carrier responsible for the export of mitochondrial aspartate in exchange for cytosolic glutamate and is part of the malate-aspartate shuttle, essential for the balance of reducing equivalents in the cells. In the brain, mutations in SLC25A12 gene, encoding for AGC1, cause an ultra-rare genetic disease, reported as a neurodevelopmental encephalopathy, whose symptoms include global hypomyelination, arrested psychomotor development, hypotonia and seizures. Among the biological components most affected by AGC1 deficiency are oligodendrocytes, glial cells responsible for myelination processes, and their precursors [oligodendrocyte progenitor cells (OPCs)]. The AGC1 silencing in an in vitro model of OPCs was documented to cause defects of proliferation and differentiation, mediated by alterations of histone acetylation/deacetylation. Disrupting AGC1 activity could possibly reduce the availability of acetyl groups, leading to perturbation of many biological pathways, such as histone modifications and fatty acids formation for myelin production. Here, we explore the transcriptome of mouse OPCs partially silenced for AGC1, reporting results of canonical analyses (differential expression) and pathway enrichment analyses, which highlight a disruption in fatty acids synthesis from both a regulatory and enzymatic stand. We further investigate the cellular effects of AGC1 deficiency through the identification of most affected transcriptional networks and altered alternative splicing. Transcriptional data were integrated with differential metabolite abundance analysis, showing downregulation of several amino acids, including glutamine and aspartate. Taken together, our results provide a molecular foundation for the effects of AGC1 deficiency in OPCs, highlighting the molecular mechanisms affected and providing a list of actionable targets to mitigate the effects of this pathology.
Collapse
Affiliation(s)
- Nicola Balboni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Babini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michele Protti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maria Chiara Magnifico
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Simona Nicole Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Antonella Pignataro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | | | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
9
|
Ishibashi S, Kamei N, Tsuchikawa Y, Nakamae T, Akimoto T, Miyaki S, Adachi N. Myelin-Specific microRNA-23a/b Cluster Deletion Inhibits Myelination in the Central Nervous System during Postnatal Growth and Aging. Genes (Basel) 2024; 15:402. [PMID: 38674338 PMCID: PMC11049049 DOI: 10.3390/genes15040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Microribonucleic acids (miRNAs) comprising miR-23a/b clusters, specifically miR-23a and miR-27a, are recognized for their divergent roles in myelination within the central nervous system. However, cluster-specific miRNA functions remain controversial as miRNAs within the same cluster have been suggested to function complementarily. This study aims to clarify the role of miR-23a/b clusters in myelination using mice with a miR-23a/b cluster deletion (KO mice), specifically in myelin expressing proteolipid protein (PLP). Inducible conditional KO mice were generated by crossing miR-23a/b clusterflox/flox mice with PlpCre-ERT2 mice; the offspring were injected with tamoxifen at 10 days or 10 weeks of age to induce a myelin-specific miR-23a/b cluster deletion. Evaluation was performed at 10 weeks or 12 months of age and compared with control mice that were not treated with tamoxifen. KO mice exhibit impaired motor function and hypoplastic myelin sheaths in the brain and spinal cord at 10 weeks and 12 months of age. Simultaneously, significant decreases in myelin basic protein (MBP) and PLP expression occur in KO mice. The percentages of oligodendrocyte precursors and mature oligodendrocytes are consistent between the KO and control mice. However, the proportion of oligodendrocytes expressing MBP is significantly lower in KO mice. Moreover, changes in protein expression occur in KO mice, with increased leucine zipper-like transcriptional regulator 1 expression, decreased R-RAS expression, and decreased phosphorylation of extracellular signal-regulated kinases. These findings highlight the significant influence of miR-23a/b clusters on myelination during postnatal growth and aging.
Collapse
Affiliation(s)
- Shigeki Ishibashi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
| | - Yuji Tsuchikawa
- Orthopedics and Micro-Surgical Spine Center, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima 731-0293, Japan;
| | - Toshio Nakamae
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
| | - Takayuki Akimoto
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan;
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
| |
Collapse
|
10
|
Yu K, Zhou H, Chen Z, Lei Y, Wu J, Yuan Q, He J. Mechanism of cognitive impairment and white matter damage in the MK-801 mice model of schizophrenia treated with quetiapine. Behav Brain Res 2024; 461:114838. [PMID: 38157989 DOI: 10.1016/j.bbr.2023.114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Schizophrenia has been linked to cognitive impairment and white matter damage in a growing number of studies this year. In this study, we used the MK-801-induced schizophrenia-like mice model to investigate the effects of quetiapine on behavioral changes and myelin loss in the model mice. The subjects selected for this study were C57B6/J male mice, MK-801 (1 mg/kg/d intraperitoneal injection) modeling for 1 week and quetiapine (10 mg/kg/d intraperitoneal injection) treatment for 2 weeks. Behavioral tests were then performed using the three-chamber paradigm test and the Y maze test. Moreover, western blot, immunohistochemistry, and immunofluorescence were conducted to investigate the changes in oligodendrocyte spectrum markers. In addition, we performed some mechanism-related proteins by western blot. Quetiapine ameliorated cognitive impairment and cerebral white matter damage in MK-801 model mice, and the mechanism may be related to the PI3K/AKT pathways. The present study suggests that quetiapine has a possible mechanism for treating cognitive impairment and white matter damage caused by schizophrenia.
Collapse
Affiliation(s)
- Kai Yu
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Key Laboratory for Basic and Translational Research in Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Han Zhou
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Key Laboratory for Basic and Translational Research in Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuo Chen
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Key Laboratory for Basic and Translational Research in Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuying Lei
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Key Laboratory for Basic and Translational Research in Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junnan Wu
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Key Laboratory for Basic and Translational Research in Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianfa Yuan
- Xiamen Xian Yue Hospital, Xiamen, Fujian, China
| | - Jue He
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Key Laboratory for Basic and Translational Research in Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Neurological Disease, First Affiliated Hospital, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
11
|
Krauter D, Stausberg D, Hartmann TJ, Volkmann S, Kungl T, Rasche DA, Saher G, Fledrich R, Stassart RM, Nave KA, Goebbels S, Ewers D, Sereda MW. Targeting PI3K/Akt/mTOR signaling in rodent models of PMP22 gene-dosage diseases. EMBO Mol Med 2024; 16:616-640. [PMID: 38383802 PMCID: PMC10940316 DOI: 10.1038/s44321-023-00019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 02/23/2024] Open
Abstract
Haplo-insufficiency of the gene encoding the myelin protein PMP22 leads to focal myelin overgrowth in the peripheral nervous system and hereditary neuropathy with liability to pressure palsies (HNPP). Conversely, duplication of PMP22 causes Charcot-Marie-Tooth disease type 1A (CMT1A), characterized by hypomyelination of medium to large caliber axons. The molecular mechanisms of abnormal myelin growth regulation by PMP22 have remained obscure. Here, we show in rodent models of HNPP and CMT1A that the PI3K/Akt/mTOR-pathway inhibiting phosphatase PTEN is correlated in abundance with PMP22 in peripheral nerves, without evidence for direct protein interactions. Indeed, treating DRG neuron/Schwann cell co-cultures from HNPP mice with PI3K/Akt/mTOR pathway inhibitors reduced focal hypermyelination. When we treated HNPP mice in vivo with the mTOR inhibitor Rapamycin, motor functions were improved, compound muscle amplitudes were increased and pathological tomacula in sciatic nerves were reduced. In contrast, we found Schwann cell dedifferentiation in CMT1A uncoupled from PI3K/Akt/mTOR, leaving partial PTEN ablation insufficient for disease amelioration. For HNPP, the development of PI3K/Akt/mTOR pathway inhibitors may be considered as the first treatment option for pressure palsies.
Collapse
Affiliation(s)
- Doris Krauter
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Daniela Stausberg
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Timon J Hartmann
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan Volkmann
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Theresa Kungl
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - David A Rasche
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Robert Fledrich
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Ruth M Stassart
- Institute of Neuropathology, University of Leipzig, Leipzig, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - David Ewers
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| | - Michael W Sereda
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
12
|
Franklin RJM, Bodini B, Goldman SA. Remyelination in the Central Nervous System. Cold Spring Harb Perspect Biol 2024; 16:a041371. [PMID: 38316552 PMCID: PMC10910446 DOI: 10.1101/cshperspect.a041371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, while this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granule neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this work, we will (1) review the biology of remyelination, including the cells and signals involved; (2) describe when remyelination occurs and when and why it fails, including the consequences of its failure; and (3) discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs Cambridge Institute of Science, Cambridge CB21 6GH, United Kingdom
| | - Benedetta Bodini
- Sorbonne Université, Paris Brain Institute, CNRS, INSERM, Paris 75013, France
- Saint-Antoine Hospital, APHP, Paris 75012, France
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642, USA
- University of Copenhagen Faculty of Medicine, Copenhagen 2200, Denmark
| |
Collapse
|
13
|
Bonnet LV, Palandri A, Flores-Martin JB, Hallak ME. Arginyltransferase 1 modulates p62-driven autophagy via mTORC1/AMPk signaling. Cell Commun Signal 2024; 22:87. [PMID: 38297346 PMCID: PMC10832197 DOI: 10.1186/s12964-024-01499-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Arginyltransferase (Ate1) orchestrates posttranslational protein arginylation, a pivotal regulator of cellular proteolytic processes. In eukaryotic cells, two interconnected systems-the ubiquitin proteasome system (UPS) and macroautophagy-mediate proteolysis and cooperate to maintain quality protein control and cellular homeostasis. Previous studies have shown that N-terminal arginylation facilitates protein degradation through the UPS. Dysregulation of this machinery triggers p62-mediated autophagy to ensure proper substrate processing. Nevertheless, how Ate1 operates through this intricate mechanism remains elusive. METHODS We investigated Ate1 subcellular distribution through confocal microscopy and biochemical assays using cells transiently or stably expressing either endogenous Ate1 or a GFP-tagged Ate1 isoform transfected in CHO-K1 or MEFs, respectively. To assess Ate1 and p62-cargo clustering, we analyzed their colocalization and multimerization status by immunofluorescence and nonreducing immunoblotting, respectively. Additionally, we employed Ate1 KO cells to examine the role of Ate1 in autophagy. Ate1 KO MEFs cells stably expressing GFP-tagged Ate1-1 isoform were used as a model for phenotype rescue. Autophagy dynamics were evaluated by analyzing LC3B turnover and p62/SQSTM1 levels under both steady-state and serum-starvation conditions, through immunoblotting and immunofluorescence. We determined mTORC1/AMPk activation by assessing mTOR and AMPk phosphorylation through immunoblotting, while mTORC1 lysosomal localization was monitored by confocal microscopy. RESULTS Here, we report a multifaceted role for Ate1 in the autophagic process, wherein it clusters with p62, facilitates autophagic clearance, and modulates its signaling. Mechanistically, we found that cell-specific inactivation of Ate1 elicits overactivation of the mTORC1/AMPk signaling hub that underlies a failure in autophagic flux and subsequent substrate accumulation, which is partially rescued by ectopic expression of Ate1. Statistical significance was assessed using a two-sided unpaired t test with a significance threshold set at P<0.05. CONCLUSIONS Our findings uncover a critical housekeeping role of Ate1 in mTORC1/AMPk-regulated autophagy, as a potential therapeutic target related to this pathway, that is dysregulated in many neurodegenerative and cancer diseases.
Collapse
Affiliation(s)
- Laura V Bonnet
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CIQUIBIC, Córdoba, Argentina.
| | - Anabela Palandri
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CIQUIBIC, Córdoba, Argentina
| | - Jesica B Flores-Martin
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CIQUIBIC, Córdoba, Argentina
| | - Marta E Hallak
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CIQUIBIC, Córdoba, Argentina.
| |
Collapse
|
14
|
Rajendran R, Rajendran V, Böttiger G, Stadelmann C, Shirvanchi K, von Au L, Bhushan S, Wallendszus N, Schunin D, Westbrock V, Liebisch G, Ergün S, Karnati S, Berghoff M. The small molecule fibroblast growth factor receptor inhibitor infigratinib exerts anti-inflammatory effects and remyelination in a model of multiple sclerosis. Br J Pharmacol 2023; 180:2989-3007. [PMID: 37400950 DOI: 10.1111/bph.16186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Fibroblast growth factors and receptors (FGFR) have been shown to modulate inflammation and neurodegeneration in multiple sclerosis (MS). The selective FGFR inhibitor infigratinib has been shown to be effective in cancer models. Here, we investigate the effects of infigratinib on prevention and suppression of first clinical episodes of myelin oligodendrocyte glycoprotein (MOG)35-55 -induced experimental autoimmune encephalomyelitis (EAE) in mice. EXPERIMENTAL APPROACH The FGFR inhibitor infigratinib was given over 10 days from the time of experimental autoimmune encephalomyelitis induction or the onset of symptoms. The effects of infigratinib on proliferation, cytotoxicity and FGFR signalling proteins were studied in lymphocyte cell lines and microglial cells. KEY RESULTS Administration of infigratinib prevented by 40% and inhibited by 65% first clinical episodes of the induced experimental autoimmune encephalomyelitis. In the spinal cord, infiltration of lymphocytes and macrophages/microglia, destruction of myelin and axons were reduced by infigratinib. Infigratinib enhanced the maturation of oligodendrocytes and increased remyelination. In addition, infigratinib resulted in an increase of myelin proteins and a decrease in remyelination inhibitors. Further, lipids associated with neurodegeneration such as lysophosphatidylcholine and ceramide were decreased as were proliferation of T cells and microglial cells. CONCLUSION AND IMPLICATIONS This proof of concept study demonstrates the therapeutic potential of targeting FGFRs in a disease model of multiple sclerosis. Application of oral infigratinib resulted in anti-inflammatory and remyelinating effects. Thus, infigratinib may have the potential to slow disease progression or even to improve the disabling symptoms of multiple sclerosis.
Collapse
Affiliation(s)
- Ranjithkumar Rajendran
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Vinothkumar Rajendran
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Gregor Böttiger
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Kian Shirvanchi
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Laureen von Au
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Sudhanshu Bhushan
- Institute for Anatomy and Cell Biology, University of Giessen, Giessen, Germany
| | - Natascha Wallendszus
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Darja Schunin
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Victor Westbrock
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Martin Berghoff
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| |
Collapse
|
15
|
Gakare SG, Bhatt JM, Narasimhan KKS, Dravid SM. Glutamate delta-1 receptor regulates oligodendrocyte progenitor cell differentiation and myelination in normal and demyelinating conditions. PLoS One 2023; 18:e0294583. [PMID: 37983226 PMCID: PMC10659214 DOI: 10.1371/journal.pone.0294583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
In this study, we investigated the role of glutamate delta 1 receptor (GluD1) in oligodendrocyte progenitor cell (OPC)-mediated myelination during basal (development) and pathophysiological (cuprizone-induced demyelination) conditions. Initially, we sought to determine the expression pattern of GluD1 in OPCs and found a significant colocalization of GluD1 puncta with neuron-glial antigen 2 (NG2, OPC marker) in the motor cortex and dorsal striatum. Importantly, we found that the ablation of GluD1 led to an increase in the number of myelin-associated glycoprotein (MAG+) cells in the corpus callosum and motor cortex at P40 without affecting the number of NG2+ OPCs, suggesting that GluD1 loss selectively facilitates OPC differentiation rather than proliferation. Further, deletion of GluD1 enhanced myelination in the corpus callosum and motor cortex, as indicated by increased myelin basic protein (MBP) staining at P40, suggesting that GluD1 may play an essential role in the developmental regulation of myelination during the critical window period. In contrast, in cuprizone-induced demyelination, we observed reduced MBP staining in the corpus callosum of GluD1 KO mice. Furthermore, cuprizone-fed GluD1 KO mice showed more robust motor deficits. Collectively, our results demonstrate that GluD1 plays a critical role in OPC regulation and myelination in normal and demyelinating conditions.
Collapse
Affiliation(s)
- Sukanya G. Gakare
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Jay M. Bhatt
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Kishore Kumar S. Narasimhan
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Shashank M. Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States of America
| |
Collapse
|
16
|
Xiao J. Thirty years of BDNF study in central myelination: From biology to therapy. J Neurochem 2023; 167:321-336. [PMID: 37747083 DOI: 10.1111/jnc.15968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Being the highest expressed neurotrophin in the mammalian brain, the brain-derived neurotrophic factor (BDNF) is essential to neural development and plasticity in both health and diseases. Following the discovery of BDNF by Yves-Alain Barde in 1982, the main feature of BDNF's activity in myelination was first described by Cellerino et al. in 1997. Since then, genetic manipulation of the BDNF-encoding gene and its receptors in murine models has revealed the contribution of BDNF to the myelinating process in the central nervous system (CNS). The series of BDNF or receptor mouse mutants as well as the BDNF polymorphism in humans have provided new insights into the roles that BDNF signaling plays in myelination in a complex manner. 2024 marks the 30th year of BDNF's research in myelination. Here, we share our perspective on the 30-year history of BDNF in the field of CNS myelination from phenotyping to therapeutic development, focusing on genetic evidence regarding the mechanism by which BDNF regulates myelin formation and repair in the CNS. This review also discusses the current hypotheses of BDNF's action on CNS myelination: axonal- and oligodendroglial-driven mechanisms, which may be ultimately activity-dependent. Last, this review raises the challenges and opportunities of developing BDNF-based therapies for neurodegenerative diseases, opening unanswered questions for future investigation.
Collapse
Affiliation(s)
- Junhua Xiao
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
- School of Allied Health, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
17
|
Baldenius M, Kautzmann S, Nanda S, Klämbt C. Signaling Pathways Controlling Axonal Wrapping in Drosophila. Cells 2023; 12:2553. [PMID: 37947631 PMCID: PMC10647682 DOI: 10.3390/cells12212553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
The rapid transmission of action potentials is an important ability that enables efficient communication within the nervous system. Glial cells influence conduction velocity along axons by regulating the radial axonal diameter, providing electrical insulation as well as affecting the distribution of voltage-gated ion channels. Differentiation of these wrapping glial cells requires a complex set of neuron-glia interactions involving three basic mechanistic features. The glia must recognize the axon, grow around it, and eventually arrest its growth to form single or multiple axon wraps. This likely depends on the integration of numerous evolutionary conserved signaling and adhesion systems. Here, we summarize the mechanisms and underlying signaling pathways that control glial wrapping in Drosophila and compare those to the mechanisms that control glial differentiation in mammals. This analysis shows that Drosophila is a beneficial model to study the development of even complex structures like myelin.
Collapse
Affiliation(s)
| | | | | | - Christian Klämbt
- Institute for Neuro- and Behavioral Biology, Faculty of Biology, University of Münster, Röntgenstraße 16, D-48149 Münster, Germany; (M.B.)
| |
Collapse
|
18
|
Wu L, Wang F, Moncman CL, Pandey M, Clarke HA, Frazier HN, Young LE, Gentry MS, Cai W, Thibault O, Sun RC, Andres DA. RIT1 regulation of CNS lipids RIT1 deficiency Alters cerebral lipid metabolism and reduces white matter tract oligodendrocytes and conduction velocities. Heliyon 2023; 9:e20384. [PMID: 37780758 PMCID: PMC10539968 DOI: 10.1016/j.heliyon.2023.e20384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/21/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
Oligodendrocytes (OLs) generate lipid-rich myelin membranes that wrap axons to enable efficient transmission of electrical impulses. Using a RIT1 knockout mouse model and in situ high-resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) coupled with MS-based lipidomic analysis to determine the contribution of RIT1 to lipid homeostasis. Here, we report that RIT1 loss is associated with altered lipid levels in the central nervous system (CNS), including myelin-associated lipids within the corpus callosum (CC). Perturbed lipid metabolism was correlated with reduced numbers of OLs, but increased numbers of GFAP+ glia, in the CC, but not in grey matter. This was accompanied by reduced myelin protein expression and axonal conduction deficits. Behavioral analyses revealed significant changes in voluntary locomotor activity and anxiety-like behavior in RIT1KO mice. Together, these data reveal an unexpected role for RIT1 in the regulation of cerebral lipid metabolism, which coincide with altered white matter tract oligodendrocyte levels, reduced axonal conduction velocity, and behavioral abnormalities in the CNS.
Collapse
Affiliation(s)
- Lei Wu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
| | - Fang Wang
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
| | - Carole L. Moncman
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
| | - Mritunjay Pandey
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
| | - Harrison A. Clarke
- Department of Neuroscience, College of Medicine, University of Kentucky, KY 40536, USA
| | - Hilaree N. Frazier
- Department of Pharmacological and Nutritional Sciences, College of Medicine, University of Kentucky, KY 40536, USA
| | - Lyndsay E.A. Young
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
- Markey Cancer Center, Lexington, KY 40536, USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
- Markey Cancer Center, Lexington, KY 40536, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32611, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, NY 11568, USA
| | - Olivier Thibault
- Department of Pharmacological and Nutritional Sciences, College of Medicine, University of Kentucky, KY 40536, USA
| | - Ramon C. Sun
- Department of Neuroscience, College of Medicine, University of Kentucky, KY 40536, USA
- Markey Cancer Center, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32611, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Douglas A. Andres
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
- Markey Cancer Center, Lexington, KY 40536, USA
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, KY 40536, USA
- Gill Heart and Vascular Institute, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
19
|
Yazdani Y, Zamani ARN, Majidi Z, Sharafkandi N, Alizadeh S, Mofrad AME, Valizadeh A, Idari G, Radvar AD, Safaie N, Faridvand Y. Curcumin and targeting of molecular and metabolic pathways in multiple sclerosis. Cell Biochem Funct 2023; 41:779-787. [PMID: 37653672 DOI: 10.1002/cbf.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
Multiple sclerosis (MS) is a life-threading disease that poses a great threat to the human being lifestyle. Having said extensive research in the realm of underlying mechanisms and treatment procedures, no definite remedy has been found. Over the past decades, many medicines have been disclosed to alleviate the symptoms and marking of MS. Meanwhile, the substantial efficacy of herbal medicines including curcumin must be underscored. Accumulated documents demonstrated the fundamental role of curcumin in the induction of the various signaling pathways. According to evidence, curcumin can play a role in mitochondrial dysfunction and apoptosis, autophagy, and mitophagy. Also, by targeting the signaling pathways AMPK, PGC-1α/PPARγ, and PI3K/Akt/mTOR, curcumin interferes with the metabolism of MS. The anti-inflammatory, antioxidant, and immune regulatory effects of this herbal compound are involved in its effectiveness against MS. Thus, the present review indicates the molecular and metabolic pathways associated with curcumin's various pharmacological actions on MS, as well as setting into context the many investigations that have noted curcumin-mediated regulatory effects in MS.
Collapse
Affiliation(s)
- Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo R N Zamani
- Department of Genetic, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ziba Majidi
- Department of Medical Laboratory Science, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nadia Sharafkandi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shaban Alizadeh
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir M E Mofrad
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Valizadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Idari
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aysan D Radvar
- Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Tishler TA, Ellingson BM, Salvadore G, Baker P, Turkoz I, Subotnik KL, de la Fuente-Sandoval C, Nuechterlein KH, Alphs L. Effect of treatment with paliperidone palmitate versus oral antipsychotics on frontal lobe intracortical myelin volume in participants with recent-onset schizophrenia: Magnetic resonance imaging results from the DREaM study. Schizophr Res 2023; 255:195-202. [PMID: 37004331 DOI: 10.1016/j.schres.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 02/10/2023] [Accepted: 03/11/2023] [Indexed: 04/04/2023]
Abstract
OBJECTIVE We investigated changes in brain intracortical myelin (ICM) volume in the frontal lobe after 9 months of treatment with paliperidone palmitate (PP) compared with 9 months of treatment with oral antipsychotics (OAP) in participants with recent-onset schizophrenia or schizophreniform disorder from the Disease Recovery Evaluation and Modification (DREaM) study, a randomized, open-label, delayed-start trial. METHODS DREaM included 3 phases: Part I, a 2-month oral run-in; Part II, a 9-month disease progression phase (PP or OAP); and Part III, 9 months of additional treatment (participants receiving PP continued PP [PP/PP] and participants receiving OAP were rerandomized to receive either PP [OAP/PP] or OAP [OAP/OAP]). In Part II, magnetic resonance imaging (MRI) and functional and symptomatic assessment was performed at baseline, day 92, and day 260. ICM volume as a fraction of the entire brain volume was quantified by subtraction of a proton density image from an inversion recovery image. Within-treatment-group changes from baseline were assessed by paired t-tests. Analysis of covariance was used to analyze ICM volume changes between treatment groups, adjusting for country. RESULTS The MRI analysis sample size included 71 DREaM participants (PP, 23; OAP, 48) and 64 healthy controls. At baseline, mean adjusted ICM fraction values did not differ between groups (PP, 0.057; OAP, 0.058, p = 0.79). By day 92, the adjusted ICM fraction in the OAP group had decreased significantly (change from baseline, -0.002; p = 0.001), whereas the adjusted ICM fraction remained unchanged from baseline in the PP group (0.000; p = 0.80). At day 260, the change from baseline in adjusted ICM fraction was -0.004 (p = 0.004) in the OAP group and -0.001 (p = 0.728) in the PP group. The difference between treatment groups did not reach statistical significance (p = 0.147). CONCLUSIONS In participants with recent-onset schizophrenia or schizophreniform disorder, frontal ICM volume was preserved at baseline levels in those treated with PP over 9 months. However, a decrease of frontal ICM volume was observed among participants treated with OAPs. TRIAL REGISTRATION clinicaltrials.gov identifier NCT02431702.
Collapse
Affiliation(s)
- T A Tishler
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - B M Ellingson
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA; UCLA Center for Computer Vision and Imaging Biomarkers, Departments of Radiological Sciences and Psychiatry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA.
| | - G Salvadore
- Janssen Research and Development, LLC, Titusville, NJ, USA.
| | - P Baker
- Janssen Scientific Affairs, LLC, Titusville, NJ, USA.
| | - I Turkoz
- Janssen Research and Development, LLC, Titusville, NJ, USA.
| | - K L Subotnik
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - C de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.
| | - K H Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA; Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA.
| | - L Alphs
- Janssen Scientific Affairs, LLC, Titusville, NJ, USA.
| |
Collapse
|
21
|
Tsuchikawa Y, Kamei N, Sanada Y, Nakamae T, Harada T, Imaizumi K, Akimoto T, Miyaki S, Adachi N. Deficiency of MicroRNA-23-27-24 Clusters Exhibits the Impairment of Myelination in the Central Nervous System. Neural Plast 2023; 2023:8938674. [PMID: 37006814 PMCID: PMC10060068 DOI: 10.1155/2023/8938674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Accepted: 03/12/2023] [Indexed: 04/04/2023] Open
Abstract
Several microRNAs (miRNAs), including miR-23 and miR-27a have been reportedly involved in regulating myelination in the central nervous system. Although miR-23 and miR-27a form clusters in vivo and the clustered miRNAs are known to perform complementary functions, the role of these miRNA clusters in myelination has not been studied. To investigate the role of miR-23-27-24 clusters in myelination, we generated miR-23-27-24 cluster knockout mice and evaluated myelination in the brain and spinal cord. Our results showed that 10-week-old knockout mice had reduced motor function in the hanging wire test compared to the wild-type mice. At 4 weeks, 10 weeks, and 12 months of age, knockout mice showed reduced myelination compared to wild-type mice. The expression levels of myelin basic protein and myelin proteolipid protein were also significantly lower in the knockout mice compared to the wild-type mice. Although differentiation of oligodendrocyte progenitor cells to oligodendrocytes was not inhibited in the knockout mice, the percentage of oligodendrocytes expressing myelin basic protein was significantly lower in 4-week-old knockout mice than that in wild-type mice. Proteome analysis and western blotting showed increased expression of leucine-zipper-like transcription regulator 1 (LZTR1) and decreased expression of R-RAS and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) in the knockout mice. In summary, loss of miR-23-27-24 clusters reduces myelination and compromises motor functions in mice. Further, LZTR1, which regulates R-RAS upstream of the ERK1/2 pathway, a signal that promotes myelination, has been identified as a novel target of the miR-23-27-24 cluster in this study.
Collapse
Affiliation(s)
- Yuji Tsuchikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348551, Japan
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348551, Japan
| | - Yohei Sanada
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348551, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 7348551, Japan
| | - Toshio Nakamae
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348551, Japan
| | - Takahiro Harada
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348551, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348551, Japan
| | - Takayuki Akimoto
- Faculty of Sport Sciences, Waseda University, Tokorozawa 3591192, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348551, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 7348551, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348551, Japan
| |
Collapse
|
22
|
Li X, Zhang T, Li C, Xu W, Guan Y, Li X, Cheng H, Chen S, Yang B, Liu Y, Ren Z, Song X, Jia Z, Wang Y, Tang J. Electrical stimulation accelerates Wallerian degeneration and promotes nerve regeneration after sciatic nerve injury. Glia 2023; 71:758-774. [PMID: 36484493 DOI: 10.1002/glia.24309] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022]
Abstract
Following peripheral nerve injury (PNI), Wallerian degeneration (WD) in the distal stump can generate a microenvironment favorable for nerve regeneration. Brief low-frequency electrical stimulation (ES) is an effective treatment for PNI, but the mechanism underlying its effect on WD remains unclear. Therefore, we hypothesized that ES could enhance nerve regeneration by accelerating WD. To verify this hypothesis, we used a rat model of sciatic nerve transection and provided ES at the distal stump of the injured nerve. The injured nerve was then evaluated after 1, 4, 7, 14 and 21 days post injury (dpi). The results showed that ES significantly promoted the degeneration and clearance of axons and myelin, and the dedifferentiation of Schwann cells. It upregulated the expression of BDNF and NGF and increased the number of monocytes and macrophages. Through transcriptome sequencing, we systematically investigated the effect of ES on the molecular processes involved in WD at 4 dpi. Evaluation of nerves bridged using silicone tubing after transection showed that ES accelerated early axonal and vascular regeneration while delaying gastrocnemius atrophy. These results demonstrate that ES promotes nerve regeneration by accelerating WD and upregulating the expression of neurotrophic factors.
Collapse
Affiliation(s)
- Xiangling Li
- The School of Medicine, Jinzhou Medical University, Jinzhou, China.,Department of Orthopedics, The Fourth Medical Center of the General Hospital of People's Liberation Army, Beijing, China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Tieyuan Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Chaochao Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Wenjing Xu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Yanjun Guan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Xiaoya Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Haofeng Cheng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Shengfeng Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Boyao Yang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Yuli Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Zhiqi Ren
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Xiangyu Song
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Hebei North University, Zhangjiakou, China
| | - Zhibo Jia
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Hebei North University, Zhangjiakou, China
| | - Yu Wang
- Department of Orthopedics, The Fourth Medical Center of the General Hospital of People's Liberation Army, Beijing, China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jinshu Tang
- Department of Orthopedics, The Fourth Medical Center of the General Hospital of People's Liberation Army, Beijing, China
| |
Collapse
|
23
|
mTORC2 Loss in Oligodendrocyte Progenitor Cells Results in Regional Hypomyelination in the Central Nervous System. J Neurosci 2023; 43:540-558. [PMID: 36460463 PMCID: PMC9888514 DOI: 10.1523/jneurosci.0010-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
In the CNS, oligodendrocyte progenitor cells (OPCs) differentiate into mature oligodendrocytes to generate myelin, an essential component for normal nervous system function. OPC differentiation is driven by signaling pathways, such as mTOR, which functions in two distinct complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), containing Raptor or Rictor, respectively. In the current studies, mTORC2 signaling was selectively deleted from OPCs in PDGFRα-Cre X Rictorfl/fl mice. This study examined developmental myelination in male and female mice, comparing the impact of mTORC2 deletion in the corpus callosum and spinal cord. In both regions, Rictor loss in OPCs resulted in early reduction in myelin RNAs and proteins. However, these deficits rapidly recovered in spinal cord, where normal myelin was noted at P21 and P45. By contrast, the losses in corpus callosum resulted in severe hypomyelination and increased unmyelinated axons. The hypomyelination may result from decreased oligodendrocytes in the corpus callosum, which persisted in animals as old as postnatal day 350. The current studies focus on uniquely altered signaling pathways following mTORC2 loss in developing oligodendrocytes. A major mTORC2 substrate is phospho-Akt-S473, which was significantly reduced throughout development in both corpus callosum and spinal cord at all ages measured, yet this had little impact in spinal cord. Loss of mTORC2 signaling resulted in decreased expression of actin regulators, such as gelsolin in corpus callosum, but only minimal loss in spinal cord. The current study establishes a regionally specific role for mTORC2 signaling in OPCs, particularly in the corpus callosum.SIGNIFICANCE STATEMENT mTORC1 and mTORC2 signaling has differential impact on myelination in the CNS. Numerous studies identify a role for mTORC1, but deletion of Rictor (mTORC2 signaling) in late-stage oligodendrocytes had little impact on myelination in the CNS. However, the current studies establish that deletion of mTORC2 signaling from oligodendrocyte progenitor cells results in reduced myelination of brain axons. These studies also establish a regional impact of mTORC2, with little change in spinal cord in these conditional Rictor deletion mice. Importantly, in both brain and spinal cord, mTORC2 downstream signaling targets were impacted by Rictor deletion. Yet, these signaling changes had little impact on myelination in spinal cord, while they resulted in long-term alterations in myelination in brain.
Collapse
|
24
|
Rajendran R, Rajendran V, Gupta L, Shirvanchi K, Schunin D, Karnati S, Giraldo-Velásquez M, Berghoff M. Interferon Beta-1a versus Combined Interferon Beta-1a and Oligodendrocyte-Specific FGFR1 Deletion in Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2022; 23:ijms232012183. [PMID: 36293040 PMCID: PMC9603153 DOI: 10.3390/ijms232012183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Recombinant beta interferons-1 (IFNβ-1) are used as first line therapies in patients with relapsing multiple sclerosis (MS), a chronic inflammatory and neurodegenerative disease of the CNS. IFNβ-1a/b has moderate effects on the prevention of relapses and slowing of disease progression. Fibroblast growth factors (FGFs) and FGF receptors (FGFRs) are known to play a key role in the pathology of MS and its model EAE. To investigate the effects of short-term treatment with s.c. IFNβ-1a versus the combined application of s.c. IFNβ-1a and oligodendrocyte-specific deletion of FGFR1 (Fgfr1ind−/− mice) in MOG35-55-induced EAE. IFNβ-1a (30 mg/kg) was applied s.c. from days 0–7 p.i. of EAE in controls and Fgfr1ind−/− mice. FGFR signaling proteins associated with inflammation/degeneration in MS/EAE were analyzed by western blot in the spinal cord. Further, FGFR1 in Oli-neu oligodendrocytes were inhibited by PD166866 and treated with IFNβ-1a (400 ng/mL). Application of IFNβ-1a over 8 days resulted in less symptoms only at the peak of disease (days 9–11) compared to controls. Application of IFNβ-1a in Fgfr1ind−/− mice resulted in less symptoms primarily in the chronic phase of EAE. Fgfr1ind−/− mice treated with IFNβ-1a showed increased expression of pERK and BDNF. In Oli-neu oligodendrocytes, treatment with PD166866 and IFNβ-1a also showed an increased expression of pERK and BDNF/TrkB. These data suggest that the beneficial effects in the chronic phase of EAE and on signaling molecules associated with ERK and BDNF expression are caused by the modulation of FGFR1 and not by interferon beta-1a. FGFR may be a potential target for therapy in MS.
Collapse
Affiliation(s)
- Ranjithkumar Rajendran
- Experimental Neurology, Department of Neurology, University of Giessen, Klinikstrasse 33, 35385 Giessen, Germany
| | - Vinothkumar Rajendran
- Experimental Neurology, Department of Neurology, University of Giessen, Klinikstrasse 33, 35385 Giessen, Germany
| | - Liza Gupta
- Experimental Neurology, Department of Neurology, University of Giessen, Klinikstrasse 33, 35385 Giessen, Germany
| | - Kian Shirvanchi
- Experimental Neurology, Department of Neurology, University of Giessen, Klinikstrasse 33, 35385 Giessen, Germany
| | - Darja Schunin
- Experimental Neurology, Department of Neurology, University of Giessen, Klinikstrasse 33, 35385 Giessen, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97080 Würzburg, Germany
| | | | - Martin Berghoff
- Experimental Neurology, Department of Neurology, University of Giessen, Klinikstrasse 33, 35385 Giessen, Germany
- Correspondence: ; Tel.: +49-641-98544306; Fax: +49-641-98545329
| |
Collapse
|
25
|
Emamnejad R, Dass M, Mahlis M, Bozkurt S, Ye S, Pagnin M, Theotokis P, Grigoriadis N, Petratos S. Thyroid hormone-dependent oligodendroglial cell lineage genomic and non-genomic signaling through integrin receptors. Front Pharmacol 2022; 13:934971. [PMID: 36133808 PMCID: PMC9483185 DOI: 10.3389/fphar.2022.934971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous autoimmune disease whereby the pathological sequelae evolve from oligodendrocytes (OLs) within the central nervous system and are targeted by the immune system, which causes widespread white matter pathology and results in neuronal dysfunction and neurological impairment. The progression of this disease is facilitated by a failure in remyelination following chronic demyelination. One mediator of remyelination is thyroid hormone (TH), whose reliance on monocarboxylate transporter 8 (MCT8) was recently defined. MCT8 facilitates the entry of THs into oligodendrocyte progenitor cell (OPC) and pre-myelinating oligodendrocytes (pre-OLs). Patients with MS may exhibit downregulated MCT8 near inflammatory lesions, which emphasizes an inhibition of TH signaling and subsequent downstream targeted pathways such as phosphoinositide 3-kinase (PI3K)-Akt. However, the role of the closely related mammalian target of rapamycin (mTOR) in pre-OLs during neuroinflammation may also be central to the remyelination process and is governed by various growth promoting signals. Recent research indicates that this may be reliant on TH-dependent signaling through β1-integrins. This review identifies genomic and non-genomic signaling that is regulated through mTOR in TH-responsive pre-OLs and mature OLs in mouse models of MS. This review critiques data that implicates non-genomic Akt and mTOR signaling in response to TH-dependent integrin receptor activation in pre-OLs. We have also examined whether this can drive remyelination in the context of neuroinflammation and associated sequelae. Importantly, we outline how novel therapeutic small molecules are being designed to target integrin receptors on oligodendroglial lineage cells and whether these are viable therapeutic options for future use in clinical trials for MS.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Michael Mahlis
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Paschalis Theotokis
- B’, Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- B’, Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
- *Correspondence: Steven Petratos,
| |
Collapse
|
26
|
Suo Z, Yang J, Zhou B, Qu Y, Xu W, Li M, Xiao T, Zheng H, Ni C. Whole-transcriptome sequencing identifies neuroinflammation, metabolism and blood-brain barrier related processes in the hippocampus of aged mice during perioperative period. CNS Neurosci Ther 2022; 28:1576-1595. [PMID: 35899365 PMCID: PMC9437242 DOI: 10.1111/cns.13901] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022] Open
Abstract
AIM Perioperative neurocognitive disorders (PND) occur frequently after surgery and anesthesia, especially in aged patients. Previous studies have shown multiple PND related mechanisms in the hippocampus; however, their relationships remain unclear. Meanwhile, the perioperative neuropathological processes are sophisticated and changeable, single period study could not reveal the accurate mechanisms. Thus, multiperiod whole-transcriptome study is necessary to elucidate the gene expression patterns during perioperative period. METHODS Aged C57BL/6 mice were subjected to exploratory laparotomy under sevoflurane anesthesia. Whole-transcriptome sequencing (RNA-seq analysis) was performed on the hippocampi from control condition (Con), 30 min (Day0), 2 days (Day2), and 7 days (Day7) after surgery. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analyses, quantitative real-time PCR, immunofluorescence, and fear conditioning test were also performed to elucidate the pathological processes and modulation networks during the period. RESULTS Through RNA-seq analysis, 328, 3597, and 4179 differentially expressed genes (DEGs) were screened out in intraoperative period (Day0 vs. Con), early postoperative period (Day2 vs. Day0), and late postoperative period (Day7 vs. Day2). The involved GO biological processes were divided into 9 categories, and positive-regulated processes were more than negative-regulated ones. Seventy-four transcription factors were highlighted. The potential synaptic and neuroinflammatory pathways were constructed for Neurotransmitter, Synapse and Neuronal alteration categories with 9 genes (Htr1a, Rims1, and Ezh2, etc.). The metabolic and mitochondrial pathways were constructed for metabolism, oxidative stress, and biological rhythm categories with 9 genes (Gpld1, Sirt1, and Cry2, etc.). The blood-brain barrier and neurotoxicity related pathways were constructed for blood-brain barrier, neurotoxicity, and cognitive function categories with 10 genes (Mmp2, Itpr1, and Nrf1, etc.). CONCLUSION The results revealed gene expression patterns and modulation networks in the aged hippocampus during perioperative period, which provide insights into overall mechanisms and potential therapeutic targets for prevention and treatment of perioperative central nervous system diseases, such as PND, from the genetic level.
Collapse
Affiliation(s)
- Zizheng Suo
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Bowen Zhou
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinyin Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Wenjie Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Paes de Faria J, Vale-Silva RS, Fässler R, Werner HB, Relvas JB. Pinch2 regulates myelination in the mouse central nervous system. Development 2022; 149:275524. [DOI: 10.1242/dev.200597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The extensive morphological changes of oligodendrocytes during axon ensheathment and myelination involve assembly of the Ilk-Parvin-Pinch (IPP) heterotrimeric complex of proteins to relay essential mechanical and biochemical signals between integrins and the actin cytoskeleton. Binding of Pinch1 and Pinch2 isoforms to Ilk is mutually exclusive and allows the formation of distinct IPP complexes with specific signaling properties. Using tissue-specific conditional gene ablation in mice, we reveal an essential role for Pinch2 during central nervous system myelination. Unlike Pinch1 gene ablation, loss of Pinch2 in oligodendrocytes results in hypermyelination and in the formation of pathological myelin outfoldings in white matter regions. These structural changes concur with inhibition of Rho GTPase RhoA and Cdc42 activities and phenocopy aspects of myelin pathology observed in corresponding mouse mutants. We propose a dual role for Pinch2 in preventing an excess of myelin wraps through RhoA-dependent control of membrane growth and in fostering myelin stability via Cdc42-dependent organization of cytoskeletal septins. Together, these findings indicate that IPP complexes containing Pinch2 act as a crucial cell-autonomous molecular hub ensuring synchronous control of key signaling networks during developmental myelination.
Collapse
Affiliation(s)
- Joana Paes de Faria
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto 1 , 4200-135 Porto , Portugal
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto 2 , 4200-135 Porto , Portugal
| | - Raquel S. Vale-Silva
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto 1 , 4200-135 Porto , Portugal
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto 2 , 4200-135 Porto , Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto 3 , 4050-313 Porto , Portugal
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry 4 , 82152 Martinsried , Germany
| | - Hauke B. Werner
- Max Planck Institute of Experimental Medicine 5 Department of Neurogenetics , , D-37075 Gottingen , Germany
| | - João B. Relvas
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto 1 , 4200-135 Porto , Portugal
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto 2 , 4200-135 Porto , Portugal
- Faculty of Medicine, Universidade do Porto 6 Department of Biomedicine , , 4200-319 Porto , Portugal
| |
Collapse
|
28
|
CRISPR/CasRx-Mediated RNA Knockdown Reveals That ACE2 Is Involved in the Regulation of Oligodendroglial Cell Morphological Differentiation. Noncoding RNA 2022; 8:ncrna8030042. [PMID: 35736639 PMCID: PMC9229887 DOI: 10.3390/ncrna8030042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 12/05/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) plays a role in catalyzing angiotensin II conversion to angiotensin (1–7), which often counteracts the renin-angiotensin system. ACE2 is expressed not only in the cells of peripheral tissues such as the heart and kidney, but also in those of the central nervous system (CNS). Additionally, ACE2 acts as the receptor required for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), whose binding leads to endocytotic recycling and possible degradation of the ACE2 proteins themselves. One of the target cells for SARS-CoV-2 in the CNS is oligodendrocytes (oligodendroglial cells), which wrap neuronal axons with their differentiated plasma membranes called myelin membranes. Here, for the first time, we describe the role of ACE2 in FBD-102b cells, which are used as the differentiation models of oligodendroglial cells. Unexpectedly, RNA knockdown of ACE2 with CasRx-mediated gRNA or the cognate siRNA promoted oligodendroglial cell morphological differentiation with increased expression or phosphorylation levels of differentiation and/or myelin marker proteins, suggesting the negative role of ACE2 in morphological differentiation. Notably, ACE2′s intracellular region preferentially interacted with the active GTP-bound form of Ras. Thus, knockdown of ACE2 relatively increased GTP-bound Ras in an affinity-precipitation assay. Indeed, inhibition of Ras resulted in decreasing both morphological differentiation and expression or phosphorylation levels of marker proteins, confirming the positive role of Ras in differentiation. These results indicate the role of ACE2 itself as a negative regulator of oligodendroglial cell morphological differentiation, newly adding ACE2 to the list of regulators of oligodendroglial morphogenesis as well as of Ras-binding proteins. These findings might help us to understand why SARS-CoV-2 causes pathological effects in the CNS.
Collapse
|
29
|
Wang S, Wang Y, Zou S. A Glance at the Molecules That Regulate Oligodendrocyte Myelination. Curr Issues Mol Biol 2022; 44:2194-2216. [PMID: 35678678 PMCID: PMC9164040 DOI: 10.3390/cimb44050149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Oligodendrocyte (OL) myelination is a critical process for the neuronal axon function in the central nervous system. After demyelination occurs because of pathophysiology, remyelination makes repairs similar to myelination. Proliferation and differentiation are the two main stages in OL myelination, and most factors commonly play converse roles in these two stages, except for a few factors and signaling pathways, such as OLIG2 (Oligodendrocyte transcription factor 2). Moreover, some OL maturation gene mutations induce hypomyelination or hypermyelination without an obvious function in proliferation and differentiation. Herein, three types of factors regulating myelination are reviewed in sequence.
Collapse
Affiliation(s)
- Shunqi Wang
- Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang 330031, China; (S.W.); (Y.W.)
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Yingxing Wang
- Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang 330031, China; (S.W.); (Y.W.)
| | - Suqi Zou
- Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang 330031, China; (S.W.); (Y.W.)
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
- Correspondence:
| |
Collapse
|
30
|
Ngo C, Kothary R. MicroRNAs in oligodendrocyte development and remyelination. J Neurochem 2022; 162:310-321. [PMID: 35536759 DOI: 10.1111/jnc.15618] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Abstract
Oligodendrocytes are the glial cells responsible for the formation of myelin around axons of the central nervous system (CNS). Myelin is an insulating layer that allows electrical impulses to transmit quickly and efficiently along neurons. If myelin is damaged, as in chronic demyelinating disorders such as multiple sclerosis (MS), these impulses slow down. Remyelination by oligodendrocytes is often ineffective in MS, in part because of the failure of oligodendrocyte precursor cells (OPCs) to differentiate into mature, myelinating oligodendrocytes. The process of oligodendrocyte differentiation is tightly controlled by several regulatory networks involving transcription factors, intracellular signaling pathways, and extrinsic cues. Understanding the factors that regulate oligodendrocyte development is essential for the discovery of new therapeutic strategies capable of enhancing remyelination. Over the past decade, microRNAs (miRNAs) have emerged as key regulators of oligodendrocyte development, exerting effects on cell specification, proliferation, differentiation, and myelination. This article will review the role of miRNAs on oligodendrocyte biology and discuss their potential as promising therapeutic tools for remyelination.
Collapse
Affiliation(s)
- Clarissa Ngo
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Program in Biomedical Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Enriched Environment Effects on Myelination of the Central Nervous System: Role of Glial Cells. Neural Plast 2022; 2022:5766993. [PMID: 35465398 PMCID: PMC9023233 DOI: 10.1155/2022/5766993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Myelination is regulated by various glial cells in the central nervous system (CNS), including oligodendrocytes (OLs), microglia, and astrocytes. Myelination of the CNS requires the generation of functionally mature OLs from OPCs. OLs are the myelin-forming cells in the CNS. Microglia play both beneficial and detrimental roles during myelin damage and repair. Astrocyte is responsible for myelin formation and regeneration by direct interaction with oligodendrocyte lineage cells. These glial cells are influenced by experience-dependent activities such as environmental enrichment (EE). To date, there are few studies that have investigated the association between EE and glial cells. EE with a complex combination of sensorimotor, cognitive, and social stimulation has a significant effect on cognitive impairment and brain plasticity. Hence, one mechanism through EE improving cognitive function may rely on the mutual effect of EE and glial cells. The purpose of this paper is to review recent research into the efficacy of EE for myelination and glial cells at cellular and molecular levels and offers critical insights for future research directions of EE and the treatment of EE in cognitive impairment disease.
Collapse
|
32
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
33
|
Garcia-Martin G, Alcover-Sanchez B, Wandosell F, Cubelos B. Pathways Involved in Remyelination after Cerebral Ischemia. Curr Neuropharmacol 2022; 20:751-765. [PMID: 34151767 PMCID: PMC9878953 DOI: 10.2174/1570159x19666210610093658] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022] Open
Abstract
Brain ischemia, also known as ischemic stroke, occurs when there is a lack of blood supply into the brain. When an ischemic insult appears, both neurons and glial cells can react in several ways that will determine the severity and prognosis. This high heterogeneity of responses has been a major obstacle in developing effective treatments or preventive methods for stroke. Although white matter pathophysiology has not been deeply assessed in stroke, its remodelling can greatly influence the clinical outcome and the disability degree. Oligodendrocytes, the unique cell type implied in CNS myelination, are sensible to ischemic damage. Loss of myelin sheaths can compromise axon survival, so new Oligodendrocyte Precursor Cells are required to restore brain function. Stroke can, therefore, enhance oligodendrogenesis to regenerate those new oligodendrocytes that will ensheath the damaged axons. Given that myelination is a highly complex process that requires coordination of multiple pathways such as Sonic Hedgehog, RTKs or Wnt/β-catenin, we will analyse new research highlighting their importance after brain ischemia. In addition, oligodendrocytes are not isolated cells inside the brain, but rather form part of a dynamic environment of interactions between neurons and glial cells. For this reason, we will put some context into how microglia and astrocytes react against stroke and influence oligodendrogenesis to highlight the relevance of remyelination in the ischemic brain. This will help to guide future studies to develop treatments focused on potentiating the ability of the brain to repair the damage.
Collapse
Affiliation(s)
- Gonzalo Garcia-Martin
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Berta Alcover-Sanchez
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Francisco Wandosell
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain,Address correspondence to this author at the Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Nicolás Cabrera 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Tel: 34-91-1964561; Fax: 34-91-1964420; E-mail:
| |
Collapse
|
34
|
Palma A, Chara JC, Montilla A, Otxoa-de-Amezaga A, Ruíz-Jaén F, Planas AM, Matute C, Pérez-Samartín A, Domercq M. Clemastine Induces an Impairment in Developmental Myelination. Front Cell Dev Biol 2022; 10:841548. [PMID: 35372341 PMCID: PMC8970281 DOI: 10.3389/fcell.2022.841548] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormalities in myelination are associated to behavioral and cognitive dysfunction in neurodevelopmental psychiatric disorders. Thus, therapies to promote or accelerate myelination could potentially ameliorate symptoms in autism. Clemastine, a histamine H1 antagonist with anticholinergic properties against muscarinic M1 receptor, is the most promising drug with promyelinating properties. Clemastine penetrates the blood brain barrier efficiently and promotes remyelination in different animal models of neurodegeneration including multiple sclerosis, ischemia and Alzheimer’s disease. However, its role in myelination during development is unknown. We showed that clemastine treatment during development increased oligodendrocyte differentiation in both white and gray matter. However, despite the increase in the number of oligodendrocytes, conduction velocity of myelinated fibers of corpus callosum decreased in clemastine treated mice. Confocal and electron microscopy showed a reduction in the number of myelinated axons and nodes of Ranvier and a reduction of myelin thickness in corpus callosum. To understand the mechanisms leading to myelin formation impairment in the presence of an excess of myelinating oligodendrocytes, we focused on microglial cells that also express muscarinic M1 receptors. Importantly, the population of CD11c+ microglia cells, necessary for myelination, as well as the levels of insulin growth factor-1 decrease in clemastine-treated mice. Altogether, these data suggest that clemastine impact on myelin development is more complex than previously thought and could be dependent on microglia-oligodendrocyte crosstalk. Further studies are needed to clarify the role of microglia cells on developmental myelination.
Collapse
Affiliation(s)
- Ana Palma
- Achucarro Basque Center for Neuroscience and Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Juan Carlos Chara
- Achucarro Basque Center for Neuroscience and Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Alejandro Montilla
- Achucarro Basque Center for Neuroscience and Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Amaia Otxoa-de-Amezaga
- Achucarro Basque Center for Neuroscience and Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Francisca Ruíz-Jaén
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna M. Planas
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience and Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Alberto Pérez-Samartín
- Achucarro Basque Center for Neuroscience and Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - María Domercq
- Achucarro Basque Center for Neuroscience and Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
- *Correspondence: María Domercq,
| |
Collapse
|
35
|
Rivera AD, Azim K, Macchi V, Porzionato A, Butt AM, De Caro R. Epidermal Growth Factor Pathway in the Age-Related Decline of Oligodendrocyte Regeneration. Front Cell Neurosci 2022; 16:838007. [PMID: 35370556 PMCID: PMC8968959 DOI: 10.3389/fncel.2022.838007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/23/2022] [Indexed: 01/01/2023] Open
Abstract
Oligodendrocytes (OLs) are specialized glial cells that myelinate CNS axons. OLs are generated throughout life from oligodendrocyte progenitor cells (OPCs) via a series of tightly controlled differentiation steps. Life-long myelination is essential for learning and to replace myelin lost in age-related pathologies such as Alzheimer's disease (AD) as well as white matter pathologies such as multiple sclerosis (MS). Notably, there is considerable myelin loss in the aging brain, which is accelerated in AD and underpins the failure of remyelination in secondary progressive MS. An important factor in age-related myelin loss is a marked decrease in the regenerative capacity of OPCs. In this review, we will contextualize recent advances in the key role of Epidermal Growth Factor (EGF) signaling in regulating multiple biological pathways in oligodendroglia that are dysregulated in aging.
Collapse
Affiliation(s)
- Andrea D. Rivera
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| | - Kasum Azim
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Veronica Macchi
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| | - Arthur M. Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Raffaele De Caro
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| |
Collapse
|
36
|
Villa-González M, Martín-López G, Pérez-Álvarez MJ. Dysregulation of mTOR Signaling after Brain Ischemia. Int J Mol Sci 2022; 23:ijms23052814. [PMID: 35269956 PMCID: PMC8911477 DOI: 10.3390/ijms23052814] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
In this review, we provide recent data on the role of mTOR kinase in the brain under physiological conditions and after damage, with a particular focus on cerebral ischemia. We cover the upstream and downstream pathways that regulate the activation state of mTOR complexes. Furthermore, we summarize recent advances in our understanding of mTORC1 and mTORC2 status in ischemia–hypoxia at tissue and cellular levels and analyze the existing evidence related to two types of neural cells, namely glia and neurons. Finally, we discuss the potential use of mTORC1 and mTORC2 as therapeutic targets after stroke.
Collapse
Affiliation(s)
- Mario Villa-González
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
- Centro de Biología Molecular “Severo Ochoa” (CBMSO), Universidad Autónoma de Madrid/CSIC, 28049 Madrid, Spain
| | - Gerardo Martín-López
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
| | - María José Pérez-Álvarez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
- Centro de Biología Molecular “Severo Ochoa” (CBMSO), Universidad Autónoma de Madrid/CSIC, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-497-2819
| |
Collapse
|
37
|
Prats C, Fatjó-Vilas M, Penzol MJ, Kebir O, Pina-Camacho L, Demontis D, Crespo-Facorro B, Peralta V, González-Pinto A, Pomarol-Clotet E, Papiol S, Parellada M, Krebs MO, Fañanás L. Association and epistatic analysis of white matter related genes across the continuum schizophrenia and autism spectrum disorders: The joint effect of NRG1-ErbB genes. World J Biol Psychiatry 2022; 23:208-218. [PMID: 34338147 DOI: 10.1080/15622975.2021.1939155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Schizophrenia-spectrum disorders (SSD) and Autism spectrum disorders (ASD) are neurodevelopmental disorders that share clinical, cognitive, and genetic characteristics, as well as particular white matter (WM) abnormalities. In this study, we aimed to investigate the role of a set of oligodendrocyte/myelin-related (OMR) genes and their epistatic effect on the risk for SSD and ASD. METHODS We examined 108 SNPs in a set of 22 OMR genes in 1749 subjects divided into three independent samples (187 SSD trios, 915 SSD cases/control, and 91 ASD trios). Genetic association and gene-gene interaction analyses were conducted with PLINK and MB-MDR, and permutation procedures were implemented in both. RESULTS Some OMR genes showed an association trend with SSD, while after correction, the ones that remained significantly associated were MBP, ERBB3, and AKT1. Significant gene-gene interactions were found between (i) NRG1*MBP (perm p-value = 0.002) in the SSD trios sample, (ii) ERBB3*AKT1 (perm p-value = 0.001) in the SSD case-control sample, and (iii) ERBB3*QKI (perm p-value = 0.0006) in the ASD trios sample. DISCUSSION Our results suggest the implication of OMR genes in the risk for both SSD and ASD and highlight the role of NRG1 and ERBB genes. These findings are in line with the previous evidence and may suggest pathophysiological mechanisms related to NRG1/ERBBs signalling in these disorders.
Collapse
Affiliation(s)
- C Prats
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Institut d'Investigació Biomèdica de Bellvitge, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Fatjó-Vilas
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - M J Penzol
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - O Kebir
- INSERM, U1266, Laboratory "Pathophysiology of psychiatric disorders", Institute of psychiatry and neurosciences of Paris, Paris, France.,GHU Psychiatrie et Neurosciences de Paris, Paris, France
| | - L Pina-Camacho
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - D Demontis
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research iPSYCH, Aarhus, Denmark
| | - B Crespo-Facorro
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,University Hospital Virgen del Rocio, IbiS Department of Psychiatry, School of Medicine, University of Sevilla, Sevilla, Spain
| | - V Peralta
- Gerencia de Salud Mental, Servicio Navarro de Salud-Osasunbidea, Pamplona, Navarra, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNa), Pamplona, Navarra, Spain
| | - A González-Pinto
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Psychiatry Service, University Hospital of Alava-Santiago, EMBREC, EHU/UPV University of the Basque Country, Kronikgune, Vitoria, Spain
| | - E Pomarol-Clotet
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - S Papiol
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.,Department of Psychiatry, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - M Parellada
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - M O Krebs
- INSERM, U1266, Laboratory "Pathophysiology of psychiatric disorders", Institute of psychiatry and neurosciences of Paris, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Service Hospitalo-Universitaire, Centre Hospitalier Sainte-Anne, Paris, France
| | - L Fañanás
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
38
|
Liu X, Dong C, Liu K, Chen H, Liu B, Dong X, Qian Y, Wu B, Lin Y, Wang H, Yang L, Zhou W. mTOR pathway repressing expression of FoxO3 is a potential mechanism involved in neonatal white matter dysplasia. Hum Mol Genet 2022; 31:2508-2520. [PMID: 35220433 DOI: 10.1093/hmg/ddac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Neonatal white matter dysplasia (NWMD) is characterized by developmental abnormity of CNS white matter, including abnormal myelination. Besides environmental factors such as suffocation at birth, genetic factors are also main causes. Signaling pathway is an important part of gene function and several signaling pathways play important roles in myelination. Here, we performed genetic analysis on a corhort of 138 patients with NWMD and found that 20% (5/25) cause genes which refered to 28.57% (8/28) patients enriched in mTOR signaling pathway. Depletion of mTOR reduced genesis and proliferation of oligodendrocyte progenitor cells (OPC) during embryonic stage and reduced myelination in corpus callosum besides cerebellum and spinal cord during early postnatal stages which is related to not only differentiation but also proliferation of oligodendrocyte (OL). Transcriptomic analyses indicated that depletion of mTOR in OLs upregulated expression of FoxO3, which is a repressor of expression of myelin basic protein (MBP), and downregulating expresion of FoxO3 by siRNA promoted OPCs develop into MBP+ OLs. Thus, our findings suggested that mTOR signaling pathway is NWMD-related pathway and mTOR is important for myelination of the entire CNS during early developmental stages through regulating expression of FoxO3 at least partially.
Collapse
Affiliation(s)
- Xiuyun Liu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Chen Dong
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Kaiyi Liu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Huiyao Chen
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bo Liu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Yanyan Qian
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Yifeng Lin
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Huijun Wang
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Lin Yang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Division of Neonatology, Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Teng X, Hu P, Chen Y, Zang Y, Ye X, Ou J, Chen G, Shi YS. A novel
Lgi1
mutation causes white matter abnormalities and impairs motor coordination in mice. FASEB J 2022; 36:e22212. [DOI: 10.1096/fj.202101652r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao‐Yu Teng
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Ping Hu
- Department of Prenatal Diagnosis State Key Laboratory of Reproductive Medicine Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital Nanjing China
| | - Yangyang Chen
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Yanyu Zang
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Xiaolian Ye
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Jingmin Ou
- Department of General Surgery Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Guiquan Chen
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Yun Stone Shi
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
- State Key Laboratory of Pharmaceutical Biotechnology Department of Neurology Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing University Nanjing China
- Institute for Brain Sciences Nanjing University Nanjing China
- Chemistry and Biomedicine Innovation Center Nanjing University Nanjing China
| |
Collapse
|
40
|
Zhou N, Xu Z, Li X, Ren S, Chen J, Xiong H, Wang C, Guo J, Kang Y, Chen Z, Li W, Yang X, Zhang X, Xu X. Schwann Cell-Derived Exosomes Induce the Differentiation of Human Adipose-Derived Stem Cells Into Schwann Cells. Front Mol Biosci 2022; 8:835135. [PMID: 35174212 PMCID: PMC8841477 DOI: 10.3389/fmolb.2021.835135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) can differentiate into Schwann cells (SCs) at the site of nerve injury, where Schwann cell-derived exosomes (SC-Exos) are suspected to exert an induction effect. Our study aimed to induce the differentiation of ADSCs in vitro using SC-Exos and to investigate the mechanisms involved through miRNA sequencing. Subcutaneous fat was used to extract ADSCs. Exosomes were extracted from Schwann cell lines (RSC96) using ultracentrifugation and were able to be taken up by human ADSCs. After 8 days of induction of ADSCs by SC-Exos, phenotypic characteristics were observed by examining the expression of SC markers (S100ß, NGFR, MPZ, GFAP) through RT-qPCR, Western blot and immunofluorescence. The RNA and protein expression levels of S100ß, NGFR, MPZ, and GFAP were found to be significantly higher in the SC-Exo induction group than in the uninduced group, which was also consistent with the immunofluorescence results. Additionally, miRNA sequencing was performed on exosome-induced ADSCs, followed by bioinformatic analysis and validation of the results. According to the sequencing results, there were a total of 94 differentially expressed miRNAs. Bioinformatics analysis indicated that 3506 Gene Ontology terms and 98 Kyoto Encyclopedia of Genes and Genomes pathways were significantly enriched. Ten miRNAs, 5 target mRNAs and elevated expression of the PIK3CD/Akt pathway were validated by RT-qPCR or Western blot, which is consistent with the sequencing results. Our study demonstrates that the utility of SC-Exos is effective in inducing the differentiation of ADSCs into SCs, in which these validated differentially expressed miRNAs exert a vital effect. This work provides a new paradigm via rationally applying Schwann cell-derived exosomes as a promising therapeutic option for repairing peripheral nerve injury.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Zhao Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Li
- Department of Clinical Laboratory, Huai’an Second People’s Hospital, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Sen Ren
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hewei Xiong
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqing Li
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiaofan Yang, ; Xing Zhang, ; Xiang Xu,
| | - Xing Zhang
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
- *Correspondence: Xiaofan Yang, ; Xing Zhang, ; Xiang Xu,
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiaofan Yang, ; Xing Zhang, ; Xiang Xu,
| |
Collapse
|
41
|
Wang Y, Xu H, Wang J, Yi H, Song Y. Extracellular Vesicles in the Pathogenesis, Treatment, and Diagnosis of Spinal Cord Injury: A Mini-Review. Curr Stem Cell Res Ther 2022; 17:317-327. [PMID: 35352667 DOI: 10.2174/1574888x17666220330005937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benefiting from in-depth research into stem cells, extracellular vesicles (EVs), which are byproducts of cells and membrane-wrapped microvesicles (30-120 nm) containing lipids, proteins, and nucleic acids, may cast light on the research and development of therapeutics capable of improving the neurological recovery of spinal cord injury (SCI) animals. However, the mechanistic modes of action for EVs in alleviating the lesion size of SCI remain to be solved, thus presenting a tremendous gap existing in translation from the laboratory to the clinic. OBJECTIVE The purpose of this minireview was to cover a wide range of basic views on EVs involved in SCI treatment, including the effects of EVs on the pathogenesis, treatment, and diagnosis of spinal cord injury. METHODS We searched databases (i.e., PubMed, Web of Science, Scopus, Medline, and EMBASE) and acquired all accessible articles published in the English language within five years. Studies reporting laboratory applications of EVs in the treatment of SCI were included and screened to include studies presenting relevant molecular mechanisms. RESULTS This review first summarized the basic role of EVs in cell communication, cell death, inflammatory cascades, scar formation, neuronal regrowth, and angiogenesis after SCI, thereby providing insights into neuroprotection and consolidated theories for future clinical application of EVs. CONCLUSION EVs participate in an extremely wide range of cell activities, play a critical role in cell communication centring neurons, and are considered potential therapies and biomarkers for SCI. miRNAs are the most abundant nucleic acids shipped by EVs and effluent cytokines, and they may represent important messengers of EVs and important factors in SCI treatment.
Collapse
Affiliation(s)
- Yang Wang
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Hualiang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Jian Wang
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Hanxiao Yi
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107, YanJiang Road, Haizhu District, Guangzhou, China
| | - Yancheng Song
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| |
Collapse
|
42
|
Enhanced re-myelination in transthyretin null mice following cuprizone mediated demyelination. Neurosci Lett 2022; 766:136287. [PMID: 34634393 DOI: 10.1016/j.neulet.2021.136287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022]
Abstract
Thyroid hormones (THs) impact nearly every tissue in the body, including the adult and developing central nervous system. The distribution of THs around the body is facilitated by specific TH distributor proteins including transthyretin (TTR). In addition to being produced in the liver, TTR is synthesized in the choroid plexus of the brain. The synthesis of TTR by choroid plexus epithelial cells allows transport of THs from the blood into the brain. Adequate supply of THs to the brain is required for developmental myelination of axons and the maintenance of mature myelin throughout adult life, essential for the proper conduction of nerve impulses. Insufficient THs in developing mice results in hypo-myelination (thinner myelin around axons). However, confounding evidence demonstrated that in developing brain of TTR null mice, hyper-myelination of axons was observed in the corpus callosum. This raised the question whether increased myelination occurs during re-myelination in the adult brain following targeted demyelination. To investigate the effect of TTR during re-myelination, cuprizone induced depletion of myelin in the corpus callosum of adult mice was initiated, followed by a period of myelin repair. Myelin thickness was measured to assess re-myelination rates for 6 weeks. TTR null mice displayed expedited rates of early re-myelination, preferentially re-myelinating smaller axons compared to those of wild type mice. Furthermore, TTR null mice produced thicker myelin than wild type mice during re-myelination. These results may have broader implications in understanding mechanisms governing re-myelination, particularly in potential therapeutic contexts for acquired demyelinating diseases such as multiple sclerosis.
Collapse
|
43
|
Baumann A, Denninger AR, Domin M, Demé B, Kirschner DA. Metabolically-incorporated deuterium in myelin localized by neutron diffraction and identified by mass spectrometry. Curr Res Struct Biol 2022; 4:231-245. [PMID: 35941866 PMCID: PMC9356250 DOI: 10.1016/j.crstbi.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
Myelin is a natural and dynamic multilamellar membrane structure that continues to be of significant biological and neurological interest, especially with respect to its biosynthesis and assembly during its normal formation, maintenance, and pathological breakdown. To explore the usefulness of neutron diffraction in the structural analysis of myelin, we investigated the use of in vivo labeling by metabolically incorporating non-toxic levels of deuterium (2H; D) via drinking water into a pregnant dam (D-dam) and her developing embryos. All of the mice were sacrificed when the pups (D-pups) were 55 days old. Myelinated sciatic nerves were dissected, fixed in glutaraldehyde and examined by neutron diffraction. Parallel samples that were unfixed (trigeminal nerves) were frozen for mass spectrometry (MS). The diffraction patterns of the nerves from deuterium-fed mice (D-mice) vs. the controls (H-mice) had major differences in the intensities of the Bragg peaks but no appreciable differences in myelin periodicity. Neutron scattering density profiles showed an appreciable increase in density at the center of the lipid-rich membrane bilayer. This increase was greater in D-pups than in D-dam, and its localization was consistent with deuteration of lipid hydrocarbon, which predominates over transmembrane protein in myelin. MS analysis of the lipids isolated from the trigeminal nerves demonstrated that in the pups the percentage of lipids that had one or more deuterium atoms was uniformly high across lipid species (97.6% ± 2.0%), whereas in the mother the lipids were substantially less deuterated (60.6% ± 26.4%) with levels varying among lipid species and subspecies. The mass distribution pattern of deuterium-containing isotopologues indicated the fraction (in %) of each lipid (sub-)species having one or more deuteriums incorporated: in the D-pups, the pattern was always bell-shaped, and the average number of D atoms ranged from a low of ∼4 in fatty acid to a high of ∼9 in cerebroside. By contrast, in D-dam most lipids had more complex, overlapping distributions that were weighted toward a lower average number of deuteriums, which ranged from a low of ∼3–4 in fatty acid and in one species of sulfatide to a high of 6–7 in cerebroside and sphingomyelin. The consistently high level of deuteration in D-pups can be attributed to their de novo lipogenesis during gestation and rapid, postnatal myelination. The widely varying levels of deuteration in D-dam, by contrast, likely depends on the relative metabolic stability of the particular lipid species during myelin maintenance. Our current findings demonstrate that stably-incorporated D label can be detected and localized using neutron diffraction in a complex tissue such as myelin; and moreover, that MS can be used to screen a broad range of deuterated lipid species to monitor differential rates of lipid turnover. In addition to helping to develop a comprehensive understanding of the de novo synthesis and turnover of specific lipids in normal and abnormal myelin, our results also suggest application to studies on myelin proteins (which constitute only 20–30% by dry mass of the myelin, vs. 70–80% for lipid), as well as more broadly to the molecular constituents of other biological tissues. Deuterium metabolically assimilated into gestating mouse pups via drinking water. Neutron diffraction localized deuterium to middle of myelin membrane bilayers. Mass spectrometry identified 26 deuterated lipid species as myelinic. Myelin of pups substantially more deuterated than that of their dam. Deuterium differentially distributed among lipid species and subspecies. De novo lipid biogenesis vs. steady-state maintenance readily distinguished. Novel paradigm suggests application to animal models of human myelinopathies.
Collapse
|
44
|
Rivera AD, Pieropan F, Williams G, Calzolari F, Butt AM, Azim K. Drug connectivity mapping and functional analysis reveal therapeutic small molecules that differentially modulate myelination. Biomed Pharmacother 2022; 145:112436. [PMID: 34813998 PMCID: PMC8664715 DOI: 10.1016/j.biopha.2021.112436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022] Open
Abstract
Disruption or loss of oligodendrocytes (OLs) and myelin has devastating effects on CNS function and integrity, which occur in diverse neurological disorders, including Multiple Sclerosis (MS), Alzheimer's disease and neuropsychiatric disorders. Hence, there is a need to develop new therapies that promote oligodendrocyte regeneration and myelin repair. A promising approach is drug repurposing, but most agents have potentially contrasting biological actions depending on the cellular context and their dose-dependent effects on intracellular pathways. Here, we have used a combined systems biology and neurobiological approach to identify compounds that exert positive and negative effects on oligodendroglia, depending on concentration. Notably, next generation pharmacogenomic analysis identified the PI3K/Akt modulator LY294002 as the most highly ranked small molecule with both pro- and anti-oligodendroglial concentration-dependent effects. We validated these in silico findings using multidisciplinary approaches to reveal a profoundly bipartite effect of LY294002 on the generation of OPCs and their differentiation into myelinating oligodendrocytes in both postnatal and adult contexts. Finally, we employed transcriptional profiling and signalling pathway activity assays to determine cell-specific mechanisms of action of LY294002 on oligodendrocytes and resolve optimal in vivo conditions required to promote myelin repair. These results demonstrate the power of multidisciplinary strategies in determining the therapeutic potential of small molecules in neurodegenerative disorders.
Collapse
Affiliation(s)
- A D Rivera
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT Portsmouth, UK; Section of Human Anatomy, Department of Neuroscience, University of Padua, Padua, Italy.
| | - F Pieropan
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT Portsmouth, UK
| | - G Williams
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - F Calzolari
- Research Group Adult Neurogenesis & Cellular Reprogramming Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 19, 55128 Mainz, Germany
| | - A M Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT Portsmouth, UK
| | - K Azim
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
45
|
Sustained ErbB Activation Causes Demyelination and Hypomyelination by Driving Necroptosis of Mature Oligodendrocytes and Apoptosis of Oligodendrocyte Precursor Cells. J Neurosci 2021; 41:9872-9890. [PMID: 34725188 PMCID: PMC8638686 DOI: 10.1523/jneurosci.2922-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 11/26/2022] Open
Abstract
Oligodendrocytes are vulnerable to genetic and environmental insults and its injury leads to demyelinating diseases. The roles of ErbB receptors in maintaining the CNS myelin integrity are largely unknown. Here, we overactivate ErbB receptors that mediate signaling of either neuregulin (NRG) or epidermal growth factor (EGF) family growth factors and found their synergistic activation caused deleterious outcomes in white matter. Sustained ErbB activation induced by the tetracycline-dependent mouse tool Plp-tTA resulted in demyelination, axonal degeneration, oligodendrocyte precursor cell (OPC) proliferation, astrogliosis, and microgliosis in white matter. Moreover, there was hypermyelination before these inflammatory pathologic events. In contrast, sustained ErbB activation induced by another tetracycline-dependent mouse tool Sox10+/rtTA caused hypomyelination in the corpus callosum and optic nerve, which appeared to be a developmental deficit and did not associate with OPC regeneration, astrogliosis, or microgliosis. By tracing the differentiation states of cells expressing tetracycline-controlled transcriptional activator (tTA)/reverse tTA (rtTA)-dependent transgene or pulse-labeled reporter proteins in vitro and in vivo, we found that Plp-tTA targeted mainly mature oligodendrocytes (MOs), whereas Sox10+/rtTA targeted OPCs and newly-formed oligodendrocytes (NFOs). The distinct phenotypes of mice with ErbB overactivation induced by Plp-tTA and Sox10+/rtTA consolidated their nonoverlapping targeting preferences in the oligodendrocyte lineage, and enabled us to demonstrate that ErbB overactivation in MOs induced necroptosis that caused inflammatory demyelination, whereas in OPCs induced apoptosis that caused noninflammatory hypomyelination. Early interference with aberrant ErbB activation ceased oligodendrocyte deaths and restored myelin development in both mice. This study suggests that aberrant ErbB activation is an upstream pathogenetic mechanism of demyelinating diseases, providing a potential therapeutic target. SIGNIFICANCE STATEMENT Primary oligodendropathy is one of the etiologic mechanisms for multiple sclerosis, and oligodendrocyte necroptosis is a pathologic hallmark in the disease. Moreover, the demyelinating disease is now a broad concept that embraces schizophrenia, in which white matter lesions are an emerging feature. ErbB overactivation has been implicated in schizophrenia by genetic analysis and postmortem studies. This study suggests the etiologic implications of ErbB overactivation in myelin pathogenesis and elucidates the pathogenetic mechanisms.
Collapse
|
46
|
Wang Y, Guo F. Group I PAKs in myelin formation and repair of the central nervous system: what, when, and how. Biol Rev Camb Philos Soc 2021; 97:615-639. [PMID: 34811887 DOI: 10.1111/brv.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
p21-activated kinases (PAKs) are a family of cell division control protein 42/ras-related C3 botulinum toxin substrate 1 (Cdc42/Rac1)-activated serine/threonine kinases. Group I PAKs (PAK1-3) have distinct activation mechanisms from group II PAKs (PAK4-6) and are the focus of this review. In transformed cancer cells, PAKs regulate a variety of cellular processes and molecular pathways which are also important for myelin formation and repair in the central nervous system (CNS). De novo mutations in group I PAKs are frequently seen in children with neurodevelopmental defects and white matter anomalies. Group I PAKs regulate virtually every aspect of neuronal development and function. Yet their functions in CNS myelination and remyelination remain incompletely defined. Herein, we highlight the current understanding of PAKs in regulating cellular and molecular pathways and discuss the status of PAK-regulated pathways in oligodendrocyte development. We point out outstanding questions and future directions in the research field of group I PAKs and oligodendrocyte development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| | - Fuzheng Guo
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| |
Collapse
|
47
|
The Akt-mTOR Pathway Drives Myelin Sheath Growth by Regulating Cap-Dependent Translation. J Neurosci 2021; 41:8532-8544. [PMID: 34475201 DOI: 10.1523/jneurosci.0783-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022] Open
Abstract
In the vertebrate CNS, oligodendrocytes produce myelin, a specialized membrane, to insulate and support axons. Individual oligodendrocytes wrap multiple axons with myelin sheaths of variable lengths and thicknesses. Myelin grows at the distal ends of oligodendrocyte processes, and multiple lines of work have provided evidence that mRNAs and RNA binding proteins localize to myelin, together supporting a model where local translation controls myelin sheath growth. What signal transduction mechanisms could control this? One strong candidate is the Akt-mTOR pathway, a major cellular signaling hub that coordinates transcription, translation, metabolism, and cytoskeletal organization. Here, using zebrafish as a model system, we found that Akt-mTOR signaling promotes myelin sheath growth and stability during development. Through cell-specific manipulations to oligodendrocytes, we show that the Akt-mTOR pathway drives cap-dependent translation to promote myelination and that restoration of cap-dependent translation is sufficient to rescue myelin deficits in mTOR loss-of-function animals. Moreover, an mTOR-dependent translational regulator was phosphorylated and colocalized with mRNA encoding a canonically myelin-translated protein in vivo, and bioinformatic investigation revealed numerous putative translational targets in the myelin transcriptome. Together, these data raise the possibility that Akt-mTOR signaling in nascent myelin sheaths promotes sheath growth via translation of myelin-resident mRNAs during development.SIGNIFICANCE STATEMENT In the brain and spinal cord, oligodendrocytes extend processes that tightly wrap axons with myelin, a protein- and lipid-rich membrane that increases electrical impulses and provides trophic support. Myelin membrane grows dramatically following initial axon wrapping in a process that demands protein and lipid synthesis. How protein and lipid synthesis is coordinated with the need for myelin to be generated in certain locations remains unknown. Our study reveals that the Akt-mTOR signaling pathway promotes myelin sheath growth by regulating protein translation. Because we found translational regulators of the Akt-mTOR pathway in myelin, our data raise the possibility that Akt-mTOR activity regulates translation in myelin sheaths to deliver myelin on demand to the places it is needed.
Collapse
|
48
|
Jeffries MA, McLane LE, Khandker L, Mather ML, Evangelou AV, Kantak D, Bourne JN, Macklin WB, Wood TL. mTOR Signaling Regulates Metabolic Function in Oligodendrocyte Precursor Cells and Promotes Efficient Brain Remyelination in the Cuprizone Model. J Neurosci 2021; 41:8321-8337. [PMID: 34417330 PMCID: PMC8496195 DOI: 10.1523/jneurosci.1377-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/21/2021] [Accepted: 08/10/2021] [Indexed: 02/02/2023] Open
Abstract
In demyelinating diseases, such as multiple sclerosis, primary loss of myelin and subsequent neuronal degeneration throughout the CNS impair patient functionality. While the importance of mechanistic target of rapamycin (mTOR) signaling during developmental myelination is known, no studies have yet directly examined the function of mTOR signaling specifically in the oligodendrocyte (OL) lineage during remyelination. Here, we conditionally deleted Mtor from adult oligodendrocyte precursor cells (OPCs) using Ng2-CreERT in male adult mice to test its function in new OLs responsible for remyelination. During early remyelination after cuprizone-induced demyelination, mice lacking mTOR in adult OPCs had unchanged OL numbers but thinner myelin. Myelin thickness recovered by late-stage repair, suggesting a delay in myelin production when Mtor is deleted from adult OPCs. Surprisingly, loss of mTOR in OPCs had no effect on efficiency of remyelination after lysophosphatidylcholine lesions in either the spinal cord or corpus callosum, suggesting that mTOR signaling functions specifically in a pathway dysregulated by cuprizone to promote remyelination efficiency. We further determined that cuprizone and inhibition of mTOR cooperatively compromise metabolic function in primary rat OLs undergoing differentiation. Together, our results support the conclusion that mTOR signaling in OPCs is required to overcome the metabolic dysfunction in the cuprizone-demyelinated adult brain.SIGNIFICANCE STATEMENT Impaired remyelination by oligodendrocytes contributes to the progressive pathology in multiple sclerosis, so it is critical to identify mechanisms of improving remyelination. The goal of this study was to examine mechanistic target of rapamycin (mTOR) signaling in remyelination. Here, we provide evidence that mTOR signaling promotes efficient remyelination of the brain after cuprizone-mediated demyelination but has no effect on remyelination after lysophosphatidylcholine demyelination in the spinal cord or brain. We also present novel data revealing that mTOR inhibition and cuprizone treatment additively affect the metabolic profile of differentiating oligodendrocytes, supporting a mechanism for the observed remyelination delay. These data suggest that altered metabolic function may underlie failure of remyelination in multiple sclerosis lesions and that mTOR signaling may be of therapeutic potential for promoting remyelination.
Collapse
Affiliation(s)
- Marisa A Jeffries
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Lauren E McLane
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Luipa Khandker
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Marie L Mather
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Angelina V Evangelou
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Divyangi Kantak
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Jennifer N Bourne
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Teresa L Wood
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| |
Collapse
|
49
|
Zheng M, Liu Z, Mana L, Qin G, Huang S, Gong Z, Tian M, He Y, Wang P. Shenzhiling oral liquid protects the myelin sheath against Alzheimer's disease through the PI3K/Akt-mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114264. [PMID: 34082015 DOI: 10.1016/j.jep.2021.114264] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenzhiling oral liquid (SZL), a traditional Chinese medicine (TCM) compound, is firstly approved by the Chinese Food and Drug Administration (CFDA) for the treatment of mild to moderate Alzheimer's disease (AD). SZL is composed of ten Chinese herbs, and the precise therapy mechanism of its action to AD is far from fully understood. AIM OF THE STUDY The purpose of this study was to observe whether SZL is an effective therapy for amyloid-beta (Aβ)-induced myelin sheath and oligodendrocytes impairments. Notably, the primary aim was to elucidate whether and through what underlying mechanism SZL protects the myelin sheath through the PI3K/Akt-mTOR signaling pathway in Aβ42-induced OLN-93 oligodendrocytes in vitro. MATERIALS AND METHODS APP/PS1 mice were treated with SZL or donepezil continuously for three months, and Aβ42-induced oligodendrocyte OLN-93 cells mimicking AD pathogenesis of myelin sheath impairments were incubated with SZL-containing serum or with donepezil. LC-MS/MS was used to analysis the active components of SZL and SZL-containing serum. The Y maze test was administered after 3 months of treatment, and the hippocampal tissues of the APP/PS1 mice were then harvested for observation of myelin sheath and oligodendrocyte morphology. Cell viability and toxicity were assessed using CCK-8 and lactate dehydrogenase (LDH) release assays, and flow cytometry was used to measure cell apoptosis. The expression of the myelin proteins MBP, PLP, and MAG and that of Aβ42 and Aβ40 in the hippocampi of APP/PS1 mice were examined after SZL treatment. Simultaneously, the expression of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR were also examined. The expression of proteins, including CNPase, Olig2, NKX2.2, MBP, PLP, MAG, MOG, p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR, was determined by immunofluorescence and Western blot, and the corresponding gene expression was evaluated by qPCR in Aβ42-induced OLN-93 oligodendrocytes. RESULTS LC-MS/MS detected a total of 126 active compounds in SZL-containing serum, including terpenoids, flavones, phenols, phenylpropanoids and phenolic acids. SZL treatment significantly improved memory and cognition in APP/PS1 mice and decreased the G-ratio of myelin sheath, alleviated myelin sheath and oligodendrocyte impairments by decreasing Aβ42 and Aβ40 accumulation and increasing the expression of myelin proteins MBP, PLP, MAG, and PI3K/Akt-mTOR signaling pathway associated protein in the hippocampi of APP/PS1 mice. SZL-containing serum also significantly reversed the OLN-93 cell injury induced by Aβ42 by increasing cell viability and enhanced the expression of MBP, PLP, MAG, and MOG. Meanwhile, SZL-containing serum facilitated the maturation and differentiation of oligodendrocytes in Aβ42-induced OLN-93 cells by heightening the expression of CNPase, Olig2 and NKX2.2. SZL-containing serum treatment also fostered the expression of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR, indicating an activating PI3K/Akt-mTOR signaling pathway in OLN-93 cells. Furthermore, the effects of SZL on myelin proteins, p-Akt, and p-mTOR were clearly inhibited by LY294002 and/or rapamycin, antagonists of PI3K and m-TOR, respectively. CONCLUSIONS Our findings indicate that SZL exhibits a neuroprotective effect on the myelin sheath by promoting the expression of myelin proteins during AD, and its mechanism of action is closely related to the activation of the PI3K/Akt-mTOR signaling pathway.
Collapse
Affiliation(s)
- Mingcui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine (BUCM), Beijing, 100029, China.
| | - Lulu Mana
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China; Xinjiang Medical University, Urumqi, 830011, China.
| | - Gaofeng Qin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Shuaiyang Huang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Zhuoyan Gong
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Meijing Tian
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Yannan He
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Pengwen Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
50
|
Bordeleau M, Fernández de Cossío L, Lacabanne C, Savage JC, Vernoux N, Chakravarty M, Tremblay MÈ. Maternal high-fat diet modifies myelin organization, microglial interactions, and results in social memory and sensorimotor gating deficits in adolescent mouse offspring. Brain Behav Immun Health 2021; 15:100281. [PMID: 34589781 PMCID: PMC8474164 DOI: 10.1016/j.bbih.2021.100281] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022] Open
Abstract
Prenatal exposure to maternal high-fat diet (mHFD) acts as a risk factor for various neurodevelopmental alterations in the progeny. Recent studies in mice revealed that mHFD results in both neuroinflammation and hypomyelination in the exposed offspring. Microglia, the brain-resident macrophages, play crucial roles during brain development, notably by modulating oligodendrocyte populations and performing phagocytosis of myelin sheaths. Previously, we reported that mHFD modifies microglial phenotype (i.e., morphology, interactions with their microenvironment, transcripts) in the hippocampus of male and female offspring. In the current study, we further explored whether mHFD may induce myelination changes among the hippocampal-corpus callosum-prefrontal cortex pathway, and result in behavioral outcomes in adolescent offspring of the two sexes. To this end, female mice were fed with control chow or HFD for 4 weeks before mating, during gestation, and until weaning of their litter. Histological and ultrastructural analyses revealed an increased density of myelin associated with a reduced area of cytosolic myelin channels in the corpus callosum of mHFD-exposed male compared to female offspring. Transcripts of myelination-associated genes including Igf1 -a growth factor released by microglia- were also lower, specifically in the hippocampus (without changes in the prefrontal cortex) of adolescent male mouse offspring. These changes in myelin were not related to an altered density, distribution, or maturation of oligodendrocytes, instead we found that microglia within the corpus callosum of mHFD-exposed offspring showed reduced numbers of mature lysosomes and increased synaptic contacts, suggesting microglial implication in the modified myelination. At the behavioral level, both male and female mHFD-exposed adolescent offspring presented loss of social memory and sensorimotor gating deficits. These results together highlight the importance of studying oligodendrocyte-microglia crosstalk and its involvement in the long-term brain alterations that result from prenatal mHFD in offspring across sexes.
Collapse
Affiliation(s)
- Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | | | - Chloé Lacabanne
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Julie C Savage
- Axe Neurosciences, Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | - Nathalie Vernoux
- Axe Neurosciences, Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | - Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada.,Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada.,Department of Psychiatry, McGill University, Montréal, QC, Canada.,Department of Biological and Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Colombia, Vancouver, BC, Canada
| |
Collapse
|