1
|
Anglada-Huguet M, Endepols H, Sydow A, Hilgers R, Neumaier B, Drzezga A, Kaniyappan S, Mandelkow E, Mandelkow EM. Reversal of Tau-Dependent Cognitive Decay by Blocking Adenosine A1 Receptors: Comparison of Transgenic Mouse Models with Different Levels of Tauopathy. Int J Mol Sci 2023; 24:ijms24119260. [PMID: 37298211 DOI: 10.3390/ijms24119260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
The accumulation of tau is a hallmark of several neurodegenerative diseases and is associated with neuronal hypoactivity and presynaptic dysfunction. Oral administration of the adenosine A1 receptor antagonist rolofylline (KW-3902) has previously been shown to reverse spatial memory deficits and to normalize the basic synaptic transmission in a mouse line expressing full-length pro-aggregant tau (TauΔK) at low levels, with late onset of disease. However, the efficacy of treatment remained to be explored for cases of more aggressive tauopathy. Using a combination of behavioral assays, imaging with several PET-tracers, and analysis of brain tissue, we compared the curative reversal of tau pathology by blocking adenosine A1 receptors in three mouse models expressing different types and levels of tau and tau mutants. We show through positron emission tomography using the tracer [18F]CPFPX (a selective A1 receptor ligand) that intravenous injection of rolofylline effectively blocks A1 receptors in the brain. Moreover, when administered to TauΔK mice, rolofylline can reverse tau pathology and synaptic decay. The beneficial effects are also observed in a line with more aggressive tau pathology, expressing the amyloidogenic repeat domain of tau (TauRDΔK) with higher aggregation propensity. Both models develop a progressive tau pathology with missorting, phosphorylation, accumulation of tau, loss of synapses, and cognitive decline. TauRDΔK causes pronounced neurofibrillary tangle assembly concomitant with neuronal death, whereas TauΔK accumulates only to tau pretangles without overt neuronal loss. A third model tested, the rTg4510 line, has a high expression of mutant TauP301L and hence a very aggressive phenotype starting at ~3 months of age. This line failed to reverse pathology upon rolofylline treatment, consistent with a higher accumulation of tau-specific PET tracers and inflammation. In conclusion, blocking adenosine A1 receptors by rolofylline can reverse pathology if the pathological potential of tau remains below a threshold value that depends on concentration and aggregation propensity.
Collapse
Affiliation(s)
- Marta Anglada-Huguet
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
| | - Heike Endepols
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50923 Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Astrid Sydow
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
| | - Ronja Hilgers
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Alexander Drzezga
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50923 Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Molecular Organization of the Brain (INM-2), Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Senthilvelrajan Kaniyappan
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
- MPI Neurobiology Behavior-caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, 53127 Bonn, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
- MPI Neurobiology Behavior-caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, 53127 Bonn, Germany
| | - Eva-Maria Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Building 99, Venusberg Campus 1, 53127 Bonn, Germany
- MPI Neurobiology Behavior-caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
2
|
Yagound B, West AJ, Richardson MF, Selechnik D, Shine R, Rollins LA. Brain transcriptome analysis reveals gene expression differences associated with dispersal behaviour between range-front and range-core populations of invasive cane toads in Australia. Mol Ecol 2022; 31:1700-1715. [PMID: 35028988 PMCID: PMC9303232 DOI: 10.1111/mec.16347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 11/27/2022]
Abstract
Understanding the mechanisms allowing invasive species to adapt to novel environments is a challenge in invasion biology. Many invaders demonstrate rapid evolution of behavioural traits involved in range expansion such as locomotor activity, exploration and risk‐taking. However, the molecular mechanisms that underpin these changes are poorly understood. In 86 years, invasive cane toads (Rhinella marina) in Australia have drastically expanded their geographic range westward from coastal Queensland to Western Australia. During their range expansion, toads have undergone extensive phenotypic changes, particularly in behaviours that enhance the toads’ dispersal ability. Common‐garden experiments have shown that some changes in behavioural traits related to dispersal are heritable. At the molecular level, it is currently unknown whether these changes in dispersal‐related behaviour are underlain by small or large differences in gene expression, nor is known the biological function of genes showing differential expression. Here, we used RNA‐seq to gain a better understanding of the molecular mechanisms underlying dispersal‐related behavioural changes. We compared the brain transcriptomes of toads from the Hawai'ian source population, as well as three distinct populations from across the Australian invasive range. We found markedly different gene expression profiles between the source population and Australian toads. By contrast, toads from across the Australian invasive range had very similar transcriptomic profiles. Yet, key genes with functions putatively related to dispersal behaviour showed differential expression between populations located at each end of the invasive range. These genes could play an important role in the behavioural changes characteristic of range expansion in Australian cane toads.
Collapse
Affiliation(s)
- Boris Yagound
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Andrea J West
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Mark F Richardson
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,Deakin Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Daniel Selechnik
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lee A Rollins
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
3
|
Craeghs L, Callaerts-Vegh Z, Verslegers M, Van der Jeugd A, Govaerts K, Dresselaers T, Wogensen E, Verreet T, Moons L, Benotmane MA, Himmelreich U, D'Hooge R. Prenatal Radiation Exposure Leads to Higher-Order Telencephalic Dysfunctions in Adult Mice That Coincide with Reduced Synaptic Plasticity and Cerebral Hypersynchrony. Cereb Cortex 2021; 32:3525-3541. [PMID: 34902856 DOI: 10.1093/cercor/bhab431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
Higher-order telencephalic circuitry has been suggested to be especially vulnerable to irradiation or other developmentally toxic impact. This report details the adult effects of prenatal irradiation at a sensitive time point on clinically relevant brain functions controlled by telencephalic regions, hippocampus (HPC), and prefrontal cortex (PFC). Pregnant C57Bl6/J mice were whole-body irradiated at embryonic day 11 (start of neurogenesis) with X-ray intensities of 0.0, 0.5, or 1.0 Gy. Female offspring completed a broad test battery of HPC-/PFC-controlled tasks that included cognitive performance, fear extinction, exploratory, and depression-like behaviors. We examined neural functions that are mechanistically related to these behavioral and cognitive changes, such as hippocampal field potentials and long-term potentiation, functional brain connectivity (by resting-state functional magnetic resonance imaging), and expression of HPC vesicular neurotransmitter transporters (by immunohistochemical quantification). Prenatally exposed mice displayed several higher-order dysfunctions, such as decreased nychthemeral activity, working memory defects, delayed extinction of threat-evoked response suppression as well as indications of perseverative behavior. Electrophysiological examination indicated impaired hippocampal synaptic plasticity. Prenatal irradiation also induced cerebral hypersynchrony and increased the number of glutamatergic HPC terminals. These changes in brain connectivity and plasticity could mechanistically underlie the irradiation-induced defects in higher telencephalic functions.
Collapse
Affiliation(s)
- Livine Craeghs
- Department of Brain & Cognition, Research Group Biological Psychology, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Department of Brain & Cognition, Research Group Biological Psychology, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Mieke Verslegers
- Department of Radiobiology, Institute for Environmental Health and Safety, Nuclear Research Center (SCK CEN), Mol 2400, Belgium
| | - Ann Van der Jeugd
- Department of Brain & Cognition, Research Group Biological Psychology, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Kristof Govaerts
- Department of Imaging & Pathology, Research Group Biomedical MRI, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Tom Dresselaers
- Department of Imaging & Pathology, Research Group Biomedical MRI, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Elise Wogensen
- Department of Brain & Cognition, Research Group Biological Psychology, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Tine Verreet
- Department of Radiobiology, Institute for Environmental Health and Safety, Nuclear Research Center (SCK CEN), Mol 2400, Belgium
| | - Lieve Moons
- Department of Biology, Research Group Neural Circuit Development and Regeneration, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Mohammed A Benotmane
- Department of Radiobiology, Institute for Environmental Health and Safety, Nuclear Research Center (SCK CEN), Mol 2400, Belgium
| | - Uwe Himmelreich
- Department of Imaging & Pathology, Research Group Biomedical MRI, University of Leuven (KU Leuven), Leuven 3000, Belgium
| | - Rudi D'Hooge
- Department of Brain & Cognition, Research Group Biological Psychology, University of Leuven (KU Leuven), Leuven 3000, Belgium
| |
Collapse
|
4
|
Anglada‐Huguet M, Rodrigues S, Hochgräfe K, Mandelkow E, Mandelkow E. Inhibition of Tau aggregation with BSc3094 reduces Tau and decreases cognitive deficits in rTg4510 mice. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12170. [PMID: 34095439 PMCID: PMC8168941 DOI: 10.1002/trc2.12170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/19/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND One of the major hallmarks of Alzheimer's disease (AD)is the aberrant modification and aggregation of the microtubule-associated protein Tau . The extent of Tau pathology correlates with cognitive decline, strongly implicating Tau in the pathogenesis of the disease. Because the inhibition of Tau aggregation may be a promising therapeutic target, we tested the efficacy of BSc3094, an inhibitor of Tau aggregation, in reducing Tau pathology and ameliorating the disease symptoms in transgenic mice. METHODS Mice expressing human Tau with the P301L mutation (line rTg4510) were infused with BSc3094 into the lateral ventricle using Alzet osmotic pumps connected to a cannula that was placed on the skull of the mice, thus bypassing the blood-brain barrier (BBB) . The drug treatment lasted for 2 months, and the effect of BSc3094 on cognition and on reversing hallmarks of Tau pathology was assessed. RESULTS BSc3094 significantly reduced the levels of Tau phosphorylation and sarkosyl-insoluble Tau. In addition, the drug improved cognition in different behavioral tasks and reduced anxiety-like behavior in the transgenic mice used in the study. CONCLUSIONS Our in vivo investigations demonstrated that BSc3094 is capable of partially reducing the pathological hallmarks typically observed in Tau transgenic mice, highlighting BSc3094 as a promising compound for a future therapeutic approach for AD.
Collapse
Affiliation(s)
- Marta Anglada‐Huguet
- German Center for Neurodegenerative DiseasesDZNEBonnGermany
- Center for Advanced European Studies and ResearchCAESARBonnGermany
| | - Sara Rodrigues
- German Center for Neurodegenerative DiseasesDZNEBonnGermany
- Center for Advanced European Studies and ResearchCAESARBonnGermany
| | - Katja Hochgräfe
- German Center for Neurodegenerative DiseasesDZNEBonnGermany
- Center for Advanced European Studies and ResearchCAESARBonnGermany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative DiseasesDZNEBonnGermany
- Center for Advanced European Studies and ResearchCAESARBonnGermany
| | - Eva‐Maria Mandelkow
- German Center for Neurodegenerative DiseasesDZNEBonnGermany
- Center for Advanced European Studies and ResearchCAESARBonnGermany
| |
Collapse
|
5
|
Walgrave H, Balusu S, Snoeck S, Vanden Eynden E, Craessaerts K, Thrupp N, Wolfs L, Horré K, Fourne Y, Ronisz A, Silajdžić E, Penning A, Tosoni G, Callaerts-Vegh Z, D'Hooge R, Thal DR, Zetterberg H, Thuret S, Fiers M, Frigerio CS, De Strooper B, Salta E. Restoring miR-132 expression rescues adult hippocampal neurogenesis and memory deficits in Alzheimer's disease. Cell Stem Cell 2021; 28:1805-1821.e8. [PMID: 34033742 DOI: 10.1016/j.stem.2021.05.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022]
Abstract
Neural stem cells residing in the hippocampal neurogenic niche sustain lifelong neurogenesis in the adult brain. Adult hippocampal neurogenesis (AHN) is functionally linked to mnemonic and cognitive plasticity in humans and rodents. In Alzheimer's disease (AD), the process of generating new neurons at the hippocampal neurogenic niche is impeded, yet the mechanisms involved are unknown. Here we identify miR-132, one of the most consistently downregulated microRNAs in AD, as a potent regulator of AHN, exerting cell-autonomous proneurogenic effects in adult neural stem cells and their progeny. Using distinct AD mouse models, cultured human primary and established neural stem cells, and human patient material, we demonstrate that AHN is directly affected by AD pathology. miR-132 replacement in adult mouse AD hippocampus restores AHN and relevant memory deficits. Our findings corroborate the significance of AHN in mouse models of AD and reveal the possible therapeutic potential of targeting miR-132 in neurodegeneration.
Collapse
Affiliation(s)
- Hannah Walgrave
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Sriram Balusu
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Sarah Snoeck
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, 1105BA Amsterdam, the Netherlands
| | - Elke Vanden Eynden
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Katleen Craessaerts
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Nicky Thrupp
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Leen Wolfs
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Katrien Horré
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Yannick Fourne
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Alicja Ronisz
- KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; Laboratory for Neuropathology, KU Leuven, and Department of Pathology, UZ Leuven, 3000 Leuven, Belgium
| | - Edina Silajdžić
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Amber Penning
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, 1105BA Amsterdam, the Netherlands
| | - Giorgia Tosoni
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, 1105BA Amsterdam, the Netherlands
| | - Zsuzsanna Callaerts-Vegh
- KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; Laboratory for Biological Psychology, KU Leuven, 3000 Leuven, Belgium
| | - Rudi D'Hooge
- KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; Laboratory for Biological Psychology, KU Leuven, 3000 Leuven, Belgium
| | - Dietmar Rudolf Thal
- KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; Laboratory for Neuropathology, KU Leuven, and Department of Pathology, UZ Leuven, 3000 Leuven, Belgium
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK; Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 431 80 Mölndal, Sweden; UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Sandrine Thuret
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Mark Fiers
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | | | - Bart De Strooper
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; UK Dementia Research Institute at UCL, London, WC1E 6BT, UK.
| | - Evgenia Salta
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, 1105BA Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Thonnard D, Callaerts-Vegh Z, D'Hooge R. Effects of orbitofrontal cortex and ventral hippocampus disconnection on spatial reversal learning. Neurosci Lett 2021; 750:135711. [PMID: 33571575 DOI: 10.1016/j.neulet.2021.135711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022]
Abstract
Behavioural flexibility is a cognition-related function that enables subjects to adapt to a changing environment. Orbitofrontal cortex (OFC) and hippocampus (HC) have been involved in cognitive flexibility, but the interaction between these structures might be of particular functional significance. We applied a disconnection model in C57BL/6JRj mice to investigate the importance of OFC and ventral HC (vHC) interaction. Spatial acquisition and reversal performance in the Morris water maze (MWM) was compared between animals with small contralateral excitotoxic lesions to OFC and vHC, ipsilateral lesions (i.e., OFC-vHC lesions in the same hemisphere), as well as small bilateral OFC or vHC lesions. Spatial learning and memory performance was mostly unimpaired or only slightly impaired in our brain-lesioned animals compared to sham-lesioned control mice. However, contralaterally lesioned mice were significantly impaired during the early phase of reversal learning, whereas the other lesion groups performed similar to controls. These mice might also have experienced some difficulties using cognitively advanced search strategies. Additional non-mnemonic tests indicated that none of the defects could be reduced to motor, motivational or anxiety-related changes. Our findings support the particular role of PFC-HC interaction in advanced cognitive processes and flexibility.
Collapse
Affiliation(s)
- David Thonnard
- Laboratory of Biological Psychology, University of Leuven, Belgium
| | | | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Belgium.
| |
Collapse
|
7
|
Demir SA, Timur ZK, Ateş N, Martínez LA, Seyrantepe V. GM2 ganglioside accumulation causes neuroinflammation and behavioral alterations in a mouse model of early onset Tay-Sachs disease. J Neuroinflammation 2020; 17:277. [PMID: 32951593 PMCID: PMC7504627 DOI: 10.1186/s12974-020-01947-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/01/2020] [Indexed: 11/10/2022] Open
Abstract
Background Tay-Sachs disease (TSD), a type of GM2-gangliosidosis, is a progressive neurodegenerative lysosomal storage disorder caused by mutations in the α subunit of the lysosomal β-hexosaminidase enzyme. This disease is characterized by excessive accumulation of GM2 ganglioside, predominantly in the central nervous system. Although Tay-Sachs patients appear normal at birth, the progressive accumulation of undegraded GM2 gangliosides in neurons leads to death. Recently, an early onset Tay-Sachs disease mouse model, with genotype Hexa−/−Neu3−/−, was generated. Progressive accumulation of GM2 led to premature death of the double KO mice. Importantly, this double-deficient mouse model displays typical features of Tay-Sachs patients, such as cytoplasmic vacuolization of nerve cells, deterioration of Purkinje cells, neuronal death, deceleration in movement, ataxia, and tremors. GM2-gangliosidosis is characterized by acute neurodegeneration preceded by activated microglia expansion, macrophage, and astrocyte activation, along with the production of inflammatory mediators. However, the mechanism of disease progression in Hexa−/−Neu3−/− mice, relevant to neuroinflammation is poorly understood. Method In this study, we investigated the onset and progression of neuroinflammatory changes in the cortex, cerebellum, and retina of Hexa−/−Neu3−/− mice and control littermates by using a combination of molecular genetics and immunochemical procedures. Results We found elevated levels of pro-inflammatory cytokine and chemokine transcripts, such as Ccl2, Ccl3, Ccl4, and Cxcl10 and also extensive microglial and astrocyte activation and proliferation, accompanied by peripheral blood mononuclear cell infiltration in the vicinity of neurons and oligodendrocytes. Behavioral tests demonstrated a high level of anxiety, and age-dependent loss in both spatial learning and fear memory in Hexa−/−Neu3−/− mice compared with that in the controls. Conclusion Altogether, our data suggest that Hexa−/−Neu3−/− mice display a phenotype similar to Tay-Sachs patients suffering from chronic neuroinflammation triggered by GM2 accumulation. Furthermore, our work contributes to better understanding of the neuropathology in a mouse model of early onset Tay-Sachs disease.
Collapse
Affiliation(s)
- Seçil Akyıldız Demir
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Zehra Kevser Timur
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Nurselin Ateş
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Luis Alarcón Martínez
- Institute of Neurological Science and Psychiatry, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
| | - Volkan Seyrantepe
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430, Izmir, Turkey.
| |
Collapse
|
8
|
Samaey C, Schreurs A, Stroobants S, Balschun D. Early Cognitive and Behavioral Deficits in Mouse Models for Tauopathy and Alzheimer's Disease. Front Aging Neurosci 2019; 11:335. [PMID: 31866856 PMCID: PMC6908963 DOI: 10.3389/fnagi.2019.00335] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
Neurocognitive disorders, among which Alzheimer's disease (AD), have become one of the major causes of death in developed countries. No effective disease-modifying therapy is available, possibly because current treatments are administered too late to still be able to intervene in the disease progress. AD is characterized by a gradual onset with subclinical neurobiological and behavioral changes that precede diagnosis with years to even decades. The earlier the diagnosis, the earlier potential treatments can be tested and started. Mouse models are valuable to study the possible causes underlying early phases of neuropathology and their reflection in behavior and other biomarkers, to help improve preclinical detection and diagnosis of AD. Here, we assessed cognitive functioning and social behavior in transgenic mice expressing tau pathology only (Tau-P301L) or a combination of amyloid and tau pathology [amyloid precursor protein (APP)-V717I × Tau-P301L]. The mice were subjected to a variety of behavioral tasks at an age of 3-6 months, i.e., at an early phase of their AD-like pathology. We hypothesized that compared to age-matched wild-type controls, transgenic mice would show specific impairments in both cognitive and non-cognitive tasks. In line with our expectations, transgenic mice showed decreased cognitive flexibility in the Morris water maze, decreased exploratory behavior, decreased performance in a nesting task, and increased anxiety-like behavior. In accordance with the amyloid-cascade hypothesis, some of the behavioral measures showed more severe deficits in APP-V717I × Tau-P301L compared to Tau-P301L mice, indicating an exacerbation of disease processes due to the co-occurrence of amyloid and tau pathology. Our study supports the use of behavioral markers as early indicators of ongoing AD pathology during the preclinical phase.
Collapse
Affiliation(s)
- Celine Samaey
- Brain and Cognition, KU Leuven, Leuven, Belgium.,Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium
| | - An Schreurs
- Brain and Cognition, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Stijn Stroobants
- Brain and Cognition, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Detlef Balschun
- Brain and Cognition, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Thonnard D, Callaerts-Vegh Z, D'Hooge R. Differential effects of post-training scopolamine on spatial and non-spatial learning tasks in mice. Brain Res Bull 2019; 152:52-62. [PMID: 31302239 DOI: 10.1016/j.brainresbull.2019.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/29/2022]
Abstract
Muscarinic antagonist scopolamine has been extensively used to model amnesia in lab rodents, but most studies have focused on the effects of pre-training scopolamine administration. Here, we examined post-training scopolamine administration in C57BL/6JRj mice. Learning was assessed in three different procedures: odour discrimination in a digging paradigm, visual discrimination in a touchscreen-based setup, and spatial learning in the Morris water maze. Scopolamine administration affected performance in the odour discrimination task. More specifically, scopolamine decreased perseverance, which facilitated reversal learning. Similar results were obtained in the visual discrimination task, but scopolamine did not affect performance in the spatial learning task. It is unlikely that these results can be explained by non-memory-related cognitive effects (e.g., attention), non-cognitive behaviours (e.g., locomotor activity) or peripheral side-effects (e.g., mydriasis). They likely relate to the various neuropharmacological actions of scopolamine.
Collapse
Affiliation(s)
- David Thonnard
- Laboratory of Biological Psychology, University of Leuven, Belgium
| | | | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Belgium.
| |
Collapse
|
10
|
Metabotropic Glutamate Receptor 5 and 8 Modulate the Ameliorative Effect of Ultramicronized Palmitoylethanolamide on Cognitive Decline Associated with Neuropathic Pain. Int J Mol Sci 2019; 20:ijms20071757. [PMID: 30970677 PMCID: PMC6480075 DOI: 10.3390/ijms20071757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/23/2022] Open
Abstract
This study investigated whether metabotropic glutamate receptor (mGluR) 5 and 8 are involved in the effect of ultramicronizedpalmitoylethanolamide (um-PEA) on the cognitive behavior and long term potentiation (LTP) at entorhinal cortex (LEC)-dentate gyrus (DG) pathway in mice rendered neuropathic by the spare nerve injury (SNI). SNI reduced discriminative memory and LTP. Um-PEA treatment started after the development of neuropathic pain had no effects in sham mice, whereas it restored cognitive behavior and LTP in SNI mice. 2-Methyl-6-(phenylethynyl) pyridine (MPEP), a selective mGluR5 antagonist, improved cognition in SNI mice and produced a chemical long term depression of the field excitatory postsynaptic potentials (fEPSPs) in sham and SNI mice. After theta burst stimulation (TBS) MPEP restored LTP in SNI mice. In combination with PEA, MPEP antagonized the PEA effect on discriminative memory and decreased LTP in SNI mice. The (RS)-4-(1-amino-1-carboxyethyl)phthalic acid (MDCPG), a selective mGluR8 antagonist, did not affect discriminative memory, but it induced a chemical LTP and prevented the enhancement of fEPSPs after TBS in SNI mice which were treated or not treated with PEA. The effect of PEA on LTP and cognitive behavior was modulated by mGluR5 and mGluR8. In particular in the SNI conditions, the mGluR5 blockade facilitated memory and LTP, but prevented the beneficial effects of PEA on discriminative memory while the mGluR8 blockade, which was ineffective in itself, prevented the favorable action of the PEA on LTP. Thus, although their opposite roles (excitatory/inhibitory of the two receptor subtypes on the glutamatergic system), they appeared to be required for the neuroprotective effect of PEA in conditions of neuropathic pain.
Collapse
|
11
|
Beckers L, Geric I, Stroobants S, Beel S, Van Damme P, D'Hooge R, Baes M. Microglia lacking a peroxisomal β-oxidation enzyme chronically alter their inflammatory profile without evoking neuronal and behavioral deficits. J Neuroinflammation 2019; 16:61. [PMID: 30866963 PMCID: PMC6417251 DOI: 10.1186/s12974-019-1442-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/24/2019] [Indexed: 11/10/2022] Open
Abstract
Background Microglia play a central role in most neurological disorders, but the impact of microgliosis on brain environment and clinical functions is not fully understood. Mice lacking multifunctional protein-2 (MFP2), a pivotal enzyme in peroxisomal β-oxidation, develop a fatal disorder characterized by motor problems similar to the milder form of MFP2 deficiency in humans. The hallmark of disease in mice is the chronic proliferation of microglia in the brain, but molecular pathomechanisms that drive rapid clinical deterioration in human and mice remain unknown. In the present study, we identified the effects of specific deletion of MFP2 from microglia in the brain on immune responses, neuronal functioning, and behavior. Methods We created a novel Cx3cr1-Mfp2−/− mouse model and studied the impact of MFP2 deficiency on microglial behavior at different ages using immunohistochemistry and real-time PCR. Pro- and anti-inflammatory responses of Mfp2−/− microglia were assessed in vitro and in vivo after stimulation with IL-1β/INFγ and IL-4 (in vitro) and LPS and IL-4 (in vivo). Facial nerve axotomy was unilaterally performed in Cx3cr1-Mfp2−/− and control mice, and microglial functioning in response to neuronal injury was subsequently analyzed by histology and real-time PCR. Finally, neuronal function, motor function, behavior, and cognition were assessed using brainstem auditory evoked potentials, grip strength and inverted grid test, open field exploration, and passive avoidance learning, respectively. Results We found that Mfp2−/− microglia in a genetically intact brain environment adopt an inflammatory activated and proliferative state. In addition, we found that acute inflammatory and neuronal injury provoked normal responses of Mfp2−/− microglia in Cx3cr1-Mfp2−/− mice during the post-injury period. Despite chronic pro-inflammatory microglial reactivity, Cx3cr1-Mfp2−/− mice exhibited normal neuronal transmission, clinical performance, and cognition. Conclusion Our data demonstrate that MFP2 deficiency in microglia causes intrinsic dysregulation of their inflammatory profile, which is not harmful to neuronal function, motor function, and cognition in mice during their first year of life. Electronic supplementary material The online version of this article (10.1186/s12974-019-1442-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lien Beckers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell Metabolism, KU Leuven - University of Leuven, Campus Gasthuisberg O/N2, Herestraat 49, B-3000, Leuven, Belgium.,Present Address: Center for Translational and Computational Neuro-immunology, Department of Neurology, Columbia University Medical Center, New York City, NY, USA
| | - Ivana Geric
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell Metabolism, KU Leuven - University of Leuven, Campus Gasthuisberg O/N2, Herestraat 49, B-3000, Leuven, Belgium
| | - Stijn Stroobants
- Faculty of Psychology and Educational Sciences, Biological Psychology Unit, KU Leuven - University of Leuven, B-3000, Leuven, Belgium
| | - Sander Beel
- Department of Neurosciences, Laboratory for Neurobiology, KU Leuven - University of Leuven, Leuven, Belgium.,Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Laboratory for Neurobiology, KU Leuven - University of Leuven, Leuven, Belgium.,Center for Brain and Disease Research, VIB, Leuven, Belgium.,Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Rudi D'Hooge
- Faculty of Psychology and Educational Sciences, Biological Psychology Unit, KU Leuven - University of Leuven, B-3000, Leuven, Belgium
| | - Myriam Baes
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell Metabolism, KU Leuven - University of Leuven, Campus Gasthuisberg O/N2, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
12
|
Thonnard D, Dreesen E, Callaerts-Vegh Z, D'Hooge R. NMDA receptor dependence of reversal learning and the flexible use of cognitively demanding search strategies in mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:235-244. [PMID: 30529376 DOI: 10.1016/j.pnpbp.2018.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
Cognitive flexibility helps organisms to respond adaptively to environmental changes. Deficits in this executive function have been associated with a variety of brain disorders, and it has been shown to rely on various concomitant neurobiological mechanisms. However, the involvement of the glutamatergic system in general, and NMDA receptors in particular, has been debated. Therefore, we injected C57BL/6 mice repeatedly with low-doses of the non-competitive NMDA receptor antagonist MK-801 (dizocilpine, 0.1 mg/kg, i.p.). Reversal learning and the use of specific cognitive strategies were assessed in a non-spatial discrimination touchscreen task and the Morris water maze (MWM) spatial learning task. In addition, mice were subjected to a non-mnemonic test battery. Although initial acquisition learning was not affected by MK-801 administration, it did induce deficits in reversal learning, both in the non-spatial and spatial task. Defects in non-spatial reversal learning appeared to be caused by perseverative errors. Also, MK-801 administration induced perseverative behaviours as well as inefficient spatial strategy use during MWM reversal learning. These effects could not be reduced to changes in exploratory (anxiety-related) behaviours, nor to motor deficits. This was consistent with results in the non-mnemonic test battery, during which MK-801 evoked hyperlocomotion and subtle motor defects, but failed to alter general motor activity and exploratory behaviours. In conclusion, NMDA receptors appear to be involved in the flexible cognitive processes that underlie reversal learning in spatial as well as non-spatial tasks. Our results also indicate that reversal learning as well as the use of cognitively demanding strategies are more sensitive to NMDA receptor blockage than some other functions that have been suggested to be NMDA receptor dependent.
Collapse
Affiliation(s)
- David Thonnard
- Laboratory of Biological Psychology, University of Leuven, Belgium
| | - Eline Dreesen
- Laboratory of Biological Psychology, University of Leuven, Belgium
| | | | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Belgium.
| |
Collapse
|
13
|
Stroobants S, Damme M, Van der Jeugd A, Vermaercke B, Andersson C, Fogh J, Saftig P, Blanz J, D'Hooge R. Long-term enzyme replacement therapy improves neurocognitive functioning and hippocampal synaptic plasticity in immune-tolerant alpha-mannosidosis mice. Neurobiol Dis 2017; 106:255-268. [PMID: 28720484 DOI: 10.1016/j.nbd.2017.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/14/2017] [Indexed: 01/22/2023] Open
Abstract
Alpha-mannosidosis is a glycoproteinosis caused by deficiency of lysosomal acid alpha-mannosidase (LAMAN), which markedly affects neurons of the central nervous system (CNS), and causes pathognomonic intellectual dysfunction in the clinical condition. Cognitive improvement consequently remains a major therapeutic objective in research on this devastating genetic error. Immune-tolerant LAMAN knockout mice were developed to evaluate the effects of enzyme replacement therapy (ERT) by prolonged administration of recombinant human enzyme. Biochemical evidence suggested that hippocampus may be one of the brain structures that benefits most from long-term ERT. In the present functional study, ERT was initiated in 2-month-old immune-tolerant alpha-mannosidosis mice and continued for 9months. During the course of treatment, mice were trained in the Morris water maze task to assess spatial-cognitive performance, which was related to synaptic plasticity recordings and hippocampal histopathology. Long-term ERT reduced primary substrate storage and neuroinflammation in hippocampus, and improved spatial learning after mid-term (10weeks+) and long-term (30weeks+) treatment. Long-term treatment substantially improved the spatial-cognitive abilities of alpha-mannosidosis mice, whereas the effects of mid-term treatment were more modest. Detailed analyses of spatial memory and spatial-cognitive performance indicated that even prolonged ERT did not restore higher cognitive abilities to the level of healthy mice. However, it did demonstrate marked therapeutic effects that coincided with increased synaptic connectivity, reflected by improvements in hippocampal CA3-CA1 long-term potentiation (LTP), expression of postsynaptic marker PSD-95 as well as postsynaptic density morphology. These experiments indicate that long-term ERT may hold promise, not only for the somatic defects of alpha-mannosidosis, but also to alleviate cognitive impairments of the disorder.
Collapse
Affiliation(s)
- Stijn Stroobants
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| | - Markus Damme
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| | - Ann Van der Jeugd
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| | - Ben Vermaercke
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| | | | - Jens Fogh
- Zymenex A/S, Roskildevej 12C, 3400 Hillerød, Denmark.
| | - Paul Saftig
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| | - Judith Blanz
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| |
Collapse
|
14
|
Beckers L, Stroobants S, Verheijden S, West B, D'Hooge R, Baes M. Specific suppression of microgliosis cannot circumvent the severe neuropathology in peroxisomal β-oxidation-deficient mice. Mol Cell Neurosci 2017; 80:123-133. [PMID: 28286294 DOI: 10.1016/j.mcn.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/21/2017] [Accepted: 03/05/2017] [Indexed: 12/22/2022] Open
Abstract
An important hallmark of various neurodegenerative disorders is the proliferation and activation of microglial cells, the resident immune cells of the central nervous system (CNS). Mice that lack multifunctional protein-2 (MFP2), the key enzyme in peroxisomal β-oxidation, develop excessive microgliosis that positively correlates with behavioral deficits whereas no neuronal loss occurs. However, the precise contribution of neuroinflammation to the fatal neuropathology of MFP2 deficiency remains largely unknown. Here, we first attempted to suppress the inflammatory response by administering various anti-inflammatory drugs but they failed to reduce microgliosis. Subsequently, Mfp2-/- mice were treated with the selective colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 as microglial proliferation and survival is dependent on CSF1R signaling. This resulted in the elimination of >95% of microglia from control mice but only 70% of the expanded microglial population from Mfp2-/- mice. Despite microglial diminution in Mfp2-/- brain, inflammatory markers remained unaltered and residual microglia persisted in a reactive state. CSF1R inhibition did not prevent neuronal dysfunction, cognitive decline and clinical deterioration of Mfp2-/- mice. Collectively, the unaltered inflammatory profile despite suppressed microgliosis concurrent with persevering clinical decline strengthens our hypothesis that neuroinflammation importantly contributes to the Mfp2-/- phenotype.
Collapse
Affiliation(s)
- L Beckers
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, B-3000 Leuven, Belgium
| | - S Stroobants
- KU Leuven - University of Leuven, Faculty of Psychology and Educational Sciences, Biological Psychology, B-3000 Leuven, Belgium
| | - S Verheijden
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, B-3000 Leuven, Belgium
| | - B West
- Plexxikon Inc., Berkeley, CA 94710, USA
| | - R D'Hooge
- KU Leuven - University of Leuven, Faculty of Psychology and Educational Sciences, Biological Psychology, B-3000 Leuven, Belgium
| | - M Baes
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, B-3000 Leuven, Belgium.
| |
Collapse
|
15
|
Huang Y, Skwarek-Maruszewska A, Horré K, Vandewyer E, Wolfs L, Snellinx A, Saito T, Radaelli E, Corthout N, Colombelli J, Lo AC, Van Aerschot L, Callaerts-Vegh Z, Trabzuni D, Bossers K, Verhaagen J, Ryten M, Munck S, D'Hooge R, Swaab DF, Hardy J, Saido TC, De Strooper B, Thathiah A. Loss of GPR3 reduces the amyloid plaque burden and improves memory in Alzheimer's disease mouse models. Sci Transl Med 2016; 7:309ra164. [PMID: 26468326 DOI: 10.1126/scitranslmed.aab3492] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The orphan G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) GPR3 regulates activity of the γ-secretase complex in the absence of an effect on Notch proteolysis, providing a potential therapeutic target for Alzheimer's disease (AD). However, given the vast resources required to develop and evaluate any new therapy for AD and the multiple failures involved in translational research, demonstration of the pathophysiological relevance of research findings in multiple disease-relevant models is necessary before initiating costly drug development programs. We evaluated the physiological consequences of loss of Gpr3 in four AD transgenic mouse models, including two that contain the humanized murine Aβ sequence and express similar amyloid precursor protein (APP) levels as wild-type mice, thereby reducing potential artificial phenotypes. Our findings reveal that genetic deletion of Gpr3 reduced amyloid pathology in all of the AD mouse models and alleviated cognitive deficits in APP/PS1 mice. Additional three-dimensional visualization and analysis of the amyloid plaque burden provided accurate information on the amyloid load, distribution, and volume in the structurally intact adult mouse brain. Analysis of 10 different regions in healthy human postmortem brain tissue indicated that GPR3 expression was stable during aging. However, two cohorts of human AD postmortem brain tissue samples showed a correlation between elevated GPR3 and AD progression. Collectively, these studies provide evidence that GPR3 mediates the amyloidogenic proteolysis of APP in four AD transgenic mouse models as well as the physiological processing of APP in wild-type mice, suggesting that GPR3 may be a potential therapeutic target for AD drug development.
Collapse
Affiliation(s)
- Yunhong Huang
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium. KU Leuven Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, 3000 Leuven, Belgium
| | - Aneta Skwarek-Maruszewska
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium. KU Leuven Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, 3000 Leuven, Belgium
| | - Katrien Horré
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium. KU Leuven Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, 3000 Leuven, Belgium
| | - Elke Vandewyer
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium. KU Leuven Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, 3000 Leuven, Belgium
| | - Leen Wolfs
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium. KU Leuven Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, 3000 Leuven, Belgium
| | - An Snellinx
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium. KU Leuven Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, 3000 Leuven, Belgium
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, 351-0198 Saitama, Japan. Japan Science and Technology Agency, 332-0012 Saitama, Japan
| | - Enrico Radaelli
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium. KU Leuven Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, 3000 Leuven, Belgium
| | - Nikky Corthout
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium. KU Leuven Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, 3000 Leuven, Belgium
| | - Julien Colombelli
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Adrian C Lo
- Department of Psychology, Laboratory of Biological Psychology, University of Leuven, 3000 Leuven, Belgium
| | - Leen Van Aerschot
- Department of Psychology, Laboratory of Biological Psychology, University of Leuven, 3000 Leuven, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Department of Psychology, Laboratory of Biological Psychology, University of Leuven, 3000 Leuven, Belgium
| | - Daniah Trabzuni
- Departments of Molecular Neuroscience and Clinical Neuroscience, Reta Lila Weston Research Laboratories, Institute of Neurology, University College London, WC1N 3BG London, UK. Department of Genetics, King Faisal Specialist Hospital and Research Centre, 11211 Riyadh, Saudi Arabia
| | - Koen Bossers
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, Netherlands
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, Netherlands
| | - Mina Ryten
- Departments of Molecular Neuroscience and Clinical Neuroscience, Reta Lila Weston Research Laboratories, Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Sebastian Munck
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium. KU Leuven Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, 3000 Leuven, Belgium
| | - Rudi D'Hooge
- Department of Psychology, Laboratory of Biological Psychology, University of Leuven, 3000 Leuven, Belgium
| | - Dick F Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, Netherlands
| | - John Hardy
- Departments of Molecular Neuroscience and Clinical Neuroscience, Reta Lila Weston Research Laboratories, Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, 351-0198 Saitama, Japan
| | - Bart De Strooper
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium. KU Leuven Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, 3000 Leuven, Belgium.
| | - Amantha Thathiah
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium. KU Leuven Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, 3000 Leuven, Belgium.
| |
Collapse
|
16
|
Kumar M, Duda JT, Yoon SY, Bagel J, O'Donnell P, Vite C, Pickup S, Gee JC, Wolfe JH, Poptani H. Diffusion Tensor Imaging for Assessing Brain Gray and White Matter Abnormalities in a Feline Model of α-Mannosidosis. J Neuropathol Exp Neurol 2016; 75:35-43. [PMID: 26671987 DOI: 10.1093/jnen/nlv007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
α-Mannosidosis (AMD) is an autosomal recessively inherited lysosomal storage disorder affecting brain function and structure. We performed ex vivo and in vivo diffusion tensor imaging (DTI) on the brains of AMD-affected cats to assess gray and white matter abnormalities. A multi-atlas approach was used to generate a brain template to process the ex vivo DTI data. The probabilistic label method was used to measure fractional anisotropy (FA), mean diffusivity, axial diffusivity, and radial diffusivity values from gray and white matter regions from ex vivo DTI. Regional analysis from various regions of the gray matter (frontal cortex, cingulate gyrus, caudate nucleus, hippocampus, thalamus, and occipital cortex), and white matter (corpus callosum, corticospinal tract, cerebral peduncle, external and internal capsule) was also performed on both ex vivo and in vivo DTI. Ex vivo DTI revealed significantly reduced FA from both gray and white matter regions in AMD-affected cats compared to controls. Significantly reduced FA was also observed from in vivo DTI of AMD-affected cats compared to controls, with lower FA values observed in all white matter regions. We also observed significantly increased axial and radial diffusivity values in various gray and white matter regions in AMD cats from both ex vivo and in vivo DTI data. Imaging findings were correlated with histopathologic analyses suggesting that DTI studies can further aid in the characterization of AMD by assessing the microstructural abnormalities in both white and gray matter.
Collapse
|
17
|
Borgwardt L, Thuesen AM, Olsen KJ, Fogh J, Dali CI, Lund AM. Cognitive profile and activities of daily living: 35 patients with alpha-mannosidosis. J Inherit Metab Dis 2015; 38:1119-27. [PMID: 26016802 DOI: 10.1007/s10545-015-9862-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Alpha-mannosidosis (OMIM 248500) (AM) is a rare lysosomal storage disease caused by a deficiency of the alpha-mannosidase enzyme. The typical signs consist of hearing impairment, intellectual disabilities, coarse facial features and motor function disturbances. We report on the cognitive function and activities of daily living in patients with AM. METHODS Thirty five AM patients, age 6-35 years, were included in the study. As a cognitive function test, we used the Leiter international performance scale-revised (Leiter-R), which consists of two batteries: the visual function and reasoning battery and the memory and attention battery, the latter including a memory screening. Additional two questionnaires, The Childhood Health Assessment Questionnaire (CHAQ) and EQ-5D-5 L, were filled out. RESULTS We found IQ in the range of 30-81 in our cohort. The total equivalent age (mental age) was significantly reduced, between 3-9 years old for the visual function and reasoning battery, between 2.3-10.2 years for the memory screening. Data suggested a specific developmental profile for AM with a positive intellectual development until the chronological age 10-12 years, followed by a static or slightly increasing intellectual level. All patients were to varying degrees socially and practically dependent and unable to take care of themselves in daily life. CONCLUSIONS Intellectual disability is a consistent finding in patients with alpha-mannosidosis but with extensive variation. We assess that this group of patients has, despite their intellectual disabilities, a potential for continuous cognitive development, especially during childhood and early teenage years. This should be included and supported in the individual educational planning.
Collapse
Affiliation(s)
- L Borgwardt
- Department of Clinical Genetics, Centre for Inherited Metabolic Diseases, Copenhagen University Hospital, Rigshospitalet, 9 Blegdamsvej, 2100, Copenhagen, Denmark.
| | | | | | - J Fogh
- Zymenex A/S (Chiesi Group), Hilleroed, Denmark
| | - C I Dali
- Department of Clinical Genetics, Centre for Inherited Metabolic Diseases, Copenhagen University Hospital, Rigshospitalet, 9 Blegdamsvej, 2100, Copenhagen, Denmark
| | - A M Lund
- Department of Clinical Genetics, Centre for Inherited Metabolic Diseases, Copenhagen University Hospital, Rigshospitalet, 9 Blegdamsvej, 2100, Copenhagen, Denmark
| |
Collapse
|
18
|
Circadian profiling in two mouse models of lysosomal storage disorders; Niemann Pick type-C and Sandhoff disease. Behav Brain Res 2015; 297:213-23. [PMID: 26467605 PMCID: PMC4678117 DOI: 10.1016/j.bbr.2015.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 11/22/2022]
Abstract
Sleep and circadian rhythm disruption is frequently associated with neurodegenerative disease, yet it is unclear how the specific pathology in these disorders leads to abnormal rest/activity profiles. To investigate whether the pathological features of lysosomal storage disorders (LSDs) influence the core molecular clock or the circadian behavioural abnormalities reported in some patients, we examined mouse models of Niemann-Pick Type-C (Npc1 mutant, Npc1(nih)) and Sandhoff (Hexb knockout, Hexb(-/-)) disease using wheel-running activity measurement, neuropathology and clock gene expression analysis. Both mutants exhibited regular, entrained rest/activity patterns under light:dark (LD) conditions despite the onset of their respective neurodegenerative phenotypes. A slightly shortened free-running period and changes in Per1 gene expression were observed in Hexb(-/-) mice under constant dark conditions (DD); however, no overt neuropathology was detected in the suprachiasmatic nucleus (SCN). Conversely, despite extensive cholesterol accumulation in the SCN of Npc1(nih) mutants, no circadian disruption was observed under constant conditions. Our results indicate the accumulation of specific metabolites in LSDs may differentially contribute to circadian deregulation at the molecular and behavioural level.
Collapse
|
19
|
Callaerts-Vegh Z, Ahmed T, Vermaercke B, Marynen P, Balschun D, Froyen G, D'Hooge R. Nxf7 deficiency impairs social exploration and spatio-cognitive abilities as well as hippocampal synaptic plasticity in mice. Front Behav Neurosci 2015. [PMID: 26217206 PMCID: PMC4498129 DOI: 10.3389/fnbeh.2015.00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nuclear RNA export factors (NXF) are conserved in all metazoans and are deemed essential for shuttling RNA across the nuclear envelope and other post-transcriptional processes (such as mRNA metabolism, storage and stability). Disruption of human NXF5 has been implicated in intellectual and psychosocial disabilities. In the present report, we use recently described Nxf7 knockout (KO) mice as an experimental model to analyze in detail the behavioral consequences of clinical NXF5 deficiency. We examined male Nxf7 KO mice using an extended cognitive and behavioral test battery, and recorded extracellular field potentials in the hippocampal CA1 region. We observed various cognitive and behavioral changes including alterations in social exploration, impaired spatial learning and spatio-cognitive abilities. We also defined a new experimental paradigm to discriminate search strategies in Morris water maze and showed significant differences between Nxf7 KO and control animals. Furthermore, while we observed no difference in a nose poke suppression in an conditioned emotional response (CER) protocol, Nxf7 KO mice were impaired in discriminating between differentially reinforced cues in an auditory fear conditioning protocol. This distinct neurocognitive phenotype was accompanied by impaired hippocampal Long-term potentiation (LTP), while long-term depression (LTD) was not affected by Nxf7 deficiency. Our data demonstrate that disruption of murine Nxf7 leads to behavioral phenotypes that may relate to the intellectual and social deficits in patients with NXF5 deficiency.
Collapse
Affiliation(s)
| | - Tariq Ahmed
- Laboratory of Biological Psychology, University of Leuven, KU Leuven Leuven, Belgium
| | - Ben Vermaercke
- Laboratory of Biological Psychology, University of Leuven, KU Leuven Leuven, Belgium
| | - Peter Marynen
- Human Genome Laboratory, University of Leuven and VIB Center for the Biology of Disease Leuven, Belgium
| | - Detlef Balschun
- Laboratory of Biological Psychology, University of Leuven, KU Leuven Leuven, Belgium
| | - Guy Froyen
- Human Genome Laboratory, University of Leuven and VIB Center for the Biology of Disease Leuven, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, KU Leuven Leuven, Belgium
| |
Collapse
|
20
|
Abstract
To explain cognitive and memory difficulties observed in some familial hemiplegic migraine (FHM) patients, we examined hippocampal neurotransmission and plasticity in knock-in mice expressing the FHM type 1 (FHM1) R192Q gain-of function mutation in the CACNA1A gene that encodes the α1A subunit of neuronal CaV2.1 channels. We determined stimulus intensity-response curves for anterior commissure-evoked hippocampal CA1 field potentials in strata pyramidale and radiatum and assessed neuroplasticity by inducing long-term potentiation (LTP) and long-term depression (LTD) in anesthetized mice in vivo. We also studied learning and memory using contextual fear-conditioning, Morris water maze, and novel object recognition tests. Hippocampal field potentials were significantly enhanced in R192Q mice compared with wild-type controls. Stimulus intensity-response curves were shifted to the left and displayed larger maxima in the mutants. LTP was augmented by twofold in R192Q mice, whereas LTD was unchanged compared with wild-type mice. R192Q mice showed significant spatial memory deficits in contextual fear-conditioning and Morris water maze tests compared with wild-type controls. Novel object recognition was not impaired in R192Q mice; however, mice carrying the more severe S218L CACNA1A mutation showed marked deficits in this test, suggesting a genotype-phenotype relationship. Thus, whereas FHM1 gain-of-function mutations enhance hippocampal excitatory transmission and LTP, learning and memory are paradoxically impaired, providing a possible explanation for cognitive changes detected in FHM. Data suggest that abnormally enhanced plasticity can be as detrimental to efficient learning as reduced plasticity and highlight how genetically enhanced neuronal excitability may impact cognitive function.
Collapse
|
21
|
Bollen B, Ramanantsoa N, Naert A, Matrot B, Van den Bergh O, D'Hooge R, Gallego J. Emotional disorders in adult mice heterozygous for the transcription factor Phox2b. Physiol Behav 2015; 141:120-6. [PMID: 25582512 DOI: 10.1016/j.physbeh.2015.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 12/16/2022]
Abstract
Phox2b is an essential transcription factor for the development of the autonomic nervous system. Mice carrying one invalidated Phox2b allele (Phox2b(+/-)) show mild autonomic disorders including sleep apneas, and impairments in chemosensitivity and thermoregulation that recover within 10days of postnatal age. Because Phox2b is not expressed above the pons nor in the cerebellum, this mutation is not expected to affect brain development and cognitive functioning directly. However, the transient physiological disorders in Phox2b(+/-) mice might impair neurodevelopment. To examine this possibility, we conducted a behavioral test battery of emotional, motor, and cognitive functioning in adult Phox2b(+/-) mice and their wildtype littermates (Phox2b(+/+)). Adult Phox2b(+/-) mice showed altered exploratory behavior in the open field and in the elevated plus maze, both indicative of anxiety. Phox2b(+/-) mice did not show cognitive or motor impairments. These results suggest that also mild autonomic control deficits may disturb long-term emotional development.
Collapse
Affiliation(s)
- Bieke Bollen
- Laboratory of Biological Psychology, University of Leuven, Belgium; INSERM, U1141, Hôpital Robert Debré, 75019 Paris, France
| | - Nelina Ramanantsoa
- INSERM, U1141, Hôpital Robert Debré, 75019 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, 75019 Paris, France
| | - Arne Naert
- Laboratory of Biological Psychology, University of Leuven, Belgium
| | - Boris Matrot
- INSERM, U1141, Hôpital Robert Debré, 75019 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, 75019 Paris, France
| | | | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Belgium
| | - Jorge Gallego
- INSERM, U1141, Hôpital Robert Debré, 75019 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, 75019 Paris, France.
| |
Collapse
|
22
|
Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion. Neurobiol Aging 2014; 35:2474-2478. [PMID: 24913895 DOI: 10.1016/j.neurobiolaging.2014.05.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 03/24/2014] [Accepted: 05/02/2014] [Indexed: 02/05/2023]
Abstract
Tau has been implicated in the organization, stabilization, and dynamics of microtubules. In Alzheimer's disease and more than 20 neurologic disorders tau missorting, hyperphosphorylation, and aggregation is a hallmark. They are collectively referred to as tauopathies. Although the impact of human tauopathies on cognitive processes has been explored in transgenic mouse models, the functional consequences of tau deletion on cognition are far less investigated. Here, we subjected tau knock-out (KO) mice to a battery of neurocognitive, behavioral, and electrophysiological tests. Although KO and wild-type mice were indistinguishable in motor abilities, exploratory and anxiety behavior, KO mice showed impaired contextual and cued fear conditioning. In contrast, extensive spatial learning in the water maze resulted in better performance of KO mice during acquisition. In electrophysiological experiments, basal synaptic transmission and paired-pulse facilitation in the hippocampal CA1-region were unchanged. Interestingly, deletion of tau resulted in severe deficits in long-term potentiation but not long-term depression. Our results suggest a role of tau in certain cognitive functions and implicate long-term potentiation as the relevant physiological substrate.
Collapse
|
23
|
Iscru E, Goddyn H, Ahmed T, Callaerts-Vegh Z, D'Hooge R, Balschun D. Improved spatial learning is associated with increased hippocampal but not prefrontal long-term potentiation in mGluR4 knockout mice. GENES BRAIN AND BEHAVIOR 2013; 12:615-25. [PMID: 23714430 DOI: 10.1111/gbb.12052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/13/2013] [Accepted: 05/21/2013] [Indexed: 01/08/2023]
Abstract
Although much information about metabotropic glutamate receptors (mGluRs) and their role in normal and pathologic brain function has been accumulated during the last decades, the role of group III mGluRs is still scarcely documented. Here, we examined mGluR4 knockout mice for types of behavior and synaptic plasticity that depend on either the hippocampus or the prefrontal cortex (PFC). We found improved spatial short- and long-term memory in the radial arm maze, which was accompanied by enhanced long-term potentiation (LTP) in hippocampal CA1 region. In contrast, LTP in the PFC was unchanged when compared with wild-type controls. Changes in paired-pulse facilitation that became overt in the presence of the GABAA antagonist picrotoxin indicated a function of mGluR4 in maintaining the excitation/inhibition balance, which is of crucial importance for information processing in the brain and the deterioration of these processes in neuropsychological disorders such as autism, epilepsy and schizophrenia.
Collapse
Affiliation(s)
- E Iscru
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
24
|
Vanmarsenille L, Verbeeck J, Belet S, Roebroek AJ, Van de Putte T, Nevelsteen J, Callaerts-Vegh Z, D’Hooge R, Marynen P, Froyen G. Generation and characterization of an Nxf7 knockout mouse to study NXF5 deficiency in a patient with intellectual disability. PLoS One 2013; 8:e64144. [PMID: 23675524 PMCID: PMC3652825 DOI: 10.1371/journal.pone.0064144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/09/2013] [Indexed: 12/11/2022] Open
Abstract
Members of the Nuclear eXport Factor (NXF) family are involved in the export of mRNA from the nucleus to the cytoplasm, or hypothesized to play a role in transport of cytoplasmic mRNA. We previously reported on the loss of NXF5 in a male patient with a syndromic form of intellectual disability. To study the functional role of NXF5 we identified the mouse counterpart. Based on synteny, mouse Nxf2 is the ortholog of human NXF5. However, we provide several lines of evidence that mouse Nxf7 is the actual functional equivalent of NXF5. Both Nxf7 and NXF5 are predominantly expressed in the brain, show cytoplasmic localization, and present as granules in neuronal dendrites suggesting a role in cytoplasmic mRNA metabolism in neurons. Nxf7 was primarily detected in the pyramidal cells of the hippocampus and in layer V of the cortex. Similar to human NXF2, mouse Nxf2 is highly expressed in testis and shows a nuclear localization. Interestingly, these findings point to a different evolutionary path for both NXF genes in human and mouse. We thus generated and validated Nxf7 knockout mice, which were fertile and did not present any gross anatomical or morphological abnormalities. Expression profiling in the hippocampus and the cortex did not reveal significant changes between wild-type and Nxf7 knockout mice. However, impaired spatial memory was observed in these KO mice when evaluated in the Morris water maze test. In conclusion, our findings provide strong evidence that mouse Nxf7 is the functional counterpart of human NXF5, which might play a critical role in mRNA metabolism in the brain.
Collapse
Affiliation(s)
- Lieselot Vanmarsenille
- Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium
- Human Genome Laboratory, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jelle Verbeeck
- Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium
- Human Genome Laboratory, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Stefanie Belet
- Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium
- Human Genome Laboratory, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Anton J. Roebroek
- Experimental Mouse Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Tom Van de Putte
- Laboratory of Molecular Biology (Celgen), Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Joke Nevelsteen
- Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium
- Human Genome Laboratory, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Rudi D’Hooge
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
- Leuven Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Peter Marynen
- Human Genome Laboratory, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Guy Froyen
- Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium
- Human Genome Laboratory, Department of Human Genetics, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
25
|
Hochgräfe K, Sydow A, Mandelkow EM. Regulatable transgenic mouse models of Alzheimer disease: onset, reversibility and spreading of Tau pathology. FEBS J 2013; 280:4371-81. [PMID: 23517246 DOI: 10.1111/febs.12250] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/04/2013] [Accepted: 03/13/2013] [Indexed: 12/15/2022]
Abstract
Accumulation of amyloidogenic proteins such as Tau is a hallmark of neurodegenerative diseases including Alzheimer disease and fronto-temporal dementias. To link Tau pathology to cognitive impairments and defects in synaptic plasticity, we created four inducible Tau transgenic mouse models with expression of pro- and anti-aggregant variants of either full-length human Tau (hTau40/ΔK280 and hTau40/ΔK280/PP) or the truncated Tau repeat domain (Tau(RD)/ΔK280 and Tau(RD)/ΔK280/PP). Here we review the histopathological features caused by pro-aggregant Tau, and correlate them with behavioral deficits and impairments in synaptic transmission. Both pro-aggregant Tau variants cause Alzheimer-like features, including synapse loss, mis-localization of Tau into the somatodendritic compartment, conformational changes and hyperphosphorylation. However, there is a clear difference in the extent of Tau aggregation and neurotoxicity. While pro-aggregant full-length hTau40/ΔK280 leads to a 'pre-tangle' pathology, the repeat domain Tau(RD)/ΔK280 causes massive formation of neurofibrillary tangles and neuronal loss in the hippocampus. However, both Tau variants cause co-aggregation of human and mouse Tau and similar functional impairments. Thus, earlier Tau pathological stages and not necessarily neurofibrillary tangles are critical for the development of cognitive malfunctions. Most importantly, memory and synapses recover after switching off expression of pro-aggregant Tau. The rescue of functional impairments correlates with the rescue of most Tau pathological changes and most strikingly the recovery of synapses. This implies that tauopathies as such are reversible, provided that amyloidogenic Tau is removed. Therefore, our Tau transgenic mice may serve as model systems for in vivo validation of therapeutic strategies and drug candidates with regard to cognition and synaptic function.
Collapse
Affiliation(s)
- Katja Hochgräfe
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Bonn, Germany
| | | | | |
Collapse
|
26
|
Increased gait variability in mice with small cerebellar cortex lesions and normal rotarod performance. Behav Brain Res 2013; 241:32-7. [DOI: 10.1016/j.bbr.2012.11.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/22/2012] [Accepted: 11/24/2012] [Indexed: 02/05/2023]
|
27
|
Callaerts-Vegh Z, Moechars D, Van Acker N, Daneels G, Goris I, Leo S, Naert A, Meert T, Balschun D, D'Hooge R. Haploinsufficiency of VGluT1 but not VGluT2 impairs extinction of spatial preference and response suppression. Behav Brain Res 2013; 245:13-21. [PMID: 23396167 DOI: 10.1016/j.bbr.2013.01.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 11/27/2022]
Abstract
The excitatory neurotransmitter l-glutamate is transported into synaptic vesicles by vesicular glutamate transporters (VGluTs) to transmit glutamatergic signals. Changes in their expression have been linked to various brain disorders including schizophrenia, Parkinson's, and Alzheimer's disease. Deleting either the VGluT1 or VGluT2 gene leads to profound developmental and neurological complications and early death, but mice heterozygous for VGluT1 or VGluT2 are viable and thrive. Acquisition, retention and extinction of conditioned visuospatial and emotional responses were compared between VGluT1(+/-) and VGluT2(+/-) mice, and their wildtype littermates, using different water maze procedures, appetitive scheduled conditioning, and conditioned fear protocols. The distinct brain expression profiles of the VGluT1 and -2 isoforms particularly in telencephalic structures, such as neocortex, hippocampus and striatum, are reflected in very specific behavioral changes. VGluT2(+/-) mice were unimpaired in spatial learning tasks and fear extinction. Conversely, VGluT1(+/-) mice displayed spatial extinction learning deficits and markedly impaired fear extinction. These data indicate that VGluT1, but not VGluT2, plays a role in the neural processes underlying inhibitory learning.
Collapse
|
28
|
Naert A, Gantois I, Laeremans A, Vreysen S, Van den Bergh G, Arckens L, Callaerts-Vegh Z, D'Hooge R. Behavioural alterations relevant to developmental brain disorders in mice with neonatally induced ventral hippocampal lesions. Brain Res Bull 2013; 94:71-81. [PMID: 23357176 DOI: 10.1016/j.brainresbull.2013.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 10/31/2012] [Accepted: 01/17/2013] [Indexed: 12/22/2022]
Abstract
Neonatal lesioning of the ventral hippocampus (vHc) in rats has served as a useful heuristic animal model to elucidate neurodevelopmental mechanisms of schizophrenia (SCZ). In the current study we have established that this procedure can be applied to model SCZ symptomatology in mice. Neonatal mice (postnatal day 6) were anaesthetised by hypothermia and electrolytic lesions of the vHc were induced. We observed locomotor hyperactivity at prepubertal and adult age and hypersensitivity to amphetamine. Furthermore, working memory deficits were observed in Y-maze (spontaneous alternation) and T-maze (exploration of a novel arm) test protocols. Decreased anxious behaviour in the elevated plus maze and increased sociability were also observed. These changes were dependent on lesion size. No differences were observed in prepulse inhibition of the startle reflex, latent inhibition, spatial memory (Morris water maze), problem solving capacities (syringe puzzle) and ability to discriminate between different unfamiliar mice. The presented findings might further help to identify neurobiological mechanisms of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Arne Naert
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, KULeuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Nuytens K, Gantois I, Stijnen P, Iscru E, Laeremans A, Serneels L, Van Eylen L, Liebhaber SA, Devriendt K, Balschun D, Arckens L, Creemers JWM, D'Hooge R. Haploinsufficiency of the autism candidate gene Neurobeachin induces autism-like behaviors and affects cellular and molecular processes of synaptic plasticity in mice. Neurobiol Dis 2012; 51:144-51. [PMID: 23153818 DOI: 10.1016/j.nbd.2012.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/12/2012] [Accepted: 11/02/2012] [Indexed: 10/27/2022] Open
Abstract
Neurobeachin (NBEA), a brain-enriched multidomain scaffolding protein involved in neurotransmitter release and synaptic functioning, has been identified as a candidate gene for autism spectrum disorder (ASD) in four unrelated patients haploinsufficient for NBEA. The aim of this study was to map the behavioral phenotype of Nbea(+/-) mice in order to understand its contribution to the pathogenesis of ASD. ASD-like behavioral variables of Nbea(+/-) mice were related to basal neuronal activity in different brain regions by in situ hybridizations and extracellular field recordings of synaptic plasticity in hippocampal cornu ammonis 1 (CA1) region. Levels of BDNF and phosphorylated cAMP response element-binding protein (CREB) were measured in an attempt to investigate putatively underlying changes in these neuromolecules. Nbea(+/-) mice exhibit several ASD-like features, including changes in self-grooming behavior, social behaviors, conditioned fear responses, and spatial learning and memory, which coincided with enhanced long-term potentiation (LTP) in their CA1 region. The observed alterations in learning and memory and hippocampal LTP are concomitant with decreased expression of the immediate early gene zif268 in dorsomedial striatum and hippocampal CA1 region, increased CREB phosphorylation, and increased hippocampal BDNF expression. These findings indicate that Nbea haploinsufficiency leads to various molecular and cellular changes that affect neuroplasticity and behavioral functions in mice, and could thus underlie the ASD symptomatology in NBEA deficient humans.
Collapse
Affiliation(s)
- Kim Nuytens
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Callaerts-Vegh Z, Leo S, Vermaercke B, Meert T, D'Hooge R. LPA5 receptor plays a role in pain sensitivity, emotional exploration and reversal learning. GENES BRAIN AND BEHAVIOR 2012; 11:1009-19. [PMID: 23039190 DOI: 10.1111/j.1601-183x.2012.00840.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/27/2012] [Accepted: 08/22/2012] [Indexed: 11/26/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid acting on the nervous system through at least 6 different G protein-coupled receptors. In this study, we examined mice lacking the LPA5 receptor using an extensive battery of behavioral tests. LPA5-deficient mice showed decreased pain sensitivity in tail withdrawal, faster recovery in one inflammatory pain procedure (complete Freund's adjuvant-induced inflammation) and attenuated responses under specific neuropathic pain conditions. Notably, deletion of LPA5 also induced nocturnal hyperactivity and reduced anxiety in the mutant mice. Several exploratory tasks revealed signs of reduced anxiety in LPA5 knockout mice including increased visits to the arena center and reduced thigmotaxis in the open field, and more open arm entries in the elevated plus maze. Finally, LPA5 knockout mice also displayed marked reduction in social exploration, although several other tests indicated that these mice were able to respond normally to environmental stimuli. While learning and memory performance was not impaired in LPA5-deficient mice, we found differences, e.g., targeted swim strategy and reversal learning, as well as scheduled appetitive conditioning that might indicate differential motivational behavior. These results imply that LPA5 might be involved in both nociception and mechanisms of pain hypersensitivity, as well as in anxiety-related and motivational behaviors. These observations further support the proposed involvement of LPA signaling in psychopathology.
Collapse
Affiliation(s)
- Z Callaerts-Vegh
- Laboratory of Biological Psychology, Leuven Institute for Neuroscience and Disease (LIND), University of Leuven, Leuven
| | - S Leo
- Laboratory of Biological Psychology, Leuven Institute for Neuroscience and Disease (LIND), University of Leuven, Leuven.,Department of Neuroscience, Johnson & Johnson Pharmaceutical Research and Development, Janssen Pharmaceutica, Beerse, Belgium
| | - B Vermaercke
- Laboratory of Biological Psychology, Leuven Institute for Neuroscience and Disease (LIND), University of Leuven, Leuven
| | - T Meert
- Laboratory of Biological Psychology, Leuven Institute for Neuroscience and Disease (LIND), University of Leuven, Leuven.,Department of Neuroscience, Johnson & Johnson Pharmaceutical Research and Development, Janssen Pharmaceutica, Beerse, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, Leuven Institute for Neuroscience and Disease (LIND), University of Leuven, Leuven
| |
Collapse
|
31
|
Arylsulfatase G inactivation causes loss of heparan sulfate 3-O-sulfatase activity and mucopolysaccharidosis in mice. Proc Natl Acad Sci U S A 2012; 109:10310-5. [PMID: 22689975 DOI: 10.1073/pnas.1202071109] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deficiency of glycosaminoglycan (GAG) degradation causes a subclass of lysosomal storage disorders called mucopolysaccharidoses (MPSs), many of which present with severe neuropathology. Critical steps in the degradation of the GAG heparan sulfate remain enigmatic. Here we show that the lysosomal arylsulfatase G (ARSG) is the long-sought glucosamine-3-O-sulfatase required to complete the degradation of heparan sulfate. Arsg-deficient mice accumulate heparan sulfate in visceral organs and the central nervous system and develop neuronal cell death and behavioral deficits. This accumulated heparan sulfate exhibits unique nonreducing end structures with terminal N-sulfoglucosamine-3-O-sulfate residues, allowing diagnosis of the disorder. Recombinant human ARSG is able to cleave 3-O-sulfate groups from these residues as well as from an authentic 3-O-sulfated N-sulfoglucosamine standard. Our results demonstrate the key role of ARSG in heparan sulfate degradation and strongly suggest that ARSG deficiency represents a unique, as yet unknown form of MPS, which we term MPS IIIE.
Collapse
|
32
|
Van der Jeugd A, Hochgräfe K, Ahmed T, Decker JM, Sydow A, Hofmann A, Wu D, Messing L, Balschun D, D'Hooge R, Mandelkow EM. Cognitive defects are reversible in inducible mice expressing pro-aggregant full-length human Tau. Acta Neuropathol 2012; 123:787-805. [PMID: 22532069 PMCID: PMC4979687 DOI: 10.1007/s00401-012-0987-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/20/2012] [Accepted: 04/12/2012] [Indexed: 01/19/2023]
Abstract
Neurofibrillary lesions of abnormal Tau are hallmarks of Alzheimer disease and frontotemporal dementias. Our regulatable (Tet-OFF) mouse models of tauopathy express variants of human full-length Tau in the forebrain (CaMKIIα promoter) either with mutation ΔK280 (pro-aggregant) or ΔK280/I277P/I308P (anti-aggregant). Co-expression of luciferase enables in vivo quantification of gene expression by bioluminescence imaging. Pro-aggregant mice develop synapse loss and Tau-pathology including missorting, phosphorylation and early pretangle formation, whereas anti-aggregant mice do not. We correlated hippocampal Tau pathology with learning/memory performance and synaptic plasticity. Pro-aggregant mice at 16 months of gene expression exhibited severe cognitive deficits in Morris water maze and in passive-avoidance paradigms, whereas anti-aggregant mice were comparable to controls. Cognitive impairment of pro-aggregant mice was accompanied by loss of hippocampal LTP in CA1 and CA3 areas and by a reduction of synaptic proteins and dendritic spines, although no neuronal loss was observed. Remarkably, memory and LTP recovered when pro-aggregant Tau was switched-OFF for ~4 months, Tau phosphorylation and missorting were reversed, and synapses recovered. Moreover, soluble and insoluble pro-aggregant hTau40 disappeared, while insoluble mouse Tau was still present. This study links early Tau pathology without neurofibrillary tangles and neuronal death to cognitive decline and synaptic dysfunction. It demonstrates that Tau-induced impairments are reversible after switching-OFF pro-aggregant Tau. Therefore, our mouse model may mimic an early phase of AD when the hippocampus does not yet suffer from irreversible cell death but cognitive deficits are already striking. It offers potential to evaluate drugs with regard to learning and memory performance.
Collapse
Affiliation(s)
- Ann Van der Jeugd
- Laboratory of Biological Psychology, Dept. Psychology, K.U.Leuven, Tiensestraat 102, 3000 Leuven, Belgium
| | - Katja Hochgräfe
- DZNE (German Center for Neurodegenerative Diseases) and CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Tariq Ahmed
- Laboratory of Biological Psychology, Dept. Psychology, K.U.Leuven, Tiensestraat 102, 3000 Leuven, Belgium
| | - Jochen M. Decker
- DZNE (German Center for Neurodegenerative Diseases) and CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Astrid Sydow
- Max-Planck-Institute for Neurological Research, Gleuelerstr. 50, 50931 Cologne, Germany
| | - Anne Hofmann
- Max-Planck-Institute for Neurological Research, Gleuelerstr. 50, 50931 Cologne, Germany
| | - Dan Wu
- DZNE (German Center for Neurodegenerative Diseases) and CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
- Max-Planck-Institute for Neurological Research, Gleuelerstr. 50, 50931 Cologne, Germany
| | - Lars Messing
- DZNE (German Center for Neurodegenerative Diseases) and CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Detlef Balschun
- Laboratory of Biological Psychology, Dept. Psychology, K.U.Leuven, Tiensestraat 102, 3000 Leuven, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, Dept. Psychology, K.U.Leuven, Tiensestraat 102, 3000 Leuven, Belgium
| | - Eva-Maria Mandelkow
- DZNE (German Center for Neurodegenerative Diseases) and CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
- Max-Planck-Institute for Neurological Research, Gleuelerstr. 50, 50931 Cologne, Germany
| |
Collapse
|
33
|
Sui L, Chen M. Prenatal exposure to valproic acid enhances synaptic plasticity in the medial prefrontal cortex and fear memories. Brain Res Bull 2012; 87:556-63. [PMID: 22326482 DOI: 10.1016/j.brainresbull.2012.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 10/14/2022]
Abstract
The prefrontal cortex has been extensively implicated in autism to explain deficits in executive and other higher brain functions related to cognition, language, sociability and emotion. Hyper-connectivity and hyper-plasticity at the level of the neuronal microcircuit in the medial prefrontal cortex (mPFC) in the valproic acid (VPA) animal model of autism has been suggested. However, the possible alterations at the system levels are not well understood. The present study investigated the basal synaptic transmission and synaptic plasticity in the mPFC in vivo in the VPA rat model of autism. Furthermore, short-term and long-term retention of fear memories were also examined. The findings displayed that paired-pulse facilitation (PPF) and long-term potentiation (LTP), representing short- and long-term synaptic plasticity, were enhanced by the prenatal exposure to VPA. In addition, the short- and long-term fear memories were enhanced. These results suggest that enhanced synaptic plasticity in the mPFC and fear memories might be one of the mechanisms underlying some symptoms of autism.
Collapse
Affiliation(s)
- Li Sui
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai 200093, China.
| | | |
Collapse
|
34
|
Avenarius DFM, Svendsen JS, Malm D. Proton nuclear magnetic resonance spectroscopic detection of oligomannosidic n glycans in alpha-mannosidosis: a method of monitoring treatment. J Inherit Metab Dis 2011; 34:1023-7. [PMID: 21541723 PMCID: PMC3173639 DOI: 10.1007/s10545-011-9331-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 03/22/2011] [Accepted: 03/31/2011] [Indexed: 11/12/2022]
Abstract
In Alpha-mannosidosis (MIM 248500) the patients accumulate mainly unbranched oligosaccharide chains in the lysosomes in all body tissues, including the brain. With ensuing therapeutic modalities in man (BMT and ERT) non-invasive methods of monitoring the effect of treatment are needed. Paramount is the possible effect of the treatment on the brain, since this organ is regarded as difficult to reach because of the blood-brain barrier. We therefore performed proton nuclear magnetic resonance spectroscopy (MRS) of the brain in two untreated patients, and a 16-year-old patient treated with BMT at the age of 10 to assess whether this non-invasive method could be applied in the monitoring of the accumulation of abnormal chemicals in the brain of patients. We found an abnormal peak that was not present in the treated patient. A similar pattern was also found in MRS of urine from patients, reflecting the concentration of oligosaccharides in serum and tissues. We therefore conclude that MRS can be a useful method to monitor the effect of treatment for Alpha-Mannosidosis.
Collapse
|
35
|
Statistical and theoretical considerations for the platform re-location water maze. J Neurosci Methods 2011; 198:44-52. [DOI: 10.1016/j.jneumeth.2011.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/04/2011] [Accepted: 03/04/2011] [Indexed: 11/21/2022]
|
36
|
Naert A, Callaerts-Vegh Z, D'Hooge R. Nocturnal hyperactivity, increased social novelty preference and delayed extinction of fear responses in post-weaning socially isolated mice. Brain Res Bull 2011; 85:354-62. [PMID: 21501666 DOI: 10.1016/j.brainresbull.2011.03.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 12/28/2022]
Abstract
When rodents are reared in isolation from young age onwards, they manifest a number of behavioural alterations in adulthood. Since some of these alterations resemble symptoms of psychiatric disorders, the post-weaning social isolation (ISO) manipulation is often applied to create rodent models of these disorders. In rats, ISO effects have been thoroughly characterised, but in mice they are less well documented. Therefore, we further evaluated behaviour of adult ISO mice with a test battery that focussed on abnormalities relevant to schizophrenia. We found that ISO mice were hyperactive during the dark phase. Also, ISO mice showed alterations in magnitude, habituation and prepulse-inhibition of the acoustic startle reflex, increased anxiety, increased social preference and changes in extinction of fear responses. We did not observe increased sensitivity to locomotor-activating effects of amphetamine. It is concluded that ISO of mice might serve as a useful model to test further hypotheses regarding pathogenesis occurring at specific developmental timeframes.
Collapse
Affiliation(s)
- Arne Naert
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, KULeuven, Tiensestraat 102, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
37
|
Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic Tau mutant. J Neurosci 2011; 31:2511-25. [PMID: 21325519 DOI: 10.1523/jneurosci.5245-10.2011] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This report describes the behavioral and electrophysiological analysis of regulatable transgenic mice expressing mutant repeat domains of human Tau (Tau(RD)). Mice were generated to express Tau(RD) in two forms, differing in their propensity for β-structure and thus in their tendency for aggregation ("pro-aggregant" or "anti-aggregant") (Mocanu et al., 2008). Only pro-aggregant mice show pronounced changes typical for Tau pathology in Alzheimer's disease (aggregation, missorting, hyperphosphorylation, synaptic and neuronal loss), indicating that the β-propensity and hence the ability to aggregate is a key factor in the disease. We now tested the mice with regard to neuromotor parameters, behavior, learning and memory, and synaptic plasticity and correlated this with histological and biochemical parameters in different stages of switching Tau(RD) on or off. The mice are normal in neuromotor tests. However, pro-aggregant Tau(RD) mice are strongly impaired in memory and show pronounced loss of long-term potentiation (LTP), suggesting that Tau aggregation specifically perturbs these brain functions. Remarkably, when the expression of human pro-aggregant Tau(RD) is switched on for ∼ 10 months and off for ∼ 4 months, memory and LTP recover, whereas aggregates decrease moderately and change their composition from mixed human plus mouse Tau to mouse Tau only. Neuronal loss persists, but synapses are partially rescued. This argues that continuous presence of amyloidogenic pro-aggregant Tau(RD) constitutes the main toxic insult for memory and LTP, rather than the aggregates as such.
Collapse
|
38
|
Rutten K, Wallace TL, Works M, Prickaerts J, Blokland A, Novak TJ, Santarelli L, Misner DL. Enhanced long-term depression and impaired reversal learning in phosphodiesterase 4B-knockout (PDE4B-/-) mice. Neuropharmacology 2011; 61:138-47. [PMID: 21458469 DOI: 10.1016/j.neuropharm.2011.03.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/22/2011] [Accepted: 03/24/2011] [Indexed: 12/19/2022]
Abstract
3'-5'-Cyclic adenosine monophosphate (cAMP) is known to be an important regulator of synaptic plasticity. The effects of cAMP are mediated through downstream effectors such as protein kinase A (PKA), Ca(2+) and cAMP-response element binding protein (CREB). The phosphodiesterase 4 (PDE4) family of enzymes, which is comprised of four genes and at least 25 protein isoforms, mediates the hydrolysis of cAMP, yet little is presently known about the contribution of specific PDE4 isoforms to synaptic plasticity and cognitive behavior. The purpose of the present studies was to determine the contribution of the PDE4B gene in mediating synaptic plasticity and cognitive behavior. Electrophysiological recordings from hippocampal slice preparations of mice deficient in the PDE4B gene (PDE4B(-/-)) showed that knockout animals displayed markedly enhanced basal postsynaptic responses to stimulation and long-term depression as compared to wild-type littermates. Interestingly, no genotypic differences were noted in long-term potentiation experiments following several different induction protocols. On the behavioral level PDE4B(-/-) mice displayed impaired reversal learning in the Morris water maze compared to wild-type littermates, but no differences in acquisition and retention of spatial memory and fear conditioning. Taken together, these results suggest that the PDE4B gene may play a role in synaptic activity and long-term depression and is involved in spatial reversal memory. Our findings support the view that various PDE4 isoforms are non-redundant and have distinct neurological roles.
Collapse
Affiliation(s)
- Kris Rutten
- CNS Discovery Research, Roche Palo Alto, Palo Alto, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Cerebellar alterations and gait defects as therapeutic outcome measures for enzyme replacement therapy in α-mannosidosis. J Neuropathol Exp Neurol 2011; 70:83-94. [PMID: 21157375 DOI: 10.1097/nen.0b013e31820428fa] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
α-Mannosidosis is a rare lysosomal storage disease with accumulation of undegraded mannosyl-linked oligosaccharides in cells throughout the body, most notably in the CNS. This leads to a broad spectrum of neurological manifestations, including progressive intellectual impairment, disturbed motor functions, and cerebellar atrophy. To develop therapeutic outcome measures for enzyme replacement therapy that could be used for human patients, a gene knockout model of α-mannosidosis in mice was analyzed for CNS pathology and motor deficits. In the cerebellar molecular layer, α-mannosidosis mice display clusters of activated Bergman glia, infiltration of phagocytic macrophages, and accumulation of free cholesterol and gangliosides (GM1), notably in regions lacking Purkinje cells. α-Mannosidosis brain lysates also displayed increased expression of Lamp1 and hyperglycosylation of the cholesterol binding protein NPC2. Detailed assessment of motor function revealed age-dependent gait defects in the mice that resemble the disturbed motor function in human patients. Short-term enzyme replacement therapy partially reversed the observed cerebellar pathology with fewer activated macrophages and astrocytes but unchanged levels of hyperglycosylated NPC2, gangliosides, and cholesterol. The present study demonstrates cerebellar alterations in α-mannosidosis mice that relate to the motor deficits and pathological changes seen in human patients and can be used as therapeutic outcome measures.
Collapse
|
40
|
Van der Jeugd A, Ahmed T, Burnouf S, Belarbi K, Hamdame M, Grosjean ME, Humez S, Balschun D, Blum D, Buée L, D'Hooge R. Hippocampal tauopathy in tau transgenic mice coincides with impaired hippocampus-dependent learning and memory, and attenuated late-phase long-term depression of synaptic transmission. Neurobiol Learn Mem 2010; 95:296-304. [PMID: 21167950 DOI: 10.1016/j.nlm.2010.12.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 12/30/2022]
Abstract
We evaluated various forms of hippocampus-dependent learning and memory, and hippocampal synaptic plasticity in THY-Tau22 transgenic mice, a murine tauopathy model that expresses double-mutated 4-repeat human tau, and shows neuropathological tau hyperphosphorylation and aggregation throughout the brain. Focussing on hippocampus, immunohistochemical studies in aged THY-Tau22 mice revealed prominent hyper- and abnormal phosphorylation of tau in CA1 region, and an increase in glial fibrillary acidic protein (GFAP) in hippocampus, but without signs of neuronal loss. These mice displayed spatial, social, and contextual learning and memory defects that could not be reduced to subtle neuromotor disability. The behavioral defects coincided with changes in hippocampal synaptic functioning and plasticity as measured in paired-pulse and novel long-term depression protocols. These results indicate that hippocampal tauopathy without neuronal cell loss can impair neural and behavioral plasticity, and further show that transgenic mice, such as the THY-Tau22 strain, might be useful for preclinical research on tauopathy pathogenesis and possible treatment.
Collapse
Affiliation(s)
- Ann Van der Jeugd
- Laboratory of Biological Psychology, Department of Psychology, Catholic University of Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Xu YH, Barnes S, Sun Y, Grabowski GA. Multi-system disorders of glycosphingolipid and ganglioside metabolism. J Lipid Res 2010; 51:1643-75. [PMID: 20211931 DOI: 10.1194/jlr.r003996] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glycosphingolipids (GSLs) and gangliosides are a group of bioactive glycolipids that include cerebrosides, globosides, and gangliosides. These lipids play major roles in signal transduction, cell adhesion, modulating growth factor/hormone receptor, antigen recognition, and protein trafficking. Specific genetic defects in lysosomal hydrolases disrupt normal GSL and ganglioside metabolism leading to their excess accumulation in cellular compartments, particularly in the lysosome, i.e., lysosomal storage diseases (LSDs). The storage diseases of GSLs and gangliosides affect all organ systems, but the central nervous system (CNS) is primarily involved in many. Current treatments can attenuate the visceral disease, but the management of CNS involvement remains an unmet medical need. Early interventions that alter the CNS disease have shown promise in delaying neurologic involvement in several CNS LSDs. Consequently, effective treatment for such devastating inherited diseases requires an understanding of the early developmental and pathological mechanisms of GSL and ganglioside flux (synthesis and degradation) that underlie the CNS diseases. These are the focus of this review.
Collapse
Affiliation(s)
- You-Hai Xu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
42
|
Balschun D, Moechars D, Callaerts-Vegh Z, Vermaercke B, Van Acker N, Andries L, D'Hooge R. Vesicular glutamate transporter VGLUT1 has a role in hippocampal long-term potentiation and spatial reversal learning. Cereb Cortex 2009; 20:684-93. [PMID: 19574394 DOI: 10.1093/cercor/bhp133] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vesicular glutamate transporters 1 and 2 (VGLUT1, VGLUT2) show largely complementary distribution in the mature rodent brain and tend to segregate to synapses with different physiological properties. In the hippocampus, VGLUT1 is the dominate subtype in adult animals, whereas VGLUT2 is transiently expressed during early postnatal development. We generated and characterized VGLUT1 knockout mice in order to examine the functional contribution of this transporter to hippocampal synaptic plasticity and hippocampus-dependent spatial learning. Because complete deletion of VGLUT1 resulted in postnatal lethality, we used heterozygous animals for analysis. Here, we report that deletion of VGLUT1 resulted in impaired hippocampal long-term potentiation (LTP) in the CA1 region in vitro. In contrast, heterozygous VGLUT2 mice that were investigated for comparison did not show any changes in LTP. The reduced ability of VGLUT1-deficient mice to express LTP was accompanied by a specific deficit in spatial reversal learning in the water maze. Our data suggest a functional role of VGLUT1 in forms of hippocampal synaptic plasticity that are required to adapt and modify acquired spatial maps to external stimuli and changes.
Collapse
Affiliation(s)
- Detlef Balschun
- Department of Psychology, Laboratory of Biological Psychology, Katholieke Universiteit Leuven, Tiensestraat 102, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The age of an experimental animal can be a critical variable, yet age matters are often overlooked within neuroscience. Many studies make use of young animals, without considering possible differences between immature and mature subjects. This is especially problematic when attempting to model traits or diseases that do not emerge until adulthood. In this commentary we discuss the reasons for this apparent bias in age of experimental animals, and illustrate the problem with a systematic review of published articles on long-term potentiation. Additionally, we review the developmental stages of a rat and discuss the difficulty of using the weight of an animal as a predictor of its age. Finally, we provide original data from our laboratory and review published data to emphasize that development is an ongoing process that does not end with puberty. Developmental changes can be quantitative in nature, involving gradual changes, rapid switches, or inverted U-shaped curves. Changes can also be qualitative. Thus, phenomena that appear to be unitary may be governed by different mechanisms at different ages. We conclude that selection of the age of the animals may be critically important in the design and interpretation of neurobiological studies.
Collapse
Affiliation(s)
- James Edgar McCutcheon
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | |
Collapse
|
44
|
Blottner D, Serradj N, Salanova M, Touma C, Palme R, Silva M, Aerts JM, Berckmans D, Vico L, Liu Y, Giuliani A, Rustichelli F, Cancedda R, Jamon M. Morphological, physiological and behavioural evaluation of a 'Mice in Space' housing system. J Comp Physiol B 2009; 179:519-33. [PMID: 19130060 PMCID: PMC2755731 DOI: 10.1007/s00360-008-0330-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 09/10/2008] [Accepted: 12/12/2008] [Indexed: 11/26/2022]
Abstract
Environmental conditions likely affect physiology and behaviour of mice used for life sciences research on Earth or in Space. Here, we analysed the effects of cage confinement on the weightbearing musculoskeletal system, behaviour and stress of wild-type mice (C57BL/6JRj, 30 g b.wt., total n = 24) housed for 25 days in a prototypical ground-based and fully automated life support habitat device called "Mice in Space" (MIS). Compared with control housing (individually ventilated cages) the MIS mice revealed no significant changes in soleus muscle size and myofiber distribution (type I vs. II) and quality of bone (3-D microarchitecture and mineralisation of calvaria, spine and femur) determined by confocal and micro-computed tomography. Corticosterone metabolism measured non-invasively (faeces) monitored elevated adrenocortical activity at only start of the MIS cage confinement (day 1). Behavioural tests (i.e., grip strength, rotarod, L/D box, elevated plus-maze, open field, aggressiveness) performed subsequently revealed only minor changes in motor performance (MIS vs. controls). The MIS habitat will not, on its own, produce major effects that could confound interpretation of data induced by microgravity exposure during spaceflight. Our results may be even more helpful in developing multidisciplinary protocols with adequate scenarios addressing molecular to systems levels using mice of various genetic phenotypes in many laboratories.
Collapse
Affiliation(s)
- Dieter Blottner
- Vegetative Anatomy, Center of Space Medicine Berlin, Neuromuscular Group, Charité Universitätsmedizin Berlin, Freie und Humboldt Universität Berlin, 14195 Berlin, Germany
| | - Najet Serradj
- INSERM U910-Génomique Fonctionelle Comportements et Pathologies Faculté de Médicine de la Timone, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France
| | - Michele Salanova
- Vegetative Anatomy, Center of Space Medicine Berlin, Neuromuscular Group, Charité Universitätsmedizin Berlin, Freie und Humboldt Universität Berlin, 14195 Berlin, Germany
| | - Chadi Touma
- Max Planck Institute of Psychiatry, Neuroendocrinology, 80804 Munich, Germany
| | - Rupert Palme
- Biochemistry, Department of Natural Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Mitchell Silva
- Faculty of Applied Biosciences and Engineering, Measure, Model and Manage Bio-Responses (M3-BIORES), Kasteelpark Arenberg 30, 3001 Heverlee, Belgium
| | - Jean Marie Aerts
- Faculty of Applied Biosciences and Engineering, Measure, Model and Manage Bio-Responses (M3-BIORES), Kasteelpark Arenberg 30, 3001 Heverlee, Belgium
| | - Daniel Berckmans
- Faculty of Applied Biosciences and Engineering, Measure, Model and Manage Bio-Responses (M3-BIORES), Kasteelpark Arenberg 30, 3001 Heverlee, Belgium
| | - Laurence Vico
- INSERM U890-Laboratoire de Biologie du Tissu Osseux, IFR143, FRESIS, Saint-Etienne, France
| | - Yi Liu
- Department of Oncology, Biology and Genetics, University of Genova, 16132 Genova, Italy
| | - Alessandra Giuliani
- Department of Sciences Applied to Complex Systems, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Franco Rustichelli
- Department of Sciences Applied to Complex Systems, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Ranieri Cancedda
- Department of Oncology, Biology and Genetics, University of Genova, 16132 Genova, Italy
| | - Marc Jamon
- INSERM U910-Génomique Fonctionelle Comportements et Pathologies Faculté de Médicine de la Timone, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France
| |
Collapse
|
45
|
Rutten K, Misner DL, Works M, Blokland A, Novak TJ, Santarelli L, Wallace TL. Enhanced long-term potentiation and impaired learning in phosphodiesterase 4D-knockout (PDE4D) mice. Eur J Neurosci 2008; 28:625-32. [PMID: 18702734 DOI: 10.1111/j.1460-9568.2008.06349.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elevation of intracellular cyclic adenosine monophosphate (cAMP) concentrations and subsequent regulation of downstream target gene expression through phosphorylation of cAMP-responsive element binding protein (CREB) is hypothesized to underlie the mechanism(s) of long-term memory (LTM) formation. The phosphodiesterase 4 (PDE4) enzyme family is believed to play a key role in LTM by regulating cAMP levels. Thus far, four PDE4 isoforms have been identified (PDE4A, B, C and D); however, the requisite involvement of each of these isoforms in mediating LTM has yet to be elucidated. In the present study, genetic knockout mice were used to investigate the involvement of the PDE4D isoform in both in vitro and in vivo models of learning and memory. Hippocampal synaptic transmission measured electrophysiologically in CA1 slice preparations was similar between wild-type and PDE4D (-/-) mice yet, relative to wild-type controls, knockout mice displayed enhanced early long-term potentiation (LTP) following multiple induction protocols. Interestingly, the PDE4D (-/-) animals exhibited significant behavioral deficits in associative learning using a conditioned fear paradigm as compared with control littermates. The impairment in fear conditioning observed in the PDE4D (-/-) mice could not be attributed to differences in acquisition of the task, alterations in locomotor activity or effects on shock sensitivity. Overall, the in vitro and in vivo alterations in synaptic plasticity observed in the PDE4D (-/-) mice may be explained by adaptive responses occurring throughout development, and suggest that the PDE4D isoform may be an important mediator of LTM formation.
Collapse
Affiliation(s)
- Kris Rutten
- Neuroscience Department, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Blanz J, Stroobants S, Lüllmann-Rauch R, Morelle W, Lüdemann M, D'Hooge R, Reuterwall H, Michalski JC, Fogh J, Andersson C, Saftig P. Reversal of peripheral and central neural storage and ataxia after recombinant enzyme replacement therapy in α-mannosidosis mice. Hum Mol Genet 2008; 17:3437-45. [DOI: 10.1093/hmg/ddn237] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Lau C, Ng L, Thompson C, Pathak S, Kuan L, Jones A, Hawrylycz M. Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain. BMC Bioinformatics 2008; 9:153. [PMID: 18366675 PMCID: PMC2375125 DOI: 10.1186/1471-2105-9-153] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 03/18/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spatially mapped large scale gene expression databases enable quantitative comparison of data measurements across genes, anatomy, and phenotype. In most ongoing efforts to study gene expression in the mammalian brain, significant resources are applied to the mapping and visualization of data. This paper describes the implementation and utility of Brain Explorer, a 3D visualization tool for studying in situ hybridization-based (ISH) expression patterns in the Allen Brain Atlas, a genome-wide survey of 21,000 expression patterns in the C57BL\6J adult mouse brain. RESULTS Brain Explorer enables users to visualize gene expression data from the C57Bl/6J mouse brain in 3D at a resolution of 100 microm3, allowing co-display of several experiments as well as 179 reference neuro-anatomical structures. Brain Explorer also allows viewing of the original ISH images referenced from any point in a 3D data set. Anatomic and spatial homology searches can be performed from the application to find data sets with expression in specific structures and with similar expression patterns. This latter feature allows for anatomy independent queries and genome wide expression correlation studies. CONCLUSION These tools offer convenient access to detailed expression information in the adult mouse brain and the ability to perform data mining and visualization of gene expression and neuroanatomy in an integrated manner.
Collapse
|
48
|
Almonte AG, Hamill CE, Chhatwal JP, Wingo TS, Barber JA, Lyuboslavsky PN, David Sweatt J, Ressler KJ, White DA, Traynelis SF. Learning and memory deficits in mice lacking protease activated receptor-1. Neurobiol Learn Mem 2007; 88:295-304. [PMID: 17544303 PMCID: PMC2040495 DOI: 10.1016/j.nlm.2007.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 03/30/2007] [Accepted: 04/02/2007] [Indexed: 11/18/2022]
Abstract
The roles of serine proteases and protease activated receptors have been extensively studied in coagulation, wound healing, inflammation, and neurodegeneration. More recently, serine proteases have been suggested to influence synaptic plasticity. In this context, we examined the role of protease activated receptor 1 (PAR1), which is activated following proteolytic cleavage by thrombin and plasmin, in emotionally motivated learning. We were particularly interested in PAR1 because its activation enhances the function of NMDA receptors, which are required for some forms of synaptic plasticity. We examined several baseline behavioral measures, including locomotor activity, expression of anxiety-like behavior, motor task acquisition, nociceptive responses, and startle responses in C57Bl/6 mice in which the PAR1 receptor has been genetically deleted. In addition, we evaluated learning and memory in these mice using two memory tasks, passive avoidance and cued fear-conditioning. Whereas locomotion, pain response, startle, and measures of baseline anxiety were largely unaffected by PAR1 removal, PAR1-/- animals showed significant deficits in a passive avoidance task and in cued fear conditioning. These data suggest that PAR1 may play an important role in emotionally motivated learning.
Collapse
Affiliation(s)
- Antoine G Almonte
- Department of Pharmacology, Emory University, School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ahtiainen L, Kolikova J, Mutka AL, Luiro K, Gentile M, Ikonen E, Khiroug L, Jalanko A, Kopra O. Palmitoyl protein thioesterase 1 (Ppt1)-deficient mouse neurons show alterations in cholesterol metabolism and calcium homeostasis prior to synaptic dysfunction. Neurobiol Dis 2007; 28:52-64. [PMID: 17656100 DOI: 10.1016/j.nbd.2007.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/30/2007] [Accepted: 06/08/2007] [Indexed: 11/22/2022] Open
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL) is a severe neurodegenerative disorder of children, characterized by selective death of neocortical neurons. To understand early disease mechanisms in INCL, we have studied Ppt1(Deltaex4) knock-out mouse neurons in culture and acute brain slices. Global transcript profiling showed deregulation of key neuronal functions in knock-out mice including cholesterol metabolism, neuronal maturation, and calcium homeostasis. Cholesterol metabolism showed major changes; sterol biosynthesis was enhanced and steady-state amounts of sterols were altered at the cellular level. Changes were also present in early maturation of Ppt1(Deltaex4) neurons indicated by increased proliferative capacity of neuronal stem cells. Knock-out neurons presented unaltered electrophysiological properties suggesting uncompromised synaptic function in young animals. However, knock-out neurons exhibited more efficient recovery from glutamate-induced calcium transients, possibly indicating neuroprotective activation. This study established that the neuronal deregulation in INCL is linked to neuronal maturation, lipid metabolism and calcium homeostasis.
Collapse
Affiliation(s)
- Laura Ahtiainen
- National Public Health Institute, Department of Molecular Medicine, Biomedicum Helsinki, PO Box 104, 00251 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Auclair D, Hopwood JJ. Morphopathological features in tissues of α-mannosidosis guinea pigs at different gestational ages. Neuropathol Appl Neurobiol 2007; 33:572-85. [PMID: 17854439 DOI: 10.1111/j.1365-2990.2007.00849.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alpha-mannosidosis is an inherited metabolic disorder characterized by a reduction in alpha-D-mannosidase and intralysosomal accumulation of undegraded mannose-containing oligosaccharides. The alpha-mannosidosis guinea pig exhibits pathological similarities to its human counterpart, which make it a valuable animal model. To trace the progression of alpha-mannosidosis during foetal development, brain and visceral organs from affected and unaffected guinea pigs at 30, 36, 38, 51 and 65 days of gestation (dg) were examined by light and electron microscopy (term: approximately 68 dg). In the affected brain, distended lysosomes (vacuoles) were scarce up to 38 dg and were seen in few differentiating neuronal cells but mostly in macrophages, pericytes and endothelial cells. At 51 and 65 dg, several vacuoles were observed in some neurones, in many Purkinje cells, pericytes, endothelial and microglial cells, and in few cerebellar internal granule cells. Myelination had started by 51 dg. Non-myelinated axonal spheroids were detected in the brainstem at 65 dg. In the kidney cortex and liver, an increase in vacuolation was noticed between 36 and 65 dg. Some vacuolated cells were also noticed in the lungs and spleen at 51 and 65 dg. Altogether, these histological observations suggest that alpha-mannosidosis is unlikely to affect ontogenesis before the second half of gestation in guinea pigs; however, the morphopathological features recorded during the last quarter of gestation (which may roughly correspond to the period covering near term to 1-2 years of age in human) were clearly noticeable and may have had some impact.
Collapse
Affiliation(s)
- D Auclair
- Lysosomal Diseases Research Unit, Department of Genetic Medicine, Children, Youth and Women's Health Service, North Adelaide, South Australia, Australia.
| | | |
Collapse
|