1
|
Navratilova E, Kopruszinski CM, Oyarzo J, Barber KR, Anderson T, Dodick DW, Schwedt TJ, Porreca F. Sex differences in effectiveness of CGRP receptor antagonism for treatment of acute and persistent headache-like pain in a mouse model of mild traumatic brain injury. Cephalalgia 2025; 45:3331024251321087. [PMID: 39980371 DOI: 10.1177/03331024251321087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
BACKGROUND Traumatic brain injury (TBI) commonly elicits acute (APTH) and/or persistent (PPTH) post-traumatic headache. Calcitonin gene related peptide (CGRP) has been implicated as a contributor to PTH pathophysiology. We explored the possibility of sexual dimorphism in the effects of CGRP receptor (CGRP-R) blockade in a preclinical model of PTH induced by a mild TBI (mTBI) in male or female mice. METHODS Mice were lightly anesthetized and placed on a tissue paper stage prior to receiving a sham procedure or mTBI resulting from a closed-head weight drop injury. Behavioral responses to periorbital and hindpaw tactile (von Frey filaments) or thermal (hot plate) stimuli over the first 14 days post-mTBI were evaluated as measures of APTH. The PPTH phase was studied following the resolution of mTBI-induced APTH at days 14 and 28. PPTH was precipitated by exposure to bright lights (i.e., bright light stress, BLS). Olcegepant was delivered subcutaneously either repeatedly beginning 2 h after mTBI to produce a sustained block of CGRP-R signaling across the APTH phase, or as a single administration on days 14 or 28 post-mTBI to evaluate possible effects during the PPTH phase. RESULTS mTBI, but not sham-procedure, produced periorbital and hindpaw tactile allodynia, as well as thermal hypersensitivity in mice of both sexes. APTH-related hypersensitivity was transient and resolved by day 14 post-injury. No sex differences were observed in the magnitude or duration of APTH-related pain behaviors. Sustained CGRP-R blockade was, however, significantly more effective in female than male mice in inhibiting pain behaviors in the APTH phase and in preventing the emergence of BLS-induced PPTH. CGRP-R blockade following the resolution of mTBI-induced APTH pain behaviors, on either day 14 or 28, minimally altered BLS-induced PPTH in either sex. CONCLUSIONS Sustained CGRP-R blockade starting soon after mTBI significantly inhibited APTH and prevented the expression of PPTH with greater analgesic effects in females compared to males. Delayed CGRP-R blockade beginning after resolution of APTH phase was minimally effective in preventing expression of PPTH in either sex. These data are consistent with previous observations that CGRP induces pain behaviors preferentially in females. Early and continuous CGRP blockade following mTBI may represent a viable treatment option for PTH treatment and the prevention of PTH persistence, especially in females.
Collapse
Affiliation(s)
- Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Caroline M Kopruszinski
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Janice Oyarzo
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
| | - Kara R Barber
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Trent Anderson
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - David W Dodick
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
- Atria Academy of Science and Medicine, New York, NY, USA
| | - Todd J Schwedt
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
2
|
Goadsby PJ, Jürgens TP, Brand-Schieber E, Nagy K, Liu Y, Boinpally R, Stodtmann S, Trugman JM. Efficacy of ubrogepant and atogepant in males and females with migraine: A secondary analysis of randomized clinical trials. Cephalalgia 2025; 45:3331024251320610. [PMID: 39982105 DOI: 10.1177/03331024251320610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
BACKGROUND Published evidence supporting efficacy of calcitonin gene-related peptide receptor antagonists as acute migraine treatments in males is limited. METHODS To fill the gap, we present male and female data from four ubrogepant and four atogepant randomized, double-blind, placebo-controlled trials for acute and preventive treatment of migraine, respectively. Acute outcomes included 2-h pain freedom and absence of most bothersome symptom (co-primary; headache-phase randomized, double-blind, placebo-controlled trials); absence of moderate-to-severe headache within 24 h (primary; prodrome randomized, double-blind, placebo-controlled trial). Preventive outcome included change from baseline in mean monthly migraine days across 12 weeks (primary). RESULTS Pooled data from phase 3 headache-phase ubrogepant randomized, double-blind, placebo-controlled trials showed similar rates of pain freedom (19.4% vs 21.1%) and absence of most bothersome symptom (35.1% vs 39.0%) 2 h post-dose between males and females, respectively. Time course of pain freedom and absence of most bothersome symptom over 48 h was similar between male and female subgroups. Comparable reductions in mean monthly migraine days across 12-week treatment periods were found between males and females treated with atogepant 60 mg once-daily in pooled episodic migraine and chronic migraine randomized, double-blind, placebo-controlled trials. CONCLUSION/INTERPRETATION In ubrogepant and atogepant randomized, double-blind, placebo-controlled trials, although analysis power for males is limited due to small sample sizes, evidence supports similar treatment effects in males and females with migraine. TRIAL REGISTRATION ClinicalTrials.gov: NCT02828020; NCT02867709; NCT04492020; NCT01613248; NCT02848326; NCT03777059; NCT04740827; NCT03855137.
Collapse
Affiliation(s)
- Peter J Goadsby
- NIHR-King's Clinical Research Facility, King's College, London, UK
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Tim P Jürgens
- Headache Centre North-East, Department of Neurology, University Medical Center Rostock, Rostock, Germany
- Department of Neurology, KMG Hospital Güstrow, Güstrow, Germany
| | | | | | | | | | | | | |
Collapse
|
3
|
Lorsung R, Cramer N, Alipio JB, Ji Y, Han S, Masri R, Keller A. Sex Differences in Central Amygdala Glutamate Responses to Calcitonin Gene-Related Peptide. J Neurosci 2025; 45:e1898242024. [PMID: 39663115 PMCID: PMC11714345 DOI: 10.1523/jneurosci.1898-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024] Open
Abstract
Women are disproportionately affected by chronic pain compared with men. While societal and environmental factors contribute to this disparity, sex-based biological differences in the processing of pain are also believed to play significant roles. The central lateral nucleus of the amygdala (CeLC) is a key region for the emotional-affective dimension of pain, and a prime target for exploring sex differences in pain processing since a recent study demonstrated sex differences in CGRP actions in this region. Inputs to CeLC from the parabrachial nucleus (PB) play a causal role in aversive processing and release both glutamate and calcitonin gene-related peptide (CGRP). CGRP is thought to play a crucial role in chronic pain by potentiating glutamatergic signaling in CeLC. However, it is not known if this CGRP-mediated synaptic plasticity occurs similarly in males and females. Here, we tested the hypothesis that female CeLC neurons experience greater potentiation of glutamatergic signaling than males following endogenous CGRP exposure. Using trains of optical stimuli to evoke transient CGRP release from PB terminals in CeLC, we find that subsequent glutamatergic responses are preferentially potentiated in CeLC neurons from female mice. This potentiation was CGRP dependent and involved a postsynaptic mechanism. This sex difference in CGRP sensitivity may explain sex differences in affective pain processing.
Collapse
Affiliation(s)
- Rebecca Lorsung
- Department of Neurobiology and UM-MIND, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Nathan Cramer
- Department of Neurobiology and UM-MIND, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jason Bondoc Alipio
- Department of Neurobiology and UM-MIND, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Yadong Ji
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201
- Faculty of Dentistry, University of Jordan, Amman 11942, Jordan
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Radi Masri
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201
- Faculty of Dentistry, University of Jordan, Amman 11942, Jordan
| | - Asaf Keller
- Department of Neurobiology and UM-MIND, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
4
|
Fila M, Przyslo L, Derwich M, Pawlowska E, Blasiak J. Sexual Dimorphism in Migraine. Focus on Mitochondria. Curr Pain Headache Rep 2025; 29:11. [PMID: 39760955 DOI: 10.1007/s11916-024-01317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE OF REVIEW Migraine prevalence in females is up to 3 times higher than in males and females show higher frequency, longer duration, and increased severity of headache attacks, but the reason for that difference is not known. This narrative review presents the main aspects of sex dimorphism in migraine prevalence and discusses the role of sex-related differences in mitochondrial homeostasis in that dimorphism. The gender dimension is also shortly addressed. RECENT FINDINGS The imbalance between energy production and demand in the brain susceptible to migraine is an important element of migraine pathogenesis. Mitochondria are the main energy source in the brain and mitochondrial impairment is reported in both migraine patients and animal models of human migraine. However, it is not known whether the observed changes are consequences of primary disturbance of mitochondrial homeostasis or are secondary to the migraine-affected hyperexcitable brain. Sex hormones regulate mitochondrial homeostasis, and several reports suggest that the female hormones may act protectively against mitochondrial impairment, contributing to more effective energy production in females, which may be utilized in the mechanisms responsible for migraine progression. Migraine is characterized by several comorbidities that are characterized by sex dimorphism in their prevalence and impairments in mitochondrial functions. Mitochondria may play a major role in sexual dimorphism in migraine through the involvement in energy production, the dependence on sex hormones, and the involvement in sex-dependent comorbidities. Studies on the role of mitochondria in sex dimorphism in migraine may contribute to precise personal therapeutic strategies.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Lukasz Przyslo
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Marcin Derwich
- Department of Developmental Dentistry, Medical University of Lodz, 90-647, Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Developmental Dentistry, Medical University of Lodz, 90-647, Lodz, Poland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-420, Plock, Poland.
| |
Collapse
|
5
|
Fitzek MP, Boucherie DM, de Vries T, Handtmann C, Fathi H, Raffaelli B, MaassenVanDenBrink A. Migraine in men. J Headache Pain 2025; 26:3. [PMID: 39754046 PMCID: PMC11697684 DOI: 10.1186/s10194-024-01936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Migraine is a common primary headache disorder, less frequently affecting men than women, and often regarded as predominantly a "women's disease." Despite this, migraine in men presents with unique characteristics in terms of symptoms, treatment responses, comorbidities, and pain perception. Historically, research has focused more on migraine in women, overlooking critical male-specific aspects. RESULTS This review delves into the epidemiology, clinical presentation, and particular challenges of diagnosing and managing migraine in men. It addresses sex-specific triggers, hormonal influences, and comorbid conditions affecting migraine prevalence and severity in men. Additionally, the review evaluates current therapeutic strategies, underscoring the necessity for individualized approaches. Men with migraine often exhibit atypical symptoms compared to the ICHD-3 criteria and are less likely to report common associated symptoms. They also tend to have fewer psychological comorbidities, respond more favorably to pharmacological treatments, yet are less likely to seek medical support. The reasons for these sex disparities are complex, involving biological, psychosocial, and cultural factors, such as brain structural differences, differences in functional responses to painful stimuli, hormonal effects, and behavioral influences like adherence to masculine norms and stigma. CONCLUSION Men are underrepresented in clinical migraine research. In contrast, preclinical studies often focus solely in male animals as a result of various misconceptions. This disparity necessitates greater focus on sex-specific aspects of migraine to enhance diagnosis, treatment, and research. Addressing stigma, increasing healthcare access, and ensuring balanced sex and gender representation in future studies is crucial for a comprehensive understanding and effective management of migraine for all patients.
Collapse
Affiliation(s)
- Mira P Fitzek
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Junior Clinician Scientist Program, Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Deirdre M Boucherie
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, PO Box 2040, Rotterdam, CA, 3000, The Netherlands
| | - Tessa de Vries
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, PO Box 2040, Rotterdam, CA, 3000, The Netherlands
| | - Cleo Handtmann
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Haniyeh Fathi
- Student Research Committee, Alborz University of Medical Science, Karaj, Iran
| | - Bianca Raffaelli
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Antoinette MaassenVanDenBrink
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, PO Box 2040, Rotterdam, CA, 3000, The Netherlands.
| |
Collapse
|
6
|
Lorsung R, Cramer N, Alipio JB, Ji Y, Han S, Masri R, Keller A. Sex differences in central amygdala glutamate responses to calcitonin gene-related peptide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.09.622728. [PMID: 39574632 PMCID: PMC11581022 DOI: 10.1101/2024.11.09.622728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Women are disproportionately affected by chronic pain compared to men. While societal and environmental factors contribute to this disparity, sex-based biological differences in the processing of pain are also believed to play significant roles. The central lateral nucleus of the amygdala (CeLC) is a key region for the emotional-affective dimension of pain, and a prime target for exploring sex differences in pain processing since a recent study demonstrated sex differences in CGRP actions in this region. Inputs to CeLC from the parabrachial nucleus (PB) play a causal role in aversive processing, and release both glutamate and calcitonin gene-related peptide (CGRP). CGRP is thought to play a crucial role in chronic pain by potentiating glutamatergic signaling in CeLC. However, it is not known if this CGRP-mediated synaptic plasticity occurs similarly in males and females. Here, we tested the hypothesis that female CeLC neurons experience greater potentiation of glutamatergic signaling than males following endogenous CGRP exposure. Using trains of optical stimuli to evoke transient CGRP release from PB terminals in CeLC, we find that subsequent glutamatergic responses are preferentially potentiated in CeLC neurons from female mice. This potentiation was CGRP-dependent and involved a postsynaptic mechanism. This sex difference in CGRP sensitivity may explain sex differences in affective pain processing.
Collapse
Affiliation(s)
- Rebecca Lorsung
- Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
| | - Nathan Cramer
- Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jason Bondoc Alipio
- Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
| | - Yadong Ji
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, USA, and Faculty of Dentistry, University of Jordan, Amman, Jordan
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Radi Masri
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, USA, and Faculty of Dentistry, University of Jordan, Amman, Jordan
| | - Asaf Keller
- Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Odum AL, Callister KT, Willis-Moore ME, Da Silva DS, Legaspi DN, Scribner LN, Hannah JN. Zoographics in the Journal of the Experimental Analysis of Behavior: Increasing inclusion of female animals. J Exp Anal Behav 2024; 122:392-407. [PMID: 39473115 DOI: 10.1002/jeab.4220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/25/2024] [Indexed: 11/19/2024]
Abstract
We examined the zoographics, or the characteristics of nonhuman animal subjects, reported for the entirety of the Journal of the Experimental Analysis of Behavior (JEAB) through the most recent complete year (1958-2023). Animal sex in particular was evaluated to determine whether the lack of inclusion of female subjects in other disciplines extends to JEAB. Through systematic coding of all nonhuman empirical articles, we found consistent underreporting of most zoographics and a disproportionate use of male subjects relative to female subjects. Additionally, animal sex was commonly unreported and the inclusion of both male and female subjects was sparse. Recent years show some improvement, but greater inclusion is required. Lack of female subjects in research as well as underreporting of zoographics can generate unrepresentative results and hamper replication, generalization, and translation. We provide resources to guide future research and reporting suggestions such as equal inclusion and disaggregation of data by sex. We also clarify misunderstandings about the use of both sexes in research such as beliefs that it necessarily increases the cost of research.
Collapse
|
8
|
Christensen SL, Levy D. Meningeal brain borders and migraine headache genesis. Trends Neurosci 2024; 47:918-932. [PMID: 39304416 PMCID: PMC11563857 DOI: 10.1016/j.tins.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Migraine is a highly prevalent and disabling pain disorder that affects >1 billion people worldwide. One central hypothesis points to the cranial meninges as a key site underlying migraine headache genesis through complex interplay between meningeal sensory nerves, blood vessels, and adjacent immune cells. How these interactions might generate migraine headaches remains incompletely understood and a subject of much debate. In this review we discuss clinical and preclinical evidence supporting the concept that meningeal sterile inflammation, involving neurovascular and neuroimmune interactions, underlies migraine headache genesis. We examine downstream signaling pathways implicated in the development of migraine pain in response to exogenous events such as infusing migraine-triggering chemical substances. We further discuss cortex-to-meninges signaling pathways that could underlie migraine pain in response to endogenous events, such as cortical spreading depolarization (CSD), and explore future directions for the field.
Collapse
Affiliation(s)
- Sarah Louise Christensen
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Neurology, Danish Headache Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark; Translational Research Centre, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Ailani J, Lalla A, Halker Singh RB, Holle-Lee D, Nagy K, Kelton K, Piron C, Gandhi P, Pozo-Rosich P. Benefit-risk assessment based on number needed to treat and number needed to harm: Atogepant vs. calcitonin gene-related peptide monoclonal antibodies. Cephalalgia 2024; 44:3331024241299377. [PMID: 39558612 DOI: 10.1177/03331024241299377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND To evaluate the benefit-risk assessment of atogepant and calcitonin gene-related peptide (CGRP) monoclonal antibodies (mAbs) vs. placebo based on the number needed to treat (NNT) and the number needed to harm (NNH) in a blended episodic migraine and chronic migraine (EM + CM) population. METHODS The NNT was calculated based on achievement of a ≥ 50% reduction in mean monthly migraine days (MMDs) from baseline across 12 weeks. The NNH was calculated using the proportion of participants reporting a discontinuation due to adverse events (AEs). The primary analysis included data from studies of atogepant, erenumab, galcanezumab, eptinezumab and fremanezumab. RESULTS In the primary analysis, the calculated NNT for atogepant 60 mg vs. placebo was 4.2 (95% credible interval (CrI) = 3.1-6.7), which was the lowest relative to the CGRP mAbs in the blended EM + CM population. Participants who received atogepant 60 mg or fremanezumab showed the most favorable NNH values (-1010 (95% Crl = 44 to ∞ to number needed to benefit 80) for atogepant) resulting from lower rates of discontinuation due to AEs compared with those receiving placebo. CONCLUSIONS Atogepant demonstrated a favorable benefit-risk profile, with NNT and NNH values comparable (not statistically significant) with those of CGRP mAbs across all analyses.
Collapse
Affiliation(s)
- Jessica Ailani
- MedStar Georgetown University Hospital, Washington, DC, USA
| | | | | | - Dagny Holle-Lee
- Department of Neurology, West German Headache and Vertigo Center Essen, University of Essen, Essen, Germany
| | | | - Kari Kelton
- Medical Decision Modeling Inc., Indianapolis, IN, USA
| | | | | | - Patricia Pozo-Rosich
- Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache & Neurological Pain Research Group, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Barnet M, Descheemaeker A, Favier L, Moisset X, Schopp J, Dallel R, Artola A, Monconduit L, Antri M. Estrous cycle regulates cephalic mechanical sensitivity and sensitization of the trigemino-cervical complex in a female rat model of chronic migraine. Pain 2024:00006396-990000000-00761. [PMID: 39480245 DOI: 10.1097/j.pain.0000000000003459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024]
Abstract
ABSTRACT The higher incidence of migraines in women compared with men has led to the inclusion of female animals in pain research models. However, the critical role of the hormonal cycle is frequently overlooked, despite its clear correlation with migraine occurrences. In this study, we show in a rat model of migraine induced by repeated dural infusions of an inflammatory soup (IS) that a second IS (IS2) injection performed in proestrus/estrus (PE, high estrogen) female rats evokes higher cephalic mechanical hypersensitivities than when performed in metestrus/diestrus (MD, low estrogen) or ovariectomized (OV) rats. This hypersensitivity induced by IS2 correlates with increased c-Fos expression in outer lamina II (IIo) neurons located in the periorbital projection area of the trigemino-cervical complex (TCC), in PE only. Four IS (IS4) repetition induced an enlargement of c-Fos expression in adjacent territories areas in PE, but not MD or OV animals. Unexpectedly, c-Fos expression in locus coeruleus neurons does not potentiate after IS2 or IS4 injections. To examine the impacts of the hormonal cycle on the physiology of lamina IIo TCC neurons, we performed whole-cell patch-clamp recordings. Second inflammatory soup depolarizes neurons in PE and MD but not in OV rats and enhances excitatory synaptic inputs in PE animals to a greater extent compared with MD and OV rats. These findings show that central TCC sensitization triggered by meningeal nociceptor activation and the resulting cephalic hypersensitivity are modulated by the estrous cycle. This highlights the crucial need to account for not just sex, but also the female estrous cycle in pain research.
Collapse
Affiliation(s)
- Maxime Barnet
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Alexander SN, Green AR, Debner EK, Ramos Freitas LE, Abdelhadi HMK, Szabo-Pardi TA, Burton MD. The influence of sex on neuroimmune communication, pain, and physiology. Biol Sex Differ 2024; 15:82. [PMID: 39439003 PMCID: PMC11494817 DOI: 10.1186/s13293-024-00660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Audrey R Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Lindsey E Ramos Freitas
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Hanna M K Abdelhadi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA.
| |
Collapse
|
12
|
David ET, Yousuf MS, Mei HR, Jain A, Krishnagiri S, Elahi H, Venkatesan R, Srikanth KD, Dussor G, Dalva MB, Price TJ. ephrin-B2 promotes nociceptive plasticity and hyperalgesic priming through EphB2-MNK-eIF4E signaling in both mice and humans. Pharmacol Res 2024; 206:107284. [PMID: 38925462 DOI: 10.1016/j.phrs.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Ephrin-B-EphB signaling can promote pain through ligand-receptor interactions between peripheral cells, like immune cells expressing ephrin-Bs, and EphB receptors expressed by DRG neurons. Previous studies have shown increased ephrin-B2 expression in peripheral tissues like synovium of rheumatoid and osteoarthritis patients, indicating the clinical significance of this signaling. The primary goal of this study was to understand how ephrin-B2 acts on mouse and human DRG neurons, which express EphB receptors, to promote pain and nociceptor plasticity. We hypothesized that ephrin-B2 would promote nociceptor plasticity and hyperalgesic priming through MNK-eIF4E signaling, a critical mechanism for nociceptive plasticity induced by growth factors, cytokines and nerve injury. Both male and female mice developed dose-dependent mechanical hypersensitivity in response to ephrin-B2, and both sexes showed hyperalgesic priming when challenged with PGE2 injection either to the paw or the cranial dura. Acute nociceptive behaviors and hyperalgesic priming were blocked in mice lacking MNK1 (Mknk1 knockout mice) and by eFT508, a specific MNK inhibitor. Sensory neuron-specific knockout of EphB2 using Pirt-Cre demonstrated that ephrin-B2 actions require this receptor. In Ca2+-imaging experiments on cultured DRG neurons, ephrin-B2 treatment enhanced Ca2+ transients in response to PGE2 and these effects were absent in DRG neurons from MNK1-/- and EphB2-PirtCre mice. In experiments on human DRG neurons, ephrin-B2 increased eIF4E phosphorylation and enhanced Ca2+ responses to PGE2 treatment, both blocked by eFT508. We conclude that ephrin-B2 acts directly on mouse and human sensory neurons to induce nociceptor plasticity via MNK-eIF4E signaling, offering new insight into how ephrin-B signaling promotes pain.
Collapse
Affiliation(s)
- Eric T David
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Muhammad Saad Yousuf
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Hao-Ruei Mei
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Ashita Jain
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Sharada Krishnagiri
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Hajira Elahi
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Rupali Venkatesan
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Kolluru D Srikanth
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA
| | - Gregory Dussor
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA
| | - Matthew B Dalva
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA; Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70124, USA
| | - Theodore J Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, USA.
| |
Collapse
|
13
|
Mogil JS, Parisien M, Esfahani SJ, Diatchenko L. Sex differences in mechanisms of pain hypersensitivity. Neurosci Biobehav Rev 2024; 163:105749. [PMID: 38838876 DOI: 10.1016/j.neubiorev.2024.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The introduction of sex-as-a-biological-variable policies at funding agencies around the world has led to an explosion of very recent observations of sex differences in the biology underlying pain. This review considers evidence of sexually dimorphic mechanisms mediating pain hypersensitivity, derived from modern assays of persistent pain in rodent animal models. Three well-studied findings are described in detail: the male-specific role of spinal cord microglia, the female-specific role of calcitonin gene-related peptide (CGRP), and the female-specific role of prolactin and its receptor. Other findings of sex-specific molecular involvement in pain are subjected to pathway analyses and reveal at least one novel hypothesis: that females may preferentially use Th1 and males Th2 T cell activity to mediate chronic pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Sahel J Esfahani
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
14
|
Dalkara T, Kaya Z, Erdener ŞE. Unraveling the interplay of neuroinflammatory signaling between parenchymal and meningeal cells in migraine headache. J Headache Pain 2024; 25:124. [PMID: 39080518 PMCID: PMC11290240 DOI: 10.1186/s10194-024-01827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The initiation of migraine headaches and the involvement of neuroinflammatory signaling between parenchymal and meningeal cells remain unclear. Experimental evidence suggests that a cascade of inflammatory signaling originating from neurons may extend to the meninges, thereby inducing neurogenic inflammation and headache. This review explores the role of parenchymal inflammatory signaling in migraine headaches, drawing upon recent advancements. BODY: Studies in rodents have demonstrated that sterile meningeal inflammation can stimulate and sensitize meningeal nociceptors, culminating in headaches. The efficacy of relatively blood-brain barrier-impermeable anti-calcitonin gene-related peptide antibodies and triptans in treating migraine attacks, both with and without aura, supports the concept of migraine pain originating in meninges. Additionally, PET studies utilizing inflammation markers have revealed meningeal inflammatory activity in patients experiencing migraine with aura, particularly over the occipital cortex generating visual auras. The parenchymal neuroinflammatory signaling involving neurons, astrocytes, and microglia, which eventually extends to the meninges, can link non-homeostatic perturbations in the insensate brain to pain-sensitive meninges. Recent experimental research has brought deeper insight into parenchymal signaling mechanisms: Neuronal pannexin-1 channels act as stress sensors, initiating the inflammatory signaling by inflammasome formation and high-mobility group box-1 release in response to transient perturbations such as cortical spreading depolarization (CSD) or synaptic metabolic insufficiency caused by transcriptional changes induced by migraine triggers like sleep deprivation and stress. After a single CSD, astrocytes respond by upregulating the transcription of proinflammatory enzymes and mediators, while microglia are involved in restoring neuronal structural integrity; however, repeated CSDs may prompt microglia to adopt a pro-inflammatory state. Transcriptional changes from pro- to anti-inflammatory within 24 h may serve to dampen the inflammatory signaling. The extensive coverage of brain surface and perivascular areas by astrocyte endfeet suggests their role as an interface for transporting inflammatory mediators to the cerebrospinal fluid to contribute to meningeal nociception. CONCLUSION We propose that neuronal stress induced by CSD or synaptic activity-energy mismatch may initiate a parenchymal inflammatory signaling cascade, transmitted to the meninges, thereby triggering lasting headaches characteristic of migraine, with or without aura. This neuroinflammatory interplay between parenchymal and meningeal cells points to the potential for novel targets for migraine treatment and prophylaxis.
Collapse
Affiliation(s)
- Turgay Dalkara
- Departments of Neuroscience and, Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey.
| | - Zeynep Kaya
- Department of Neurology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
15
|
Gunter C, Jiang CL, Zeimantz SO, Hegarty DM, Morgans CW, Largent-Milnes TM, Aicher SA. Activating transcription factor 3 (ATF3) and calcitonin gene-related peptide (CGRP) increase in trigeminal ganglion neurons in female rats after photorefractive keratectomy (PRK)-like corneal abrasion. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100165. [PMID: 39315304 PMCID: PMC11419808 DOI: 10.1016/j.ynpai.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Photorefractive keratectomy (PRK) is a type of eye surgery that involves removal of the corneal epithelium and its associated nerves, which causes intense acute pain in most people. We used a rat model of corneal epithelium removal (corneal abrasion) to examine underlying cellular and molecular mechanisms. In this study, we used immunohistochemistry of trigeminal ganglion (TG) to assess neuronal content of CGRP and ATF3, as well as orbital tightening (OT) to assess spontaneous pain behaviors. CGRP is an important neuropeptide in pain modulation and ATF3 is often used as a nerve injury marker. We found dynamic changes in CGRP and ATF3 in TG; both increased significantly at 24 h following corneal abrasion and females had a more pronounced increase at 24 h compared to males. Interestingly, there was no sex difference in OT behaviors. Additionally, the number of cells containing either CGRP or ATF3 in each animal correlate significantly with their OT behavior at the assessed timepoint. Since CGRP increased most in females, we tested the effectiveness of Olcegepant, a CGRP antagonist, at reducing OT behaviors following corneal abrasion in female rats. Olcegepant (1 mg/kg) was given prior to and again at 24 h after abrasion but did not change OT behaviors at any time over a 1-week period. Examination of CGRP and ATF3 together in TG showed that they rarely colocalized, indicating that the cells with upregulated CGRP are distinct from those responding to epithelial nerve injury. The studies also show that underlying molecular responses may be sex specific.
Collapse
Affiliation(s)
- Clem Gunter
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Cody L. Jiang
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Shae O. Zeimantz
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Deborah M. Hegarty
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Catherine W. Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | | | - Sue A. Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
16
|
Li C, Ajmal E, Alok K, Powell K, Wadolowski S, Tambo W, Turpin J, Barthélemy E, Al-Abed Y, LeDoux D. CGRP as a potential mediator for the sexually dimorphic responses to traumatic brain injury. Biol Sex Differ 2024; 15:44. [PMID: 38816868 PMCID: PMC11138127 DOI: 10.1186/s13293-024-00619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The outcomes of traumatic brain injury (TBI) exhibit variance contingent upon biological sex. Although female sex hormones exert neuroprotective effects, the administration of estrogen and progesterone has not yielded conclusive results. Hence, it is conceivable that additional mediators, distinct from female sex hormones, merit consideration due to their potential differential impact on TBI outcomes. Calcitonin gene-related peptide (CGRP) exhibits sexually dimorphic expression and demonstrates neuroprotective effects in acute brain injuries. In this study, we aimed to examine sex-based variations in TBI structural and functional outcomes with respect to CGRP expression. METHODS Male and female Sprague Dawley rats were exposed to controlled cortical impact to induce severe TBI, followed by interventions with and without CGRP inhibition. In the acute phase of TBI, the study centered on elucidating the influence of CGRP on oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) and endothelial nitric oxide synthase (eNOS) signaling in the peri-impact tissue. Subsequently, during the chronic phase of TBI, the investigation expanded to evaluate CGRP expression in relation to lesion volume, microvascular dysfunction, and white matter injury, as well as working and spatial memory, anxiety-like, and depression-like behaviors in subjects of both sexes. RESULTS Female rats exhibited elevated levels of CGRP in the peri-impact brain tissue during both baseline conditions and in the acute and chronic phases of TBI, in comparison to age-matched male counterparts. Enhanced CGRP levels in specific brain sub-regions among female rats correlated with superior structural and functional outcomes following TBI compared to their male counterparts. CGRP inhibition induced heightened oxidative stress and a reduction in the expression of Nrf2 and eNOS in both male and female rats, with the observed alteration being more pronounced in females than in males. CONCLUSIONS This study marks the inaugural identification of CGRP as a downstream mediator contributing to the sexually dimorphic response observed in TBI outcomes.
Collapse
Affiliation(s)
- Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA.
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, 11030, USA.
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, 11203, USA
| | - Khaled Alok
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Steven Wadolowski
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Justin Turpin
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA
| | - Ernest Barthélemy
- Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, 11203, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - David LeDoux
- Department of Neurosurgery, North Shore University Hospital, Manhasset, NY, 11030, USA
| |
Collapse
|
17
|
Son H, Zhang Y, Shannonhouse J, Gomez R, Kim YS. PACAP38/mast-cell-specific receptor axis mediates repetitive stress-induced headache in mice. J Headache Pain 2024; 25:87. [PMID: 38802819 PMCID: PMC11131290 DOI: 10.1186/s10194-024-01786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Pain, an evolutionarily conserved warning system, lets us recognize threats and motivates us to adapt to those threats. Headache pain from migraine affects approximately 15% of the global population. However, the identity of any putative threat that migraine or headache warns us to avoid is unknown because migraine pathogenesis is poorly understood. Here, we show that a stress-induced increase in pituitary adenylate cyclase-activating polypeptide-38 (PACAP38), known as an initiator of allosteric load inducing unbalanced homeostasis, causes headache-like behaviour in male mice via mas-related G protein-coupled receptor B2 (MrgprB2) in mast cells. METHODS The repetitive stress model and dural injection of PACAP38 were performed to induce headache behaviours. We assessed headache behaviours using the facial von Frey test and the grimace scale in wild-type and MrgprB2-deficient mice. We further examined the activities of trigeminal ganglion neurons using in vivo Pirt-GCaMP Ca2+ imaging of intact trigeminal ganglion (TG). RESULTS Repetitive stress and dural injection of PACAP38 induced MrgprB2-dependent headache behaviours. Blood levels of PACAP38 were increased after repetitive stress. PACAP38/MrgprB2-induced mast cell degranulation sensitizes the trigeminovascular system in dura mater. Moreover, using in vivo intact TG Pirt-GCaMP Ca2+ imaging, we show that stress or/and elevation of PACAP38 sensitized the TG neurons via MrgprB2. MrgprB2-deficient mice showed no sensitization of TG neurons or mast cell activation. We found that repetitive stress and dural injection of PACAP38 induced headache behaviour through TNF-a and TRPV1 pathways. CONCLUSIONS Our findings highlight the PACAP38-MrgprB2 pathway as a new target for the treatment of stress-related migraine headache. Furthermore, our results pertaining to stress interoception via the MrgprB2/PACAP38 axis suggests that migraine headache warns us of stress-induced homeostatic imbalance.
Collapse
Affiliation(s)
- Hyeonwi Son
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yan Zhang
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - John Shannonhouse
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ruben Gomez
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yu Shin Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center, San Antonio, TX, USA.
- Programs in Integrated Biomedical Sciences, Biomedical Engineering, Radiological Sciences, Translational Sciences, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
18
|
Singh S, Kopruszinski CM, Watanabe M, Dodick DW, Navratilova E, Porreca F. Female-selective mechanisms promoting migraine. J Headache Pain 2024; 25:63. [PMID: 38658853 PMCID: PMC11040950 DOI: 10.1186/s10194-024-01771-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Sexual dimorphism has been revealed for many neurological disorders including chronic pain. Prelicinal studies and post-mortem analyses from male and female human donors reveal sexual dimorphism of nociceptors at transcript, protein and functional levels suggesting different mechanisms that may promote pain in men and women. Migraine is a common female-prevalent neurological disorder that is characterized by painful and debilitating headache. Prolactin is a neurohormone that circulates at higher levels in females and that has been implicated clinically in migraine. Prolactin sensitizes sensory neurons from female mice, non-human primates and humans revealing a female-selective pain mechanism that is conserved evolutionarily and likely translationally relevant. Prolactin produces female-selective migraine-like pain behaviors in rodents and enhances the release of calcitonin gene-related peptide (CGRP), a neurotransmitter that is causal in promoting migraine in many patients. CGRP, like prolactin, produces female-selective migraine-like pain behaviors. Consistent with these observations, publicly available clinical data indicate that small molecule CGRP-receptor antagonists are preferentially effective in treatment of acute migraine therapy in women. Collectively, these observations support the conclusion of qualitative sex differences promoting migraine pain providing the opportunity to tailor therapies based on patient sex for improved outcomes. Additionally, patient sex should be considered in design of clinical trials for migraine as well as for pain and reassessment of past trials may be warranted.
Collapse
Affiliation(s)
- Shagun Singh
- Banner - University Medicine Sunrise Primary Care, Tucson, AZ, 85750, USA
| | - Caroline M Kopruszinski
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Moe Watanabe
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - David W Dodick
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
- Atria Academy of Science and Medicine, New York, NY, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA.
| |
Collapse
|
19
|
Lillo Vizin RC, Kopruszinski CM, Redman PM, Ito H, Rau J, Dodick DW, Navratilova E, Porreca F. Unraveling the directional relationship of sleep and migraine-like pain. Brain Commun 2024; 6:fcae051. [PMID: 38444905 PMCID: PMC10914446 DOI: 10.1093/braincomms/fcae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/20/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
Migraine and sleep disorders are common co-morbidities. Patients frequently link their sleep to migraine attacks suggesting a potential causal relationship between these conditions. However, whether migraine pain promotes or disrupts sleep or whether sleep disruption can increase the risk of migraine remains unknown. We assessed the potential impact of periorbital allodynia, a measure consistent with migraine-like pain, from multiple preclinical models on sleep quantity and quality. Additionally, we evaluated the possible consequences of sleep deprivation in promoting susceptibility to migraine-like pain. Following the implantation of electroencephalogram/electromyography electrodes to record sleep, mice were treated with either single or repeated systemic injections of nitroglycerin at the onset of their active phase (i.e. nocturnal awake period). Neither single nor repeated nitroglycerin affected the total sleep time, non-rapid eye movement sleep, rapid eye movement sleep, sleep depth or other measures of sleep architecture. To account for the possible disruptive effects of the surgical implantation of electroencephalogram/electromyography electrodes, we used immobility recordings as a non-invasive method for assessing sleep-wake behaviour. Neither single nor repeated nitroglycerin administration during either the mouse sleep (i.e. daylight) or active (i.e. night) periods influenced immobility-defined sleep time. Administration of an inflammatory mediator mixture onto the dura mater at either sleep or active phases also did not affect immobility-defined sleep time. Additionally, inhalational umbellulone-induced migraine-like pain in restraint-stressed primed mice did not alter immobility-defined sleep time. The possible influence of sleep disruption on susceptibility to migraine-like pain was evaluated by depriving female mice of sleep over 6 h with novel objects, a method that does not increase circulating stress hormones. Migraine-like pain was not observed following acute sleep deprivation. However, in sleep-deprived mice, subthreshold doses of systemic nitroglycerin or dural calcitonin gene-related peptide induced periorbital cutaneous allodynia consistent with migraine-like pain. Our data reveal that while migraine-like pain does not significantly disrupt sleep, sleep disruption increases vulnerability to migraine-like pain suggesting that a therapeutic strategy focused on improving sleep may diminish migraine attacks.
Collapse
Affiliation(s)
- Robson C Lillo Vizin
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Caroline M Kopruszinski
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Paula M Redman
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Hisakatsu Ito
- Department of Anesthesiology, University of Toyama, Toyama 930-0194, Japan
| | - Jill Rau
- Department of Neurology, Bob Bové Neuroscience Institute at HonorHealth, Scottsdale, AZ 85251, USA
| | - David W Dodick
- Department of Neurology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
20
|
Son H, Zhang Y, Shannonhouse J, Ishida H, Gomez R, Kim YS. Mast-cell-specific receptor mediates alcohol-withdrawal-associated headache in male mice. Neuron 2024; 112:113-123.e4. [PMID: 37909038 PMCID: PMC10843090 DOI: 10.1016/j.neuron.2023.09.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/13/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023]
Abstract
Rehabilitation from alcohol addiction or abuse is hampered by withdrawal symptoms including severe headaches, which often lead to rehabilitation failure. There is no appropriate therapeutic option available for alcohol-withdrawal-induced headaches. Here, we show the role of the mast-cell-specific receptor MrgprB2 in the development of alcohol-withdrawal-induced headache. Withdrawing alcohol from alcohol-acclimated mice induces headache behaviors, including facial allodynia, facial pain expressions, and reduced movement, which are symptoms often observed in humans. Those behaviors were absent in MrgprB2-deficient mice during alcohol withdrawal. We observed in vivo spontaneous activation and hypersensitization of trigeminal ganglia (TG) neurons in alcohol-withdrawal WT mice, but not in alcohol-withdrawal MrgprB2-deficient mice. Increased mast cell degranulation by alcohol withdrawal in dura mater was dependent on the presence of MrgprB2. The results indicate that alcohol withdrawal causes headache via MrgprB2 of mast cells in dura mater, suggesting that MrgprB2 is a potential target for treating alcohol-withdrawal-related headaches.
Collapse
Affiliation(s)
- Hyeonwi Son
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yan Zhang
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - John Shannonhouse
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hirotake Ishida
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ruben Gomez
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yu Shin Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Programs in Integrated Biomedical Sciences, Translational Sciences, Biomedical Engineering, Radiological Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
21
|
Lindquist KA, Shein SA, Hovhannisyan AH, Mecklenburg J, Zou Y, Lai Z, Tumanov AV, Akopian AN. Associations of tissue damage induced inflammatory plasticity in masseter muscle with the resolution of chronic myalgia. Sci Rep 2023; 13:22057. [PMID: 38086903 PMCID: PMC10716154 DOI: 10.1038/s41598-023-49280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Gene plasticity during myogenous temporomandibular disorder (TMDM) development is largely unknown. TMDM could be modeled by intramuscular inflammation or tissue damage. To model inflammation induced TMDM we injected complete Freund's adjuvant (CFA) into masseter muscle (MM). To model tissue damage induced TMDM we injected extracellular matrix degrading collagenase type 2 (Col). CFA and Col produced distinct myalgia development trajectories. We performed bulk RNA-seq of MM to generate gene plasticity time course. CFA initiated TMDM (1d post-injection) was mainly linked to chemo-tacticity of monocytes and neutrophils. At CFA-induced hypersensitivity post-resolution (5d post-injection), tissue repair processes were pronounced, while inflammation was absent. Col (0.2U) produced acute hypersensitivity linked to tissue repair without inflammatory processes. Col (10U) generated prolonged hypersensitivity with inflammatory processes dominating initiation phase (1d). Pre-resolution phase (6d) was accompanied with acceleration of expressions for tissue repair and pro-inflammatory genes. Flow cytometry showed that immune processes in MM was associated with accumulations of macrophages, natural killer, dendritic and T-cells, further confirming our RNA-seq findings. Altogether, CFA and Col treatments induced different immune processes in MM. Importantly, TMDM resolution was preceded with muscle cell and extracellular matrix repairs, an elevation in immune system gene expressions and distinct immune cell accumulations in MM.
Collapse
Affiliation(s)
- Karen A Lindquist
- Integrated Biomedical Sciences (IBMS) Program, The School of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Sergey A Shein
- Departments of Microbiology, Immunology & Molecular Genetics, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Anahit H Hovhannisyan
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jennifer Mecklenburg
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Yi Zou
- Departments of Molecular Medicine, The School of Medicine, UTHSCSA, San Antonio, TX, USA
| | - Zhao Lai
- Departments of Molecular Medicine, The School of Medicine, UTHSCSA, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Alexei V Tumanov
- Integrated Biomedical Sciences (IBMS) Program, The School of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
- Departments of Microbiology, Immunology & Molecular Genetics, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA.
| | - Armen N Akopian
- Integrated Biomedical Sciences (IBMS) Program, The School of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
22
|
Rudolph M, Kopruszinski C, Wu C, Navratilova E, Schwedt TJ, Dodick DW, Porreca F, Anderson T. Identification of brain areas in mice with peak neural activity across the acute and persistent phases of post-traumatic headache. Cephalalgia 2023; 43:3331024231217469. [PMID: 38016977 PMCID: PMC11149587 DOI: 10.1177/03331024231217469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
BACKGROUND Post-traumatic headache is very common after a mild traumatic brain injury. Post-traumatic headache may persist for months to years after an injury in a substantial proportion of people. The pathophysiology underlying post-traumatic headache remains unknown but is likely distinct from other headache disorders. Identification of brain areas activated in acute and persistent phases of post-traumatic headache can provide insights into the underlying circuits mediating headache pain. We used an animal model of mild traumatic brain injury-induced post-traumatic headache and c-fos immunohistochemistry to identify brain regions with peak activity levels across the acute and persistent phases of post-traumatic headache. METHODS Male and female C57BL/6 J mice were briefly anesthetized and subjected to a sham procedure or a weight drop closed-head mild traumatic brain injury . Cutaneous allodynia was assessed in the periorbital and hindpaw regions using von Frey filaments. Immunohistochemical c-fos based neural activity mapping was then performed on sections from whole brain across the development of post-traumatic headache (i.e. peak of the acute phase at 2 days post- mild traumatic brain injury), start of the persistent phase (i.e. >14 days post-mild traumatic brain injury) or after provocation with stress (bright light). Brain areas with consistent and peak levels of c-fos expression across mild traumatic brain injury induced post-traumatic headache were identified and included for further analysis. RESULTS Following mild traumatic brain injury, periorbital and hindpaw allodynia was observed in both male and female mice. This allodynia was transient and subsided within the first 14 days post-mild traumatic brain injury and is representative of acute post-traumatic headache. After this acute post-traumatic headache phase, exposure of mild traumatic brain injury mice to a bright light stress reinstated periorbital and hindpaw allodynia for several hours - indicative of the development of persistent post-traumatic headache. Acute post-traumatic headache was coincident with an increase in neuronal c-fos labeling in the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and the nucleus accumbens. Neuronal activation returned to baseline levels by the persistent post-traumatic headache phase in the spinal nucleus of the trigeminal caudalis and primary somatosensory cortex but remained elevated in the nucleus accumbens. In the persistent post-traumatic headache phase, coincident with allodynia observed following bright light stress, we observed bright light stress-induced c-fos neural activation in the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and nucleus accumbens. CONCLUSION Examination of mild traumatic brain injury-induced changes in peak c-fos expression revealed brain regions with significantly increased neural activity across the acute and persistent phases of post-traumatic headache. Our findings suggest mild traumatic brain injury-induced post-traumatic headache produces neural activation along pain relevant pathways at time-points matching post-traumatic headache-like pain behaviors. These observations suggest that the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and nucleus accumbens may contribute to both the induction and maintenance of post-traumatic headache.
Collapse
Affiliation(s)
- Megan Rudolph
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Caroline Kopruszinski
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Chen Wu
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Neurology, Mayo Clinic, Phoenix, USA
| | | | - David W Dodick
- Mayo Clinic College of Medicine, Scottsdale, Arizona, USA
- Atria Academy of Science and Medicine, New York City, New York, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Trent Anderson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| |
Collapse
|
23
|
Sturaro C, Fakhoury B, Targowska-Duda KM, Zribi G, Schoch J, Ruzza C, Calò G, Toll L, Cippitelli A. Preclinical effects of cannabidiol in an experimental model of migraine. Pain 2023; 164:2540-2552. [PMID: 37310430 DOI: 10.1097/j.pain.0000000000002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/25/2023] [Indexed: 06/14/2023]
Abstract
ABSTRACT Migraine is a disabling disorder characterized by recurrent headaches, accompanied by abnormal sensory sensitivity and anxiety. Despite extensive historical use of cannabis in headache disorders, there is limited research on the nonpsychoactive cannabidiol (CBD) for migraine and there is no scientific evidence to prove that CBD is an effective treatment. The effects of CBD are examined here using a calcitonin gene-related peptide (CGRP)-induced migraine model that provides measures of cephalic allodynia, spontaneous pain, altered light sensitivity (photophobia), and anxiety-like behavior in C57BL/6J mice. A single administration of CGRP induced facial hypersensitivity in both female and male mice. Repeated CGRP treatment produced progressively decreased levels in basal thresholds of allodynia in females, but not in males. A single CBD administration protected both females and males from periorbital allodynia induced by a single CGRP injection. Repeated CBD administration prevented increased levels of basal allodynia induced by repeated CGRP treatment in female mice and did not lead to responses consistent with migraine headache as occurs with triptans. Cannabidiol, injected after CGRP, reversed CGRP-evoked allodynia. Cannabidiol also reduced spontaneous pain traits induced by CGRP administration in female mice. Finally, CBD blocked CGRP-induced anxiety in male mice, but failed in providing protection from CGRP-induced photophobia in females. These results demonstrate the efficacy of CBD in preventing episodic and chronic migraine-like states with reduced risk of causing medication overuse headache. Cannabidiol also shows potential as an abortive agent for treating migraine attacks and headache-related conditions such as spontaneous pain and anxiety.
Collapse
Affiliation(s)
- Chiara Sturaro
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Bianca Fakhoury
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Katarzyna M Targowska-Duda
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Gilles Zribi
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Jennifer Schoch
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Lawrence Toll
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Andrea Cippitelli
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
24
|
VURALLI D, DAĞIDIR HGÖK, TOPA EABBASOĞLU, BELEN HBOLAY. Leaky gut and inflammatory biomarkers in a medication overuse headache model in male rats. Turk J Med Sci 2023; 54:33-41. [PMID: 38812640 PMCID: PMC11031181 DOI: 10.55730/1300-0144.5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/15/2024] [Accepted: 10/25/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Medication overuse is common among chronic migraine patients and nonsteroidal antiinflammatory drugs (NSAIDs) are the most frequently overused drugs. The pathophysiological mechanisms underlying medication overuse headache (MOH) are not completely understood. Intestinal hyperpermeability and leaky gut are reported in patients using NSAIDs. The aim of the study is to investigate the role of leaky gut and inflammation in an MOH model MOH model in male rats. Methods The study was conducted in male Sprague Dawley rats. There were two experimental groups. The first group was the chronic NSAID group in which the rats received mefenamic acid (n = 8) for four weeks intraperitoneally (ip) and the second group was the vehicle group (n = 8) that received 5% dimethyl sulfoxide+sesame oil (ip) for 4 weeks. We assessed spontaneous pain-like behavior, periorbital mechanical withdrawal thresholds, and anxiety-like behavior using an elevated plus maze test. After behavioral testing, serum levels of occludin and lipopolysaccharide-binding protein (LBP) and brain levels of IL-17, IL-6, and high mobility group box 1 protein (HMGB1) were evaluated with ELISA.Results: Serum LBP and occludin levels and brain IL-17 and HMGB1 levels were significantly elevated in the chronic NSAID group compared to its vehicle (p = 0.006, p = 0.016, p = 0.016 and p = 0.016 respectively) while brain IL-6 levels were comparable (p = 0.67) between the groups. The chronic NSAID group showed pain-like and anxiety-like behavior in behavioral tests. Brain IL-17 level was positively correlated with number of head shakes (r = 0.64, p = 0.045), brain IL-6 level was negatively correlated with periorbital mechanical withdrawal thresholds (r = -0.71, p = 0.049), and serum occludin level was positively correlated with grooming duration (r = 0.73, p = 0.032) in chronic NSAID group. Conclusion Elevated serum occludin and LBP levels and brain IL-17 and HMGB1 levels indicate a possible role of leaky gut and inflammation in an MOH model in male rats. Additionally, a significant correlation between pain behavior and markers of inflammation and intestinal hyperpermeability, supports the role of inflammation and leaky gut in MOH pathophysiology.
Collapse
Affiliation(s)
- Doğa VURALLI
- Department of Neurology and Algology, Faculty of Medicine, Gazi University, Ankara,
Turkiye
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara,
Turkiye
- Neuropsychiatry Center, Gazi University, Ankara,
Turkiye
| | - Hale GÖK DAĞIDIR
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara,
Turkiye
| | | | - Hayrunnisa BOLAY BELEN
- Department of Neurology and Algology, Faculty of Medicine, Gazi University, Ankara,
Turkiye
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara,
Turkiye
- Neuropsychiatry Center, Gazi University, Ankara,
Turkiye
| |
Collapse
|
25
|
Rees TA, Labastida-Ramírez A, Rubio-Beltrán E. Calcitonin/PAC 1 receptor splice variants: a blind spot in migraine research. Trends Pharmacol Sci 2023; 44:651-663. [PMID: 37543479 PMCID: PMC10529278 DOI: 10.1016/j.tips.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 08/07/2023]
Abstract
The neuropeptides calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) and their receptors are linked to migraine neurobiology. Recent antimigraine therapeutics targeting the signaling of these neuropeptides are effective; however, some patients respond suboptimally, indicating an incomplete understanding of migraine pathophysiology. The CGRP- and PACAP-responsive receptors can be differentially spliced. It is known that receptor splice variants can have different pathophysiological effects in other receptor-mediated pain pathways. Despite considerable knowledge on the structural and pharmacological differences of the CGRP- and PACAP-responsive receptor splice variants and their expression in migraine-relevant tissues, their role in migraine is rarely considered. Here we shine a spotlight on the calcitonin and PACAP (PAC1) receptor splice variants and examine what implications they may have for drug activity and design.
Collapse
Affiliation(s)
- Tayla A Rees
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Alejandro Labastida-Ramírez
- Headache Group, Wolfson Center for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eloisa Rubio-Beltrán
- Headache Group, Wolfson Center for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
26
|
Nunamaker EA, Turner PV. Unmasking the Adverse Impacts of Sex Bias on Science and Research Animal Welfare. Animals (Basel) 2023; 13:2792. [PMID: 37685056 PMCID: PMC10486396 DOI: 10.3390/ani13172792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Sex bias in biomedical and natural science research has been prevalent for decades. In many cases, the female estrous cycle was thought to be too complex an issue to model for, and it was thought to be simpler to only use males in studies. At times, particularly when studying efficacy and safety of new therapeutics, this sex bias has resulted in over- and under-medication with associated deleterious side effects in women. Many sex differences have been recognized that are unrelated to hormonal variation occurring during the estrous cycle. Sex bias also creates animal welfare challenges related to animal over-production and wastage, insufficient consideration of welfare (and scientific) impact related to differential housing of male vs female animals within research facilities, and a lack of understanding regarding differential requirements for pain recognition and alleviation in male versus female animals. Although many funding and government agencies require both sexes to be studied in biomedical research, many disparities remain in practice. This requires further enforcement of expectations by the Institutional Animal Care and Use Committee when reviewing protocols, research groups when writing grants, planning studies, and conducting research, and scientific journals and reviewers to ensure that sex bias policies are enforced.
Collapse
Affiliation(s)
- Elizabeth A. Nunamaker
- Global Animal Welfare and Training, Charles River Laboratories, Wilmington, MA 01887, USA;
| | - Patricia V. Turner
- Global Animal Welfare and Training, Charles River Laboratories, Wilmington, MA 01887, USA;
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
27
|
Porreca F, Dodick DW. Considering Patient Sex in Prescribing CGRP Receptor Antagonists for Short-Term Treatment of Migraine. JAMA Neurol 2023; 80:885-886. [PMID: 37486684 DOI: 10.1001/jamaneurol.2023.2335] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
This Viewpoint describes the relevance of sex-specific differences in the treatment of migraine, including in evidence from trials of CGRP therapeutics, and the clinical implications for decision-making in practice and trial design.
Collapse
Affiliation(s)
- Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson
- Mayo Clinic Arizona, Phoenix
| | - David W Dodick
- Mayo Clinic Arizona, Phoenix
- Atria Academy of Science and Medicine, New York, New York
| |
Collapse
|
28
|
Vogler B, Kuhn A, Mackenzie KD, Stratton J, Dux M, Messlinger K. The Anti-Calcitonin Gene-Related Peptide (Anti-CGRP) Antibody Fremanezumab Reduces Trigeminal Neurons Immunoreactive to CGRP and CGRP Receptor Components in Rats. Int J Mol Sci 2023; 24:13471. [PMID: 37686275 PMCID: PMC10487893 DOI: 10.3390/ijms241713471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Treatment with the anti-CGRP antibody fremanezumab is successful in the prevention of chronic and frequent episodic migraine. In preclinical rat experiments, fremanezumab has been shown to reduce calcitonin gene-related peptide (CGRP) release from trigeminal tissues and aversive behaviour to noxious facial stimuli, which are characteristic pathophysiological changes accompanying severe primary headaches. To further decipher the effects of fremanezumab that underlie these antinociceptive effects in rats, immunohistochemistry and ELISA techniques were used to analyse the content and concentration of CGRP in the trigeminal ganglion, as well as the ratio of trigeminal ganglion neurons which are immunoreactive to CGRP and CGRP receptor components, 1-10 days after subcutaneous injection of fremanezumab (30 mg/kg) compared to an isotype control antibody. After fremanezumab treatment, the fraction of trigeminal ganglion neurons which were immunoreactive to CGRP and the CGRP receptor components calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) was significantly lowered compared to the control. The content and concentration of CGRP in trigeminal ganglia were not significantly changed. A long-lasting reduction in CGRP receptors expressed in trigeminal afferents may contribute to the attenuation of CGRP signalling and antinociceptive effects of monoclonal anti-CGRP antibodies in rats.
Collapse
Affiliation(s)
- Birgit Vogler
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany; (B.V.); (A.K.)
| | - Annette Kuhn
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany; (B.V.); (A.K.)
| | | | | | - Mária Dux
- Department of Physiology, University of Szeged, H-6720 Szeged, Hungary;
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany; (B.V.); (A.K.)
| |
Collapse
|
29
|
Harriott AM, Waruinge A, Appiah-Danquah V, Berhanu L, Morais A, Ayata C. The effect of sex and estrus cycle stage on optogenetic spreading depression induced migraine-like pain phenotypes. J Headache Pain 2023; 24:85. [PMID: 37464297 PMCID: PMC10355061 DOI: 10.1186/s10194-023-01621-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Migraine is more prevalent in females, raising the possibility that sex and gonadal hormones modulate migraine. We recently demonstrated that minimally invasive optogenetic spreading depolarization (opto-SD) elicits robust periorbital allodynia. The objective of this study was to test the hypothesis that opto-SD induced migraine-like pain behavior is worse in females and varies during the estrus cycle. METHODS Single or repeated opto-SDs were induced in male and female adult Thy1-ChR2-YFP transgenic mice. Von Frey monofilaments were used to test periorbital mechanical allodynia. Mouse grimace was also examined under increasing light intensity to quantify spontaneous discomfort and light-aversive behavior. Vaginal smears were obtained for estrus cycle staging at the end of behavioral testing. RESULTS A multi-variable regression analysis was performed using a male and female cohort to test the effect of independent variables on periorbital allodynia. Opto-SD predicted lower periorbital thresholds as compared with sham stimulation (p < 0.0001). Additionally, female sex predicted lower periorbital thresholds compared with males (p = 0.011). There were significant interactions between opto-SD and time (interaction p = 0.030) as animals tended to recover from opto-SD allodynia over time, and between sex and time (p = 0.020) as females tended to take longer to recover. Proestrus, estrus (PE) and metestrus, diestrus (MD) stages were combined to represent high versus low circulating estradiol relative to progesterone, respectively. Multi-variable regression revealed an effect of estrus cycle (p = 0.015) on periorbital thresholds. In the sham group, PE had lower thresholds than MD. However, there was no interaction between opto-SD and the estrus cycle (p = 0.364). Grimace scores were also examined at incremental light intensities. There was an effect of opto-SD (p < 0.0001), light intensity (p = 0.001) and estrus cycle (p = 0.024) on grimace without interaction among them (three-way ANOVA). CONCLUSIONS Female sex and estrus stages with high circulating estradiol relative to progesterone lower trigeminal pain thresholds and augment photosensitivity. In females, opto-SD increased pain behavior and photosensitivity irrespective of the estrus stage.
Collapse
Affiliation(s)
- Andrea M Harriott
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Neurovascular Research Laboratory, Massachusetts General Hospital, Boston, MA, USA.
| | | | | | - Leah Berhanu
- Cambridge Rindge and Latin School, Boston, MA, USA
| | - Andreia Morais
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
30
|
Abstract
Migraine is a complex neurovascular pain disorder linked to the meninges, a border tissue innervated by neuropeptide-containing primary afferent fibers chiefly from the trigeminal nerve. Electrical or mechanical stimulation of this nerve surrounding large blood vessels evokes headache patterns as in migraine, and the brain, blood, and meninges are likely sources of headache triggers. Cerebrospinal fluid may play a significant role in migraine by transferring signals released from the brain to overlying pain-sensitive meningeal tissues, including dura mater. Interactions between trigeminal afferents, neuropeptides, and adjacent meningeal cells and tissues cause neurogenic inflammation, a critical target for current prophylactic and abortive migraine therapies. Here we review the importance of the cranial meninges to migraine headaches, explore the properties of trigeminal meningeal afferents, and briefly review emerging concepts, such as meningeal neuroimmune interactions, that may one day prove therapeutically relevant.
Collapse
Affiliation(s)
- Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA;
| | - Michael A Moskowitz
- Center for Systems Biology and Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
31
|
Benedicter N, Messlinger K, Vogler B, Mackenzie KD, Stratton J, Friedrich N, Dux M. Semi-Automated Recording of Facial Sensitivity in Rat Demonstrates Antinociceptive Effects of the Anti-CGRP Antibody Fremanezumab. Neurol Int 2023; 15:622-637. [PMID: 37218978 DOI: 10.3390/neurolint15020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Migraine pain is frequently accompanied by cranial hyperalgesia and allodynia. Calcitonin gene-related peptide (CGRP) is implicated in migraine pathophysiology but its role in facial hypersensitivity is not entirely clear. In this study, we investigated if the anti-CGRP monoclonal antibody fremanezumab, which is therapeutically used in chronic and episodic migraines, can modify facial sensitivity recorded by a semi-automatic system. Rats of both sexes primed to drink from a sweet source had to pass a noxious mechanical or heat barrier to reach the source. Under these experimental conditions, animals of all groups tended to drink longer and more when they had received a subcutaneous injection of 30 mg/kg fremanezumab compared to control animals injected with an isotype control antibody 12-13 days prior to testing, but this was significant only for females. In conclusion, anti-CGRP antibody, fremanezumab, reduces facial sensitivity to noxious mechanical and thermal stimulation for more than one week, especially in female rats. Anti-CGRP antibodies may reduce not only headache but also cranial sensitivity in migraineurs.
Collapse
Affiliation(s)
- Nicola Benedicter
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany
| | - Birgit Vogler
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany
| | | | | | - Nadine Friedrich
- Department of Physiology, University of Szeged, H-6720 Szeged, Hungary
| | - Mária Dux
- Department of Physiology, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
32
|
Cohen CF, Roh J, Lee SH, Park CK, Berta T. Targeting Nociceptive Neurons and Transient Receptor Potential Channels for the Treatment of Migraine. Int J Mol Sci 2023; 24:ijms24097897. [PMID: 37175602 PMCID: PMC10177956 DOI: 10.3390/ijms24097897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Migraine is a neurovascular disorder that affects approximately 12% of the global population. While its exact causes are still being studied, researchers believe that nociceptive neurons in the trigeminal ganglia play a key role in the pain signals of migraine. These nociceptive neurons innervate the intracranial meninges and convey pain signals from the meninges to the thalamus. Targeting nociceptive neurons is considered promising due to their accessibility and distinct molecular profile, which includes the expression of several transient receptor potential (TRP) channels. These channels have been linked to various pain conditions, including migraine. This review discusses the role and mechanisms of nociceptive neurons in migraine, the challenges of current anti-migraine drugs, and the evidence for well-studied and emerging TRP channels, particularly TRPC4, as novel targets for migraine prevention and treatment.
Collapse
Affiliation(s)
- Cinder Faith Cohen
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jueun Roh
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Chul-Kyu Park
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
| |
Collapse
|
33
|
Lindquist KA, Shein SA, Hovhannisyan AH, Mecklenburg J, Zou Y, Lai Z, Tumanov AV, Akopian AN. Association of inflammation and tissue damage induced biological processes in masseter muscle with the resolution of chronic myalgia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537828. [PMID: 37131723 PMCID: PMC10153356 DOI: 10.1101/2023.04.21.537828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Biological processes linked to intramuscular inflammation during myogenous temporomandibular disorder (TMDM) are largely unknown. We mimicked this inflammation by intra-masseteric muscle (MM) injections of complete Freund’s adjuvant (CFA) or collagenase type 2 (Col), which emulates tissue damage. CFA triggered mechanical hypersensitivity at 1d post-injection was mainly linked to processes controlling chemotactic activity of monocytes and neutrophils. At 5d post-CFA, when hypersensitivity was resolved, there was minimal inflammation whereas tissue repair processes were pronounced. Low dose Col (0.2U) also produced acute orofacial hypersensitivity that was linked to tissue repair, but not inflammatory processes. High dose Col (10U) triggered prolonged orofacial hypersensitivity with inflammatory processes dominating at 1d post-injection. At pre-resolution time point (6d), tissue repair processes were underway and a significant increase in pro-inflammatory gene expressions compared to 1d post-injection were detected. RNA-seq and flow cytometry showed that immune processes in MM were linked to accumulation of macrophages, natural killer and natural killer T cells, dendritic cells and T-cells. Altogether, CFA and Col treatments induced different immune processes in MM. Importantly, orofacial hypersensitivity resolution was preceded with repairs of muscle cell and extracellular matrix, an elevation in immune system gene expression and accumulation of distinct immune cells in MM.
Collapse
|
34
|
Yang C, Yamaki S, Jung T, Kim B, Huyhn R, McKemy DD. Endogenous Inflammatory Mediators Produced by Injury Activate TRPV1 and TRPA1 Nociceptors to Induce Sexually Dimorphic Cold Pain That Is Dependent on TRPM8 and GFRα3. J Neurosci 2023; 43:2803-2814. [PMID: 36898840 PMCID: PMC10089246 DOI: 10.1523/jneurosci.2303-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
The detection of environmental temperatures is critical for survival, yet inappropriate responses to thermal stimuli can have a negative impact on overall health. The physiological effect of cold is distinct among somatosensory modalities in that it is soothing and analgesic, but also agonizing in the context of tissue damage. Inflammatory mediators produced during injury activate nociceptors to release neuropeptides, such as calcitonin gene-related peptide (CGRP) and substance P, inducing neurogenic inflammation, which further exasperates pain. Many inflammatory mediators induce sensitization to heat and mechanical stimuli but, conversely, inhibit cold responsiveness, and the identity of molecules inducing cold pain peripherally is enigmatic, as are the cellular and molecular mechanisms altering cold sensitivity. Here, we asked whether inflammatory mediators that induce neurogenic inflammation via the nociceptive ion channels TRPV1 (vanilloid subfamily of transient receptor potential channel) and TRPA1 (transient receptor potential ankyrin 1) lead to cold pain in mice. Specifically, we tested cold sensitivity in mice after intraplantar injection of lysophosphatidic acid or 4-hydroxy-2-nonenal, finding that each induces cold pain that is dependent on the cold-gated channel transient receptor potential melastatin 8 (TRPM8). Inhibition of CGRP, substance P, or toll-like receptor 4 (TLR4) signaling attenuates this phenotype, and each neuropeptide produces TRPM8-dependent cold pain directly. Further, the inhibition of CGRP or TLR4 signaling alleviates cold allodynia differentially by sex. Last, cold pain induced by both inflammatory mediators and neuropeptides requires TRPM8, as well as the neurotrophin artemin and its receptor GDNF receptor α3 (GFRα3). These results are consistent with artemin-induced cold allodynia requiring TRPM8, demonstrating that neurogenic inflammation alters cold sensitivity via localized artemin release that induces cold pain via GFRα3 and TRPM8.SIGNIFICANCE STATEMENT The cellular and molecular mechanisms that generate pain are complex with a diverse array of pain-producing molecules generated during injury that act to sensitize peripheral sensory neurons, thereby inducing pain. Here we identify a specific neuroinflammatory pathway involving the ion channel TRPM8 (transient receptor potential cation channel subfamily M member 8) and the neurotrophin receptor GFRα3 (GDNF receptor α3) that leads to cold pain, providing select targets for potential therapies for this pain modality.
Collapse
Affiliation(s)
- Chenyu Yang
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, California 90089
| | - Shanni Yamaki
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, California 90089
| | - Tyler Jung
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Brian Kim
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Ryan Huyhn
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - David D McKemy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
35
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Szewczyk AK, Ulutas S, Aktürk T, Al-Hassany L, Börner C, Cernigliaro F, Kodounis M, Lo Cascio S, Mikolajek D, Onan D, Ragaglini C, Ratti S, Rivera-Mancilla E, Tsanoula S, Villino R, Messlinger K, Maassen Van Den Brink A, de Vries T. Prolactin and oxytocin: potential targets for migraine treatment. J Headache Pain 2023; 24:31. [PMID: 36967387 PMCID: PMC10041814 DOI: 10.1186/s10194-023-01557-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/28/2023] [Indexed: 03/28/2023] Open
Abstract
Migraine is a severe neurovascular disorder of which the pathophysiology is not yet fully understood. Besides the role of inflammatory mediators that interact with the trigeminovascular system, cyclic fluctuations in sex steroid hormones are involved in the sex dimorphism of migraine attacks. In addition, the pituitary-derived hormone prolactin and the hypothalamic neuropeptide oxytocin have been reported to play a modulating role in migraine and contribute to its sex-dependent differences. The current narrative review explores the relationship between these two hormones and the pathophysiology of migraine. We describe the physiological role of prolactin and oxytocin, its relationship to migraine and pain, and potential therapies targeting these hormones or their receptors.In summary, oxytocin and prolactin are involved in nociception in opposite ways. Both operate at peripheral and central levels, however, prolactin has a pronociceptive effect, while oxytocin appears to have an antinociceptive effect. Therefore, migraine treatment targeting prolactin should aim to block its effects using prolactin receptor antagonists or monoclonal antibodies specifically acting at migraine-pain related structures. This action should be local in order to avoid a decrease in prolactin levels throughout the body and associated adverse effects. In contrast, treatment targeting oxytocin should enhance its signalling and antinociceptive effects, for example using intranasal administration of oxytocin, or possibly other oxytocin receptor agonists. Interestingly, the prolactin receptor and oxytocin receptor are co-localized with estrogen receptors as well as calcitonin gene-related peptide and its receptor, providing a positive perspective on the possibilities for an adequate pharmacological treatment of these nociceptive pathways. Nevertheless, many questions remain to be answered. More particularly, there is insufficient data on the role of sex hormones in men and the correct dosing according to sex differences, hormonal changes and comorbidities. The above remains a major challenge for future development.
Collapse
Affiliation(s)
- Anna K Szewczyk
- Doctoral School, Medical University of Lublin, Lublin, Poland
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Samiye Ulutas
- Department of Neurology, Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Tülin Aktürk
- Department of Neurology, Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Linda Al-Hassany
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Corinna Börner
- Department of Pediatrics - Dr. von Hauner Children's Hospital, LMU Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität München, Lindwurmstr. 4, 80337, Munich, Germany
- LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-Universität München, Lindwurmstr. 4, 80337, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Federica Cernigliaro
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro, University of Palermo, 90133, Palermo, Italy
| | - Michalis Kodounis
- First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Lo Cascio
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro, University of Palermo, 90133, Palermo, Italy
| | - David Mikolajek
- Department of Neurology, City Hospital Ostrava, Ostrava, Czech Republic
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Chiara Ragaglini
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Susanna Ratti
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Eduardo Rivera-Mancilla
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sofia Tsanoula
- Department of Neurology, 401 Military Hospital of Athens, Athens, Greece
| | - Rafael Villino
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Antoinette Maassen Van Den Brink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tessa de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
37
|
Shen BQ, Sankaranarayanan I, Price TJ, Tavares-Ferreira D. Sex-differences in prostaglandin signaling: a semi-systematic review and characterization of PTGDS expression in human sensory neurons. Sci Rep 2023; 13:4670. [PMID: 36949072 PMCID: PMC10033690 DOI: 10.1038/s41598-023-31603-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
There is increasing evidence of sex differences in underlying mechanisms causing pain in preclinical models, and in clinical populations. There are also important disconnects between clinical pain populations and the way preclinical pain studies are conducted. For instance, osteoarthritis pain more frequently affects women, but most preclinical studies have been conducted using males in animal models. The most widely used painkillers, nonsteroidal anti-inflammatory drugs (NSAIDs), act on the prostaglandin pathway by inhibiting cyclooxygenase (COX) enzymes. The purpose of this study was to analyze the preclinical and clinical literature on the role of prostaglandins and COX in inflammation and pain. We aimed to specifically identify studies that used both sexes and investigate whether any sex-differences in the action of prostaglandins and COX inhibition had been reported, either in clinical or preclinical studies. We conducted a PubMed search and identified 369 preclinical studies and 100 clinical studies that matched our inclusion/exclusion criteria. Our analysis shows that only 17% of preclinical studies on prostaglandins used both sexes and, out of those, only 19% analyzed or reported data separated by sex. In contrast, 79% of the clinical studies analyzed used both sexes. However, only 6% of those reported data separated by sex. Interestingly, 14 out of 15 preclinical studies and 5 out of 6 clinical studies that analyzed data separated by sex have identified sex-differences. This builds on the increasing evidence of sex-differences in prostaglandin signaling and the importance of sex as a biological variable in data analysis. The preclinical literature identifies a sex difference in prostaglandin D2 synthase (PTGDS) expression where it is higher in female than in male rodents in the nervous system. We experimentally validated that PTGDS expression is higher in female human dorsal root ganglia (DRG) neurons recovered from organ donors. Our semi-systematic literature review reveals a need for continued inclusivity of both male and female animals in prostaglandins studies and data analysis separated by sex in preclinical and clinical studies. Our finding of sex-differences in neuronal PTGDS expression in humans exemplifies the need for a more comprehensive understanding of how the prostaglandin system functions in the DRG in rodents and humans.
Collapse
Affiliation(s)
- Breanna Q Shen
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA.
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA.
| |
Collapse
|
38
|
Lackovic J, Jeevakumar V, Burton M, Price TJ, Dussor G. Peroxynitrite Contributes to Behavioral Responses, Increased Trigeminal Excitability, and Changes in Mitochondrial Function in a Preclinical Model of Migraine. J Neurosci 2023; 43:1627-1642. [PMID: 36697259 PMCID: PMC10008057 DOI: 10.1523/jneurosci.1366-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Administration of a nitric oxide (NO) donor triggers migraine attacks, but the mechanisms by which this occurs are unknown. Reactive nitroxidative species, including NO and peroxynitrite (PN), have been implicated in nociceptive sensitization, and neutralizing PN is antinociceptive. We determined whether PN contributes to nociceptive responses in two distinct models of migraine headache. Female and male mice were subjected to 3 consecutive days of restraint stress or to dural stimulation with the proinflammatory cytokine interleukin-6. Following resolution of the initial poststimulus behavioral responses, animals were tested for hyperalgesic priming using a normally non-noxious dose of the NO donor sodium nitroprusside (SNP) or dural pH 7.0, respectively. We measured periorbital von Frey and grimace responses in both models and measured stress-induced changes in 3-nitrotyrosine (3-NT) expression (a marker for PN activity) and trigeminal ganglia (TGs) mitochondrial function. Additionally, we recorded the neuronal activity of TGs in response to the PN generator SIN-1 [5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride]. We then tested the effects of the PN decomposition catalysts Fe(III)5,10,15,20-tetrakis(N-methylpyridinium-4-yl) porphyrin (FeTMPyP) and FeTPPS [Fe(III)5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato chloride], or the PN scavenger MnTBAP [Mn(III)tetrakis(4-benzoic acid)porphyrin] against these behavioral, molecular, and neuronal changes. Neutralizing PN attenuated stress-induced periorbital hypersensitivity and priming to SNP, with no effect on priming to dural pH 7.0. These compounds also prevented stress-induced increases in 3-NT expression in both the TGs and dura mater, and attenuated TG neuronal hyperexcitability caused by SIN-1. Surprisingly, FeTMPyP attenuated changes in TG mitochondrial function caused by SNP in stressed males only. Together, these data strongly implicate PN in migraine mechanisms and highlight the therapeutic potential of targeting PN.SIGNIFICANCE STATEMENT Among the most reliable experimental triggers of migraine are nitric oxide donors. The mechanisms by which nitric oxide triggers attacks are unclear but may be because of reactive nitroxidative species such as peroxynitrite. Using mouse models of migraine headache, we show that peroxynitrite-modulating compounds attenuate behavioral, neuronal, and molecular changes caused by repeated stress and nitric oxide donors (two of the most common triggers of migraine in humans). Additionally, our results show a sex-specific regulation of mitochondrial function by peroxynitrite following stress, providing novel insight into the ways in which peroxynitrite may contribute to migraine-related mechanisms. Critically, our data underscore the potential in targeting peroxynitrite formation as a novel therapeutic for the treatment of migraine headache.
Collapse
Affiliation(s)
- Jacob Lackovic
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Vivek Jeevakumar
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Michael Burton
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
39
|
Liu S, Crawford J, Tao F. Assessing Orofacial Pain Behaviors in Animal Models: A Review. Brain Sci 2023; 13:390. [PMID: 36979200 PMCID: PMC10046781 DOI: 10.3390/brainsci13030390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Orofacial pain refers to pain occurring in the head and face, which is highly prevalent and represents a challenge to clinicians, but its underlying mechanisms are not fully understood, and more studies using animal models are urgently needed. Currently, there are different assessment methods for analyzing orofacial pain behaviors in animal models. In order to minimize the number of animals used and maximize animal welfare, selecting appropriate assessment methods can avoid repeated testing and improve the reliability and accuracy of research data. Here, we summarize different methods for assessing spontaneous pain, evoked pain, and relevant accompanying dysfunction, and discuss their advantages and disadvantages. While the behaviors of orofacial pain in rodents are not exactly equivalent to the symptoms displayed in patients with orofacial pain, animal models and pain behavioral assessments have advanced our understanding of the pathogenesis of such pain.
Collapse
Affiliation(s)
| | | | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
40
|
Yang C, Yamaki S, Jung T, Kim B, Huyhn R, McKemy DD. Endogenous inflammatory mediators produced by injury activate TRPV1 and TRPA1 nociceptors to induce sexually dimorphic cold pain that is dependent on TRPM8 and GFRα3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525238. [PMID: 36747719 PMCID: PMC9900806 DOI: 10.1101/2023.01.23.525238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The detection of environmental temperatures is critical for survival, yet inappropriate responses to thermal stimuli can have a negative impact on overall health. The physiological effect of cold is distinct among somatosensory modalities in that it is soothing and analgesic, but also agonizing in the context of tissue damage. Inflammatory mediators produced during injury activate nociceptors to release neuropeptides, such as CGRP and substance P, inducing neurogenic inflammation which further exasperates pain. Many inflammatory mediators induce sensitization to heat and mechanical stimuli but, conversely, inhibit cold responsiveness, and the identity of molecules inducing cold pain peripherally is enigmatic, as are the cellular and molecular mechanisms altering cold sensitivity. Here, we asked if inflammatory mediators that induce neurogenic inflammation via the nociceptive ion channels TRPV1 and TRPA1 lead to cold pain in mice. Specifically, we tested cold sensitivity in mice after intraplantar injection of lysophosphatidic acid (LPA) or 4-hydroxy-2-nonenal (4HNE), finding each induces cold pain that is dependent on the cold-gated channel TRPM8. Inhibition of either CGRP, substance P, or toll-like receptor 4 (TLR4) signaling attenuates this phenotype, and each neuropeptide produces TRPM8-dependent cold pain directly. Further, the inhibition of CGRP or TLR4 signaling alleviates cold allodynia differentially by sex. Lastly, we find that cold pain induced by inflammatory mediators and neuropeptides requires the neurotrophin artemin and its receptor GFRα3. These results demonstrate that tissue damage alters cold sensitivity via neurogenic inflammation, likely leading to localized artemin release that induces cold pain via GFRα3 and TRPM8. Significance Statement The cellular and molecular mechanisms that generate pain are complex with a diverse array of pain-producing molecules generated during injury that act to sensitize peripheral sensory neurons, thereby inducing pain. Here we identify a specific neuroinflammatory pathway involving the ion channel TRPM8 and the neurotrophin receptor GFRα3 that leads to cold pain, providing select targets for potential therapies for this pain modality.
Collapse
Affiliation(s)
- Chenyu Yang
- Neurobiology Section, Department of Biological Sciences; University of Southern California, Los Angeles, CA 90089.,Molecular and Computational Biology Graduate Program; University of Southern California, Los Angeles, CA 90089
| | - Shanni Yamaki
- Neurobiology Section, Department of Biological Sciences; University of Southern California, Los Angeles, CA 90089.,Molecular and Computational Biology Graduate Program; University of Southern California, Los Angeles, CA 90089
| | - Tyler Jung
- Neurobiology Section, Department of Biological Sciences; University of Southern California, Los Angeles, CA 90089
| | - Brian Kim
- Neurobiology Section, Department of Biological Sciences; University of Southern California, Los Angeles, CA 90089
| | - Ryan Huyhn
- Neurobiology Section, Department of Biological Sciences; University of Southern California, Los Angeles, CA 90089
| | - David D McKemy
- Neurobiology Section, Department of Biological Sciences; University of Southern California, Los Angeles, CA 90089.,Molecular and Computational Biology Graduate Program; University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
41
|
Pujo J, De Palma G, Lu J, Galipeau HJ, Surette MG, Collins SM, Bercik P. Gut microbiota modulates visceral sensitivity through calcitonin gene-related peptide (CGRP) production. Gut Microbes 2023; 15:2188874. [PMID: 36939195 PMCID: PMC10038053 DOI: 10.1080/19490976.2023.2188874] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Abdominal pain is common in patients with gastrointestinal disorders, but its pathophysiology is unclear, in part due to poor understanding of basic mechanisms underlying visceral sensitivity. Accumulating evidence suggests that gut microbiota is an important determinant of visceral sensitivity. Clinical and basic research studies also show that sex plays a role in pain perception, although the precise pathways are not elucidated. We investigated pain responses in germ-free and conventionally raised mice of both sexes, and assessed visceral sensitivity to colorectal distension, neuronal excitability of dorsal root ganglia (DRG) neurons and the production of substance P and calcitonin gene-related peptide (CGRP) in response to capsaicin or a mixture of G-protein coupled receptor (GPCR) agonists. Germ-free mice displayed greater in vivo responses to colonic distention than conventional mice, with no differences between males and females. Pretreatment with intracolonic capsaicin or GPCR agonists increased responses in conventional, but not in germ-free mice. In DRG neurons, gut microbiota and sex had no effect on neuronal activation by capsaicin or GPCR agonists. While stimulated production of substance P by DRG neurons was similar in germ-free and conventional mice, with no additional effect of sex, the CGRP production was higher in germ-free mice, mainly in females. Absence of gut microbiota increases visceral sensitivity to colorectal distention in both male and female mice. This is, at least in part, due to increased production of CGRP by DRG neurons, which is mainly evident in female mice. However, central mechanisms are also likely involved in this process.
Collapse
Affiliation(s)
- Julien Pujo
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada
| | - Jun Lu
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada
| | - Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada
| | - Michael G Surette
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada
| | - Stephen M Collins
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
42
|
The Effects of an Acute Maximal Seated Lumbar Spine Flexion Exposure on Low Back Mechanical Pain Sensitivity. J Appl Biomech 2022; 38:12-19. [PMID: 34969008 DOI: 10.1123/jab.2021-0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/01/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022]
Abstract
Viscoelastic creep generated in the lumbar spine following sustained spine flexion may affect the relationship between tissue damage and perceived pain. Two processes supporting this altered relationship include altered neural feedback and inflammatory processes. Our purpose was to determine how low back mechanical pain sensitivity changes following seated lumbar spine flexion using pressure algometry in a repeated-measures, cross-sectional laboratory design. Thirty-eight participants underwent a 10-minute sustained seated maximal flexion exposure with a 40-minute standing recovery period. Pressure algometry assessed pressure pain thresholds and the perceived intensity and unpleasantness of fixed pressures. Accelerometers measured spine flexion angles, and electromyography measured muscular activity during flexion. The flexion exposure produced 4.4° (2.7°) of creep that persisted throughout the entire recovery period. The perception of low back stimulus unpleasantness was elevated immediately following the exposure, 20 minutes before a delayed increase in lumbar erector spinae muscle activity. Women reported the fixed pressures to be more intense than men. Sustained flexion had immediate consequences to the quality of mechanical stimulus perceived but did not alter pressure pain thresholds. Neural feedback and inflammation seemed unlikely mechanisms for this given the time and direction of pain sensitivity changes, leaving a postulated cortical influence.
Collapse
|
43
|
Wei C, Kim B, McKemy DD. Transient receptor potential melastatin 8 is required for nitroglycerin- and calcitonin gene-related peptide-induced migraine-like pain behaviors in mice. Pain 2022; 163:2380-2389. [PMID: 35353773 PMCID: PMC9519811 DOI: 10.1097/j.pain.0000000000002635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Migraine is a complex neurovascular disorder that is one of the leading causes of disability and a reduced quality of life. Even with such a high societal impact, our understanding of the cellular and molecular mechanisms that contribute to migraine headaches is limited. To address this complex disorder, several groups have performed genome-wide association studies to elucidate migraine susceptibility genes, with many identifying transient receptor potential melastatin 8 (TRPM8), a cold-sensitive cation channel expressed in peripheral afferents innervating the trigeminovascular system, and the principal mediator of cold and cold pain associated with injury and disease. Interestingly, these migraine-associated single-nucleotide polymorphisms reside in noncoding regions of TRPM8, with those correlated with reduced migraine risk exhibiting lower TRPM8 expression and decreased cold sensitivity. Nonetheless, as a role for TRPM8 in migraine has yet to be defined, we sought to address this gap in our knowledge using mouse genetics and TRPM8 antagonism to determine whether TRPM8 channels or neurons are required for migraine-like pain (mechanical allodynia and facial grimace) in inducible migraine models. Our results show that both evoked and spontaneous pain behaviors are dependent on both TRPM8 channels and neurons, as well as required in both acute and chronic migraine models. Moreover, inhibition of TRPM8 channels prevented acute but not established chronic migraine-like pain. These results are consistent with its association with migraine in genetic analyses and establish that TRPM8 channels are a component of the underlying mechanisms of migraine.
Collapse
Affiliation(s)
- Chao Wei
- Neuroscience Graduate Program; University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
| | - Brian Kim
- Neurobiology Section; Department of Biological Sciences, University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
| | - David D. McKemy
- Neuroscience Graduate Program; University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
- Neurobiology Section; Department of Biological Sciences, University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
| |
Collapse
|
44
|
Garelja ML, Hay DL. A narrative review of the calcitonin peptide family and associated receptors as migraine targets: Calcitonin gene-related peptide and beyond. Headache 2022; 62:1093-1104. [PMID: 36226379 PMCID: PMC9613588 DOI: 10.1111/head.14388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/08/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To summarize the pharmacology of the calcitonin peptide family of receptors and explore their relationship to migraine and current migraine therapies. BACKGROUND Therapeutics that dampen calcitonin gene-related peptide (CGRP) signaling are now in clinical use to prevent or treat migraine. However, CGRP belongs to a broader peptide family, including the peptides amylin and adrenomedullin. Receptors for this family are complex, displaying overlapping pharmacologic profiles. Despite the focus on CGRP and the CGRP receptor in migraine research, recent evidence implicates related peptides and receptors in migraine. METHODS This narrative review summarizes literature encompassing the current pharmacologic understanding of the calcitonin peptide family, and the evidence that links specific members of this family to migraine and migraine-like behaviors. RESULTS Recent work links amylin and adrenomedullin to migraine-like behavior in rodent models and migraine-like attacks in individuals with migraine. We collate novel information that suggests females may be more sensitive to amylin and CGRP in the context of migraine-like behaviors. We report that drugs designed to antagonize the canonical CGRP receptor also antagonize a second CGRP-responsive receptor and speculate as to whether this influences therapeutic efficacy. We also discuss the specificity of current drugs with regards to CGRP isoforms and how this may influence therapeutic profiles. Lastly, we emphasize that receptors related to, but distinct from, the canonical CGRP receptor may represent underappreciated and novel drug targets. CONCLUSION Multiple peptides within the calcitonin family have been linked to migraine. The current focus on CGRP and its canonical receptor may be obscuring pathways to further therapeutics. Drug discovery schemes that take a wider view of the receptor family may lead to the development of new anti-migraine drugs with favorable clinical profiles. We also propose that understanding these related peptides and receptors may improve our interpretation regarding the mechanism of action of current drugs.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
| | - Debbie L. Hay
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand,Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
45
|
Rubio-Beltrán E, Schoon RM, van den Berg J, Schuiling-Veninga CCM, Koch BCP, Villalón CM, Versmissen J, Danser AHJ, van den Meiracker AH, Ibrahimi K, MaassenVanDenBrink A. Trigeminovascular effects of propranolol in men and women, role for sex steroids. Ann Clin Transl Neurol 2022; 9:1405-1416. [PMID: 36029132 PMCID: PMC9463958 DOI: 10.1002/acn3.51640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/08/2022] Open
Abstract
Objective Assess whether propranolol modulates the trigeminovascular system in both men and women. Methods We investigated the effect of propranolol (80 mg, 90 min after oral administration, corresponding to Tmax) on the increase in dermal blood flow of the forehead skin (innervated by the trigeminal nerve) by capsaicin application (0.6 mg/mL) and electrical stimulation (0.2–1.0 mA) before and after placebo (grapefruit juice) or propranolol (oral solution diluted in grapefruit juice) in a randomized, double‐blind, placebo‐controlled cross‐over study, including healthy males (n = 10) and females on contraceptives (n = 11). Additionally, we compared our results with data from the Dutch IADB.nl prescription database by analyzing the change in triptan use after propranolol prescription in a population similar to our dermal blood flow study subjects (males and females, 20–39 years old). Results Dermal blood flow responses to capsaicin were significantly attenuated after propranolol, but not after placebo. When stratifying by sex, no significant changes in the capsaicin‐induced dermal blood flow were observed in females after propranolol, whereas they remained significant in males. Dermal blood flow responses to electrical stimulation were not modified in any case. In our prescription database study, after propranolol, a more pronounced decrease in triptan use was observed in male patients than in female patients. Interpretation Propranolol (80 mg) inhibits capsaicin‐induced increases in dermal blood flow in a sex‐dependent manner. In patients, a more pronounced decrease in triptan use is observed in males when compared with females, suggesting an interaction between propranolol and sex steroids in the modulation of the trigeminovascular system.
Collapse
Affiliation(s)
- Eloísa Rubio-Beltrán
- Division of Pharmacology, Vascular Medicine and Metabolic Diseases, Department of Internal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Rianne M Schoon
- Division of Pharmacology, Vascular Medicine and Metabolic Diseases, Department of Internal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Jeffrey van den Berg
- Division of Pharmacology, Vascular Medicine and Metabolic Diseases, Department of Internal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Catharina C M Schuiling-Veninga
- Unit of PharmacoTherapy, -Epidemiology and -Economics, University of Groningen, Groningen Research Institute of Pharmacy, Groningen, The Netherlands
| | - Birgit C P Koch
- Department of Pharmacy, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Carlos M Villalón
- Pharmacobiology Department, Cinvestav-Coapa, Tenorios 235, 14330, Mexico City, Mexico
| | - Jorie Versmissen
- Division of Pharmacology, Vascular Medicine and Metabolic Diseases, Department of Internal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Pharmacology, Vascular Medicine and Metabolic Diseases, Department of Internal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Anton H van den Meiracker
- Division of Pharmacology, Vascular Medicine and Metabolic Diseases, Department of Internal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Khatera Ibrahimi
- Division of Pharmacology, Vascular Medicine and Metabolic Diseases, Department of Internal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Antoinette MaassenVanDenBrink
- Division of Pharmacology, Vascular Medicine and Metabolic Diseases, Department of Internal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
46
|
Reducha PV, Edvinsson L, Haanes KA. Could Experimental Inflammation Provide Better Understanding of Migraines? Cells 2022; 11:cells11152444. [PMID: 35954288 PMCID: PMC9368653 DOI: 10.3390/cells11152444] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Migraines constitute a common neurological and headache disorder affecting around 15% of the world’s population. In addition to other mechanisms, neurogenic neuroinflammation has been proposed to play a part in migraine chronification, which includes peripheral and central sensitization. There is therefore considerable evidence suggesting that inflammation in the intracranial meninges could be a key element in addition to calcitonin gene-related peptide (CGRP), leading to sensitization of trigeminal meningeal nociceptors in migraines. There are several studies that have utilized this approach, with a strong focus on using inflammatory animal models. Data from these studies show that the inflammatory process involves sensitization of trigeminovascular afferent nerve terminals. Further, by applying a wide range of different pharmacological interventions, insight has been gained on the pathways involved. Importantly, we discuss how animal models should be used with care and that it is important to evaluate outcomes in the light of migraine pathology.
Collapse
Affiliation(s)
- Philip Victor Reducha
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet Glostrup, 2600 Glostrup, Denmark
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, 1017 Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet Glostrup, 2600 Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, 221 00 Lund, Sweden
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet Glostrup, 2600 Glostrup, Denmark
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, 1017 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
47
|
Kaur S, Hickman TM, Lopez-Ramirez A, McDonald H, Lockhart LM, Darwish O, Averitt DL. Estrogen modulation of the pronociceptive effects of serotonin on female rat trigeminal sensory neurons is timing dependent and dosage dependent and requires estrogen receptor alpha. Pain 2022; 163:e899-e916. [PMID: 35121697 PMCID: PMC9288423 DOI: 10.1097/j.pain.0000000000002604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The role of the major estrogen estradiol (E2) on orofacial pain conditions remains controversial with studies reporting both a pronociceptive and antinociceptive role of E2. E2 modulation of peripheral serotonergic activity may be one mechanism underlying the female prevalence of orofacial pain disorders. We recently reported that female rats in proestrus and estrus exhibit greater serotonin (5HT)-evoked orofacial nocifensive behaviors compared with diestrus and male rats. Further coexpression of 5HT 2A receptor mRNA in nociceptive trigeminal sensory neurons that express transient receptor potential vanilloid 1 ion channels contributes to pain sensitization. E2 may exacerbate orofacial pain through 5HT-sensitive trigeminal nociceptors, but whether low or high E2 contributes to orofacial pain and by what mechanism remains unclear. We hypothesized that steady-state exposure to a proestrus level of E2 exacerbates 5HT-evoked orofacial nocifensive behaviors in female rats, explored the transcriptome of E2-treated female rats, and determined which E2 receptor contributes to sensitization of female trigeminal sensory neurons. We report that a diestrus level of E2 is protective against 5HT-evoked orofacial pain behaviors, which increase with increasing E2 concentrations, and that E2 differentially alters several pain genes in the trigeminal ganglia. Furthermore, E2 receptors coexpressed with 5HT 2A and transient receptor potential vanilloid 1 and enhanced capsaicin-evoked signaling in the trigeminal ganglia through estrogen receptor α. Overall, our data indicate that low, but not high, physiological levels of E2 protect against orofacial pain, and we provide evidence that estrogen receptor α receptor activation, but not others, contributes to sensitization of nociceptive signaling in trigeminal sensory neurons.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Department of Biology, Texas Woman’s University, Denton, TX 76204
| | | | | | - Hanna McDonald
- Department of Biology, Texas Woman’s University, Denton, TX 76204
| | | | - Omar Darwish
- Department of Mathematics and Computer Science, Texas Woman’s University, Denton, TX 76204
| | | |
Collapse
|
48
|
Rea BJ, Davison A, Ketcha MJ, Smith KJ, Fairbanks AM, Wattiez AS, Poolman P, Kardon RH, Russo AF, Sowers LP. Automated detection of squint as a sensitive assay of sex-dependent calcitonin gene-related peptide and amylin-induced pain in mice. Pain 2022; 163:1511-1519. [PMID: 34772897 PMCID: PMC9085964 DOI: 10.1097/j.pain.0000000000002537] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT We developed an automated squint assay using both black C57BL/6J and white CD1 mice to measure the interpalpebral fissure area between the upper and lower eyelids as an objective quantification of pain. The automated software detected a squint response to the commonly used nociceptive stimulus formalin in C57BL/6J mice. After this validation, we used the automated assay to detect a dose-dependent squint response to a migraine trigger, the neuropeptide calcitonin gene-related peptide, including a response in female mice at a dose below detection by the manual grimace scale. Finally, we found that the calcitonin gene-related peptide amylin induced squinting behavior in female mice, but not males. These data demonstrate that an automated squint assay can be used as an objective, real-time, continuous-scale measure of pain that provides higher precision and real-time analysis compared with manual grimace assessments.
Collapse
Affiliation(s)
- Brandon J. Rea
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Abigail Davison
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Martin-Junior Ketcha
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Kylie J. Smith
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Aaron M. Fairbanks
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Anne-Sophie Wattiez
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa VA Medical Center, Iowa City, IA, United States
| | - Pieter Poolman
- Center for the Prevention and Treatment of Visual Loss, Iowa VA Medical Center, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
- FaceX LLC, Iowa City, IA, United States
| | - Randy H. Kardon
- Center for the Prevention and Treatment of Visual Loss, Iowa VA Medical Center, Iowa City, IA, United States
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
- FaceX LLC, Iowa City, IA, United States
| | - Andrew F. Russo
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa VA Medical Center, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Levi P. Sowers
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa VA Medical Center, Iowa City, IA, United States
| |
Collapse
|
49
|
Abstract
Chronic pain affects 20% of adults and is one of the leading causes of disability worldwide. Women and girls are disproportionally affected by chronic pain. About half of chronic pain conditions are more common in women, with only 20% having a higher prevalence in men. There are also sex and gender differences in acute pain sensitivity. Pain is a subjective experience made up of sensory, cognitive, and emotional components. Consequently, there are multiple dimensions through which sex and gender can influence the pain experience. Historically, most preclinical pain research was conducted exclusively in male animals. However, recent studies that included females have revealed significant sex differences in the physiological mechanisms underlying pain, including sex specific involvement of different genes and proteins as well as distinct interactions between hormones and the immune system that influence the transmission of pain signals. Human neuroimaging has revealed sex and gender differences in the neural circuitry associated with pain, including sex specific brain alterations in chronic pain conditions. Clinical pain research suggests that gender can affect how an individual contextualizes and copes with pain. Gender may also influence the susceptibility to develop chronic pain. Sex and gender biases can impact how pain is perceived and treated clinically. Furthermore, the efficacy and side effects associated with different pain treatments can vary according to sex and gender. Therefore, preclinical and clinical research must include sex and gender analyses to understand basic mechanisms of pain and its relief, and to develop personalized pain treatment.
Collapse
Affiliation(s)
- Natalie R Osborne
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Karen D Davis
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
50
|
Olesen J. Personal view: Modelling pain mechanisms of migraine without aura. Cephalalgia 2022; 42:1425-1435. [PMID: 35796522 DOI: 10.1177/03331024221111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION This review aims to model migraine nociception. METHODS Personal experience and litterature. RESULTS Genetic and environmental factors in combination decide whether a person suffers from migraine. Endogenous and/or exogenous factors precipitate the individual attacks. Nociception takes place around blood vessels. There is a growing understanding of the molecular pathophysiological mechanisms of migraine from human provocation studies. Rodent models of migraine are necessary to understand the complex interrelation between the many putatively involved molecules and tissues but their relevance for human migraine is uncertain. The crucial element in migraine nociception is a unit consisting of endothelial cells, vascular smooth muscle cells, perivascular nerve fibers (trigeminal, parasympathetic and sympathetic) and mast cells. Attacks may start outside the brain by humoral or neurogenic activity releasing nociceptive substances around blood vessels. They may also (perhaps more often) start by the brain generating efferent activity in autonomic and somatic nerves. CONCLUSION Human and rodent studies can quickly uncover the "mystery of migraine".
Collapse
Affiliation(s)
- Jes Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital, Glostrup, Denmark
| |
Collapse
|