1
|
Merritt AE, St John ME, Leri F, Stein LR. Sensory cues of predation risk generate sex-specific changes in neural activity and behavior, but not hormones, in Trinidadian guppies. Horm Behav 2024; 166:105635. [PMID: 39303528 DOI: 10.1016/j.yhbeh.2024.105635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
How an organism responds to risk depends on how that individual perceives such risk. Integrating cues from multiple sensory modalities allows individuals to extract information from their environment, and whether and how the brain and body respond differently to different sensory cues can help reveal mechanistic decision-making processes. Here, we assessed neural, hormonal, and behavioral responses to different sensory cues of predation risk in Trinidadian guppies (Poecilia reticulata). Adult guppies were assigned to one of four treatment groups: control, visual, olfactory, and both sensory cues combined from a natural predator, the pike cichlid (Crenicichla alta), for 2 h. We found no difference in glucocorticoid response to any cue. However, we found behavioral and neural activation responses to olfactory-only cues. In addition, we found a sex by treatment effect, where males showed greater changes in neural activation in brain regions associated with avoidance behavior, while females showed greater changes in neural activation in regions associated with social behavior and memory, mirroring sex by treatment differences in behavioral antipredator responses. Altogether, our results demonstrate that single and combinatory cues may influence risk-taking behavior differently based on sex, suggesting that perception and integration of cues can cascade into sex differences in behavior.
Collapse
Affiliation(s)
- A E Merritt
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States of America
| | - M E St John
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States of America
| | - F Leri
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States of America
| | - L R Stein
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States of America.
| |
Collapse
|
2
|
Nguyen QAT, Rocha A, Chhor R, Yamashita Y, Stadler C, Pontrello C, Yang H, Haga-Yamanaka S. Hypothalamic representation of the imminence of predator threat detected by the vomeronasal organ in mice. eLife 2024; 12:RP92982. [PMID: 39412856 PMCID: PMC11483128 DOI: 10.7554/elife.92982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024] Open
Abstract
Animals have the innate ability to select optimal defensive behaviors with appropriate intensity within specific contexts. The vomeronasal organ (VNO) serves as a primary sensory channel for detecting predator cues by relaying signals to the medial hypothalamic nuclei, particularly the ventromedial hypothalamus (VMH), which directly controls defensive behavioral outputs. Here, we demonstrate that cat saliva contains predator cues that signal the imminence of predator threat and modulate the intensity of freezing behavior through the VNO in mice. Cat saliva activates VNO neurons expressing the V2R-A4 subfamily of sensory receptors, and the number of VNO neurons activated in response to saliva correlates with both the freshness of saliva and the intensity of freezing behavior. Moreover, the number of VMH neurons activated by fresh, but not old, saliva positively correlates with the intensity of freezing behavior. Detailed analyses of the spatial distribution of activated neurons, as well as their overlap within the same individual mice, revealed that fresh and old saliva predominantly activate distinct neuronal populations within the VMH. Collectively, this study suggests that there is an accessory olfactory circuit in mice that is specifically tuned to time-sensitive components of cat saliva, which optimizes their defensive behavior to maximize their chance of survival according to the imminence of threat.
Collapse
Affiliation(s)
- Quynh Anh Thi Nguyen
- Neuroscience Graduate Program, University of California, RiversideRiversideUnited States
| | - Andrea Rocha
- Neuroscience Graduate Program, University of California, RiversideRiversideUnited States
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Ricky Chhor
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Yuna Yamashita
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Christian Stadler
- Neuroscience Graduate Program, University of California, RiversideRiversideUnited States
| | - Crystal Pontrello
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Hongdian Yang
- Neuroscience Graduate Program, University of California, RiversideRiversideUnited States
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Sachiko Haga-Yamanaka
- Neuroscience Graduate Program, University of California, RiversideRiversideUnited States
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| |
Collapse
|
3
|
Schwartz PJ. Freud's 1926 conjecture is confirmed: evidence from the dorsal periaqueductal gray in mice that human psychological defense against internal instinctual threat evolved from animal motor defense against external predatory threat. Front Psychol 2024; 15:1427816. [PMID: 39380762 PMCID: PMC11458385 DOI: 10.3389/fpsyg.2024.1427816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
In 1926, Freud famously conjectured that the human ego defense of repression against an internal instinctual threat evolved from the animal motor defense of flight from an external predatory threat. Studies over the past 50 years mainly in rodents have investigated the neurobiology of the fight-or-flight reflex to external threats, which activates the emergency alarm system in the dorsal periaqueductal gray (dPAG), the malfunction of which appears likely in panic and post-traumatic stress disorders, but perhaps also in some "non-emergent" conditions like social anxiety and "hysterical" conversion disorder. Computational neuroscience studies in mice by Reis and colleagues have revealed unprecedented insights into the dPAG-related neural mechanisms underlying these evolutionarily honed emergency vertebrate defensive functions (e.g., explore, risk assessment, escape, freeze). A psychoanalytic interpretation of the Reis studies demonstrates that Freud's 1926 conjecture is confirmed, and that internal instinctual threats alone can also set off the dPAG emergency alarm system, which is regulated by 5-HT1A and CRF-1 receptors. Consistent with current psychoanalytic and neurobiologic theories of panic, several other of the primitive components of the dPAG alarm system may also have relevance for understanding of the unconscious determinants of impaired object relationships (e.g., avoidance distance). These dPAG findings reveal (1) a process of "evolution in situ," whereby a more sophisticated dPAG ego defense is seen evolving out of a more primitive dPAG motor defense, (2) a dPAG location for the phylogenetically ancient kernel of Freud's Ego and Id, and (3) a Conscious Id theory that has been conclusively invalidated.
Collapse
Affiliation(s)
- Paul J. Schwartz
- Section on Ego Mechanics, Cincinnati Psychoanalytic Institute, Cincinnati, OH, United States
| |
Collapse
|
4
|
Cheung KYM, Nair A, Li LY, Shapiro MG, Anderson DJ. Population coding of predator imminence in the hypothalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607651. [PMID: 39211163 PMCID: PMC11360964 DOI: 10.1101/2024.08.12.607651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Hypothalamic VMHdm SF1 neurons are activated by predator cues and are necessary and sufficient for instinctive defensive responses. However, such data do not distinguish which features of a predator encounter are encoded by VMHdm SF1 neural activity. To address this issue, we imaged VMHdm SF1 neurons at single-cell resolution in freely behaving mice exposed to a natural predator in varying contexts. Our results reveal that VMHdm SF1 neurons do not represent different defensive behaviors, but rather encode predator identity and multiple predator-evoked internal states, including threat-evoked fear/anxiety; neophobia or arousal; predator imminence; and safety. Notably, threat and safety are encoded bi-directionally by anti-correlated subpopulations. Finally, individual differences in predator defensiveness are correlated with differences in VMHdm SF1 response dynamics. Thus, different threat-related internal state variables are encoded by distinct neuronal subpopulations within a genetically defined, anatomically restricted hypothalamic cell class. Highlights Distinct subsets of VMHdm SF1 neurons encode multiple predator-evoked internal states. Anti-correlated subsets encode safety vs. threat in a bi-directional mannerA population code for predator imminence is identified using a novel assay VMHdm SF1 dynamics correlate with individual variation in predator defensiveness.
Collapse
|
5
|
Watts CA, Smith J, Giacomino R, Walter D, Jang G, Malik A, Harvey N, Novak CM. Chemogenetic Excitation of Ventromedial Hypothalamic Steroidogenic Factor 1 (SF1) Neurons Increases Muscle Thermogenesis in Mice. Biomolecules 2024; 14:821. [PMID: 39062535 PMCID: PMC11274921 DOI: 10.3390/biom14070821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Allostatic adaptations to a perceived threat are crucial for survival and may tap into mechanisms serving the homeostatic control of energy balance. We previously established that exposure to predator odor (PO) in rats significantly increases skeletal muscle thermogenesis and energy expenditure (EE). Evidence highlights steroidogenic factor 1 (SF1) cells within the central and dorsomedial ventromedial hypothalamus (c/dmVMH) as a modulator of both energy homeostasis and defensive behavior. However, the brain mechanism driving elevated EE and muscle thermogenesis during PO exposure has yet to be elucidated. To assess the ability of SF1 neurons of the c/dmVMH to induce muscle thermogenesis, we used the combined technology of chemogenetics, transgenic mice, temperature transponders, and indirect calorimetry. Here, we evaluate EE and muscle thermogenesis in SF1-Cre mice exposed to PO (ferret odor) compared to transgenic and viral controls. We detected significant increases in muscle temperature, EE, and oxygen consumption following the chemogenetic stimulation of SF1 cells. However, there were no detectable changes in muscle temperature in response to PO in either the presence or absence of chemogenetic stimulation. While the specific role of the VMH SF1 cells in PO-induced thermogenesis remains uncertain, these data establish a supporting role for SF1 neurons in the induction of muscle thermogenesis and EE similar to what is seen after predator threats.
Collapse
Affiliation(s)
- Christina A. Watts
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA;
| | - Jordan Smith
- College of Public Health, Kent State University, Kent, OH 44242, USA
| | - Roman Giacomino
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Dinah Walter
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Guensu Jang
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Aalia Malik
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Nicholas Harvey
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Colleen M. Novak
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA;
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
6
|
Stempel AV, Evans DA, Arocas OP, Claudi F, Lenzi SC, Kutsarova E, Margrie TW, Branco T. Tonically active GABAergic neurons in the dorsal periaqueductal gray control instinctive escape in mice. Curr Biol 2024; 34:3031-3039.e7. [PMID: 38936364 DOI: 10.1016/j.cub.2024.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Escape behavior is a set of locomotor actions that move an animal away from threat. While these actions can be stereotyped, it is advantageous for survival that they are flexible.1,2,3 For example, escape probability depends on predation risk and competing motivations,4,5,6,7,8,9,10,11 and flight to safety requires continuous adjustments of trajectory and must terminate at the appropriate place and time.12,13,14,15,16 This degree of flexibility suggests that modulatory components, like inhibitory networks, act on the neural circuits controlling instinctive escape.17,18,19,20,21,22 In mice, the decision to escape from imminent threats is implemented by a feedforward circuit in the midbrain, where excitatory vesicular glutamate transporter 2-positive (VGluT2+) neurons in the dorsal periaqueductal gray (dPAG) compute escape initiation and escape vigor.23,24,25 Here we tested the hypothesis that local GABAergic neurons within the dPAG control escape behavior by setting the excitability of the dPAG escape network. Using in vitro patch-clamp and in vivo neural activity recordings, we found that vesicular GABA transporter-positive (VGAT+) dPAG neurons fire action potentials tonically in the absence of synaptic inputs and are a major source of inhibition to VGluT2+ dPAG neurons. Activity in VGAT+ dPAG cells transiently decreases at escape onset and increases during escape, peaking at escape termination. Optogenetically increasing or decreasing VGAT+ dPAG activity changes the probability of escape when the stimulation is delivered at threat onset and the duration of escape when delivered after escape initiation. We conclude that the activity of tonically firing VGAT+ dPAG neurons sets a threshold for escape initiation and controls the execution of the flight action.
Collapse
Affiliation(s)
- A Vanessa Stempel
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK; Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany.
| | - Dominic A Evans
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK; Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Oriol Pavón Arocas
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Federico Claudi
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Stephen C Lenzi
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Elena Kutsarova
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Troy W Margrie
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK
| | - Tiago Branco
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, 25 Howland St, London W1T 4JG, UK.
| |
Collapse
|
7
|
Melleu FF, Canteras NS. Defensive behavior: Sensing threats from terrestrial and aerial predators. Curr Biol 2024; 34:R625-R628. [PMID: 38981427 DOI: 10.1016/j.cub.2024.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The dorsal periaqueductal gray (dPAG) contains a tonically GABAergic network controlling defensive responses. Determining how this intrinsic dPAG inhibitory circuit functions might provide critical insights into how anti-predatory responses are organized.
Collapse
Affiliation(s)
- Fernando F Melleu
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo SP 05508-000, Brazil
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo SP 05508-000, Brazil.
| |
Collapse
|
8
|
Stempel AV. A conserved brainstem region for instinctive behaviour control: The vertebrate periaqueductal gray. Curr Opin Neurobiol 2024; 86:102878. [PMID: 38663047 DOI: 10.1016/j.conb.2024.102878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 06/11/2024]
Abstract
Instinctive behaviours have evolved across animal phyla and ensure the survival of both the individual and species. They include behaviours that achieve defence, feeding, aggression, sexual reproduction, or parental care. Within the vertebrate subphylum, the brain circuits that support instinctive behaviour output are evolutionarily conserved, being present in the oldest group of living vertebrates, the lamprey. Here, I will provide an evolutionary and comparative perspective on the function of a conserved brainstem region central to the initiation and execution of virtually all instinctive behaviours-the periaqueductal gray. In particular, I will focus on recent advances on the neural mechanisms in the periaqueductal gray that underlie the production of different instinctive behaviours within and across species.
Collapse
Affiliation(s)
- A Vanessa Stempel
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt am Main 60438, Germany.
| |
Collapse
|
9
|
Kim J, Tashjian SM, Mobbs D. The human hypothalamus coordinates switching between different survival actions. PLoS Biol 2024; 22:e3002624. [PMID: 38941452 PMCID: PMC11213486 DOI: 10.1371/journal.pbio.3002624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/11/2024] [Indexed: 06/30/2024] Open
Abstract
Comparative research suggests that the hypothalamus is critical in switching between survival behaviors, yet it is unclear if this is the case in humans. Here, we investigate the role of the human hypothalamus in survival switching by introducing a paradigm where volunteers switch between hunting and escape in response to encounters with a virtual predator or prey. Given the small size and low tissue contrast of the hypothalamus, we used deep learning-based segmentation to identify the individual-specific hypothalamus and its subnuclei as well as an imaging sequence optimized for hypothalamic signal acquisition. Across 2 experiments, we employed computational models with identical structures to explain internal movement generation processes associated with hunting and escaping. Despite the shared structure, the models exhibited significantly different parameter values where escaping or hunting were accurately decodable just by computing the parameters of internal movement generation processes. In experiment 2, multi-voxel pattern analyses (MVPA) showed that the hypothalamus, hippocampus, and periaqueductal gray encode switching of survival behaviors while not encoding simple motor switching outside of the survival context. Furthermore, multi-voxel connectivity analyses revealed a network including the hypothalamus as encoding survival switching and how the hypothalamus is connected to other regions in this network. Finally, model-based fMRI analyses showed that a strong hypothalamic multi-voxel pattern of switching is predictive of optimal behavioral coordination after switching, especially when this signal was synchronized with the multi-voxel pattern of switching in the amygdala. Our study is the first to identify the role of the human hypothalamus in switching between survival behaviors and action organization after switching.
Collapse
Affiliation(s)
- Jaejoong Kim
- Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California, United States of America
| | - Sarah M. Tashjian
- Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California, United States of America
| | - Dean Mobbs
- Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California, United States of America
- Neural Systems Program at the California, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
10
|
Guan X, Cao P. Brain Mechanisms Underlying Panic Attack and Panic Disorder. Neurosci Bull 2024; 40:795-814. [PMID: 37477800 PMCID: PMC11178723 DOI: 10.1007/s12264-023-01088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/23/2023] [Indexed: 07/22/2023] Open
Abstract
Panic disorder is a psychiatric disorder characterized by recurrent panic attacks, with a prevalence of ~ 4% in the general population, causing heavy personal and socioeconomic burdens. The similarities of animal defense responses to clinical panic attack symptoms in humans make it possible to translate neuroanatomical pathways identified in animal studies to panic disorder in humans. Therefore, in this review we first present a basic overview of panic disorder in humans including the main subtypes, models commonly used to trigger panic attacks, related hypotheses, the neurotransmitter systems that may be involved, and the current clinical treatments to give the reader a comprehensive understanding of panic disorder. The animal section introduces the models that trigger panic-like behavior in animals and the brain regions that may be involved, providing insights for future elucidation of the neural circuit mechanisms behind panic attacks.
Collapse
Affiliation(s)
- Xuyan Guan
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.
| | - Peng Cao
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| |
Collapse
|
11
|
Wojtas MN, Diaz-González M, Stavtseva N, Shoam Y, Verma P, Buberman A, Izhak I, Geva A, Basch R, Ouro A, Perez-Benitez L, Levy U, Borcel E, Nuñez Á, Venero C, Rotem-Dai N, Veksler-Lublinsky I, Knafo S. Interplay between hippocampal TACR3 and systemic testosterone in regulating anxiety-associated synaptic plasticity. Mol Psychiatry 2024; 29:686-703. [PMID: 38135756 PMCID: PMC11153148 DOI: 10.1038/s41380-023-02361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Tachykinin receptor 3 (TACR3) is a member of the tachykinin receptor family and falls within the rhodopsin subfamily. As a G protein-coupled receptor, it responds to neurokinin B (NKB), its high-affinity ligand. Dysfunctional TACR3 has been associated with pubertal failure and anxiety, yet the mechanisms underlying this remain unclear. Hence, we have investigated the relationship between TACR3 expression, anxiety, sex hormones, and synaptic plasticity in a rat model, which indicated that severe anxiety is linked to dampened TACR3 expression in the ventral hippocampus. TACR3 expression in female rats fluctuates during the estrous cycle, reflecting sensitivity to sex hormones. Indeed, in males, sexual development is associated with a substantial increase in hippocampal TACR3 expression, coinciding with elevated serum testosterone and a significant reduction in anxiety. TACR3 is predominantly expressed in the cell membrane, including the presynaptic compartment, and its modulation significantly influences synaptic activity. Inhibition of TACR3 activity provokes hyperactivation of CaMKII and enhanced AMPA receptor phosphorylation, associated with an increase in spine density. Using a multielectrode array, stronger cross-correlation of firing was evident among neurons following TACR3 inhibition, indicating enhanced connectivity. Deficient TACR3 activity in rats led to lower serum testosterone levels, as well as increased spine density and impaired long-term potentiation (LTP) in the dentate gyrus. Remarkably, aberrant expression of functional TACR3 in spines results in spine shrinkage and pruning, while expression of defective TACR3 increases spine density, size, and the magnitude of cross-correlation. The firing pattern in response to LTP induction was inadequate in neurons expressing defective TACR3, which could be rectified by treatment with testosterone. In conclusion, our study provides valuable insights into the intricate interplay between TACR3, sex hormones, anxiety, and synaptic plasticity. These findings highlight potential targets for therapeutic interventions to alleviate anxiety in individuals with TACR3 dysfunction and the implications of TACR3 in anxiety-related neural changes provide an avenue for future research in the field.
Collapse
Affiliation(s)
- Magdalena Natalia Wojtas
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Instituto Biofisika (UPV/EHU, CSIC), Departamento Biología Celular e Histología Facultad de Medicina y Enfermería, University of the Basque Country, Leioa, Spain
| | - Marta Diaz-González
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nadezhda Stavtseva
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yuval Shoam
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Poonam Verma
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Assaf Buberman
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Inbar Izhak
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Aria Geva
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Roi Basch
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alberto Ouro
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- NeuroAging Group Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centro de investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucia Perez-Benitez
- Instituto Biofisika (UPV/EHU, CSIC), Departamento Biología Celular e Histología Facultad de Medicina y Enfermería, University of the Basque Country, Leioa, Spain
| | - Uri Levy
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Erika Borcel
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Ángel Nuñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Cesar Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Noa Rotem-Dai
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shira Knafo
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Instituto Biofisika (UPV/EHU, CSIC), Departamento Biología Celular e Histología Facultad de Medicina y Enfermería, University of the Basque Country, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain.
| |
Collapse
|
12
|
Ly A, Barker A, Hotchkiss H, Prévost ED, McGovern DJ, Kilpatrick Z, Root DH. Bed nucleus of the stria terminalis GABA neurons are necessary for changes in foraging behaviour following an innate threat. Eur J Neurosci 2023; 58:3630-3649. [PMID: 37715507 PMCID: PMC10748738 DOI: 10.1111/ejn.16137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 09/17/2023]
Abstract
Foraging is a universal behaviour that has co-evolved with predation pressure. We investigated the role of the bed nucleus of the stria terminalis (BNST) GABA neurons in robotic and live predator threat processing and their consequences in post-threat encounter foraging. Both robotic and live predator interactions increased BNST GABA neuron activity. Mice were trained to procure food in a laboratory-based foraging apparatus in which food pellets were placed at incrementally greater distances from a nest zone. After mice learned to forage, they were exposed to a robotic or live predator threat, while BNST GABA neurons were chemogenetically inhibited. Post-robotic threat encounter, mice spent more time in the nest zone, but other foraging parameters were unchanged compared with pre-encounter behaviour. Inhibition of BNST GABA neurons had no effect on foraging behaviour post-robotic threat encounter. Following live predator exposure, control mice spent significantly more time in the nest zone, increased their latency to successfully forage, and significantly altered their overall foraging performance. Inhibition of BNST GABA neurons during live predator exposure prevented changes in foraging behaviour from developing after a live predator threat. BNST GABA neuron inhibition did not alter foraging behaviour during robotic or live predator threats. We conclude that these results demonstrate that while both robotic and live predator encounters effectively intrude on foraging behaviour, the perceived risk and behavioural consequences of the threat are distinguishable. Additionally, BNST GABA neurons may play a role in the integration of prior innate predator threat experience that results in hypervigilance during post-encounter foraging behaviour.
Collapse
Affiliation(s)
- Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Alexandra Barker
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Hayden Hotchkiss
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Emily D. Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Dillon J. McGovern
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zachary Kilpatrick
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado, USA
| | - David H. Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
13
|
Laing BT, Anderson MS, Bonaventura J, Jayan A, Sarsfield S, Gajendiran A, Michaelides M, Aponte Y. Anterior hypothalamic parvalbumin neurons are glutamatergic and promote escape behavior. Curr Biol 2023; 33:3215-3228.e7. [PMID: 37490921 PMCID: PMC10529150 DOI: 10.1016/j.cub.2023.06.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 05/19/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
The anterior hypothalamic area (AHA) is a critical structure for defensive responding. Here, we identified a cluster of parvalbumin-expressing neurons in the AHA (AHAPV) that are glutamatergic with fast-spiking properties and send axonal projections to the dorsal premammillary nucleus (PMD). Using in vivo functional imaging, optogenetics, and behavioral assays, we determined the role of these AHAPV neurons in regulating behaviors essential for survival. We observed that AHAPV neuronal activity significantly increases when mice are exposed to a predator, and in a real-time place preference assay, we found that AHAPV neuron photoactivation is aversive. Moreover, activation of both AHAPV neurons and the AHAPV → PMD pathway triggers escape responding during a predator-looming test. Furthermore, escape responding is impaired after AHAPV neuron ablation, and anxiety-like behavior as measured by the open field and elevated plus maze assays does not seem to be affected by AHAPV neuron ablation. Finally, whole-brain metabolic mapping using positron emission tomography combined with AHAPV neuron photoactivation revealed discrete activation of downstream areas involved in arousal, affective, and defensive behaviors including the amygdala and the substantia nigra. Our results indicate that AHAPV neurons are a functional glutamatergic circuit element mediating defensive behaviors, thus expanding the identity of genetically defined neurons orchestrating fight-or-flight responses. Together, our work will serve as a foundation for understanding neuropsychiatric disorders triggered by escape such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Brenton T Laing
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Megan S Anderson
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Aishwarya Jayan
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Sarah Sarsfield
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Anjali Gajendiran
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yeka Aponte
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Zhao J, Song Q, Wu Y, Yang L. Advances in neural circuits of innate fear defense behavior. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:653-661. [PMID: 37899403 PMCID: PMC10630063 DOI: 10.3724/zdxbyxb-2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Fear, a negative emotion triggered by dangerous stimuli, can lead to psychiatric disorders such as phobias, anxiety disorders, and depression. Investigating the neural circuitry underlying congenital fear can offer insights into the pathophysiological mechanisms of related psychiatric conditions. Research on innate fear primarily centers on the response mechanisms to various sensory signals, including olfactory, visual and auditory stimuli. Different types of fear signal inputs are regulated by distinct neural circuits. The neural circuits of the main and accessory olfactory systems receive and process olfactory stimuli, mediating defensive responses like freezing. Escape behaviors elicited by visual stimuli are primarily regulated through the superior colliculus and hypothalamic projection circuits. Auditory stimuli-induced responses, including escape, are mainly mediated through auditory cortex projection circuits. In this article, we review the research progress on neural circuits of innate fear defensive behaviors in animals. We further discuss the different sensory systems, especially the projection circuits of olfactory, visual and auditory systems, to provide references for the mechanistic study of related mental disorders.
Collapse
Affiliation(s)
- Jiajia Zhao
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China.
| | - Qi Song
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China
| | - Yongye Wu
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China
| | - Liping Yang
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China.
| |
Collapse
|
15
|
Reis FMCV, Mobbs D, Canteras NS, Adhikari A. Orchestration of innate and conditioned defensive actions by the periaqueductal gray. Neuropharmacology 2023; 228:109458. [PMID: 36773777 DOI: 10.1016/j.neuropharm.2023.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
The midbrain periaqueductal gray (PAG) has been recognized for decades as having a central role in the control of a wide variety of defensive responses. Initial discoveries relied primarily on lesions, electrical stimulation and pharmacology. Recent developments in neural activity imaging and in methods to control activity with anatomical and genetic specificity have revealed additional streams of data informing our understanding of PAG function. Here, we discuss both classic and modern studies reporting on how PAG-centered circuits influence innate as well as learned defensive actions in rodents and humans. Though early discoveries emphasized the PAG's role in rapid induction of innate defensive actions, emerging new data indicate a prominent role for the PAG in more complex processes, including representing behavioral states and influencing fear learning and memory. This article is part of the Special Issue on "Fear, Anxiety and PTSD".
Collapse
Affiliation(s)
- Fernando M C V Reis
- Department of Psychology, University of California, Los Angeles, CA, United States.
| | - Dean Mobbs
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States; Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA, United States
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, CA, United States.
| |
Collapse
|
16
|
Wolfs EML, van Lutterveld R, Varkevisser T, Klaus J, Geuze E, Schutter DJLG. Lower cerebello-cortical functional connectivity in veterans with reactive aggression symptoms: A pilot study. J Psychiatr Res 2023; 159:42-49. [PMID: 36657313 DOI: 10.1016/j.jpsychires.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/05/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
A significant number of veterans experience irritability and aggression symptoms as a result of being exposed to extremely stressful and life-threatening situations. In addition to the well-established involvement of the brain's cortico-subcortical circuit in aggression-related behaviours, a role of the deep cerebellar nuclei (DCN) in reactive aggression has been suggested. In the present study, seed-based resting-state functional connectivity between the DCN and cortico-subcortical areas was explored in veterans with and without reactive aggression symptoms. Nineteen male veterans with reactive aggression symptoms and twenty-two control veterans without reactive aggression symptoms underwent 3T resting-state functional MRI scans. Region-of-interest (ROI) analyses that included the amygdala, hypothalamus and periaqueductal grey as ROIs did not yield significant group-related differences in resting-state functional connectivity with the DCN. However, exploratory whole-brain analysis showed that veterans with reactive aggression symptoms exhibited lower functional connectivity between the DCN and the orbitofrontal cortex compared to control veterans. Our findings provide preliminary evidence for the possible involvement of a cerebello-prefrontal pathway in reactive aggression in male veterans.
Collapse
Affiliation(s)
- E M L Wolfs
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands.
| | - R van Lutterveld
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands; Brain Research & Innovation Centre, Ministry of Defence, Lundlaan 1, 3584 EZ, Utrecht, the Netherlands
| | - T Varkevisser
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands; Brain Research & Innovation Centre, Ministry of Defence, Lundlaan 1, 3584 EZ, Utrecht, the Netherlands; Research and Documentation Centre, Ministry of Justice and Security, Koningskade 4, 2596 AA, The Hague, the Netherlands
| | - J Klaus
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands
| | - E Geuze
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands; Brain Research & Innovation Centre, Ministry of Defence, Lundlaan 1, 3584 EZ, Utrecht, the Netherlands
| | - D J L G Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands
| |
Collapse
|
17
|
Ly A, Barker A, Prévost ED, McGovern DJ, Kilpatrick Z, Root DH. Bed Nucleus of the Stria Terminalis GABA neurons are necessary for changes in foraging behavior following an innate threat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530051. [PMID: 36865159 PMCID: PMC9980185 DOI: 10.1101/2023.02.25.530051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Foraging is a universal behavior that has co-evolved with predation pressure. We investigated the role of bed nucleus of the stria terminalis (BNST) GABA neurons in robotic and live predator threat processing and their consequences in post-threat encounter foraging. Mice were trained to procure food in a laboratory-based foraging apparatus in which food pellets were placed at discrete and incrementally greater distances from a nest zone. After mice learned to forage, they were exposed to either a robotic or live predator threat, while BNST GABA neurons were chemogenetically inhibited. Post-robotic threat encounter, mice spent more time in the nest zone, but other foraging parameters were unchanged compared to pre-encounter behavior. Inhibition of BNST GABA neurons had no effect on foraging behavior post-robotic threat encounter. Following live predator exposure, control mice spent significantly more time in the nest zone, increased their latency to successfully forage, and their overall foraging performance was significantly a ltered. I nhibition o f BNST GABA neurons during live predator exposure prevented changes in foraging behavior from developing after live predator threat. BNST GABA neuron inhibition did not alter foraging behavior during robotic or live predator threat. We conclude that while both robotic and live predator encounter effectively intrude on foraging behavior, the perceived risk and behavioral consequence of the threats are distinguishable. Additionally, BNST GABA neurons may play a role in the integration of prior innate predator threat experience that results in hypervigilance during post-encounter foraging behavior.
Collapse
Affiliation(s)
- Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Alexandra Barker
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Emily D. Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Dillon J. McGovern
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Zachary Kilpatrick
- Department of Applied Mathematics, University of Colorado Boulder, 11 Engineering Dr, Boulder, CO 80309
| | - David H. Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| |
Collapse
|
18
|
Tsang E, Orlandini C, Sureka R, Crevenna AH, Perlas E, Prankerd I, Masferrer ME, Gross CT. Induction of flight via midbrain projections to the cuneiform nucleus. PLoS One 2023; 18:e0281464. [PMID: 36795666 PMCID: PMC9934373 DOI: 10.1371/journal.pone.0281464] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
The dorsal periaqueductal gray is a midbrain structure implicated in the control of defensive behaviors and the processing of painful stimuli. Electrical stimulation or optogenetic activation of excitatory neurons in dorsal periaqueductal gray results in freezing or flight behavior at low and high intensity, respectively. However, the output structures that mediate these defensive behaviors remain unconfirmed. Here we carried out a targeted classification of neuron types in dorsal periaqueductal gray using multiplex in situ sequencing and then applied cell-type and projection-specific optogenetic stimulation to identify projections from dorsal periaqueductal grey to the cuneiform nucleus that promoted goal-directed flight behavior. These data confirmed that descending outputs from dorsal periaqueductal gray serve as a trigger for directed escape behavior.
Collapse
Affiliation(s)
- Emmy Tsang
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Rome, Italy
| | - Camilla Orlandini
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Rome, Italy
- Neurobiology Master’s Program, Sapienza University, Piazzale Aldo Moro, Rome, Italy
| | - Rahul Sureka
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Rome, Italy
| | - Alvaro H. Crevenna
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Rome, Italy
| | - Emerald Perlas
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Rome, Italy
| | - Izzie Prankerd
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Rome, Italy
- University of Bath, Bath, United Kingdom
| | - Maria E. Masferrer
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Rome, Italy
| | - Cornelius T. Gross
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Rome, Italy
- * E-mail:
| |
Collapse
|
19
|
Nair A, Karigo T, Yang B, Ganguli S, Schnitzer MJ, Linderman SW, Anderson DJ, Kennedy A. An approximate line attractor in the hypothalamus encodes an aggressive state. Cell 2023; 186:178-193.e15. [PMID: 36608653 PMCID: PMC9990527 DOI: 10.1016/j.cell.2022.11.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/05/2022] [Accepted: 11/22/2022] [Indexed: 01/07/2023]
Abstract
The hypothalamus regulates innate social behaviors, including mating and aggression. These behaviors can be evoked by optogenetic stimulation of specific neuronal subpopulations within MPOA and VMHvl, respectively. Here, we perform dynamical systems modeling of population neuronal activity in these nuclei during social behaviors. In VMHvl, unsupervised analysis identified a dominant dimension of neural activity with a large time constant (>50 s), generating an approximate line attractor in neural state space. Progression of the neural trajectory along this attractor was correlated with an escalation of agonistic behavior, suggesting that it may encode a scalable state of aggressiveness. Consistent with this, individual differences in the magnitude of the integration dimension time constant were strongly correlated with differences in aggressiveness. In contrast, approximate line attractors were not observed in MPOA during mating; instead, neurons with fast dynamics were tuned to specific actions. Thus, different hypothalamic nuclei employ distinct neural population codes to represent similar social behaviors.
Collapse
Affiliation(s)
- Aditya Nair
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, Caltech, Pasadena, CA 91125, USA
| | - Tomomi Karigo
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, Caltech, Pasadena, CA 91125, USA
| | - Bin Yang
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, Caltech, Pasadena, CA 91125, USA
| | - Surya Ganguli
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Mark J Schnitzer
- Howard Hughes Medical Institute; Department of Applied Physics, Stanford University, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA
| | - Scott W Linderman
- Department of Statistics, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Anderson
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, Caltech, Pasadena, CA 91125, USA.
| | - Ann Kennedy
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, Caltech, Pasadena, CA 91125, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA.
| |
Collapse
|
20
|
Zhong C, Wang L, Cao Y, Sun C, Huang J, Wang X, Pan S, He S, Huang K, Lu Z, Xu F, Lu Y, Wang L. A neural circuit from the dorsal CA3 to the dorsomedial hypothalamus mediates balance between risk exploration and defense. Cell Rep 2022; 41:111570. [PMID: 36323263 DOI: 10.1016/j.celrep.2022.111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/28/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
An appropriate balance between explorative and defensive behavior is essential for the survival and reproduction of prey animals in risky environments. However, the neural circuit and mechanism that allow for such a balance remains poorly understood. Here, we use a semi-naturalistic predator threat test (PTT) to observe and quantify the defense-exploration balance, especially risk exploration behavior in mice. During the PTT, the activity of the putative dorsal CA3 glutamatergic neurons (dCA3Glu) is suppressed by predatory threat and risk exploration, whereas the neurons are activated during contextual exploration. Moreover, optogenetic excitation of these neurons induces a significant increase in risk exploration. A circuit, comprising the dorsal CA3, dorsal lateral septal, and dorsomedial hypothalamic (dCA3Glu-dLSGABA-DMH) areas, may be involved. Moreover, activation of the dCA3Glu-dLSGABA-DMH circuit promotes the switch from defense to risk exploration and suppresses threat-induced increase in arousal.
Collapse
Affiliation(s)
- Cheng Zhong
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Lulu Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Yi Cao
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Chongyang Sun
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Jianyu Huang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xufang Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Suwan Pan
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shuyu He
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Kang Huang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Zhonghua Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Fuqiang Xu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Center for Brain Science, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yi Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| | - Liping Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| |
Collapse
|
21
|
Liu D, Li S, Ren L, Liu X, Li X, Wang Z. Different coding characteristics between flight and freezing in dorsal periaqueductal gray of mice during exposure to innate threats. Animal Model Exp Med 2022; 5:491-501. [PMID: 36225094 PMCID: PMC9773308 DOI: 10.1002/ame2.12276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/09/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Flight and freezing are two vital defensive behaviors that mice display to avoid natural enemies. When they are exposed to innate threats, visual cues are processed and transmitted by the visual system into the emotional nuclei and finally transmitted to the periaqueductal gray (PAG) to induce defensive behaviors. However, how the dorsal PAG (dPAG) encodes the two defensive behaviors is unclear. METHODS Multi-array electrodes were implanted in the dPAG nuclei of C57BL/6 mice. Two kinds of visual stimuli (looming and sweeping) were used to induce defensive behaviors in mice. Neural signals under different defense behaviors were recorded, and the encoding characteristics of the two behaviors were extracted and analyzed from spike firing and frequency oscillations. Finally, synchronization of neural activity during the defense process was analyzed. RESULTS The neural activity between flight and freezing behaviors showed different firing patterns, and the differences in the inter-spike interval distribution were mainly reflected in the 2-10 ms period. The frequency band activities under both defensive behaviors were concentrated in the theta band; the active frequency of flight was ~8 to 10 Hz, whereas that of freezing behavior was ~6 to 8 Hz. The network connection density under both defense behaviors was significantly higher than the period before and after defensive behavior occurred, indicating that there was a high synchronization of neural activity during the defense process. CONCLUSIONS The dPAG nuclei of mice have different coding features between flight and freezing behaviors; during strong looming stimulation, fast neuro-instinctive decision making is required while encountering weak sweeping stimulation, and computable planning late behavior is predicted in the early stage. The frequency band activities under both defensive behaviors were concentrated in the theta band. There was a high synchronization of neural activity during the defense process, which may be a key factor triggering different defensive behaviors.
Collapse
Affiliation(s)
- Denghui Liu
- School of Electrical and Information EngineeringZhengzhou UniversityZhengzhouChina
| | - Shouhao Li
- School of Electrical and Information EngineeringZhengzhou UniversityZhengzhouChina
| | - Liqing Ren
- School of Electrical and Information EngineeringZhengzhou UniversityZhengzhouChina
| | - Xinyu Liu
- School of Intelligent ManufacturingHuanghuai UniversityZhumadianChina
| | - Xiaoyuan Li
- School of Electrical and Information EngineeringZhengzhou UniversityZhengzhouChina
| | - Zhenlong Wang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
22
|
Rahy R, Asari H, Gross CT. Sensory-thresholded switch of neural firing states in a computational model of the ventromedial hypothalamus. Front Comput Neurosci 2022; 16:964634. [PMID: 36157840 PMCID: PMC9491323 DOI: 10.3389/fncom.2022.964634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
The mouse ventromedial hypothalamus (VMH) is both necessary and sufficient for defensive responses to predator and social threats. Defensive behaviors typically involve cautious approach toward potentially threatening stimuli aimed at obtaining information about the risk involved, followed by sudden avoidance and flight behavior to escape harm. In vivo neural recording studies in mice have identified two major populations of VMH neurons that either increase their firing activity as the animal approaches the threat (called Assessment+ cells) or increase their activity as the animal flees the threat (called Flight+ cells). Interestingly, Assessment+ and Flight+ cells abruptly decrease and increase their firing activity, respectively, at the decision point for flight, creating an escape-related “switch” in functional state. This suggests that the activity of the two cell types in VMH is coordinated and could result from local circuit interactions. Here, we used computational modeling to test if a local inhibitory feedback circuit could give rise to key features of the neural activity seen in VMH during the approach-to-flight transition. Starting from a simple dual-population inhibitory feedback circuit receiving repeated trains of monotonically increasing sensory input to mimic approach to threat, we tested the requirement for balanced sensory input, balanced feedback, short-term synaptic plasticity, rebound excitation, and inhibitory feedback exclusivity to reproduce an abrupt, sensory-thresholded reciprocal firing change that resembles Assessment+ and Flight+ cell activity seen in vivo. Our work demonstrates that a relatively simple local circuit architecture is sufficient for the emergence of firing patterns similar to those seen in vivo and suggests that a reiterative process of experimental and computational work may be a fruitful avenue for better understanding the functional organization of mammalian instinctive behaviors at the circuit level.
Collapse
|
23
|
Moscarello JM, Penzo MA. The central nucleus of the amygdala and the construction of defensive modes across the threat-imminence continuum. Nat Neurosci 2022; 25:999-1008. [PMID: 35915178 DOI: 10.1038/s41593-022-01130-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
In nature, animals display defensive behaviors that reflect the spatiotemporal distance of threats. Laboratory-based paradigms that elicit specific defensive responses in rodents have provided valuable insight into the brain mechanisms that mediate the construction of defensive modes with varying degrees of threat imminence. In this Review, we discuss accumulating evidence that the central nucleus of the amygdala (CeA) plays a key role in this process. Specifically, we propose that the mutually inhibitory circuits of the CeA use a winner-takes-all strategy that supports transitioning across defensive modes and the execution of specific defensive behaviors to previously formed threat associations. Our proposal provides a conceptual framework in which seemingly divergent observations regarding CeA function can be interpreted and identifies various areas of priority for future research.
Collapse
Affiliation(s)
- Justin M Moscarello
- Department of Psychological & Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| | - Mario A Penzo
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Bang JY, Sunstrum JK, Garand D, Parfitt GM, Woodin M, Inoue W, Kim J. Hippocampal-hypothalamic circuit controls context-dependent innate defensive responses. eLife 2022; 11:74736. [PMID: 35420543 PMCID: PMC9042231 DOI: 10.7554/elife.74736] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Preys use their memory - where they sensed a predatory threat and whether a safe shelter is nearby - to dynamically control their survival instinct to avoid harm and reach safety. However, it remains unknown which brain regions are involved, and how such top-down control of innate behaviour is implemented at the circuit level. Here, using adult male mice, we show that the anterior hypothalamic nucleus (AHN) is best positioned to control this task as an exclusive target of the hippocampus (HPC) within the medial hypothalamic defense system. Selective optogenetic stimulation and inhibition of hippocampal inputs to the AHN revealed that the HPC→AHN pathway not only mediates the contextual memory of predator threats but also controls the goal-directed escape by transmitting information about the surrounding environment. These results reveal a new mechanism for experience-dependent, top-down control of innate defensive behaviours.
Collapse
Affiliation(s)
- Jee Yoon Bang
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | | - Danielle Garand
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Gustavo Morrone Parfitt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Melanie Woodin
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Wataru Inoue
- Robarts Research Institute, Western University, London, Canada
| | - Junchul Kim
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Bindi RP, Maia RGO, Pibiri F, Baldo MVC, Poulter SL, Lever C, Canteras NS. Neural correlates of distinct levels of predatory threat in dorsal periaqueductal gray neurons. Eur J Neurosci 2022; 55:1504-1518. [PMID: 35229373 DOI: 10.1111/ejn.15633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
Abstract
The dorsal PAG is an important site for integrating predatory threats. However, it remains unclear whether predator-related activation in PAG primarily reflects threat itself, and thus can distinguish between various degrees of threat, or rather reflects threat-oriented behaviors, with the PAG potentially orchestrating different types of defensive repertoire. To address this issue, we performed extracellular recording of dorsal PAG neurons in freely behaving rats and examined neuronal and behavioral responses to stimulus conditions with distinct levels of predatory threat. Animals were sequentially exposed to a non-threatening stimulus familiar environment (exposure to habituated environment) and to a novel non-threatening stimulus (i.e., a toy animal - plush) and to conditions with high (exposure to a live cat), intermediate (exposure to the environment just visited by the cat, with remnant predator scent), and low (exposure on the following day to the predatory context) levels of predatory threat. To test for contributions of both threat stimuli and behavior to changes in firing rate, we applied a Poisson Generalized Linear Model regression, using the different predator stimulus conditions and defensive repertoires as predictor variables. Analysis revealed that the different predator stimulus conditions were more predictive of changes in firing rate (primarily threat-induced increases) than the different defensive repertoires. Thus, the dorsal PAG may code for different levels of predatory threat, more than it directly orchestrates distinct threat-oriented behaviors. The present results open interesting perspectives to investigate the role of the dorsal PAG in mediating primal emotional and cognitive responses to fear-inducing stimuli.
Collapse
Affiliation(s)
- Ricardo P Bindi
- Dept. Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo G O Maia
- Dept. Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Francesca Pibiri
- Psychology Department, University of Durham, Durham, United Kingdom
| | - Marcus Vinicius C Baldo
- Dept. Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Steven L Poulter
- Psychology Department, University of Durham, Durham, United Kingdom
| | - Colin Lever
- Psychology Department, University of Durham, Durham, United Kingdom
| | - Newton S Canteras
- Dept. Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
26
|
Functional organization of the midbrain periaqueductal gray for regulating aversive memory formation. Mol Brain 2021; 14:136. [PMID: 34496926 PMCID: PMC8424891 DOI: 10.1186/s13041-021-00844-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/23/2021] [Indexed: 11/12/2022] Open
Abstract
Innately aversive experiences produce rapid defensive responses and powerful emotional memories. The midbrain periaqueductal gray (PAG) drives defensive behaviors through projections to brainstem motor control centers, but the PAG has also been implicated in aversive learning, receives information from aversive-signaling sensory systems and sends ascending projections to the thalamus as well as other forebrain structures which could control learning and memory. Here we sought to identify PAG subregions and cell types which instruct memory formation in response to aversive events. We found that optogenetic inhibition of neurons in the dorsolateral subregion of the PAG (dlPAG), but not the ventrolateral PAG (vlPAG), during an aversive event reduced memory formation. Furthermore, inhibition of a specific population of thalamus projecting dlPAG neurons projecting to the anterior paraventricular thalamus (aPVT) reduced aversive learning, but had no effect on the expression of previously learned defensive behaviors. By contrast, inactivation of dlPAG neurons which project to the posterior PVT (pPVT) or centromedial intralaminar thalamic nucleus (CM) had no effect on learning. These results reveal specific subregions and cell types within PAG responsible for its learning related functions.
Collapse
|
27
|
Reis FM, Lee JY, Maesta-Pereira S, Schuette PJ, Chakerian M, Liu J, La-Vu MQ, Tobias BC, Ikebara JM, Kihara AH, Canteras NS, Kao JC, Adhikari A. Dorsal periaqueductal gray ensembles represent approach and avoidance states. eLife 2021; 10:64934. [PMID: 33955356 PMCID: PMC8133778 DOI: 10.7554/elife.64934] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Animals must balance needs to approach threats for risk assessment and to avoid danger. The dorsal periaqueductal gray (dPAG) controls defensive behaviors, but it is unknown how it represents states associated with threat approach and avoidance. We identified a dPAG threatavoidance ensemble in mice that showed higher activity farther from threats such as the open arms of the elevated plus maze and a predator. These cells were also more active during threat avoidance behaviors such as escape and freezing, even though these behaviors have antagonistic motor output. Conversely, the threat approach ensemble was more active during risk assessment behaviors and near threats. Furthermore, unsupervised methods showed that avoidance/approach states were encoded with shared activity patterns across threats. Lastly, the relative number of cells in each ensemble predicted threat avoidance across mice. Thus, dPAG ensembles dynamically encode threat approach and avoidance states, providing a flexible mechanism to balance risk assessment and danger avoidance.
Collapse
Affiliation(s)
- Fernando McV Reis
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Johannes Y Lee
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, United States
| | - Sandra Maesta-Pereira
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Peter J Schuette
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Meghmik Chakerian
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Jinhan Liu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, United States
| | - Mimi Q La-Vu
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Brooke C Tobias
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Juliane M Ikebara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Alexandre Hiroaki Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jonathan C Kao
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, United States
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
28
|
Abstract
Predatory hunting involves measured risk taking by the predator to anticipate dangerous defensive behavior from prey. This involves a mechanism where the motivation to hunt can overcome defensive behaviors toward prey to unlock attack. Here, we found that activation of a subset of GABAergic neurons in the lateral hypothalamus (LHA) promotes hunting but not feeding behavior. Stimulation of projections of these neurons to the periaqueductal gray (PAG), an area known to trigger defensive behaviors, decreased avoidance of prey. Single neuron recording during exposure to prey revealed two distinct PAG neuronal populations encoding risk assessment and flight. We conclude that in male mice, LHA GABAergic neurons are involved in blocking defensive behavior encoded in the PAG to overcome fear of prey. Predators must frequently balance competing approach and defensive behaviors elicited by a moving and potentially dangerous prey. Several brain circuits supporting predation have recently been localized. However, the mechanisms by which these circuits balance the conflict between approach and defense responses remain unknown. Laboratory mice initially show alternating approach and defense responses toward cockroaches, a natural prey, but with repeated exposure become avid hunters. Here, we used in vivo neural activity recording and cell-type specific manipulations in hunting male mice to identify neurons in the lateral hypothalamus and periaqueductal gray that encode and control predatory approach and defense behaviors. We found a subset of GABAergic neurons in lateral hypothalamus that specifically encoded hunting behaviors and whose stimulation triggered predation but not feeding. This population projects to the periaqueductal gray, and stimulation of these projections promoted predation. Neurons in periaqueductal gray encoded both approach and defensive behaviors but only initially when the mouse showed high levels of fear of the prey. Our findings allow us to propose that GABAergic neurons in lateral hypothalamus facilitate predation in part by suppressing defensive responses to prey encoded in the periaqueductal gray. Our results reveal a neural circuit mechanism for controlling the balance between conflicting approach and defensive behaviors elicited by the same stimulus.
Collapse
|
29
|
Montardy Q, Kwan WC, Mundinano IC, Fox DM, Wang L, Gross CT, Bourne JA. Mapping the neural circuitry of predator fear in the nonhuman primate. Brain Struct Funct 2020; 226:195-205. [PMID: 33263778 PMCID: PMC7817595 DOI: 10.1007/s00429-020-02176-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
In rodents, innate and learned fear of predators depends on the medial hypothalamic defensive system, a conserved brain network that lies downstream of the amygdala and promotes avoidance via projections to the periaqueductal gray. Whether this network is involved in primate fear remains unknown. To address this, we provoked flight responses to a predator (moving snake) in the marmoset monkey under laboratory conditions. We combined c-Fos immunolabeling and anterograde/retrograde tracing to map the functional connectivity of the ventromedial hypothalamus, a core node in the medial hypothalamic defensive system. Our findings demonstrate that the ventromedial hypothalamus is recruited by predator exposure in primates and that anatomical connectivity of the rodent and primate medial hypothalamic defensive system are highly conserved.
Collapse
Affiliation(s)
- Quentin Montardy
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - William C Kwan
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Inaki C Mundinano
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Dylan M Fox
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Cornelius T Gross
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015, Monterotondo, RM, Italy.
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|