1
|
Pereira-Obilinovic U, Froudist-Walsh S, Wang XJ. Cognitive network interactions through communication subspaces in large-scale models of the neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621513. [PMID: 39554020 PMCID: PMC11566003 DOI: 10.1101/2024.11.01.621513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Neocortex-wide neural activity is organized into distinct networks of areas engaged in different cognitive processes. To elucidate the underlying mechanism of flexible network reconfiguration, we developed connectivity-constrained macaque and human whole-cortex models. In our model, within-area connectivity consists of a mixture of symmetric, asymmetric, and random motifs that give rise to stable (attractor) or transient (sequential) heterogeneous dynamics. Assuming sparse low-rank plus random inter-areal connectivity constrained by cognitive networks' activation maps, we show that our model captures key aspects of the cognitive networks' dynamics and interactions observed experimentally. In particular, the anti-correlation between the default mode network and the dorsal attention network. Communication between networks is shaped by the alignment of long-range communication subspaces with local connectivity motifs and is switchable in a bottom-up salience-dependent routing mechanism. Furthermore, the frontoparietal multiple-demand network displays a coexistence of stable and dynamic coding, suitable for top-down cognitive control. Our work provides a theoretical framework for understanding the dynamic routing in the cortical networks during cognition.
Collapse
Affiliation(s)
- Ulises Pereira-Obilinovic
- Center for Neural Science, New York University, New York, NY, USA
- The Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Sean Froudist-Walsh
- Bristol Computational Neuroscience Unit, School of Engineering Mathematics and Technology, University of Bristol, Bristol, UK
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
2
|
Bhandari A, Keglovits H, Badre D. Task structure tailors the geometry of neural representations in human lateral prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583429. [PMID: 38496680 PMCID: PMC10942429 DOI: 10.1101/2024.03.06.583429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
How do human brains represent tasks of varying structure? The lateral prefrontal cortex (lPFC) flexibly represents task information. However, principles that shape lPFC representational geometry remain unsettled. We use fMRI and pattern analyses to reveal the structure of lPFC representational geometries as humans perform two distinct categorization tasks- one with flat, conjunctive categories and another with hierarchical, context-dependent categories. We show that lPFC encodes task-relevant information with task-tailored geometries of intermediate dimensionality. These geometries preferentially enhance the separability of task-relevant variables while encoding a subset in abstract form. Specifically, in the flat task, a global axis encodes response-relevant categories abstractly, while category-specific local geometries are high-dimensional. In the hierarchy task, a global axis abstractly encodes the higher-level context, while low-dimensional, context-specific local geometries compress irrelevant information and abstractly encode the relevant information. Comparing these task geometries exposes generalizable principles by which lPFC tailors representations to different tasks.
Collapse
Affiliation(s)
- Apoorva Bhandari
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer St., Providence, RI 02912, USA
| | - Haley Keglovits
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer St., Providence, RI 02912, USA
- Robert J & Nancy D Carney Institute for Brain Science, Brown University, 164 Angell St, Providence, RI 02912, USA
| | - David Badre
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer St., Providence, RI 02912, USA
- Robert J & Nancy D Carney Institute for Brain Science, Brown University, 164 Angell St, Providence, RI 02912, USA
| |
Collapse
|
3
|
Fedorenko E, Piantadosi ST, Gibson EAF. Language is primarily a tool for communication rather than thought. Nature 2024; 630:575-586. [PMID: 38898296 DOI: 10.1038/s41586-024-07522-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/03/2024] [Indexed: 06/21/2024]
Abstract
Language is a defining characteristic of our species, but the function, or functions, that it serves has been debated for centuries. Here we bring recent evidence from neuroscience and allied disciplines to argue that in modern humans, language is a tool for communication, contrary to a prominent view that we use language for thinking. We begin by introducing the brain network that supports linguistic ability in humans. We then review evidence for a double dissociation between language and thought, and discuss several properties of language that suggest that it is optimized for communication. We conclude that although the emergence of language has unquestionably transformed human culture, language does not appear to be a prerequisite for complex thought, including symbolic thought. Instead, language is a powerful tool for the transmission of cultural knowledge; it plausibly co-evolved with our thinking and reasoning capacities, and only reflects, rather than gives rise to, the signature sophistication of human cognition.
Collapse
Affiliation(s)
- Evelina Fedorenko
- Massachusetts Institute of Technology, Cambridge, MA, USA.
- Speech and Hearing in Bioscience and Technology Program at Harvard University, Boston, MA, USA.
| | | | | |
Collapse
|
4
|
Karadachka K, Assem M, Mitchell DJ, Duncan J, Medendorp WP, Mars RB. Structural connectivity of the multiple demand network in humans and comparison to the macaque brain. Cereb Cortex 2023; 33:10959-10971. [PMID: 37798142 PMCID: PMC10646692 DOI: 10.1093/cercor/bhad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 10/07/2023] Open
Abstract
Fluid intelligence encompasses a wide range of abilities such as working memory, problem-solving, and relational reasoning. In the human brain, these abilities are associated with the Multiple Demand Network, traditionally thought to involve combined activity of specific regions predominantly in the prefrontal and parietal cortices. However, the structural basis of the interactions between areas in the Multiple Demand Network, as well as their evolutionary basis among primates, remains largely unexplored. Here, we exploit diffusion MRI to elucidate the major white matter pathways connecting areas of the human core and extended Multiple Demand Network. We then investigate whether similar pathways can be identified in the putative homologous areas of the Multiple Demand Network in the macaque monkey. Finally, we contrast human and monkey networks using a recently proposed approach to compare different species' brains within a common organizational space. Our results indicate that the core Multiple Demand Network relies mostly on dorsal longitudinal connections and, although present in the macaque, these connections are more pronounced in the human brain. The extended Multiple Demand Network relies on distinct pathways and communicates with the core Multiple Demand Network through connections that also appear enhanced in the human compared with the macaque.
Collapse
Affiliation(s)
- Katrin Karadachka
- Donders Institute for Brain, Cognition and Behaviour, Faculty of Social Sciences, Radboud University Nijmegen, 6525HR Nijmegen, The Netherlands
| | - Moataz Assem
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Daniel J Mitchell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Faculty of Social Sciences, Radboud University Nijmegen, 6525HR Nijmegen, The Netherlands
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Faculty of Social Sciences, Radboud University Nijmegen, 6525HR Nijmegen, The Netherlands
- Wellcome Centre for Integrative Neuroimaging Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
5
|
Méndez JC, Perry BAL, Premereur E, Pelekanos V, Ramadan T, Mitchell AS. Variable cardiac responses in rhesus macaque monkeys after discrete mediodorsal thalamus manipulations. Sci Rep 2023; 13:16913. [PMID: 37805650 PMCID: PMC10560229 DOI: 10.1038/s41598-023-42752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 09/14/2023] [Indexed: 10/09/2023] Open
Abstract
The control of some physiological parameters, such as the heart rate, is known to have a role in cognitive and emotional processes. Cardiac changes are also linked to mental health issues and neurodegeneration. Thus, it is not surprising that many of the brain structures typically associated with cognition and emotion also comprise a circuit-the central automatic network-responsible for the modulation of cardiovascular output. The mediodorsal thalamus (MD) is involved in higher cognitive processes and is also known to be connected to some of the key neural structures that regulate cardiovascular function. However, it is unclear whether the MD has any role in this circuitry. Here, we show that discrete manipulations (microstimulation during anaesthetized functional neuroimaging or localized cytotoxin infusions) to either the magnocellular or the parvocellular MD subdivisions led to observable and variable changes in the heart rate of female and male rhesus macaque monkeys. Considering the central positions that these two MD subdivisions have in frontal cortico-thalamocortical circuits, our findings suggest that MD contributions to autonomic regulation may interact with its identified role in higher cognitive processes, representing an important physiological link between cognition and emotion.
Collapse
Affiliation(s)
- Juan Carlos Méndez
- Department of Clinical and Biomedical Sciences, University of Exeter, College House, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Brook A L Perry
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford, OX1 3TH, UK
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
| | | | - Tamara Ramadan
- Department of Biological Sciences, University of Oxford, Oxford, UK
| | - Anna S Mitchell
- Department of Psychology, Speech and Hearing, University of Canterbury, Christchurch, 8041, New Zealand.
| |
Collapse
|
6
|
Wittmann MK, Scheuplein M, Gibbons SG, Noonan MP. Local and global reward learning in the lateral frontal cortex show differential development during human adolescence. PLoS Biol 2023; 21:e3002010. [PMID: 36862726 PMCID: PMC10013901 DOI: 10.1371/journal.pbio.3002010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 03/14/2023] [Accepted: 01/20/2023] [Indexed: 03/03/2023] Open
Abstract
Reward-guided choice is fundamental for adaptive behaviour and depends on several component processes supported by prefrontal cortex. Here, across three studies, we show that two such component processes, linking reward to specific choices and estimating the global reward state, develop during human adolescence and are linked to the lateral portions of the prefrontal cortex. These processes reflect the assignment of rewards contingently to local choices, or noncontingently, to choices that make up the global reward history. Using matched experimental tasks and analysis platforms, we show the influence of both mechanisms increase during adolescence (study 1) and that lesions to lateral frontal cortex (that included and/or disconnected both orbitofrontal and insula cortex) in human adult patients (study 2) and macaque monkeys (study 3) impair both local and global reward learning. Developmental effects were distinguishable from the influence of a decision bias on choice behaviour, known to depend on medial prefrontal cortex. Differences in local and global assignments of reward to choices across adolescence, in the context of delayed grey matter maturation of the lateral orbitofrontal and anterior insula cortex, may underlie changes in adaptive behaviour.
Collapse
Affiliation(s)
- Marco K. Wittmann
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Department of Experimental Psychology, University College London, London, United Kingdom
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, United Kingdom
| | - Maximilian Scheuplein
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- Institute of Education and Child Studies, Leiden University, Leiden, the Netherlands
| | - Sophie G. Gibbons
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - MaryAnn P. Noonan
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Oxford, United Kingdom
- Department of Psychology, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Kadohisa M, Kusunoki M, Mitchell DJ, Bhatia C, Buckley MJ, Duncan J. Frontal and temporal coding dynamics in successive steps of complex behavior. Neuron 2023; 111:430-443.e3. [PMID: 36473483 DOI: 10.1016/j.neuron.2022.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/21/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
Ventrolateral prefrontal cortex (vlPFC), dorsolateral prefrontal cortex (dlPFC), and temporal cortex (TE) all contribute to visual decision-making. Accumulating evidence suggests that vlPFC may play a central role in multiple cognitive operations, perhaps resembling domain-general regions of the human frontal lobe. We trained monkeys in a task calling for learning, retrieval, and spatial selection of rewarded target objects. Recordings of neural activity covered large areas of vlPFC, dlPFC, and TE. Results suggested a central role for vlPFC in each cognitive operation with strong coding of each task feature, while only location was strongly coded in dlPFC and current object identity in TE. During target selection, target location was communicated first from vlPFC to dlPFC, followed by extensive mutual support. In vlPFC, stimulus identities were independently coded in different task operations. The results suggest a central role for the inferior frontal convexity in controlling successive operations of a complex, multi-step task.
Collapse
Affiliation(s)
- Mikiko Kadohisa
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK; Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Makoto Kusunoki
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK; Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Daniel J Mitchell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| | - Cheshta Bhatia
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA
| | - Mark J Buckley
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK; Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK.
| |
Collapse
|
8
|
Wen T, Egner T. Context-independent scaling of neural responses to task difficulty in the multiple-demand network. Cereb Cortex 2022; 33:6013-6027. [PMID: 36513365 PMCID: PMC10183747 DOI: 10.1093/cercor/bhac479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
The multiple-demand (MD) network is sensitive to many aspects of cognitive demand, showing increased activation with more difficult tasks. However, it is currently unknown whether the MD network is modulated by the context in which task difficulty is experienced. Using functional magnetic resonance imaging, we examined MD network responses to low, medium, and high difficulty arithmetic problems within 2 cued contexts, an easy versus a hard set. The results showed that MD activity varied reliably with the absolute difficulty of a problem, independent of the context in which the problem was presented. Similarly, MD activity during task execution was independent of the difficulty of the previous trial. Representational similarity analysis further supported that representational distances in the MD network were consistent with a context-independent code. Finally, we identified several regions outside the MD network that showed context-dependent coding, including the inferior parietal lobule, paracentral lobule, posterior insula, and large areas of the visual cortex. In sum, a cognitive effort is processed by the MD network in a context-independent manner. We suggest that this absolute coding of cognitive demand in the MD network reflects the limited range of task difficulty that can be supported by the cognitive apparatus.
Collapse
Affiliation(s)
- Tanya Wen
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| | - Tobias Egner
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States.,Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States
| |
Collapse
|
9
|
Ainsworth M, Wu Z, Browncross H, Mitchell AS, Bell AH, Buckley MJ. Frontopolar cortex shapes brain network structure across prefrontal and posterior cingulate cortex. Prog Neurobiol 2022; 217:102314. [DOI: 10.1016/j.pneurobio.2022.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/08/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
|
10
|
Haber SN, Liu H, Seidlitz J, Bullmore E. Prefrontal connectomics: from anatomy to human imaging. Neuropsychopharmacology 2022; 47:20-40. [PMID: 34584210 PMCID: PMC8617085 DOI: 10.1038/s41386-021-01156-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022]
Abstract
The fundamental importance of prefrontal cortical connectivity to information processing and, therefore, disorders of cognition, emotion, and behavior has been recognized for decades. Anatomic tracing studies in animals have formed the basis for delineating the direct monosynaptic connectivity, from cells of origin, through axon trajectories, to synaptic terminals. Advances in neuroimaging combined with network science have taken the lead in developing complex wiring diagrams or connectomes of the human brain. A key question is how well these magnetic resonance imaging (MRI)-derived networks and hubs reflect the anatomic "hard wiring" first proposed to underlie the distribution of information for large-scale network interactions. In this review, we address this challenge by focusing on what is known about monosynaptic prefrontal cortical connections in non-human primates and how this compares to MRI-derived measurements of network organization in humans. First, we outline the anatomic cortical connections and pathways for each prefrontal cortex (PFC) region. We then review the available MRI-based techniques for indirectly measuring structural and functional connectivity, and introduce graph theoretical methods for analysis of hubs, modules, and topologically integrative features of the connectome. Finally, we bring these two approaches together, using specific examples, to demonstrate how monosynaptic connections, demonstrated by tract-tracing studies, can directly inform understanding of the composition of PFC nodes and hubs, and the edges or pathways that connect PFC to cortical and subcortical areas.
Collapse
Affiliation(s)
- Suzanne N. Haber
- grid.412750.50000 0004 1936 9166Department of Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642 USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478 USA
| | - Hesheng Liu
- grid.259828.c0000 0001 2189 3475Department of Neuroscience, Medical University of South Carolina, Charleston, SC USA ,grid.38142.3c000000041936754XDepartment of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Jakob Seidlitz
- grid.25879.310000 0004 1936 8972Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Ed Bullmore
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Cambridge Biomedical Campus, Cambridge, CB2 0SZ UK
| |
Collapse
|
11
|
Ainsworth M, Sallet J, Joly O, Kyriazis D, Kriegeskorte N, Duncan J, Schüffelgen U, Rushworth MFS, Bell AH. Viewing Ambiguous Social Interactions Increases Functional Connectivity between Frontal and Temporal Nodes of the Social Brain. J Neurosci 2021; 41:6070-6086. [PMID: 34099508 PMCID: PMC8276745 DOI: 10.1523/jneurosci.0870-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 11/25/2022] Open
Abstract
Social behavior is coordinated by a network of brain regions, including those involved in the perception of social stimuli and those involved in complex functions, such as inferring perceptual and mental states and controlling social interactions. The properties and function of many of these regions in isolation are relatively well understood, but less is known about how these regions interact while processing dynamic social interactions. To investigate whether the functional connectivity between brain regions is modulated by social context, we collected fMRI data from male monkeys (Macaca mulatta) viewing videos of social interactions labeled as "affiliative," "aggressive," or "ambiguous." We show activation related to the perception of social interactions along both banks of the superior temporal sulcus, parietal cortex, medial and lateral frontal cortex, and the caudate nucleus. Within this network, we show that fronto-temporal functional connectivity is significantly modulated by social context. Crucially, we link the observation of specific behaviors to changes in functional connectivity within our network. Viewing aggressive behavior was associated with a limited increase in temporo-temporal and a weak increase in cingulate-temporal connectivity. By contrast, viewing interactions where the outcome was uncertain was associated with a pronounced increase in temporo-temporal, and cingulate-temporal functional connectivity. We hypothesize that this widespread network synchronization occurs when cingulate and temporal areas coordinate their activity when more difficult social inferences are being made.SIGNIFICANCE STATEMENT Processing social information from our environment requires the activation of several brain regions, which are concentrated within the frontal and temporal lobes. However, little is known about how these areas interact to facilitate the processing of different social interactions. Here we show that functional connectivity within and between the frontal and temporal lobes is modulated by social context. Specifically, we demonstrate that viewing social interactions where the outcome was unclear is associated with increased synchrony within and between the cingulate cortex and temporal cortices. These findings suggest that the coordination between the cingulate and temporal cortices is enhanced when more difficult social inferences are being made.
Collapse
Affiliation(s)
- Matthew Ainsworth
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom, CB2 7EF
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, OX2 6GG
| | - Jérôme Sallet
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, OX2 6GG
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom, OX3 9DU
- Inserm, Stem Cell and Brain Research Institute U1208, Université Lyon 1, 69500 Bron, France
| | - Olivier Joly
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom, CB2 7EF
| | - Diana Kyriazis
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom, CB2 7EF
| | - Nikolaus Kriegeskorte
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom, CB2 7EF
- Zuckerman Mind Brain Institute, Columbia University, New York, New York, NY 10027
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom, CB2 7EF
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, OX2 6GG
| | - Urs Schüffelgen
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, OX2 6GG
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom, OX3 9DU
| | - Matthew F S Rushworth
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, OX2 6GG
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom, OX3 9DU
| | - Andrew H Bell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom, CB2 7EF
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, OX2 6GG
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom, OX3 9DU
| |
Collapse
|
12
|
Roles of the Default Mode and Multiple-Demand Networks in Naturalistic versus Symbolic Decisions. J Neurosci 2021; 41:2214-2228. [PMID: 33472829 PMCID: PMC8018769 DOI: 10.1523/jneurosci.1888-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/21/2022] Open
Abstract
The default mode network (DMN) is often associated with representing semantic, social, and situational content of contexts and episodes. The DMN may therefore be important for contextual decision-making, through representing situational constraints and simulating common courses of events. Most decision-making paradigms, however, use symbolic stimuli and instead implicate cognitive control regions, such as the multiple demand (MD) system. This fMRI study aimed to contrast the brain mechanisms underlying decision-making based on rich naturalistic contexts or symbolic cues. While performing an ongoing task, 40 human participants (25 female) responded to different sounds. For one sound, the stimulus-response mapping was fixed; responses for the other sounds depended on the visual context: either lifelike scenes or letter symbols, varying across participants. Despite minimal behavioral differences between the groups, posterior DMN regions showed increased activity during context-dependent decision-making using the naturalistic scenes only, compared with symbolic cues. More anterior temporal and frontal DMN regions showed a different pattern, with sensitivity to the need for contextual control, but not to the type of context. Furthermore, in the scenes group, widespread DMN regions showed stronger representation of not just the context but also the sound whose significance it modulated. In comparison, the MD system showed strong univariate activity for every decision, but, intriguingly, somewhat reduced activity in the case of a scene-based but demanding context-dependent decision. Depending on context, we suggest, either DMN or MD regions may play a prominent role in selection and control of appropriate behavior. SIGNIFICANCE STATEMENT Contextual knowledge is widely believed to be important for guiding real-world goal-directed behavior. Much remains to be understood, however, regarding the underlying brain mechanisms. Using a novel paradigm to contrast decisions based on richly meaningful naturalistic scenes with decisions based on symbolic cues, we find that both multiple demand regions and default mode regions may contribute to the cognitive control of behavior. Rich semantic context enhances representation not just of the context itself, but also of the contents of the decision that it controls. Dependence of a decision on naturalistic context can also reverse the common pattern of multiple demand regions responding more, and default mode regions responding less, to more difficult decisions.
Collapse
|
13
|
Procyk E, Fontanier V, Sarazin M, Delord B, Goussi C, Wilson CRE. The midcingulate cortex and temporal integration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 158:395-419. [PMID: 33785153 DOI: 10.1016/bs.irn.2020.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability to integrate information across time at multiple timescales is a vital element of adaptive behavior, because it provides the capacity to link events separated in time, extract useful information from previous events and actions, and to construct plans for behavior over time. Here we make the argument that this information integration capacity is a central function of the midcingulate cortex (MCC), by reviewing the anatomical, intrinsic network, neurophysiological, and behavioral properties of MCC. The MCC is the region of the medial wall situated dorsal to the corpus callosum and sometimes referred to as dACC. It is positioned within the densely connected core network of the primate brain, with a rich diversity of cognitive, somatomotor and autonomic connections. Furthermore, the MCC shows strong local network inhibition which appears to control the metastability of the region-an established feature of many cortical networks in which the neural dynamics move through a series of quasi-stationary states. We propose that the strong local inhibition in MCC leads to particularly long dynamic state durations, and so less frequent transitions. Apparently as a result of these anatomical features and synaptic and ionic determinants, the MCC cells display the longest neuronal timescales among a range of recorded cortical areas. We conclude that the anatomical position, intrinsic properties, and local network interactions of MCC make it a uniquely positioned cortical area to perform the integration of diverse information over time that is necessary for behavioral adaptation.
Collapse
Affiliation(s)
- Emmanuel Procyk
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| | - Vincent Fontanier
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Matthieu Sarazin
- Institute of Intelligent Systems and Robotics (ISIR), Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7222, Paris, France
| | - Bruno Delord
- Institute of Intelligent Systems and Robotics (ISIR), Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7222, Paris, France
| | - Clément Goussi
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Charles R E Wilson
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| |
Collapse
|
14
|
Ivanova AA, Srikant S, Sueoka Y, Kean HH, Dhamala R, O'Reilly UM, Bers MU, Fedorenko E. Comprehension of computer code relies primarily on domain-general executive brain regions. eLife 2020; 9:e58906. [PMID: 33319744 PMCID: PMC7738192 DOI: 10.7554/elife.58906] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022] Open
Abstract
Computer programming is a novel cognitive tool that has transformed modern society. What cognitive and neural mechanisms support this skill? Here, we used functional magnetic resonance imaging to investigate two candidate brain systems: the multiple demand (MD) system, typically recruited during math, logic, problem solving, and executive tasks, and the language system, typically recruited during linguistic processing. We examined MD and language system responses to code written in Python, a text-based programming language (Experiment 1) and in ScratchJr, a graphical programming language (Experiment 2); for both, we contrasted responses to code problems with responses to content-matched sentence problems. We found that the MD system exhibited strong bilateral responses to code in both experiments, whereas the language system responded strongly to sentence problems, but weakly or not at all to code problems. Thus, the MD system supports the use of novel cognitive tools even when the input is structurally similar to natural language.
Collapse
Affiliation(s)
- Anna A Ivanova
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Shashank Srikant
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yotaro Sueoka
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Hope H Kean
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Riva Dhamala
- Eliot-Pearson Department of Child Study and Human Development, Tufts UniversityMedfordUnited States
| | - Una-May O'Reilly
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Marina U Bers
- Eliot-Pearson Department of Child Study and Human Development, Tufts UniversityMedfordUnited States
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
15
|
Pelekanos V, Premereur E, Mitchell DJ, Chakraborty S, Mason S, Lee ACH, Mitchell AS. Corticocortical and Thalamocortical Changes in Functional Connectivity and White Matter Structural Integrity after Reward-Guided Learning of Visuospatial Discriminations in Rhesus Monkeys. J Neurosci 2020; 40:7887-7901. [PMID: 32900835 PMCID: PMC7548693 DOI: 10.1523/jneurosci.0364-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/30/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
The frontal cortex and temporal lobes together regulate complex learning and memory capabilities. Here, we collected resting-state functional and diffusion-weighted MRI data before and after male rhesus macaque monkeys received extensive training to learn novel visuospatial discriminations (reward-guided learning). We found functional connectivity changes in orbitofrontal, ventromedial prefrontal, inferotemporal, entorhinal, retrosplenial, and anterior cingulate cortices, the subicular complex, and the dorsal, medial thalamus. These corticocortical and thalamocortical changes in functional connectivity were accompanied by related white matter structural alterations in the uncinate fasciculus, fornix, and ventral prefrontal tract: tracts that connect (sub)cortical networks and are implicated in learning and memory processes in monkeys and humans. After the well-trained monkeys received fornix transection, they were impaired in learning new visuospatial discriminations. In addition, the functional connectivity profile that was observed after the training was altered. These changes were accompanied by white matter changes in the ventral prefrontal tract, although the integrity of the uncinate fasciculus remained unchanged. Our experiments highlight the importance of different communication relayed among corticocortical and thalamocortical circuitry for the ability to learn new visuospatial associations (learning-to-learn) and to make reward-guided decisions.SIGNIFICANCE STATEMENT Frontal neural networks and the temporal lobes contribute to reward-guided learning in mammals. Here, we provide novel insight by showing that specific corticocortical and thalamocortical functional connectivity is altered after rhesus monkeys received extensive training to learn novel visuospatial discriminations. Contiguous white matter fiber pathways linking these gray matter structures, namely, the uncinate fasciculus, fornix, and ventral prefrontal tract, showed structural changes after completing training in the visuospatial task. Additionally, different patterns of functional and structural connectivity are reported after removal of subcortical connections within the extended hippocampal system, via fornix transection. These results highlight the importance of both corticocortical and thalamocortical interactions in reward-guided learning in the normal brain and identify brain structures important for memory capabilities after injury.
Collapse
Affiliation(s)
- Vassilis Pelekanos
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium
| | - Daniel J Mitchell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Subhojit Chakraborty
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Stuart Mason
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
| | - Andy C H Lee
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario M1C 1A4, Canada
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario M6A 2E1, Canada
| | - Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
| |
Collapse
|
16
|
Duncan J, Assem M, Shashidhara S. Integrated Intelligence from Distributed Brain Activity. Trends Cogn Sci 2020; 24:838-852. [PMID: 32771330 PMCID: PMC7116395 DOI: 10.1016/j.tics.2020.06.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/21/2023]
Abstract
How does organized cognition arise from distributed brain activity? Recent analyses of fluid intelligence suggest a core process of cognitive focus and integration, organizing the components of a cognitive operation into the required computational structure. A cortical 'multiple-demand' (MD) system is closely linked to fluid intelligence, and recent imaging data define nine specific MD patches distributed across frontal, parietal, and occipitotemporal cortex. Wide cortical distribution, relative functional specialization, and strong connectivity suggest a basis for cognitive integration, matching electrophysiological evidence for binding of cognitive operations to their contents. Though still only in broad outline, these data suggest how distributed brain activity can build complex, organized cognition.
Collapse
Affiliation(s)
- John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK; Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK.
| | - Moataz Assem
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Sneha Shashidhara
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| |
Collapse
|
17
|
Hierarchical Representation of Multistep Tasks in Multiple-Demand and Default Mode Networks. J Neurosci 2020; 40:7724-7738. [PMID: 32868460 PMCID: PMC7531550 DOI: 10.1523/jneurosci.0594-20.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/08/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
Task episodes consist of sequences of steps that are performed to achieve a goal. We used fMRI to examine neural representation of task identity, component items, and sequential position, focusing on two major cortical systems—the multiple-demand (MD) and default mode networks (DMN). Human participants (20 males, 22 females) learned six tasks each consisting of four steps. Inside the scanner, participants were cued which task to perform and then sequentially identified the target item of each step in the correct order. Univariate time course analyses indicated that intra-episode progress was tracked by a tonically increasing global response, plus an increasing phasic step response specific to MD regions. Inter-episode boundaries evoked a widespread response at episode onset, plus a marked offset response specific to DMN regions. Representational similarity analysis (RSA) was used to examine representation of task identity and component steps. Both networks represented the content and position of individual steps, however the DMN preferentially represented task identity while the MD network preferentially represented step-level information. Thus, although both MD and DMN networks are sensitive to step-level and episode-level information in the context of hierarchical task performance, they exhibit dissociable profiles in terms of both temporal dynamics and representational content. The results suggest collaboration of multiple brain regions in control of multistep behavior, with MD regions particularly involved in processing the detail of individual steps, and DMN adding representation of broad task context. SIGNIFICANCE STATEMENT Achieving one's goals requires knowing what to do and when. Tasks are typically hierarchical, with smaller steps nested within overarching goals. For effective, flexible behavior, the brain must represent both levels. We contrast response time courses and information content of two major cortical systems—the multiple-demand (MD) and default mode networks (DMN)—during multistep task episodes. Both networks are sensitive to step-level and episode-level information, but with dissociable profiles. Intra-episode progress is tracked by tonically increasing global responses, plus MD-specific increasing phasic step responses. Inter-episode boundaries evoke widespread responses at episode onset, plus DMN-specific offset responses. Both networks represent content and position of individual steps; however, the DMN and MD networks favor task identity and step-level information, respectively.
Collapse
|
18
|
Assem M, Glasser MF, Van Essen DC, Duncan J. A Domain-General Cognitive Core Defined in Multimodally Parcellated Human Cortex. Cereb Cortex 2020; 30:4361-4380. [PMID: 32244253 PMCID: PMC7325801 DOI: 10.1093/cercor/bhaa023] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Numerous brain imaging studies identified a domain-general or "multiple-demand" (MD) activation pattern accompanying many tasks and may play a core role in cognitive control. Though this finding is well established, the limited spatial localization provided by traditional imaging methods precluded a consensus regarding the precise anatomy, functional differentiation, and connectivity of the MD system. To address these limitations, we used data from 449 subjects from the Human Connectome Project, with the cortex of each individual parcellated using neurobiologically grounded multimodal MRI features. The conjunction of three cognitive contrasts reveals a core of 10 widely distributed MD parcels per hemisphere that are most strongly activated and functionally interconnected, surrounded by a penumbra of 17 additional areas. Outside cerebral cortex, MD activation is most prominent in the caudate and cerebellum. Comparison with canonical resting-state networks shows MD regions concentrated in the fronto-parietal network but also engaging three other networks. MD activations show modest relative task preferences accompanying strong co-recruitment. With distributed anatomical organization, mosaic functional preferences, and strong interconnectivity, we suggest MD regions are well positioned to integrate and assemble the diverse components of cognitive operations. Our precise delineation of MD regions provides a basis for refined analyses of their functions.
Collapse
Affiliation(s)
- Moataz Assem
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - Matthew F Glasser
- Department of Neuroscience, Washington University in St. Louis, Saint Louis, MO 63110, USA.,Department of Radiology, Washington University in St. Louis, Saint Louis, MO 63110, USA.,St. Luke's Hospital, Saint Louis, MO 63017, USA
| | - David C Van Essen
- Department of Neuroscience, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.,Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
| |
Collapse
|
19
|
Fedorenko E, Blank IA. Broca's Area Is Not a Natural Kind. Trends Cogn Sci 2020; 24:270-284. [PMID: 32160565 PMCID: PMC7211504 DOI: 10.1016/j.tics.2020.01.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/21/2019] [Accepted: 01/09/2020] [Indexed: 01/09/2023]
Abstract
Theories of human cognition prominently feature 'Broca's area', which causally contributes to a myriad of mental functions. However, Broca's area is not a monolithic, multipurpose unit - it is structurally and functionally heterogeneous. Some functions engaging (subsets of) this area share neurocognitive resources, whereas others rely on separable circuits. A decade of converging evidence has now illuminated a fundamental distinction between two subregions of Broca's area that likely play computationally distinct roles in cognition: one belongs to the domain-specific 'language network', the other to the domain-general 'multiple-demand (MD) network'. Claims about Broca's area should be (re)cast in terms of these (and other, as yet undetermined) functional components, to establish a cumulative research enterprise where empirical findings can be replicated and theoretical proposals can be meaningfully compared and falsified.
Collapse
Affiliation(s)
- Evelina Fedorenko
- Brain and Cognitive Sciences Department, and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
| | - Idan A Blank
- Department of Psychology, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
20
|
Perrone-Bertolotti M, El Bouzaïdi Tiali S, Vidal JR, Petton M, Croize AC, Deman P, Rheims S, Minotti L, Bhattacharjee M, Baciu M, Kahane P, Lachaux JP. A real-time marker of object-based attention in the human brain. A possible component of a "gate-keeping mechanism" performing late attentional selection in the Ventro-Lateral Prefrontal Cortex. Neuroimage 2020; 210:116574. [PMID: 31981780 DOI: 10.1016/j.neuroimage.2020.116574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/20/2019] [Accepted: 01/18/2020] [Indexed: 10/25/2022] Open
Abstract
The decision to process an incoming stimulus attentively - and to trigger a follow-up cascade of high-level processes - is strategic for the human brain as it becomes transiently unavailable to subsequent stimulus processing. In this study, we set to identify brain networks that carry out such evaluations. We therefore assessed the time-course of neural responses with intracerebral EEG in human patients during an attentional reading task, contrasting to-be-attended vs. to-be-ignored items. We measured High-Frequency Activity [50-150 Hz] as a proxy of population-level spiking activity and we identified a crucial component of a Gate-Keeping Mechanism bilateral in the mid-Ventro-Lateral Prefrontal Cortex (VLPFC), at the interplay of the Ventral and Dorsal Attention Networks, that selectively reacts before domain specialized cortical regions that engage in full stimulus analysis according to task demands.
Collapse
Affiliation(s)
- M Perrone-Bertolotti
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France; Institut Universitaire de France (IUF), France.
| | - S El Bouzaïdi Tiali
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - J R Vidal
- UMRS 449, Université Catholique de Lyon, Ecole Pratique des Hautes Etudes, 69002, Lyon, France
| | - M Petton
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, DYCOG, Lyon, F-69000, France; University of Lyon, Lyon, France
| | - A C Croize
- INSERM, U836, F-38000, Grenoble, France; Univ. Grenoble Alpes, Institut des Neurosciences, GIN, 38000, Grenoble, France
| | - P Deman
- INSERM, U836, F-38000, Grenoble, France; Univ. Grenoble Alpes, Institut des Neurosciences, GIN, 38000, Grenoble, France
| | - S Rheims
- University of Lyon, Lyon, France; INSERM U1028, CNRS UMR 5292, Lyon's Neuroscience Research Center, Translational and Integrative Research in Epilepsy, TIGER, Lyon, F-69000, France; Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Lyon, France
| | - L Minotti
- Univ. Grenoble Alpes, Institut des Neurosciences, GIN, 38000, Grenoble, France; CHU Grenoble Alpes, Pôle Neurologie Psychiatrie, 38000, Grenoble, France; Inserm, U1216, F-38000, Grenoble, France
| | - M Bhattacharjee
- INSERM, U836, F-38000, Grenoble, France; Univ. Grenoble Alpes, Institut des Neurosciences, GIN, 38000, Grenoble, France
| | - M Baciu
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France; Institut Universitaire de France (IUF), France
| | - P Kahane
- Univ. Grenoble Alpes, Institut des Neurosciences, GIN, 38000, Grenoble, France; CHU Grenoble Alpes, Pôle Neurologie Psychiatrie, 38000, Grenoble, France; Inserm, U1216, F-38000, Grenoble, France
| | - J P Lachaux
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, DYCOG, Lyon, F-69000, France; University of Lyon, Lyon, France
| |
Collapse
|
21
|
Vanier D, Sherwood C, Smaers J. Distinct Patterns of Hippocampal and Neocortical Evolution in Primates. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:171-181. [DOI: 10.1159/000500625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/28/2019] [Indexed: 11/19/2022]
Abstract
Because of the central role of the hippocampus in representing spatial and temporal details of experience, comparative studies of its volume and structure are relevant to understanding the evolution of representational memory across species. The hippocampal formation, however, is organized into separate anatomical subregions with distinct functions, and little is known about the evolutionary diversification of these subregions. We investigate relative volumetric changes in hippocampal subregions across a large sample of primate species. We then compare the evolution of the hippocampal formation to the neocortex. Results across hippocampal subregions indicate that, compared to strepsirrhines, the anthropoid lineage displays a decrease in relative CA3, fascia dentata, subiculum, and rhinal cortex volume in tandem with an increase in relative neocortical volume. These findings indicate that hippocampal function in anthropoids might be substantially augmented by the executive decision-making functions of the neocortex. Humans are found to have a unique cerebral organization combining increased relative CA3, subiculum, and rhinal cortex with increased relative neocortical volumes, suggesting that these regions may play a role in behaviors that are uniquely specialized in humans.
Collapse
|
22
|
Paunov AM, Blank IA, Fedorenko E. Functionally distinct language and Theory of Mind networks are synchronized at rest and during language comprehension. J Neurophysiol 2019; 121:1244-1265. [PMID: 30601693 PMCID: PMC6485726 DOI: 10.1152/jn.00619.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/26/2018] [Accepted: 12/30/2018] [Indexed: 12/30/2022] Open
Abstract
Communication requires the abilities to generate and interpret utterances and to infer the beliefs, desires, and goals of others ("Theory of Mind"; ToM). These two abilities have been shown to dissociate: individuals with aphasia retain the ability to think about others' mental states; and individuals with autism are impaired in social reasoning, but their basic language processing is often intact. In line with this evidence from brain disorders, functional MRI (fMRI) studies have shown that linguistic and ToM abilities recruit distinct sets of brain regions. And yet, language is a social tool that allows us to share thoughts with one another. Thus, the language and ToM brain networks must share information despite being implemented in distinct neural circuits. Here, we investigated potential interactions between these networks during naturalistic cognition using functional correlations in fMRI. The networks were functionally defined in individual participants, in terms of preference for sentences over nonwords for language, and for belief inference over physical-event processing for ToM, with both a verbal and a nonverbal paradigm. Although, across experiments, interregion correlations within each network were higher than between-network correlations, we also observed above-baseline synchronization of blood oxygenation level-dependent signal fluctuations between the two networks during rest and story comprehension. This synchronization was functionally specific: neither network was synchronized with the executive control network (functionally defined in terms of preference for a harder over easier version of an executive task). Thus, coordination between the language and ToM networks appears to be an inherent and specific characteristic of their functional architecture. NEW & NOTEWORTHY Humans differ from nonhuman primates in their abilities to communicate linguistically and to infer others' mental states. Although linguistic and social abilities appear to be interlinked onto- and phylogenetically, they are dissociated in the adult human brain. Yet successful communication requires language and social reasoning to work in concert. Using functional MRI, we show that language regions are synchronized with social regions during rest and language comprehension, pointing to a possible mechanism for internetwork interaction.
Collapse
Affiliation(s)
- Alexander M Paunov
- Massachusetts Institute of Technology, Brain & Cognitive Sciences Department , Cambridge, Massachusetts
| | - Idan A Blank
- Massachusetts Institute of Technology, Brain & Cognitive Sciences Department , Cambridge, Massachusetts
| | - Evelina Fedorenko
- Massachusetts Institute of Technology, Brain & Cognitive Sciences Department , Cambridge, Massachusetts
- Harvard Medical School, Psychiatry Department , Boston, Massachusetts
- Massachusetts General Hospital, Psychiatry Department , Boston, Massachusetts
| |
Collapse
|
23
|
Mineroff Z, Blank IA, Mahowald K, Fedorenko E. A robust dissociation among the language, multiple demand, and default mode networks: Evidence from inter-region correlations in effect size. Neuropsychologia 2018; 119:501-511. [PMID: 30243926 PMCID: PMC6191329 DOI: 10.1016/j.neuropsychologia.2018.09.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
Complex cognitive processes, including language, rely on multiple mental operations that are carried out by several large-scale functional networks in the frontal, temporal, and parietal association cortices of the human brain. The central division of cognitive labor is between two fronto-parietal bilateral networks: (a) the multiple demand (MD) network, which supports executive processes, such as working memory and cognitive control, and is engaged by diverse task domains, including language, especially when comprehension gets difficult; and (b) the default mode network (DMN), which supports introspective processes, such as mind wandering, and is active when we are not engaged in processing external stimuli. These two networks are strongly dissociated in both their functional profiles and their patterns of activity fluctuations during naturalistic cognition. Here, we focus on the functional relationship between these two networks and a third network: (c) the fronto-temporal left-lateralized "core" language network, which is selectively recruited by linguistic processing. Is the language network distinct and dissociated from both the MD network and the DMN, or is it synchronized and integrated with one or both of them? Recent work has provided evidence for a dissociation between the language network and the MD network. However, the relationship between the language network and the DMN is less clear, with some evidence for coordinated activity patterns and similar response profiles, perhaps due to the role of both in semantic processing. Here we use a novel fMRI approach to examine the relationship among the three networks: we measure the strength of activations in different language, MD, and DMN regions to functional contrasts typically used to identify each network, and then test which regions co-vary in their contrast effect sizes across 60 individuals. We find that effect sizes correlate strongly within each network (e.g., one language region and another language region, or one DMN region and another DMN region), but show little or no correlation for region pairs across networks (e.g., a language region and a DMN region). Thus, using our novel method, we replicate the language/MD network dissociation discovered previously with other approaches, and also show that the language network is robustly dissociated from the DMN, overall suggesting that these three networks contribute to high-level cognition in different ways and, perhaps, support distinct computations. Inter-individual differences in effect sizes therefore do not simply reflect general differences in vascularization or attention, but exhibit sensitivity to the functional architecture of the brain. The strength of activation in each network can thus be probed separately in studies that attempt to link neural variability to behavioral or genetic variability.
Collapse
Affiliation(s)
| | | | | | - Evelina Fedorenko
- Massachusetts Institute of Technology, USA; Harvard Medical School, USA; Massachusetts General Hospital, USA.
| |
Collapse
|
24
|
Ainsworth M, Browncross H, Mitchell DJ, Mitchell AS, Passingham RE, Buckley MJ, Duncan J, Bell AH. Functional reorganisation and recovery following cortical lesions: A preliminary study in macaque monkeys. Neuropsychologia 2018; 119:382-391. [PMID: 30218841 PMCID: PMC6200854 DOI: 10.1016/j.neuropsychologia.2018.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/23/2018] [Accepted: 08/27/2018] [Indexed: 11/26/2022]
Abstract
Damage following traumatic brain injury or stroke can often extend beyond the boundaries of the initial insult and can lead to maladaptive cortical reorganisation. On the other hand, beneficial cortical reorganisation leading to recovery of function can also occur. We used resting state FMRI to investigate how cortical networks in the macaque brain change across time in response to lesions to the prefrontal cortex, and how this reorganisation correlated with changes in behavioural performance in cognitive tasks. After prelesion testing and scanning, two monkeys received a lesion to regions surrounding the left principal sulcus followed by periodic testing and scanning. Later, the animals received another lesion to the opposite hemisphere and additional testing and scanning. Following the first lesion, we observed both a behavioural impairment and decrease in functional connectivity, predominantly in frontal-frontal networks. Approximately 8 weeks later, performance and connectivity patterns both improved. Following the second lesion, we observed a further behavioural deficit and decrease in connectivity that showed little recovery. We discuss how different mechanisms including alternate behavioural strategies and reorganisation of specific prefrontal networks may have led to improvements in behaviour. Further work will be needed to confirm these mechanisms.
Collapse
Affiliation(s)
- Matthew Ainsworth
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, UK
| | - Helen Browncross
- Dept. of Experimental Psychology, University of Oxford, Parks Road, Oxford, UK
| | - Daniel J Mitchell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, UK
| | - Anna S Mitchell
- Dept. of Experimental Psychology, University of Oxford, Parks Road, Oxford, UK
| | | | - Mark J Buckley
- Dept. of Experimental Psychology, University of Oxford, Parks Road, Oxford, UK
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, UK; Dept. of Experimental Psychology, University of Oxford, Parks Road, Oxford, UK
| | - Andrew H Bell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, UK; Dept. of Experimental Psychology, University of Oxford, Parks Road, Oxford, UK.
| |
Collapse
|
25
|
Parro C, Dixon ML, Christoff K. The neural basis of motivational influences on cognitive control. Hum Brain Mapp 2018; 39:5097-5111. [PMID: 30120846 DOI: 10.1002/hbm.24348] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 07/16/2018] [Accepted: 07/30/2018] [Indexed: 12/22/2022] Open
Abstract
Cognitive control mechanisms support the deliberate regulation of thought and behavior based on current goals. Recent work suggests that motivational incentives improve cognitive control and has begun to elucidate critical neural substrates. We conducted a quantitative meta-analysis of neuroimaging studies of motivated cognitive control using activation likelihood estimation (ALE) and Neurosynth to delineate the brain regions that are consistently activated across studies. The analysis included studies that investigated changes in brain activation during cognitive control tasks when reward incentives were present versus absent. The ALE analysis revealed consistent recruitment in regions associated with the frontoparietal control network including the inferior frontal sulcus and intraparietal sulcus, as well as regions associated with the salience network including the anterior insula and anterior mid-cingulate cortex. As a complementary analysis, we performed a large-scale exploratory meta-analysis using Neurosynth to identify regions that are recruited in studies using of the terms cognitive control and incentive. This analysis replicated the ALE results and also identified the rostrolateral prefrontal cortex, caudate nucleus, nucleus accumbens, medial thalamus, inferior frontal junction, premotor cortex, and hippocampus. Finally, we separately compared recruitment during cue and target periods, which tap into proactive engagement of rule-outcome associations, and the mobilization of appropriate viscero-motor states to execute a response, respectively. We found that largely distinct sets of brain regions are recruited during cue and target periods. Altogether, these findings suggest that flexible interactions between frontoparietal, salience, and dopaminergic midbrain-striatal networks may allow control demands to be precisely tailored based on expected value.
Collapse
Affiliation(s)
- Cameron Parro
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew L Dixon
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kalina Christoff
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Mars RB, Sotiropoulos SN, Passingham RE, Sallet J, Verhagen L, Khrapitchev AA, Sibson N, Jbabdi S. Whole brain comparative anatomy using connectivity blueprints. eLife 2018; 7:e35237. [PMID: 29749930 PMCID: PMC5984034 DOI: 10.7554/elife.35237] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
Comparing the brains of related species faces the challenges of establishing homologies whilst accommodating evolutionary specializations. Here we propose a general framework for understanding similarities and differences between the brains of primates. The approach uses white matter blueprints of the whole cortex based on a set of white matter tracts that can be anatomically matched across species. The blueprints provide a common reference space that allows us to navigate between brains of different species, identify homologous cortical areas, or to transform whole cortical maps from one species to the other. Specializations are cast within this framework as deviations between the species' blueprints. We illustrate how this approach can be used to compare human and macaque brains.
Collapse
Affiliation(s)
- Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenNetherlands
| | - Stamatios N Sotiropoulos
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Sir Peter Mansfield Imaging Centre, School of MedicineUniversity of NottinghamNottinghamUnited Kingdom
| | - Richard E Passingham
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
| | - Alexandre A Khrapitchev
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUnited Kingdom
| | - Nicola Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUnited Kingdom
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
27
|
Efficient communication dynamics on macro-connectome, and the propagation speed. Sci Rep 2018; 8:2510. [PMID: 29410439 PMCID: PMC5802747 DOI: 10.1038/s41598-018-20591-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/22/2018] [Indexed: 01/21/2023] Open
Abstract
Global communication dynamics in the brain can be captured using fMRI, MEG, or electrocorticography (ECoG), and the global slow dynamics often represent anatomical constraints. Complementary single-/multi-unit recordings have described local fast temporal dynamics. However, global fast temporal dynamics remain incompletely understood with considering of anatomical constraints. Therefore, we compared temporal aspects of cross-area propagations of single-unit recordings and ECoG, and investigated their anatomical bases. First, we demonstrated how both evoked and spontaneous ECoGs can accurately predict latencies of single-unit recordings. Next, we estimated the propagation velocity (1.0–1.5 m/s) from brain-wide data and found that it was fairly stable among different conscious levels. We also found that the shortest paths in anatomical topology strongly predicted the latencies. Finally, we demonstrated that Communicability, a novel graph-theoretic measure, is able to quantify that more than 90% of paths should use shortest paths and the remaining are non-shortest walks. These results revealed that macro-connectome is efficiently wired for detailed communication dynamics in the brain.
Collapse
|
28
|
Working Memory and Decision-Making in a Frontoparietal Circuit Model. J Neurosci 2017; 37:12167-12186. [PMID: 29114071 DOI: 10.1523/jneurosci.0343-17.2017] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/24/2017] [Accepted: 09/19/2017] [Indexed: 12/25/2022] Open
Abstract
Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models.SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental "building blocks" of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and suggests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks.
Collapse
|
29
|
Papadopoulos A, Sforazzini F, Egan G, Jamadar S. Functional subdivisions within the human intraparietal sulcus are involved in visuospatial transformation in a non-context-dependent manner. Hum Brain Mapp 2017; 39:354-368. [PMID: 29058355 DOI: 10.1002/hbm.23847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 11/07/2022] Open
Abstract
Object-based visuospatial transformation is important for the ability to interact with the world and the people and objects within it. In this preliminary investigation, we hypothesized that object-based visuospatial transformation is a unitary process invoked regardless of current context and is localized to the intraparietal sulcus. Participants (n = 14) performed both antisaccade and mental rotation tasks while scanned using fMRI. A statistical conjunction confirmed that both tasks activated the intraparietal sulcus. Statistical parametric anatomical mapping determined that the statistical conjunction was localized to intraparietal sulcus subregions hIP2 and hIP3. A Gaussian naïve Bayes classifier confirmed that the conjunction in region hIP3 was indistinguishable between tasks. The results provide evidence that object-based visuospatial transformation is a domain-general process that is invoked regardless of current context. Our results are consistent with the modular model of the posterior parietal cortex and the distinct cytoarchitectonic, structural, and functional connectivity profiles of the subregions in the intraparietal sulcus. Hum Brain Mapp 39:354-368, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexandra Papadopoulos
- Monash Institute of Cognitive and Clinical Neuroscience, School of Psychological Sciences, Monash University, Melbourne, Victoria, 3800, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, Victoria, 3800, Australia
| | - Francesco Sforazzini
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, 3800, Australia
| | - Gary Egan
- Monash Institute of Cognitive and Clinical Neuroscience, School of Psychological Sciences, Monash University, Melbourne, Victoria, 3800, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, Victoria, 3800, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Australia
| | - Sharna Jamadar
- Monash Institute of Cognitive and Clinical Neuroscience, School of Psychological Sciences, Monash University, Melbourne, Victoria, 3800, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, Victoria, 3800, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Australia
| |
Collapse
|
30
|
Atkinson J. The Davida Teller Award Lecture, 2016: Visual Brain Development: A review of "Dorsal Stream Vulnerability"-motion, mathematics, amblyopia, actions, and attention. J Vis 2017; 17:26. [PMID: 28362900 PMCID: PMC5381328 DOI: 10.1167/17.3.26] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/16/2017] [Indexed: 12/30/2022] Open
Abstract
Research in the Visual Development Unit on "dorsal stream vulnerability' (DSV) arose from research in two somewhat different areas. In the first, using cortical milestones for local and global processing from our neurobiological model, we identified cerebral visual impairment in infants in the first year of life. In the second, using photo/videorefraction in population refractive screening programs, we showed that infant spectacle wear could reduce the incidence of strabismus and amblyopia, but many preschool children, who had been significantly hyperopic earlier, showed visuo-motor and attentional deficits. This led us to compare developing dorsal and ventral streams, using sensitivity to global motion and form as signatures, finding deficits in motion sensitivity relative to form in children with Williams syndrome, or perinatal brain injury in hemiplegia or preterm birth. Later research showed that this "DSV" was common across many disorders, both genetic and acquired, from autism to amblyopia. Here, we extend DSV to be a cluster of problems, common to many disorders, including poor motion sensitivity, visuo-motor spatial integration for planning actions, attention, and number skills. In current research, we find that individual differences in motion coherence sensitivity in typically developing children are correlated with MRI measures of area variations in parietal lobe, fractional anisotropy (from TBSS) of the superior longitudinal fasciculus, and performance on tasks of mathematics and visuo-motor integration. These findings suggest that individual differences in motion sensitivity reflect decision making and attentional control rather than integration in MT/V5 or V3A. Its neural underpinnings may be related to Duncan's "multiple-demand" (MD) system.
Collapse
Affiliation(s)
- Janette Atkinson
- University College London, London, ://iris.ucl.ac.uk/iris/browse/profile?upi=JATKI15
| |
Collapse
|