1
|
Nardi FV, Maisumu G, Zhou Y, Liang B, Yakoub AM. Protocol for generation of PD modeling induced neurons and detection of α-synuclein forms. STAR Protoc 2024; 5:103447. [PMID: 39549235 PMCID: PMC11609654 DOI: 10.1016/j.xpro.2024.103447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 11/18/2024] Open
Abstract
Alpha-synuclein (α-Syn) is an important molecule in the pathogenesis of Parkinson's disease and Alzheimer's disease-related dementias such as Lewy body dementia, forming multiple pathological species. In vitro disease models, including human neurons and α-Syn-transfected cells, are instrumental to understand synucleinopathies or test new therapies. Here, we provide a detailed protocol to generate human neurons derived from induced pluripotent stem cells (iPSCs), and HEK cells, with α-Syn mutations. We also describe multiple assays to determine the various α-Syn forms.
Collapse
Affiliation(s)
- Francesco V Nardi
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, USA; Biomedical Engineering Program, College of Engineering and Mines, University of North Dakota, Grand Forks, ND 58202, USA
| | - Gulimiheranmu Maisumu
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, USA; Biomedical Engineering Program, College of Engineering and Mines, University of North Dakota, Grand Forks, ND 58202, USA
| | - You Zhou
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bo Liang
- Biomedical Engineering Program, College of Engineering and Mines, University of North Dakota, Grand Forks, ND 58202, USA
| | - Abraam M Yakoub
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Ahanger IA, Dar TA. Small molecule modulators of alpha-synuclein aggregation and toxicity: Pioneering an emerging arsenal against Parkinson's disease. Ageing Res Rev 2024; 101:102538. [PMID: 39389237 DOI: 10.1016/j.arr.2024.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is primarily characterized by loss of dopaminergic neurons in the substantia nigra pars compacta region of the brain and accumulation of aggregated forms of alpha-synuclein (α-Syn), an intrinsically disordered protein, in the form of Lewy Bodies and Lewy Neurites. Substantial evidences point to the aggregated/fibrillar forms of α-Syn as a central event in PD pathogenesis, underscoring the modulation of α-Syn aggregation as a promising strategy for PD treatment. Consequently, numerous anti-aggregation agents, spanning from small molecules to polymers, have been scrutinized for their potential to mitigate α-Syn aggregation and its associated toxicity. Among these, small molecule modulators like osmoprotectants, polyphenols, cellular metabolites, metals, and peptides have emerged as promising candidates with significant potential in PD management. This article offers a comprehensive overview of the effects of these small molecule modulators on the aggregation propensity and associated toxicity of α-Syn and its PD-associated mutants. It serves as a valuable resource for identifying and developing potent, non-invasive, non-toxic, and highly specific small molecule-based therapeutic arsenal for combating PD. Additionally, it raises pertinent questions aimed at guiding future research endeavours in the field of α-Syn aggregation remodelling.
Collapse
Affiliation(s)
- Ishfaq Ahmad Ahanger
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
3
|
Bucher ML, Dicent J, Duarte Hospital C, Miller GW. Neurotoxicology of dopamine: Victim or assailant? Neurotoxicology 2024; 103:175-188. [PMID: 38857676 PMCID: PMC11694735 DOI: 10.1016/j.neuro.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Since the identification of dopamine as a neurotransmitter in the mid-20th century, investigators have examined the regulation of dopamine homeostasis at a basic biological level and in human disorders. Genetic animal models that manipulate the expression of proteins involved in dopamine homeostasis have provided key insight into the consequences of dysregulated dopamine. As a result, we have come to understand the potential of dopamine to act as an endogenous neurotoxin through the generation of reactive oxygen species and reactive metabolites that can damage cellular macromolecules. Endogenous factors, such as genetic variation and subcellular processes, and exogenous factors, such as environmental exposures, have been identified as contributors to the dysregulation of dopamine homeostasis. Given the variety of dysregulating factors that impact dopamine homeostasis and the potential for dopamine itself to contribute to further cellular dysfunction, dopamine can be viewed as both the victim and an assailant of neurotoxicity. Parkinson's disease has emerged as the exemplar case study of dopamine dysregulation due to the genetic and environmental factors known to contribute to disease risk, and due to the evidence of dysregulated dopamine as a pathologic and pathogenic feature of the disease. This review, inspired by the talk, "Dopamine in Durham: location, location, location" presented by Dr. Miller for the Jacob Hooisma Memorial Lecture at the International Neurotoxicology Association meeting in 2023, offers a primer on dopamine toxicity covering endogenous and exogenous factors that disrupt dopamine homeostasis and the actions of dopamine as an endogenous neurotoxin.
Collapse
Affiliation(s)
- Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Jocelyn Dicent
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Carolina Duarte Hospital
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
4
|
Al‐Qahtani Z, Al‐kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Ali NH, Alexiou A, Papadakis M, Saad HM, Batiha GE. The potential role of brain renin-angiotensin system in the neuropathology of Parkinson disease: Friend, foe or turncoat? J Cell Mol Med 2024; 28:e18495. [PMID: 38899551 PMCID: PMC11187740 DOI: 10.1111/jcmm.18495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Parkinson disease (PD) is one of the most common neurodegenerative diseases of the brain. Of note, brain renin-angiotensin system (RAS) is intricate in the PD neuropathology through modulation of oxidative stress, mitochondrial dysfunction and neuroinflammation. Therefore, modulation of brain RAS by angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) may be effective in reducing the risk and PD neuropathology. It has been shown that all components including the peptides and enzymes of the RAS are present in the different brain areas. Brain RAS plays a critical role in the regulation of memory and cognitive function, and in the controlling of central blood pressure. However, exaggerated brain RAS is implicated in the pathogenesis of different neurodegenerative diseases including PD. Two well-known pathways of brain RAS are recognized including; the classical pathway which is mainly mediated by AngII/AT1R has detrimental effects. Conversely, the non-classical pathway which is mostly mediated by ACE2/Ang1-7/MASR and AngII/AT2R has beneficial effects against PD neuropathology. Exaggerated brain RAS affects the viability of dopaminergic neurons. However, the fundamental mechanism of brain RAS in PD neuropathology was not fully elucidated. Consequently, the purpose of this review is to disclose the mechanistic role of RAS in in the pathogenesis of PD. In addition, we try to revise how the ACEIs and ARBs can be developed for therapeutics in PD.
Collapse
Affiliation(s)
- Zainah Al‐Qahtani
- Neurology Section, Internal Medicine Department, College of MedicineKing khaled universityAbhaSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- Department of Research & Development, FunogenAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
5
|
Zohoorian-Abootorabi T, Meratan AA, Jafarkhani S, Muronetz V, Haertlé T, Saboury AA. Modulation of cytotoxic amyloid fibrillation and mitochondrial damage of α-synuclein by catechols mediated conformational changes. Sci Rep 2023; 13:5275. [PMID: 37002248 PMCID: PMC10066314 DOI: 10.1038/s41598-023-32075-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
The interplay between α-synuclein (α-syn) and catechols plays a central role in Parkinson's disease. This may be related to the modulating effects of catechols on the various aspects of α-syn fibrillization. Some of these effects may be attributed to the membrane-binding properties of the protein. In this work, we compare the effect of some catechols, including dopamine, epinephrine, DOPAL, and levodopa in micromolar concentrations, on the in vitro cytotoxicity of α-syn fibrils on human neuroblastoma SH-SY5Y cells. The study was followed by comparing the interactions of resulting structures with rat brain mitochondria used as an in vitro biological model. The obtained results demonstrate that catechols-induced structures have lost their cytotoxicity mimicking apoptotic cell death mediated by α-syn aggregates in different proportions. Moreover, α-syn fibrils-induced mitochondrial dysfunction, evaluated by a range of biochemical assays, was modulated by catechols-modified α-syn oligomers in different manners, as levodopa and DOPAL demonstrated the maximal and minimal effects, respectively. The plausible mechanism causing the inhibition of α-syn cytotoxic fibrillization and mitochondrial dysfunction by catechols is discussed. Taken together, we propose that catechols can prevent the cytotoxic assembly of α-syn and its destructive effects on mitochondria at various stages, suggesting that decreased levels of catechols in dopaminergic neurons might accelerate the α-syn cytotoxicity and mitochondrial dysfunction implicating Parkinson's disease.
Collapse
Affiliation(s)
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Saeed Jafarkhani
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 57131-14399, Iran
| | - Vladimir Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Thomas Haertlé
- National Institute of Agronomic and Environmental Research, 44316, Nantes, France
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 14176-14335, Iran.
| |
Collapse
|
6
|
Masato A, Plotegher N, Terrin F, Sandre M, Faustini G, Thor A, Adams S, Berti G, Cogo S, De Lazzari F, Fontana CM, Martinez PA, Strong R, Bandopadhyay R, Bisaglia M, Bellucci A, Greggio E, Dalla Valle L, Boassa D, Bubacco L. DOPAL initiates αSynuclein-dependent impaired proteostasis and degeneration of neuronal projections in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:42. [PMID: 36966140 PMCID: PMC10039907 DOI: 10.1038/s41531-023-00485-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/06/2023] [Indexed: 03/27/2023] Open
Abstract
Dopamine dyshomeostasis has been acknowledged among the determinants of nigrostriatal neuron degeneration in Parkinson's disease (PD). Several studies in experimental models and postmortem PD patients underlined increasing levels of the dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is highly reactive towards proteins. DOPAL has been shown to covalently modify the presynaptic protein αSynuclein (αSyn), whose misfolding and aggregation represent a major trait of PD pathology, triggering αSyn oligomerization in dopaminergic neurons. Here, we demonstrated that DOPAL elicits αSyn accumulation and hampers αSyn clearance in primary neurons. DOPAL-induced αSyn buildup lessens neuronal resilience, compromises synaptic integrity, and overwhelms protein quality control pathways in neurites. The progressive decline of neuronal homeostasis further leads to dopaminergic neuron loss and motor impairment, as showed in in vivo models. Finally, we developed a specific antibody which detected increased DOPAL-modified αSyn in human striatal tissues from idiopathic PD patients, corroborating the translational relevance of αSyn-DOPAL interplay in PD neurodegeneration.
Collapse
Affiliation(s)
- Anna Masato
- Department of Biology, University of Padova, Padova, 35131, Italy
| | - Nicoletta Plotegher
- Department of Biology, University of Padova, Padova, 35131, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Francesca Terrin
- Department of Biology, University of Padova, Padova, 35131, Italy
| | - Michele Sandre
- Department of Neuroscience, University of Padova, Padova, 35131, Italy
| | - Gaia Faustini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Andrea Thor
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0608, USA
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, 92093-0608, USA
| | - Stephen Adams
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093-0608, USA
| | - Giulia Berti
- Department of Biology, University of Padova, Padova, 35131, Italy
| | - Susanna Cogo
- Department of Biology, University of Padova, Padova, 35131, Italy
| | | | | | - Paul Anthony Martinez
- Department of Pharmacology and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care Network, San Antonio, TX, 78229, USA
| | - Randy Strong
- Department of Pharmacology and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care Network, San Antonio, TX, 78229, USA
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, WC1N 1PJ, UK
| | - Marco Bisaglia
- Department of Biology, University of Padova, Padova, 35131, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, 35131, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | | | - Daniela Boassa
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0608, USA.
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, 92093-0608, USA.
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, 35131, Italy.
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy.
| |
Collapse
|
7
|
Chu Y, Hirst WD, Kordower JH. Mixed pathology as a rule, not exception: Time to reconsider disease nosology. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:57-71. [PMID: 36796948 DOI: 10.1016/b978-0-323-85538-9.00012-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder that is associated with motor and nonmotor symptoms. Accumulation of misfolded α-synuclein is considered a key pathological feature during disease initiation and progression. While clearly deemed a synucleinopathy, the development of amyloid-β plaques, tau-containing neurofibrillary tangles, and even TDP-43 protein inclusions occur within the nigrostriatal system and in other brain regions. In addition, inflammatory responses, manifested by glial reactivity, T-cell infiltration, and increased expression of inflammatory cytokines, plus other toxic mediators derived from activated glial cells, are currently recognized as prominent drivers of Parkinson's disease pathology. However, copathologies have increasingly been recognized as the rule (>90%) and not the exception, with Parkinson's disease cases on average exhibiting three different copathologies. While microinfarcts, atherosclerosis, arteriolosclerosis, and cerebral amyloid angiopathy may have an impact on disease progression, α-synuclein, amyloid-β, and TDP-43 pathology do not seem to contribute to progression.
Collapse
Affiliation(s)
- Yaping Chu
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, United States
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Boston, MA, United States
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
8
|
Vaikath N, Sudhakaran I, Abdi I, Gupta V, Majbour N, Ghanem S, Abdesselem H, Vekrellis K, El-Agnaf O. Structural and Biophysical Characterization of Stable Alpha-Synuclein Oligomers. Int J Mol Sci 2022; 23:ijms232314630. [PMID: 36498957 PMCID: PMC9740078 DOI: 10.3390/ijms232314630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The aggregation of α-synuclein (α-syn) into neurotoxic oligomers and fibrils is an important pathogenic feature of synucleinopatheis, including Parkinson's disease (PD). A further characteristic of PD is the oxidative stress that results in the formation of aldehydes by lipid peroxidation. It has been reported that the brains of deceased patients with PD contain high levels of protein oligomers that are cross-linked to these aldehydes. Increasing evidence also suggests that prefibrillar oligomeric species are more toxic than the mature amyloid fibrils. However, due to the heterogenous and metastable nature, characterization of the α-syn oligomeric species has been challenging. Here, we generated and characterized distinct α-syn oligomers in vitro in the presence of DA and lipid peroxidation products 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE). HNE and ONE oligomer were stable towards the treatment with SDS, urea, and temperature. The secondary structure analysis revealed that only HNE and ONE oligomers contain β-sheet content. In the seeding assay, both DA and ONE oligomers significantly accelerated the aggregation. Furthermore, all oligomeric preparations were found to seed the aggregation of α-syn monomers in vitro and found to be cytotoxic when added to SH-SY5Y cells. Finally, both HNE and ONE α-syn oligomers can be used as a calibrator in an α-syn oligomers-specific ELISA.
Collapse
Affiliation(s)
- Nishant Vaikath
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
- Correspondence:
| | - Indulekha Sudhakaran
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Ilham Abdi
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Vijay Gupta
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Nour Majbour
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Simona Ghanem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Houari Abdesselem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Kostas Vekrellis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Omar El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| |
Collapse
|
9
|
Puentes LN, Lengyel-Zhand Z, Lee JY, Hsieh CJ, Schneider ME, Edwards KJ, Luk KC, Lee VMY, Trojanowski JQ, Mach RH. Poly (ADP-ribose) Interacts With Phosphorylated α-Synuclein in Post Mortem PD Samples. Front Aging Neurosci 2021; 13:704041. [PMID: 34220490 PMCID: PMC8249773 DOI: 10.3389/fnagi.2021.704041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Poly (ADP-ribose) (PAR) is a negatively charged polymer that is biosynthesized by Poly (ADP-ribose) Polymerase-1 (PARP-1) and regulates various cellular processes. Alpha-synuclein (αSyn) is an intrinsically disordered protein (IDP) that has been directly implicated with driving the onset and progression of Parkinson's disease (PD). The mechanisms by which α-synuclein (αSyn) elicits its neurotoxic effects remain unclear, though it is well established that the main components of Lewy bodies (LBs) and Lewy neurites (LNs) in PD patients are aggregated hyperphosphorylated (S129) forms of αSyn (pαSyn). In the present study, we used immunofluorescence-based assays to explore if PARP-1 enzymatic product (PAR) promotes the aberrant cytoplasmic accumulation of pαSyn. We also performed quantitative measurements using in situ proximity ligation assays (PLA) on a transgenic murine model of α-synucleinopathy (M83-SNCA∗A53T) and post mortem PD/PDD patient samples to characterize PAR-pαSyn interactions. Additionally, we used bioinformatic approaches and site-directed mutagenesis to identify PAR-binding regions on αSyn. In summary, our studies show that PAR-pαSyn interactions are predominantly observed in PD-relevant transgenic murine models of αSyn pathology and post mortem PD/PDD patient samples. Moreover, we confirm that the interactions between PAR and αSyn involve electrostatic forces between negatively charged PAR and lysine residues on the N-terminal region of αSyn.
Collapse
Affiliation(s)
- Laura N. Puentes
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zsofia Lengyel-Zhand
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ji Youn Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Chia-Ju Hsieh
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mark E. Schneider
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kimberly J. Edwards
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kelvin C. Luk
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Virginia M.-Y. Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Palazzi L, Fongaro B, Leri M, Acquasaliente L, Stefani M, Bucciantini M, Polverino de Laureto P. Structural Features and Toxicity of α-Synuclein Oligomers Grown in the Presence of DOPAC. Int J Mol Sci 2021; 22:ijms22116008. [PMID: 34199427 PMCID: PMC8199589 DOI: 10.3390/ijms22116008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 12/20/2022] Open
Abstract
The interplay between α-synuclein and dopamine derivatives is associated with oxidative stress-dependent neurodegeneration in Parkinson’s disease (PD). The formation in the dopaminergic neurons of intraneuronal inclusions containing aggregates of α-synuclein is a typical hallmark of PD. Even though the biochemical events underlying the aberrant aggregation of α-synuclein are not completely understood, strong evidence correlates this process with the levels of dopamine metabolites. In vitro, 3,4-dihydroxyphenylacetaldehyde (DOPAL) and the other two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylethanol (DOPET), share the property to inhibit the growth of mature amyloid fibrils of α-synuclein. Although this effect occurs with the formation of differently toxic products, the molecular basis of this inhibition is still unclear. Here, we provide information on the effect of DOPAC on the aggregation properties of α-synuclein and its ability to interact with membranes. DOPAC inhibits α-synuclein aggregation, stabilizing monomer and inducing the formation of dimers and trimers. DOPAC-induced oligomers did not undergo conformational transition in the presence of membranes, and penetrated the cell, where they triggered autophagic processes. Cellular assays showed that DOPAC reduced cytotoxicity and ROS production induced by α-synuclein aggregates. Our findings show that the early radicals resulting from DOPAC autoxidation produced covalent modifications of the protein, which were not by themselves a primary cause of either fibrillation or membrane binding inhibition. These findings are discussed in the light of the potential mechanism of DOPAC protection against the toxicity of α-synuclein aggregates to better understand protein and catecholamine biology and to eventually suggest a scaffold that can help in the design of candidate molecules able to interfere in α-synuclein aggregation.
Collapse
Affiliation(s)
- Luana Palazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (L.P.); (B.F.); (L.A.)
| | - Benedetta Fongaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (L.P.); (B.F.); (L.A.)
| | - Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, 50134 Firenze, Italy; (M.L.); (M.S.); (M.B.)
| | - Laura Acquasaliente
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (L.P.); (B.F.); (L.A.)
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, 50134 Firenze, Italy; (M.L.); (M.S.); (M.B.)
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, 50134 Firenze, Italy; (M.L.); (M.S.); (M.B.)
| | - Patrizia Polverino de Laureto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (L.P.); (B.F.); (L.A.)
- Correspondence:
| |
Collapse
|
11
|
Liu H, Zou S, Dai S, Zhang J, Li W. Dopamine sheathing facilitates the anisotropic growth of lysozyme crystals. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Goldstein DS. The Catecholaldehyde Hypothesis for the Pathogenesis of Catecholaminergic Neurodegeneration: What We Know and What We Do Not Know. Int J Mol Sci 2021; 22:ijms22115999. [PMID: 34206133 PMCID: PMC8199574 DOI: 10.3390/ijms22115999] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 01/10/2023] Open
Abstract
3,4-Dihydroxyphenylacetaldehyde (DOPAL) is the focus of the catecholaldehyde hypothesis for the pathogenesis of Parkinson’s disease and other Lewy body diseases. The catecholaldehyde is produced via oxidative deamination catalyzed by monoamine oxidase (MAO) acting on cytoplasmic dopamine. DOPAL is autotoxic, in that it can harm the same cells in which it is produced. Normally, DOPAL is detoxified by aldehyde dehydrogenase (ALDH)-mediated conversion to 3,4-dihydroxyphenylacetic acid (DOPAC), which rapidly exits the neurons. Genetic, environmental, or drug-induced manipulations of ALDH that build up DOPAL promote catecholaminergic neurodegeneration. A concept derived from the catecholaldehyde hypothesis imputes deleterious interactions between DOPAL and the protein alpha-synuclein (αS), a major component of Lewy bodies. DOPAL potently oligomerizes αS, and αS oligomers impede vesicular and mitochondrial functions, shifting the fate of cytoplasmic dopamine toward the MAO-catalyzed formation of DOPAL—destabilizing vicious cycles. Direct and indirect effects of DOPAL and of DOPAL-induced misfolded proteins could “freeze” intraneuronal reactions, plasticity of which is required for neuronal homeostasis. The extent to which DOPAL toxicity is mediated by interactions with αS, and vice versa, is poorly understood. Because of numerous secondary effects such as augmented spontaneous oxidation of dopamine by MAO inhibition, there has been insufficient testing of the catecholaldehyde hypothesis in animal models. The clinical pathophysiological significance of genetics, emotional stress, environmental agents, and interactions with numerous proteins relevant to the catecholaldehyde hypothesis are matters for future research. The imposing complexity of intraneuronal catecholamine metabolism seems to require a computational modeling approach to elucidate clinical pathogenetic mechanisms and devise pathophysiology-based, individualized treatments.
Collapse
Affiliation(s)
- David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Stojkovska I, Mazzulli JR. Detection of pathological alpha-synuclein aggregates in human iPSC-derived neurons and tissue. STAR Protoc 2021; 2:100372. [PMID: 33733241 PMCID: PMC7941090 DOI: 10.1016/j.xpro.2021.100372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The accumulation of proteins into insoluble aggregates is a common feature of several neurodegenerative diseases. Aggregated α-synuclein is a major component of Lewy bodies that pathologically define Parkinson's disease (PD). Here, we present methods for the detection of pathogenic conformations of α-synuclein in induced pluripotent stem cell (iPSC) patient-derived neuron models and brain tissue. These methods can be applied to studies of PD pathogenesis and the discovery of novel therapeutics that restore physiological α-synuclein. For complete details on the use and execution of this protocol, please refer to Cuddy et al. (2019) and Zunke et al. (2018). α-Synuclein aggregates can be characterized by sequential protein extraction Protocol is optimized for detecting α-synuclein in iPSC-derived neurons or brain tissue Gel filtration is a useful method for the detection of oligomeric intermediates Inclusions can be further analyzed by immunofluorescence and Thioflavin S staining
Collapse
Affiliation(s)
- Iva Stojkovska
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Melnikova A, Pozdyshev D, Barinova K, Kudryavtseva S, Muronetz VI. α-Synuclein Overexpression in SH-SY5Y Human Neuroblastoma Cells Leads to the Accumulation of Thioflavin S-positive Aggregates and Impairment of Glycolysis. BIOCHEMISTRY (MOSCOW) 2021; 85:604-613. [PMID: 32571190 DOI: 10.1134/s0006297920050090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Deterioration of energy metabolism in affected cells is an important feature of synucleinopathies, including Parkinson's disease. Here, we studied the association between α-synuclein accumulation and glycolysis using SH-SY5Y neuroblastoma cell lines stably expressing wild-type α-synuclein or its A53T mutant linked to the autosomal dominant form of the disease. Overexpression of both proteins led to the accumulation of thioflavin S-positive aggregates, more pronounced for α-synuclein A53T. It also caused changes in the cell energy metabolism manifested as a decrease in the lactate accumulation and glucose uptake. Impairments in glycolysis were also accompanied by a decrease in the activity of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In vitro experiments with purified proteins indicated that GAPDH inactivation might be caused by its binding to the monomeric and oligomeric forms of α-synuclein. Therefore, a decrease in the GAPDH activity induced by its interaction with α-synuclein, might be one of the causes of glucose metabolism deterioration in synucleinopathies.
Collapse
Affiliation(s)
- A Melnikova
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.
| | - D Pozdyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - K Barinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - S Kudryavtseva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - V I Muronetz
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
15
|
Deffains M, Canron MH, Teil M, Li Q, Dehay B, Bezard E, Fernagut PO. L-DOPA regulates α-synuclein accumulation in experimental parkinsonism. Neuropathol Appl Neurobiol 2020; 47:532-543. [PMID: 33275784 DOI: 10.1111/nan.12678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/09/2020] [Accepted: 11/28/2020] [Indexed: 11/30/2022]
Abstract
AIMS Widespread accumulation of misfolded α-synuclein aggregates is a key feature of Parkinson's disease (PD). Although the pattern and extent of α-synuclein accumulation through PD brains is known, the impact of chronic dopamine-replacement therapy (the gold-standard pharmacological treatment of PD) on the fate of α-synuclein is still unknown. Here, we investigated the distribution and accumulation of α-synuclein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) non-human primate model of PD and determined the effect of chronic L-DOPA treatment on MPTP-induced α-synuclein pathology. METHODS We measured the density of α-synuclein and tau immuno-positive neurons in the substantia nigra, putamen, hippocampal CA1 region, temporal cortex and dentate nucleus of control, MPTP and MPTP+L-DOPA-treated monkeys. Moreover, we also extracted and quantified Triton-X (TX) soluble and insoluble α-synuclein in putamen and hippocampus samples from a separate cohort of control, MPTP and MPTP+L-DOPA-treated monkeys. RESULTS MPTP-induced α-synuclein accumulation in NHP model of PD was not limited to the substantia nigra but also occurred in the putamen, hippocampal CA1 region and temporal cortex. Tau was increased only in the temporal cortex. Moreover, increased intraneuronal TX insoluble α-synuclein was truncated, but not in the structural form of Lewy bodies. The MPTP-induced increase in α-synuclein levels was abolished in animals having received L-DOPA in all the brain regions, except in the substantia nigra. CONCLUSIONS Dopamine replacement therapy can dramatically ameliorate α-synuclein pathology in the MPTP NHP model of PD. Therefore, patient's dopaminergic medication should be systematically considered when assessing α-synuclein as a biomarker for diagnosis, monitoring disease progression and response to disease-modifying treatments.
Collapse
Affiliation(s)
- Marc Deffains
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| | | | - Margaux Teil
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| | - Qin Li
- Motac Neuroscience, Manchester, United Kingdom.,Institute of Laboratory Animal Sciences, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | | | - Erwan Bezard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France.,Motac Neuroscience, Manchester, United Kingdom.,Institute of Laboratory Animal Sciences, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Pierre-Olivier Fernagut
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France.,Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM UMR_S 1084, Poitiers, France
| |
Collapse
|
16
|
Wildburger NC, Hartke AS, Schidlitzki A, Richter F. Current Evidence for a Bidirectional Loop Between the Lysosome and Alpha-Synuclein Proteoforms. Front Cell Dev Biol 2020; 8:598446. [PMID: 33282874 PMCID: PMC7705175 DOI: 10.3389/fcell.2020.598446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022] Open
Abstract
Cumulative evidence collected in recent decades suggests that lysosomal dysfunction contributes to neurodegenerative diseases, especially if amyloid proteins are involved. Among these, alpha-synuclein (aSyn) that progressively accumulates and aggregates in Lewy bodies is undisputedly a main culprit in Parkinson disease (PD) pathogenesis. Lysosomal dysfunction is evident in brains of PD patients, and mutations in lysosomal enzymes are a major risk factor of PD. At first glance, the role of protein-degrading lysosomes in a disease with pathological protein accumulation seems obvious and should guide the development of straightforward and rational therapeutic targets. However, our review demonstrates that the story is more complicated for aSyn. The protein can possess diverse posttranslational modifications, aggregate formations, and truncations, all of which contribute to a growing known set of proteoforms. These interfere directly or indirectly with lysosome function, reducing their own degradation, and thereby accelerating the protein aggregation and disease process. Conversely, unbalanced lysosomal enzymatic processes can produce truncated aSyn proteoforms that may be more toxic and prone to aggregation. This highlights the possibility of enhancing lysosomal function as a treatment for PD, if it can be confirmed that this approach effectively reduces harmful aSyn proteoforms and does not produce novel, toxic proteoforms.
Collapse
Affiliation(s)
- Norelle C Wildburger
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Anna-Sophia Hartke
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hanover, Germany
| | - Alina Schidlitzki
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hanover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| |
Collapse
|
17
|
Goldstein DS. The "Sick-but-not-Dead" Phenomenon Applied to Catecholamine Deficiency in Neurodegenerative Diseases. Semin Neurol 2020; 40:502-514. [PMID: 32906170 PMCID: PMC10680399 DOI: 10.1055/s-0040-1713874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The catecholamines dopamine and norepinephrine are key central neurotransmitters that participate in many neurobehavioral processes and disease states. Norepinephrine is also the main neurotransmitter mediating regulation of the circulation by the sympathetic nervous system. Several neurodegenerative disorders feature catecholamine deficiency. The most common is Parkinson's disease (PD), in which putamen dopamine content is drastically reduced. PD also entails severely decreased myocardial norepinephrine content, a feature that characterizes two other Lewy body diseases-pure autonomic failure and dementia with Lewy bodies. It is widely presumed that tissue catecholamine depletion in these conditions results directly from loss of catecholaminergic neurons; however, as highlighted in this review, there are also important functional abnormalities in extant residual catecholaminergic neurons. We refer to this as the "sick-but-not-dead" phenomenon. The malfunctions include diminished dopamine biosynthesis via tyrosine hydroxylase (TH) and L-aromatic-amino-acid decarboxylase (LAAAD), inefficient vesicular sequestration of cytoplasmic catecholamines, and attenuated neuronal reuptake via cell membrane catecholamine transporters. A unifying explanation for catecholaminergic neurodegeneration is autotoxicity exerted by 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate intermediate in cytoplasmic dopamine metabolism. In PD, putamen DOPAL is built up with respect to dopamine, associated with a vesicular storage defect and decreased aldehyde dehydrogenase activity. Probably via spontaneous oxidation, DOPAL potently oligomerizes and forms quinone-protein adducts with ("quinonizes") α-synuclein (AS), a major constituent in Lewy bodies, and DOPAL-induced AS oligomers impede vesicular storage. DOPAL also quinonizes numerous intracellular proteins and inhibits enzymatic activities of TH and LAAAD. Treatments targeting DOPAL formation and oxidation therefore might rescue sick-but-not-dead catecholaminergic neurons in Lewy body diseases.
Collapse
Affiliation(s)
- David S. Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
18
|
Salau VF, Erukainure OL, Koorbanally NA, Islam MS. Catechol protects against iron-mediated oxidative brain injury by restoring antioxidative metabolic pathways; and modulation of purinergic and cholinergic enzymes activities. J Pharm Pharmacol 2020; 72:1787-1797. [PMID: 32902887 DOI: 10.1111/jphp.13352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES This study was aimed at investigating neuroprotective effect of catechol on redox imbalance, cholinergic dysfunctions, nucleotide hydrolysing enzymes activities, and dysregulated metabolic pathways in iron-mediated oxidative brain injury. METHODS Oxidative injury was induced in brain tissues by incubating with 0.1 mm FeSO4 and treated with different concentrations of catechol. KEY FINDINGS Catechol significantly elevated glutathione level, superoxide dismutase and catalase activities, while depleting malondialdehyde and nitric oxide levels. It also inhibited the activities of acetylcholinesterase, butyrylcholinesterase, and ATPase, with concomitant elevation of ENTPDase activity. GC-MS analysis revealed that treatment with catechol completely depleted oxidative-generated lipid metabolites. While LC-MS analysis revealed depletion of oxidative-generated metabolites in brain tissues treated with catechol, with concomitant restoration of oxidative-depleted metabolites. Catechol also led to reactivation of oxidative-inactivated taurine and hypotaurine, purine, glutathione, glycerophospholipid, nicotinate and nicotinamide, fructose and mannose, pyrimidine metabolisms and pentose phosphate pathways. Catechol was predicted in silico to be permeable across the blood-brain barrier with a predicted oral LD50 value of 100 mg/kg and a toxicity class of 3. CONCLUSION These results suggest the neuroprotective effects of catechol in iron-mediated oxidative brain injury.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, South Africa.,Department of Biochemistry, Veritas University, Bwari, Abuja, Nigeria
| | - Ochuko L Erukainure
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, South Africa.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, (Westville Campus), Durban, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, South Africa
| |
Collapse
|
19
|
Choi YR, Kim JB, Kang SJ, Noh HR, Jou I, Joe EH, Park SM. The dual role of c-src in cell-to-cell transmission of α-synuclein. EMBO Rep 2020; 21:e48950. [PMID: 32372484 DOI: 10.15252/embr.201948950] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons located in the substantia nigra pars compacta and the presence of proteinaceous inclusions called Lewy bodies and Lewy neurites in numerous brain regions. Increasing evidence indicates that Lewy pathology progressively involves additional regions of the nervous system as the disease advances, and the prion-like propagation of α-synuclein (α-syn) pathology promotes PD progression. Accordingly, the modulation of α-syn transmission may be important for the development of disease-modifying therapies in patients with PD. Here, we demonstrate that α-syn fibrils induce c-src activation in neurons, which depends on the FcγRIIb-SHP-1/-2-c-src pathway and enhances signals for the uptake of α-syn into neurons. Blockade of c-src activation inhibits the uptake of α-syn and the formation of Lewy body-like inclusions. Furthermore, the blockade of c-src activation also inhibits the release of α-syn via activation of autophagy. The brain-permeable c-src inhibitor, saracatinib, efficiently reduces α-syn propagation into neighboring regions in an in vivo model system. These results suggest a new therapeutic target against progressive PD.
Collapse
Affiliation(s)
- Yu Ree Choi
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| | - Jae-Bong Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| | - Seo-Jun Kang
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| | - Hye Rin Noh
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| | - Ilo Jou
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| | - Eun-Hye Joe
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, BK21 Plus Program, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
20
|
Jinsmaa Y, Isonaka R, Sharabi Y, Goldstein DS. 3,4-Dihydroxyphenylacetaldehyde Is More Efficient than Dopamine in Oligomerizing and Quinonizing α-Synuclein. J Pharmacol Exp Ther 2020; 372:157-165. [PMID: 31744850 PMCID: PMC6978699 DOI: 10.1124/jpet.119.262246] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Lewy body diseases such as Parkinson's disease involve intraneuronal deposition of the protein α-synuclein (AS) and depletion of nigrostriatal dopamine (DA). Interactions of AS with DA oxidation products may link these neurohistopathologic and neurochemical abnormalities via two potential pathways: spontaneous oxidation of DA to dopamine-quinone and enzymatic oxidation of DA catalyzed by monoamine oxidase to form 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is then oxidized to DOPAL-Q. We compared these two pathways in terms of the ability of DA and DOPAL to modify AS. DOPAL was far more potent than DA both in oligomerizing and forming quinone-protein adducts with (quinonizing) AS. The DOPAL-induced protein modifications were enhanced similarly by pro-oxidation with Cu(II) or tyrosinase and inhibited similarly by antioxidation with N-acetylcysteine. Dopamine oxidation evoked by Cu(II) or tyrosinase did not quinonize AS. In cultured MO3.13 human oligodendrocytes DOPAL resulted in the formation of numerous intracellular quinoproteins that were visualized by near-infrared spectroscopy. We conclude that of the two routes by which oxidation of DA modifies AS and other proteins the route via DOPAL is more prominent. The results support developing experimental therapeutic strategies that might mitigate deleterious modifications of proteins such as AS in Lewy body diseases by targeting DOPAL formation and oxidation. SIGNIFICANCE STATEMENT: Interactions of the protein α-synuclein with products of dopamine oxidation in the neuronal cytoplasm may link two hallmark abnormalities of Parkinson disease: Lewy bodies (which contain abundant AS) and nigrostriatal DA depletion (which produces the characteristic movement disorder). Of the two potential routes by which DA oxidation may alter AS and other proteins, the route via the autotoxic catecholaldehyde 3,4-dihydroxyphenylacetaldehyde is more prominent; the results support experimental therapeutic strategies targeting DOPAL formation and DOPAL-induced protein modifications.
Collapse
Affiliation(s)
- Yunden Jinsmaa
- Autonomic Medicine Section, Clinical Neuroscience Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (Y.J., R.I., D.S.G.); and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| | - Risa Isonaka
- Autonomic Medicine Section, Clinical Neuroscience Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (Y.J., R.I., D.S.G.); and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| | - Yehonatan Sharabi
- Autonomic Medicine Section, Clinical Neuroscience Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (Y.J., R.I., D.S.G.); and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| | - David S Goldstein
- Autonomic Medicine Section, Clinical Neuroscience Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (Y.J., R.I., D.S.G.); and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
| |
Collapse
|
21
|
Zhuang X, Li X, Zhao B, Liu Z, Song F, Lu J. Native Mass Spectrometry Based Method for Studying the Interactions between Superoxide Dismutase 1 and Stilbenoids. ACS Chem Neurosci 2020; 11:184-190. [PMID: 31820923 DOI: 10.1021/acschemneuro.9b00574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To inhibit the abnormal aggregation of Cu, Zn-superoxide dismutase (SOD1) is regarded as a potential therapeutic strategy of SOD1-linked amyotrophic lateral sclerosis (ALS). Herein the interactions between SOD1 and four stilbene-based polyphenols, namely, resveratrol, oxyresveratrol, polydatin, and 2,3,4',5-tetrahydroxystilbene-2-O-β-d-glycoside (THSG), were investigated using electrospray ionization mass spectrometry (ESI-MS) combined with ion mobility (IM) spectrometry. The addition of tandem MS to the study of SOD1-ligand complexes provides further insight into their gas-phase stability. Monitoring the unfolding of SOD1-ligand complexes using IM-MS allows observation of subtle changes in the protein stability upon ligand binding. From the MS/MS and IM-MS measurements, polydatin and THSG were highlighted as the strongest bound compounds in the gas phase, and both of them appear to provide a stabilizing effect on the SOD1 dimer conformation. In addition, the data of fluorescence assays clearly show the ability of the ligands to inhibit apoSOD1 from aggregation, and polydatin was found to have the strongest inhibitory effect. Overall, the method described here can be an effective approach to investigate the interactions between SOD1 and other drug-like molecules.
Collapse
Affiliation(s)
- Xiaoyu Zhuang
- School of Phamacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xiuxiu Li
- School of Phamacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Bing Zhao
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jianzhong Lu
- School of Phamacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
22
|
Sarafian TA, Yacoub A, Kunz A, Aranki B, Serobyan G, Cohn W, Whitelegge JP, Watson JB. Enhanced mitochondrial inhibition by 3,4-dihydroxyphenyl-acetaldehyde (DOPAL)-oligomerized α-synuclein. J Neurosci Res 2019; 97:1689-1705. [PMID: 31420910 DOI: 10.1002/jnr.24513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/24/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022]
Abstract
Oligomeric forms of α-synuclein are believed to cause mitochondrial injury, which may contribute to neurotoxicity in Parkinson's disease (PD). Here oligomers of α-synuclein were prepared using the dopamine metabolite, DOPAL (3,4-dihydroxyphenyl-acetaldehyde), in the presence of guanidinium hydrochloride. Electron microscopy, mass spectrometry, and Western blotting studies revealed enhanced and stable oligomerization with DOPAL compared with dopamine or CuCl2 /H2 O2 . Using isolated mouse brain mitochondria, DOPAL-oligomerized α-synuclein (DOS) significantly inhibited oxygen consumption rates compared with untreated, control-fibrillated, and dopamine-fibrillated synuclein, or with monomeric α-synuclein. Inhibition was greater in the presence of malate plus pyruvate than with succinate, suggesting the involvement of mitochondrial complex I. Mitochondrial membrane potential studies using fluorescent probes, JC-1, and Safranin O also detected enhanced inhibition by DOS compared with the other aggregated forms of α-synuclein. Testing a small customized chemical library, four compounds were identified that rescued membrane potential from DOS injury. While diverse in chemical structure and mechanism, each compound has been reported to interact with mitochondrial complex I. Western blotting studies revealed that none of the four compounds disrupted the oligomeric banding pattern of DOS, suggesting their protection involved direct mitochondrial interaction. The remaining set of chemicals also did not disrupt oligomeric banding, attesting to the high structural stability of this α-synuclein proteoform. DOPAL and α-synuclein are both found in dopaminergic neurons, where their levels are elevated in PD and in animal models exposed to chemical toxicants, including agricultural pesticides. The current study provides further evidence of α-synuclein-induced mitochondrial injury and a likely role in PD neuropathology.
Collapse
Affiliation(s)
- Theodore A Sarafian
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Amneh Yacoub
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Anastasia Kunz
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Burkan Aranki
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Grigor Serobyan
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Whitaker Cohn
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Julian P Whitelegge
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Joseph B Watson
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| |
Collapse
|
23
|
Foffani G, Obeso JA. A Cortical Pathogenic Theory of Parkinson's Disease. Neuron 2019; 99:1116-1128. [PMID: 30236282 DOI: 10.1016/j.neuron.2018.07.028] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/14/2018] [Accepted: 07/17/2018] [Indexed: 01/17/2023]
Abstract
In Parkinson's disease, the progressive neurodegeneration of nigrostriatal dopaminergic neurons in the substantia nigra pars compacta (SNc) is associated with classic motor features, which typically have a focal onset. Since a defined somatotopic arrangement in the SNc has not been recognized, this focal motor onset is unexplained and hardly justified by current pathogenic theories of bottom-up disease progression (Braak's hypothesis, prionopathy). Here we propose that corticostriatal activity may represent a critical somatotopic "stressor" for nigrostriatal terminals, ultimately driving retrograde nigrostriatal degeneration and leading to focal motor onset and progression of Parkinson's disease. As a pathogenic mechanism, corticostriatal activity may promote secretion of striatal extracellular alpha-synuclein, favoring its pathological aggregation at vulnerable dopaminergic synapses. A similar pathogenic process may occur at corticofugal projections to the medulla oblongata and other vulnerable structures, thereby contributing to the bottom-up progression of Lewy pathology. This cortical pathogenesis may co-exist with bottom-up mechanisms, adding an integrative top-down perspective to the quest for the factors that impinge upon the vulnerability of dopaminergic cells in the onset and progression of Parkinson's disease.
Collapse
Affiliation(s)
- Guglielmo Foffani
- CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU-San Pablo, Madrid, Spain; Hospital Nacional de Parapléjicos, Toledo, Spain.
| | - José A Obeso
- CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU-San Pablo, Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
24
|
Daniels MJ, Nourse JB, Kim H, Sainati V, Schiavina M, Murrali MG, Pan B, Ferrie JJ, Haney CM, Moons R, Gould NS, Natalello A, Grandori R, Sobott F, Petersson EJ, Rhoades E, Pierattelli R, Felli I, Uversky VN, Caldwell KA, Caldwell GA, Krol ES, Ischiropoulos H. Cyclized NDGA modifies dynamic α-synuclein monomers preventing aggregation and toxicity. Sci Rep 2019; 9:2937. [PMID: 30814575 PMCID: PMC6393491 DOI: 10.1038/s41598-019-39480-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
Growing evidence implicates α-synuclein aggregation as a key driver of neurodegeneration in Parkinson’s disease (PD) and other neurodegenerative disorders. Herein, the molecular and structural mechanisms of inhibiting α-synuclein aggregation by novel analogs of nordihydroguaiaretic acid (NDGA), a phenolic dibenzenediol lignan, were explored using an array of biochemical and biophysical methodologies. NDGA analogs induced modest, progressive compaction of monomeric α-synuclein, preventing aggregation into amyloid-like fibrils. This conformational remodeling preserved the dynamic adoption of α-helical conformations, which are essential for physiological membrane interactions. Oxidation-dependent NDGA cyclization was required for the interaction with monomeric α-synuclein. NDGA analog-pretreated α-synuclein did not aggregate even without NDGA-analogs in the aggregation mixture. Strikingly, NDGA-pretreated α-synuclein suppressed aggregation of naïve untreated aggregation-competent monomeric α-synuclein. Further, cyclized NDGA reduced α-synuclein-driven neurodegeneration in Caenorhabditis elegans. The cyclized NDGA analogs may serve as a platform for the development of small molecules that stabilize aggregation-resistant α-synuclein monomers without interfering with functional conformations yielding potential therapies for PD and related disorders.
Collapse
Affiliation(s)
- Malcolm J Daniels
- Pharmacology Graduate Group, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Brucker Nourse
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Hanna Kim
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Valerio Sainati
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| | - Marco Schiavina
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| | - Maria Grazia Murrali
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| | - Buyan Pan
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John J Ferrie
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Conor M Haney
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rani Moons
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | - Neal S Gould
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, Antwerp University, Antwerp, Belgium.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Roberta Pierattelli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| | - Isabella Felli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.,Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russian Federation
| | - Kim A Caldwell
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Edward S Krol
- College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Harry Ischiropoulos
- Pharmacology Graduate Group, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA. .,Children's Hospital of Philadelphia Research Institute and Systems Pharmacology and Translational Therapeutics, the Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
Ganguly U, Ganguly A, Sen O, Ganguly G, Cappai R, Sahoo A, Chakrabarti S. Dopamine Cytotoxicity on SH-SY5Y Cells: Involvement of α-Synuclein and Relevance in the Neurodegeneration of Sporadic Parkinson’s Disease. Neurotox Res 2019; 35:898-907. [DOI: 10.1007/s12640-019-0001-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/29/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
|
26
|
Zhang S, Wang R, Wang G. Impact of Dopamine Oxidation on Dopaminergic Neurodegeneration. ACS Chem Neurosci 2019; 10:945-953. [PMID: 30592597 DOI: 10.1021/acschemneuro.8b00454] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The characteristic feature of PD is the progressive degeneration of the dopaminergic (DAergic) neurons in the substantia nigra (SN). DAergic neurons in the SN accumulate black and insoluble membrane structures known as neuromelanin during aging. The oxidation of dopamine (DA) to form neuromelanin generates many o-quinones, including DA o-quinones, aminochrome, and 5,6-indolequinone. The focus of this review is to discuss the role of DA oxidation in association with PD. The oxidation of DA produces oxidative products, inducing mitochondrial dysfunction, impaired protein degradation, α-synuclein aggregation into neurotoxic oligomers, and oxidative stress, in vitro. Recent studies have demonstrated that the DA content is critical for both DJ-1 knockout and A53T α-synuclein transgenic mice to develop PD pathological features, providing evidence for DA action in PD pathogenesis in vivo. The effects of L-DOPA, as the most effective anti-PD drug, are also briefly discussed.
Collapse
Affiliation(s)
- Shun Zhang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Rui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
27
|
Mor DE, Daniels MJ, Ischiropoulos H. The usual suspects, dopamine and alpha-synuclein, conspire to cause neurodegeneration. Mov Disord 2019; 34:167-179. [PMID: 30633814 PMCID: PMC6379109 DOI: 10.1002/mds.27607] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/15/2018] [Accepted: 12/03/2018] [Indexed: 01/07/2023] Open
Abstract
Parkinson's disease (PD) is primarily a movement disorder driven by the loss of dopamine-producing neurons in the substantia nigra (SN). Early identification of the oxidative properties of dopamine implicated it as a potential source of oxidative stress in PD, yet few studies have investigated dopamine neurotoxicity in vivo. The discovery of PD-causing mutations in α-synuclein and the presence of aggregated α-synuclein in the hallmark Lewy body pathology of PD revealed another important player. Despite extensive efforts, the precise role of α-synuclein aggregation in neurodegeneration remains unclear. We recently manipulated both dopamine levels and α-synuclein expression in aged mice and found that only the combination of these 2 factors caused progressive neurodegeneration of the SN and an associated motor deficit. Dopamine modified α-synuclein aggregation in the SN, resulting in greater abundance of α-synuclein oligomers and unique dopamine-induced oligomeric conformations. Furthermore, disruption of the dopamine-α-synuclein interaction rescued dopaminergic neurons from degeneration in transgenic Caenorhabditis elegans models. In this Perspective, we discuss these findings in the context of known α-synuclein and dopamine biology, review the evidence for α-synuclein oligomer toxicity and potential mechanisms, and discuss therapeutic implications. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Danielle E. Mor
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Malcolm J. Daniels
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harry Ischiropoulos
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| |
Collapse
|
28
|
Goldstein DS, Sharabi Y. The heart of PD: Lewy body diseases as neurocardiologic disorders. Brain Res 2019; 1702:74-84. [PMID: 29030055 PMCID: PMC10712237 DOI: 10.1016/j.brainres.2017.09.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/01/2023]
Abstract
This review provides an update about cardiac sympathetic denervation in Lewy body diseases. The family of Lewy body diseases includes Parkinson's disease (PD), pure autonomic failure (PAF), and dementia with Lewy bodies (DLB). All three feature intra-neuronal cytoplasmic deposits of the protein, alpha-synuclein. Multiple system atrophy (MSA), the parkinsonian form of which can be difficult to distinguish from PD with orthostatic hypotension, involves glial cytoplasmic inclusions that contain alpha-synuclein. By now there is compelling neuroimaging, neuropathologic, and neurochemical evidence for cardiac sympathetic denervation in Lewy body diseases. In addition to denervation, there is decreased storage of catecholamines in the residual terminals. The degeneration develops in a centripetal, retrograde, "dying back" sequence. Across synucleinopathies the putamen and cardiac catecholaminergic lesions seem to occur independently of each other, whereas non-motor aspects of PD (e.g., anosmia, dementia, REM behavior disorder, OH) are associated with each other and with cardiac sympathetic denervation. Cardiac sympathetic denervation can be caused by synucleinopathy in inherited PD. According to the catecholaldehyde hypothesis, 3,4-dihydroxyphenylacetaldehyde (DOPAL), an intermediary metabolite of dopamine, causes or contributes to the death of catecholamine neurons, especially by interacting with proteins such as alpha-synuclein. DOPAL oxidizes spontaneously to DOPAL-quinone, which probably converts alpha-synuclein to its toxic oligomeric form. Decreasing DOPAL production and oxidation might slow the neurodegenerative process. Tracking cardiac sympathetic innervation over time could be the basis for a proof of principle experimental therapeutics trial targeting DOPAL.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1620, United States.
| | - Yehonatan Sharabi
- Chaim Sheba Medical Center and Tel Aviv University Sackler Faculty of Medicine, Israel.
| |
Collapse
|
29
|
Mohite GM, Navalkar A, Kumar R, Mehra S, Das S, Gadhe LG, Ghosh D, Alias B, Chandrawanshi V, Ramakrishnan A, Mehra S, Maji SK. The Familial α-Synuclein A53E Mutation Enhances Cell Death in Response to Environmental Toxins Due to a Larger Population of Oligomers. Biochemistry 2018; 57:5014-5028. [DOI: 10.1021/acs.biochem.8b00321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ganesh M. Mohite
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Subhadeep Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400076
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Laxmikant G. Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Dhiman Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Basil Alias
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Vikas Chandrawanshi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Aishwarya Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Sarika Mehra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Samir K. Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| |
Collapse
|
30
|
Gerson JE, Farmer KM, Henson N, Castillo-Carranza DL, Carretero Murillo M, Sengupta U, Barrett A, Kayed R. Tau oligomers mediate α-synuclein toxicity and can be targeted by immunotherapy. Mol Neurodegener 2018; 13:13. [PMID: 29544548 PMCID: PMC5856311 DOI: 10.1186/s13024-018-0245-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have evaluated the efficacy of targeting the toxic, oligomeric form of tau protein by passive immunotherapy in a mouse model of synucleinopathy. Parkinson's disease and Lewy body dementia are two of the most common neurodegenerative disorders and are primarily characterized by the accumulation of α-synuclein in Lewy bodies. However, evidence shows that smaller, oligomeric aggregates are likely the most toxic form of the protein. Moreover, a large body of research suggests that α-synuclein interacts with tau in disease and may act in a synergistic mechanism, implicating tau oligomers as a potential therapeutic target. METHODS We treated seven-month-old mice overexpressing mutated α-synuclein (A53T mice) with tau oligomer-specific monoclonal antibody (TOMA) and a control antibody and assessed both behavioral and pathological phenotypes. RESULTS We found that A53T mice treated with TOMA were protected from cognitive and motor deficits two weeks after a single injection. Levels of toxic tau oligomers were specifically decreased in the brains of TOMA-treated mice. Tau oligomer depletion also protected against dopamine and synaptic protein loss. CONCLUSION These results indicate that targeting tau oligomers is beneficial for a mouse model of synucleinopathy and may be a viable therapeutic strategy for treating diseases in which tau and α-synuclein have a synergistic toxicity.
Collapse
Affiliation(s)
- Julia E Gerson
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kathleen M Farmer
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Natalie Henson
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Diana L Castillo-Carranza
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mariana Carretero Murillo
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Urmi Sengupta
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Alan Barrett
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Rakez Kayed
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA. .,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
31
|
Mor DE, Ischiropoulos H. The Convergence of Dopamine and α-Synuclein: Implications for Parkinson's Disease. J Exp Neurosci 2018; 12:1179069518761360. [PMID: 29559809 PMCID: PMC5846926 DOI: 10.1177/1179069518761360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 12/02/2022] Open
Abstract
In Parkinson’s disease (PD), the loss of dopamine-producing neurons in the substantia nigra (SN) leads to severe motor impairment, and pathological inclusions known as Lewy bodies contain aggregated α-synuclein protein. The relationship of α-synuclein aggregation and dopaminergic degeneration is unclear. This commentary highlights a recent study showing that the interaction of α-synuclein with dopamine may be an important mechanism underlying disease. Elevating dopamine levels in mice expressing human α-synuclein with the A53T familial PD mutation recapitulated key features of PD, including progressive neurodegeneration of the SN and decreased ambulation. The toxicity of dopamine was dependent on α-synuclein expression; hence, raising dopamine levels in nontransgenic mice did not result in neuronal injury. This interaction is likely mediated through soluble α-synuclein oligomers, which had modified conformations and were more abundant as a result of dopamine elevation in the mouse brain. Specific mutation of the dopamine interaction motif in the C-terminus of α-synuclein rescued dopamine neurons from degeneration in Caenorhabditis elegans models. Here, these findings are discussed, particularly regarding possible mechanisms of oligomer toxicity, relevance of these models to sporadic and autosomal recessive forms of PD, and implications for current PD treatment.
Collapse
Affiliation(s)
- Danielle E Mor
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Harry Ischiropoulos
- Perelman School of Medicine, University of Pennsylvania, and the Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| |
Collapse
|
32
|
Goldstein DS, Kopin IJ. Linking Stress, Catecholamine Autotoxicity, and Allostatic Load with Neurodegenerative Diseases: A Focused Review in Memory of Richard Kvetnansky. Cell Mol Neurobiol 2018; 38:13-24. [PMID: 28488009 PMCID: PMC5680155 DOI: 10.1007/s10571-017-0497-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
In this Focused Review, we provide an update about evolving concepts that may link chronic stress and catecholamine autotoxicity with neurodegenerative diseases such as Parkinson's disease. Richard Kvetnansky's contributions to the field of stress and catecholamine systems inspired some of the ideas presented here. We propose that coordination of catecholaminergic systems mediates adjustments maintaining health and that senescence-related disintegration of these systems leads to disorders of regulation and to neurodegenerative diseases such as Parkinson's disease. Chronically repeated episodes of stress-related catecholamine release and reuptake, with attendant increases in formation of the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde, might accelerate this process.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike MSC-1620, Building 10 Room 5N220, Bethesda, MD, 20892-1620, USA.
| | - Irwin J Kopin
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike MSC-1620, Building 10 Room 5N220, Bethesda, MD, 20892-1620, USA
| |
Collapse
|
33
|
Zunke F, Moise AC, Belur NR, Gelyana E, Stojkovska I, Dzaferbegovic H, Toker NJ, Jeon S, Fredriksen K, Mazzulli JR. Reversible Conformational Conversion of α-Synuclein into Toxic Assemblies by Glucosylceramide. Neuron 2017; 97:92-107.e10. [PMID: 29290548 DOI: 10.1016/j.neuron.2017.12.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/08/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
α-Synuclein (α-syn) aggregation is a key event in Parkinson's disease (PD). Mutations in glycosphingolipid (GSL)-degrading glucocerebrosidase are risk factors for PD, indicating that disrupted GSL clearance plays a key role in α-syn aggregation. However, the mechanisms of GSL-induced aggregation are not completely understood. We document the presence of physiological α-syn conformers in human midbrain dopamine neurons and tested their contribution to the aggregation process. Pathological α-syn assembly mainly occurred through the conversion of high molecular weight (HMW) physiological α-syn conformers into compact, assembly-state intermediates by glucosylceramide (GluCer), without apparent disassembly into free monomers. This process was reversible in vitro through GluCer depletion. Reducing GSLs in PD patient neurons with and without GBA1 mutations diminished pathology and restored physiological α-syn conformers that associated with synapses. Our work indicates that GSLs control the toxic conversion of physiological α-syn conformers in a reversible manner that is amenable to therapeutic intervention by GSL reducing agents.
Collapse
Affiliation(s)
- Friederike Zunke
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alexandra C Moise
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nandkishore R Belur
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eilrayna Gelyana
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Iva Stojkovska
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Haris Dzaferbegovic
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nicholas J Toker
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sohee Jeon
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kristina Fredriksen
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph R Mazzulli
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
34
|
Choi H, Koh SH. Understanding the role of glycogen synthase kinase-3 in L-DOPA-induced dyskinesia in Parkinson’s disease. Expert Opin Drug Metab Toxicol 2017; 14:83-90. [DOI: 10.1080/17425255.2018.1417387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hojin Choi
- Department of Neurology, Hanyang University College of Medicine, Seoul, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, South Korea
| |
Collapse
|
35
|
Mor DE, Tsika E, Mazzulli JR, Gould NS, Kim H, Daniels MJ, Doshi S, Gupta P, Grossman JL, Tan VX, Kalb RG, Caldwell KA, Caldwell GA, Wolfe JH, Ischiropoulos H. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration. Nat Neurosci 2017; 20:1560-1568. [PMID: 28920936 PMCID: PMC5893155 DOI: 10.1038/nn.4641] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/22/2017] [Indexed: 01/27/2023]
Abstract
Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.
Collapse
Affiliation(s)
- Danielle E. Mor
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elpida Tsika
- AC Immune SA, Ecole Polytechnique fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Joseph R. Mazzulli
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Neal S. Gould
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Hanna Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Malcolm J. Daniels
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shachee Doshi
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Preetika Gupta
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer L. Grossman
- State University of New York Downstate College of Medicine, Brooklyn, New York, USA
| | - Victor X. Tan
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert G. Kalb
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - John H. Wolfe
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harry Ischiropoulos
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Stojkovska I, Krainc D, Mazzulli JR. Molecular mechanisms of α-synuclein and GBA1 in Parkinson's disease. Cell Tissue Res 2017; 373:51-60. [PMID: 29064079 DOI: 10.1007/s00441-017-2704-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/16/2017] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative movement disorder characterized pathologically by the presence of Lewy bodies comprised of insoluble alpha (α)-synuclein. Pathological, clinical and genetic studies demonstrate that mutations in the GBA1 gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase) that is deficient in Gaucher's disease, are important risk factors for the development of PD. The molecular mechanism for the association between these two diseases is not completely understood. We discuss several possible mechanisms that may lead to GBA1-related neuronal death and α-synuclein accumulation including disruptions in lipid metabolism, protein trafficking and impaired protein quality control mechanisms. Elucidating the mechanism between GCase and α-synuclein may provide insight into potential therapeutic pathways for PD and related synucleinopathies.
Collapse
Affiliation(s)
- Iva Stojkovska
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Ward 12-369, Chicago, IL, 60611, USA
| | - Dimitri Krainc
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Ward 12-369, Chicago, IL, 60611, USA
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Ward 12-369, Chicago, IL, 60611, USA.
| |
Collapse
|
37
|
Activation of β-Glucocerebrosidase Reduces Pathological α-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons. J Neurosci 2017; 36:7693-706. [PMID: 27445146 DOI: 10.1523/jneurosci.0628-16.2016] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/21/2016] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Parkinson's disease (PD) is characterized by the accumulation of α-synuclein (α-syn) within Lewy body inclusions in the nervous system. There are currently no disease-modifying therapies capable of reducing α-syn inclusions in PD. Recent data has indicated that loss-of-function mutations in the GBA1 gene that encodes lysosomal β-glucocerebrosidase (GCase) represent an important risk factor for PD, and can lead to α-syn accumulation. Here we use a small-molecule modulator of GCase to determine whether GCase activation within lysosomes can reduce α-syn levels and ameliorate downstream toxicity. Using induced pluripotent stem cell (iPSC)-derived human midbrain dopamine (DA) neurons from synucleinopathy patients with different PD-linked mutations, we find that a non-inhibitory small molecule modulator of GCase specifically enhanced activity within lysosomal compartments. This resulted in reduction of GCase substrates and clearance of pathological α-syn, regardless of the disease causing mutations. Importantly, the reduction of α-syn was sufficient to reverse downstream cellular pathologies induced by α-syn, including perturbations in hydrolase maturation and lysosomal dysfunction. These results indicate that enhancement of a single lysosomal hydrolase, GCase, can effectively reduce α-syn and provide therapeutic benefit in human midbrain neurons. This suggests that GCase activators may prove beneficial as treatments for PD and related synucleinopathies. SIGNIFICANCE STATEMENT The presence of Lewy body inclusions comprised of fibrillar α-syn within affected regions of PD brain has been firmly documented, however no treatments exist that are capable of clearing Lewy bodies. Here, we used a mechanistic-based approach to examine the effect of GCase activation on α-syn clearance in human midbrain DA models that naturally accumulate α-syn through genetic mutations. Small molecule-mediated activation of GCase was effective at reducing α-syn inclusions in neurons, as well as associated downstream toxicity, demonstrating a therapeutic effect. Our work provides an example of how human iPSC-derived midbrain models could be used for testing potential treatments for neurodegenerative disorders, and identifies GCase as a critical therapeutic convergence point for a wide range of synucleinopathies.
Collapse
|
38
|
Fleming SM, Santiago NA, Mullin EJ, Pamphile S, Karkare S, Lemkuhl A, Ekhator OR, Linn SC, Holden JG, Aga DS, Roth JA, Liou B, Sun Y, Shull GE, Schultheis PJ. The effect of manganese exposure in Atp13a2-deficient mice. Neurotoxicology 2017; 64:256-266. [PMID: 28595912 PMCID: PMC10178982 DOI: 10.1016/j.neuro.2017.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/25/2017] [Accepted: 06/03/2017] [Indexed: 12/30/2022]
Abstract
Loss of function mutations in the P5-ATPase ATP13A2 are associated with Kufor-Rakeb Syndrome and Neuronal Ceroid Lipofuscinosis. While the function of ATP13A2 is unclear, in vitro studies suggest it is a lysosomal protein that interacts with the metals manganese (Mn) and zinc and the presynaptic protein alpha-synuclein. Loss of ATP13A2 function in mice causes sensorimotor deficits, enhanced autofluorescent storage material, and accumulation of alpha-synuclein. The present study sought to determine the effect of Mn administration on these same outcomes in ATP13A2-deficient mice. Wildtype and ATP13A2-deficient mice received saline or Mn at 5-9 or 12-19 months for 45days. Sensorimotor function was assessed starting at day 30. Autofluorescence was quantified in multiple brain regions and alpha-synuclein protein levels were determined in the ventral midbrain. Brain Mn, iron, zinc, and copper concentrations were measured in 5-9 month old mice. The results show Mn enhanced sensorimotor function, increased autofluorescence in the substantia nigra, and increased insoluble alpha-synuclein in the ventral midbrain in older ATP13A2-deficient mice. In addition, the Mn regimen used increased Mn concentration in the brain and levels were higher in Mn-treated mutants than controls. These results indicate loss of ATP13A2 function leads to increased sensitivity to Mn in vivo.
Collapse
Affiliation(s)
- Sheila M Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.
| | - Nicholas A Santiago
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | | | - Shanta Pamphile
- Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Swagata Karkare
- Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Andrew Lemkuhl
- Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Osunde R Ekhator
- Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Stephen C Linn
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, United States
| | - John G Holden
- Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Diana S Aga
- Department of Chemistry, SUNY Buffalo, Buffalo, NY, United States
| | - Jerome A Roth
- Department of Pharmacology and Toxicology, SUNY Buffalo, Buffalo, NY, United States
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, United States
| | - Patrick J Schultheis
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, United States
| |
Collapse
|
39
|
Wong YC, Krainc D. α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med 2017; 23:1-13. [PMID: 28170377 PMCID: PMC8480197 DOI: 10.1038/nm.4269] [Citation(s) in RCA: 590] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
Alterations in α-synuclein dosage lead to familial Parkinson's disease (PD), and its accumulation results in synucleinopathies that include PD, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Furthermore, α-synuclein contributes to the fibrilization of amyloid-b and tau, two key proteins in Alzheimer's disease, which suggests a central role for α-synuclein toxicity in neurodegeneration. Recent studies of factors contributing to α-synuclein toxicity and its disruption of downstream cellular pathways have expanded our understanding of disease pathogenesis in synucleinopathies. In this Review, we discuss these emerging themes, including the contributions of aging, selective vulnerability and non-cell-autonomous factors such as α-synuclein cell-to-cell propagation and neuroinflammation. Finally, we summarize recent efforts toward the development of targeted therapies for PD and related synucleinopathies.
Collapse
Affiliation(s)
- Yvette C Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
40
|
Zhao J, Liang Q, Sun Q, Chen C, Xu L, Ding Y, Zhou P. (−)-Epigallocatechin-3-gallate (EGCG) inhibits fibrillation, disaggregates amyloid fibrils of α-synuclein, and protects PC12 cells against α-synuclein-induced toxicity. RSC Adv 2017. [DOI: 10.1039/c7ra03752j] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
EGCG protects transduced PC12 cells against α-Syn-induced cytotoxicity by inhibiting the overexpression and fibrillation of α-Syn in the cells.
Collapse
Affiliation(s)
- Juan Zhao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Qingnan Liang
- Department of Physiology and Biophysics
- School of Life Sciences
- Fudan University
- Shanghai 200438
- China
| | - Qing Sun
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Congheng Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Lihui Xu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Yu Ding
- Department of Physiology and Biophysics
- School of Life Sciences
- Fudan University
- Shanghai 200438
- China
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
41
|
Nagatsu T, Nagatsu I. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson's disease (PD): historical overview and future prospects. J Neural Transm (Vienna) 2016; 123:1255-1278. [PMID: 27491309 DOI: 10.1007/s00702-016-1596-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022]
Abstract
Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson's disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic L-amino acid decarboxylase (AADC); dopamine β-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH. This review discusses the historical overview of TH, BH4-, and other CA-related enzymes and their genes in relation to the pathophysiology of PD, the development of drugs, such as L-DOPA, and future prospects for drug and gene therapy for PD, especially the potential of induced pluripotent stem (iPS) cells.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
- Department of Brain Functions, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Ikuko Nagatsu
- Department of Anatomy, School of Medicine, Fujita Health University, Toyoake, 470-1192, Japan
| |
Collapse
|
42
|
Structural and functional properties of prefibrillar α-synuclein oligomers. Sci Rep 2016; 6:24526. [PMID: 27075649 PMCID: PMC4830946 DOI: 10.1038/srep24526] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/30/2016] [Indexed: 01/02/2023] Open
Abstract
The deposition of fibrillar alpha-synuclein (α-syn) within inclusions (Lewy bodies and Lewy neurites) in neurons and glial cells is a hallmark of synucleinopathies. α-syn populates a variety of assemblies ranging from prefibrillar oligomeric species to fibrils whose specific contribution to neurodegeneration is still unclear. Here, we compare the specific structural and biological properties of distinct soluble prefibrillar α-syn oligomers formed either spontaneously or in the presence of dopamine and glutaraldehyde. We show that both on-fibrillar assembly pathway and distinct dopamine-mediated and glutaraldehyde-cross-linked α-syn oligomers are only slightly effective in perturbing cell membrane integrity and inducing cytotoxicity, while mature fibrils exhibit the highest toxicity. In contrast to low-molecular weight and unstable oligomers, large stable α-syn oligomers seed the aggregation of soluble α-syn within reporter cells although to a lesser extent than mature α-syn fibrils. These oligomers appear elongated in shape. Our findings suggest that α-syn oligomers represent a continuum of species ranging from unstable low molecular weight particles to mature fibrils via stable elongated oligomers composed of more than 15 α-syn monomers that possess seeding capacity.
Collapse
|
43
|
Functionally different α-synuclein inclusions yield insight into Parkinson's disease pathology. Sci Rep 2016; 6:23116. [PMID: 26984067 PMCID: PMC4794800 DOI: 10.1038/srep23116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/29/2016] [Indexed: 01/23/2023] Open
Abstract
The formation of α-synuclein (α-S) amyloid aggregates, called Lewy bodies (LBs), is a hallmark of Parkinson's disease (PD). The function of LBs in the disease process is however still unclear; they have been associated with both neuroprotection and toxicity. To obtain insight into this contradiction, we induced the formation of α-S inclusions, using three different induction methods in SH-SY5Y cells and rat-derived primary neuronal cells. Using confocal and STED microscopy we observed induction-dependent differences in α-S inclusion morphology, location and function. The aggregation of α-S in functionally different compartments correlates with the toxicity of the induction method measured in viability assays. The most cytotoxic treatment largely correlates with the formation of proteasome-associated, juxta-nuclear inclusions. With less toxic methods cytosolic deposits that are not associated with the proteasome are more prevalent. The distribution of α-S over at least two different types of inclusions is not limited to cell models, but is also observed in primary neuronal cells and in human mesencephalon. The existence of functionally different LBs, in vivo and in vitro, gives important insights in the impact of Lewy Body formation on neuronal functioning and may thereby provide a platform for discovering therapeutics.
Collapse
|
44
|
Mazzulli JR, Burbulla LF, Krainc D, Ischiropoulos H. Detection of Free and Protein-Bound ortho-Quinones by Near-Infrared Fluorescence. Anal Chem 2016; 88:2399-405. [PMID: 26813311 DOI: 10.1021/acs.analchem.5b04420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging and oxidative stress are two prominent pathological mechanisms for Parkinson's disease (PD) that are strongly associated with the degeneration of dopamine (DA) neurons in the midbrain. DA and other catechols readily oxidize into highly reactive o-quinone species that are precursors of neuromelanin (NM) pigment and under pathological conditions can modify and damage macromolecules. The role of DA oxidation in PD pathogenesis remains unclear in part due to the lack of appropriate disease models and the absence of a simple method for the quantification of DA-derived oxidants. Here, we describe a rapid, simple, and reproducible method for the quantification of o-quinones in cells and tissues that relies on the near-infrared fluorescent properties of these species. Importantly, we demonstrate that catechol-derived oxidants can be quantified in human neuroblastoma cells and midbrain dopamine neurons derived from induced pluripotent stem cells, providing a novel model to study the downstream actions of o-quinones. This method should facilitate further study of oxidative stress and DA oxidation in PD and related diseases that affect the dopaminergic system.
Collapse
Affiliation(s)
- Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine , 303 East Chicago Avenue, Ward 12-144, Chicago Illinois 60611 United States
| | - Lena F Burbulla
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine , 303 East Chicago Avenue, Ward 12-144, Chicago Illinois 60611 United States
| | - Dimitri Krainc
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine , 303 East Chicago Avenue, Ward 12-144, Chicago Illinois 60611 United States
| | - Harry Ischiropoulos
- Department of Pediatrics, Children's Hospital of Philadelphia , Philadelphia, Pennsylvania 19104, United States.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
45
|
Mor DE, Ugras SE, Daniels MJ, Ischiropoulos H. Dynamic structural flexibility of α-synuclein. Neurobiol Dis 2015; 88:66-74. [PMID: 26747212 DOI: 10.1016/j.nbd.2015.12.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/21/2015] [Accepted: 12/25/2015] [Indexed: 01/08/2023] Open
Abstract
α-Synuclein is a conserved, abundantly expressed protein that is partially localized in pre-synaptic terminals in the central nervous system. The precise biological function(s) and structure of α-synuclein are under investigation. Recently, the native conformation and the presence of naturally occurring multimeric assemblies have come under debate. These are important deliberations because α-synuclein assembles into highly organized amyloid-like fibrils and non-amyloid amorphous aggregates that constitute the neuronal inclusions in Parkinson's disease and related disorders. Therefore understanding the nature of the native and pathological conformations is pivotal from the standpoint of therapeutic interventions that could maintain α-synuclein in its physiological state. In this review, we will discuss the existing evidence that define the physiological states of α-synuclein and highlight how the inherent structural flexibility of this protein may be important in health and disease.
Collapse
Affiliation(s)
- Danielle E Mor
- Biomedical graduate studies in Neuroscience, Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania, PA 19104, United States
| | - Scott E Ugras
- Biomedical graduate studies in Biochemistry and Molecular Biophysics, Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania, PA 19104, United States
| | - Malcolm J Daniels
- Biomedical graduate studies in Pharmacology, Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania, PA 19104, United States
| | - Harry Ischiropoulos
- Biomedical graduate studies in Neuroscience, Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania, PA 19104, United States; Biomedical graduate studies in Biochemistry and Molecular Biophysics, Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania, PA 19104, United States; Biomedical graduate studies in Pharmacology, Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania, PA 19104, United States; Children's Hospital of Philadelphia Research Institute, PA 19104, United States; Department of Pediatrics, Raymond, and Ruth Perelman School of Medicine at the University of Pennsylvania, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Raymond, and Ruth Perelman School of Medicine at the University of Pennsylvania, PA 19104, United States.
| |
Collapse
|
46
|
Abstract
SIGNIFICANCE A constant accumulation of oxidized proteins takes place during aging. Oxidation of proteins leads to a partial unfolding and, therefore, to aggregation. Protein aggregates impair the activity of cellular proteolytic systems (proteasomes, lysosomes), resulting in further accumulation of oxidized proteins. In addition, the accumulation of highly crosslinked protein aggregates leads to further oxidant formation, damage to macromolecules, and, finally, to apoptotic cell death. Furthermore, protein oxidation seems to play a role in the development of various age-related diseases, for example, neurodegenerative diseases. RECENT ADVANCES The highly oxidized lipofuscin accumulates during aging. Lipofuscin formation might cause impaired lysosomal and proteasomal degradation, metal ion accumulation, increased reactive oxygen species formation, and apoptosis. CRITICAL ISSUES It is still unclear to which extent protein oxidation is involved in the progression of aging and in the development of some age-related diseases. FUTURE DIRECTIONS An extensive knowledge of the effects of protein oxidation on the aging process and its contribution to the development of age-related diseases could enable further strategies to reduce age-related impairments. Strategies aimed at lowering aggregate formation might be a straightforward intervention to reduce age-related malfunctions of organs.
Collapse
Affiliation(s)
- Sandra Reeg
- German Institute of Human Nutrition , Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition , Nuthetal, Germany
| |
Collapse
|
47
|
Barrett PJ, Timothy Greenamyre J. Post-translational modification of α-synuclein in Parkinson's disease. Brain Res 2015; 1628:247-253. [PMID: 26080075 DOI: 10.1016/j.brainres.2015.06.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and the most prevalent degenerative movement disorder. It is estimated that the prevalence of such age-related neurodegenerative diseases will double in the next 25 years. While the etiology of Parkinson's disease is not entirely clear, a common link between both inherited and sporadic forms of disease is the protein α-synuclein. In PD brains, α-synuclein is typically found in large, insoluble protein aggregates referred to as Lewy bodies and Lewy neurites. The exact role of α-synuclein is still unknown, but it has been shown to undergo a variety of post-translational modifications, which impact α-synuclein aggregation and oligomer formation in different ways. This review highlights key post-translational modifications and the impact they have on α-synuclein aggregation and toxicity, elucidating potential mechanisms for PD pathogenesis and targets for future therapeutics. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Paul J Barrett
- Department of Neurology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - J Timothy Greenamyre
- Department of Neurology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
48
|
Credle JJ, Forcelli PA, Delannoy M, Oaks AW, Permaul E, Berry DL, Duka V, Wills J, Sidhu A. α-Synuclein-mediated inhibition of ATF6 processing into COPII vesicles disrupts UPR signaling in Parkinson's disease. Neurobiol Dis 2015; 76:112-125. [PMID: 25725420 DOI: 10.1016/j.nbd.2015.02.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/19/2015] [Accepted: 02/05/2015] [Indexed: 10/23/2022] Open
Abstract
The unfolded protein response (UPR) monitors the folding environment within the endoplasmic reticulum (ER). Accumulation of misfolded proteins within the ER activates the UPR resulting in the execution of adaptive or non-adaptive signaling pathways. α-Synuclein (α-syn) whose accumulation and aggregation define the pathobiology of Parkinson's disease (PD) has been shown to inhibit ER-Golgi transit of COPII vesicles. ATF6, a protective branch of the UPR, is processed via COPII mediated ER-Golgi transit following its activation via ER stress. Using cellular PD models together with biochemical reconstitution assays, we showed that α-syn inhibited processing of ATF6 directly through physical interactions and indirectly through restricted incorporation into COPII vesicles. Impaired ATF6 signaling was accompanied by decreased ER-associated degradation (ERAD) function and increased pro-apoptotic signaling. The mechanism by which α-syn inhibits ATF6 signaling expands our understanding of the role ER stress and the UPR play in neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Joel J Credle
- Department of Biochemistry, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Michael Delannoy
- SOM Microscope Facility, Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Adam W Oaks
- Department of Biochemistry, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Eva Permaul
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Deborah L Berry
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Valeriy Duka
- Department of Biochemistry, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Jonathan Wills
- Department of Biochemistry, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Anita Sidhu
- Department of Biochemistry, Georgetown University Medical Center, Washington, DC 20007, USA.
| |
Collapse
|
49
|
Cox D, Carver JA, Ecroyd H. Preventing α-synuclein aggregation: the role of the small heat-shock molecular chaperone proteins. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1830-43. [PMID: 24973551 DOI: 10.1016/j.bbadis.2014.06.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/28/2014] [Accepted: 06/19/2014] [Indexed: 12/21/2022]
Abstract
Protein homeostasis, or proteostasis, is the process of maintaining the conformational and functional integrity of the proteome. The failure of proteostasis can result in the accumulation of non-native proteins leading to their aggregation and deposition in cells and in tissues. The amyloid fibrillar aggregation of the protein α-synuclein into Lewy bodies and Lewy neuritis is associated with neurodegenerative diseases classified as α-synucleinopathies, which include Parkinson's disease and dementia with Lewy bodies. The small heat-shock proteins (sHsps) are molecular chaperones that are one of the cell's first lines of defence against protein aggregation. They act to stabilise partially folded protein intermediates, in an ATP-independent manner, to maintain cellular proteostasis under stress conditions. Thus, the sHsps appear ideally suited to protect against α-synuclein aggregation, yet these fail to do so in the context of the α-synucleinopathies. This review discusses how sHsps interact with α-synuclein to prevent its aggregation and, in doing so, highlights the multi-faceted nature of the mechanisms used by sHsps to prevent the fibrillar aggregation of proteins. It also examines what factors may contribute to α-synuclein escaping the sHsp chaperones in the context of the α-synucleinopathies.
Collapse
Affiliation(s)
- Dezerae Cox
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - Heath Ecroyd
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
50
|
Palma JA, Kaufmann H. Novel therapeutic approaches in multiple system atrophy. Clin Auton Res 2014; 25:37-45. [PMID: 24928797 DOI: 10.1007/s10286-014-0249-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/23/2014] [Indexed: 01/12/2023]
Abstract
Multiple system atrophy (MSA) is a sporadic, adult onset, relentlessly progressive neurodegenerative disease characterized by autonomic abnormalities associated with parkinsonism, cerebellar dysfunction, pyramidal signs, or combinations thereof. Treatments that can halt or reverse the progression of MSA have not yet been identified. MSA is neuropathologically defined by the presence of α-synuclein-containing inclusions, particularly in the cytoplasm of oligodendrocytes (glial cytoplasmic inclusions, GCIs), which are associated with neurodegeneration. The mechanisms by which oligodendrocytic α-synuclein inclusions cause neuronal death in MSA are not completely understood. The MSA neurodegenerative process likely comprises cell-to-cell transmission of α-synuclein in a prion-like manner, α-synuclein aggregation, increased oxidative stress, abnormal expression of tubulin proteins, decreased expression of neurotrophic factors, excitotoxicity and microglial activation, and neuroinflammation. In an attempt to block each of these pathogenic mechanisms, several pharmacologic approaches have been tried and shown to exert neuroprotective effects in transgenic mouse or cellular models of MSA. These include sertraline, paroxetine, and lithium, which hamper arrival of α-synuclein to oligodendroglia; rifampicin, lithium, and non-steroidal anti-inflammatory drugs, which inhibit α-synuclein aggregation in oligodendrocytes; riluzole, rasagiline, fluoxetine and mesenchymal stem cells, which exert neuroprotective actions; and minocycline and intravenous immunoglobulins, which reduce neuroinflammation and microglial activation. These and other potential therapeutic strategies for MSA are summarized in this review.
Collapse
Affiliation(s)
- Jose-Alberto Palma
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, 530 First Av, Suite 9Q, New York, NY, 10016, USA
| | | |
Collapse
|