1
|
Gürbüzer N, Tozoğlu EÖ, Ozkaya AL, Mercantepe F. Serum Asprosin and Peptide Tyrosine Tyrosine (PYY) Levels in Bipolar Disorder. J Clin Med 2025; 14:1012. [PMID: 39941681 PMCID: PMC11818612 DOI: 10.3390/jcm14031012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Objective: In our study, we aimed to investigate the differences in metabolic parameters, serum asprosin and peptide tyrosine tyrosine (PYY) levels in a bipolar disorder manic (BD-M) group, a euthymic group and in healthy controls; we also aimed to evaluate the relationship of asprosin and PYY levels with metabolic parameters and psychopathology in patients. Methods: The study included 54 manic patients, 40 euthymic patients and 39 healthy controls. The sociodemographic characteristics of the participants were recorded, and biochemical parameters and asprosin and PYY levels were measured. The Young Mania Rating Scale (YMRS) and the Hamilton Depression Rating Scale (HAM-D) were completed. Results: Body mass index (BMI) showed significant differences between the three groups (p < 0.001); the lowest was found in the control group and the highest in the euthymic group. Triglyceride levels were significantly higher in the euthymic group compared with the BD-M group and controls (p = 0.003). Glucose levels were significantly higher in the BD-M group compared with euthymic (pmanic-euthymic = 0.008) and controls (pmanic-control < 0.001). Asprosin (pmanic-control < 0.001, peuthymic-control = 0.046, pmanic-euthymic = 0.015) and PYY (pmanic-control < 0.001, peuthymic-control = 0.037, pmanic-euthymic = 0.002) levels were significantly different between the three groups, with the lowest levels in the BD-M group and the highest levels in the control group. The eta squared = 0.18 for asprosin and 0.21 for PYY. In the BD-M group, a moderate negative correlation was found between YMRS and asprosin (r = -0.345; p = 0.011) and PYY (r = -0.376; p = 0.005) levels. ROC analysis results showed that asprosin and PYY could be used to predict the manic period in BD-I (AUCasprosin:0.775; AUCPYY:0.760). After adjusting for asprosin as a covariate using ANCOVA, the difference in PYY between groups remained significant (manic-euthymic groups, p = 0.040; manic-control groups, p = 0.013). Conclusions: The study results revealed that asprosin and PYY levels were low, and metabolic parameters were impaired in the patients. Low asprosin and PYY levels may be indicators of impaired energy homeostasis in BD-I. PYY may be a state marker for manic episodes.
Collapse
Affiliation(s)
- Nilifer Gürbüzer
- Department of Psychiatry, Erzurum Faculty of Medicine, University of Health Sciences, Erzurum 25240, Türkiye; (N.G.); (E.Ö.T.)
| | - Elif Özcan Tozoğlu
- Department of Psychiatry, Erzurum Faculty of Medicine, University of Health Sciences, Erzurum 25240, Türkiye; (N.G.); (E.Ö.T.)
| | | | - Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine, Recep Tayyip Erdogan University, Rize 53100, Türkiye
| |
Collapse
|
2
|
Choi Y, Yoo ES, Oh Y, Sohn JW. Cellular and metabolic function of GIRK1 potassium channels expressed by arcuate POMC and NPY/AgRP neurons. Mol Cells 2024; 47:100122. [PMID: 39374791 PMCID: PMC11567913 DOI: 10.1016/j.mocell.2024.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024] Open
Abstract
It is well known that the G protein-gated inwardly rectifying K+ (GIRK) channels are critical to maintain excitability of central neurons. GIRK channels consist of 4 subunits and GIRK1/GIRK2 heterotetramers are considered to be the neuronal prototype. We previously reported the metabolic significance of GIRK2 subunits expressed by the neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons of the arcuate nucleus of the hypothalamus (ARH). However, the role of GIRK1 subunits expressed by the neurons of ARH remains to be determined. In this study, we delineated the contribution of GIRK1 channel subunits to the excitability of the pro-opiomelanocortin (POMC) and NPY/AgRP neurons of the ARH. We further assessed the metabolic function of GIRK1 subunits expressed by these neurons. Our results provide insight into how GIRK channels regulate arcuate POMC and NPY/AgRP neurons and shape metabolic phenotypes.
Collapse
Affiliation(s)
- Yeeun Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Eun-Seon Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Youjin Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| |
Collapse
|
3
|
Dodt S, Widdershooven NV, Dreisow ML, Weiher L, Steuernagel L, Wunderlich FT, Brüning JC, Fenselau H. NPY-mediated synaptic plasticity in the extended amygdala prioritizes feeding during starvation. Nat Commun 2024; 15:5439. [PMID: 38937485 PMCID: PMC11211344 DOI: 10.1038/s41467-024-49766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
Efficient control of feeding behavior requires the coordinated adjustment of complex motivational and affective neurocircuits. Neuropeptides from energy-sensing hypothalamic neurons are potent feeding modulators, but how these endogenous signals shape relevant circuits remains unclear. Here, we examine how the orexigenic neuropeptide Y (NPY) adapts GABAergic inputs to the bed nucleus of the stria terminalis (BNST). We find that fasting increases synaptic connectivity between agouti-related peptide (AgRP)-expressing 'hunger' and BNST neurons, a circuit that promotes feeding. In contrast, GABAergic input from the central amygdala (CeA), an extended amygdala circuit that decreases feeding, is reduced. Activating NPY-expressing AgRP neurons evokes these synaptic adaptations, which are absent in NPY-deficient mice. Moreover, fasting diminishes the ability of CeA projections in the BNST to suppress food intake, and NPY-deficient mice fail to decrease anxiety in order to promote feeding. Thus, AgRP neurons drive input-specific synaptic plasticity, enabling a selective shift in hunger and anxiety signaling during starvation through NPY.
Collapse
Affiliation(s)
- Stephan Dodt
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Noah V Widdershooven
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Marie-Luise Dreisow
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
| | - Lisa Weiher
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Lukas Steuernagel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - F Thomas Wunderlich
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany.
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany.
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany.
| |
Collapse
|
4
|
Schüß C, Behr V, Beck-Sickinger AG. Illuminating the neuropeptide Y 4 receptor and its ligand pancreatic polypeptide from a structural, functional, and therapeutic perspective. Neuropeptides 2024; 105:102416. [PMID: 38430725 DOI: 10.1016/j.npep.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The neuropeptide Y4 receptor (Y4R), a rhodopsin-like G protein-coupled receptor (GPCR) and the hormone pancreatic polypeptide (PP) are members of the neuropeptide Y family consisting of four receptors (Y1R, Y2R, Y4R, Y5R) and three highly homologous peptide ligands (neuropeptide Y, peptide YY, PP). In this family, the Y4R is of particular interest as it is the only subtype with high affinity to PP over NPY. The Y4R, as a mediator of PP signaling, has a pivotal role in appetite regulation and energy homeostasis, offering potential avenues for the treatment of metabolic disorders such as obesity. PP as anorexigenic peptide is released postprandial from the pancreas in response to food intake, induces satiety signals and contributes to hamper excessive food intake. Moreover, this system was also described to be associated with different types of cancer: overexpression of Y4R have been found in human adenocarcinoma cells, while elevated levels of PP are related to the development of pancreatic endocrine tumors. The pharmacological relevance of the Y4R advanced the search for potent and selective ligands for this receptor subtype, which will be significantly progressed through the elucidation of the active state PP-Y4R cryo-EM structure. This review summarizes the development of novel PP-derived ligands, like Obinepitide as dual Y2R/Y4R agonist in clinical trials or UR-AK86c as small hexapeptide agonist with picomolar affinity, as well as the first allosteric modulators that selectively target the Y4R, e.g. VU0506013 as potent Y4R positive allosteric modulator or (S)-VU0637120 as allosteric antagonist. Here, we provide valuable insights into the complex physiological functions of the Y4R and PP and the pharmacological relevance of the system in appetite regulation to open up new avenues for the development of tool compounds for targeted therapies with potential applications in metabolic disorders.
Collapse
Affiliation(s)
- Corinna Schüß
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Germany.
| | - Victoria Behr
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Germany
| | | |
Collapse
|
5
|
Christensen EK, Konomi-Pilkati A, Rombach J, Comaposada-Baro R, Wang H, Li Y, Sørensen AT. Detection of endogenous NPY release determined by novel GRAB sensor in cultured cortical neurons. Front Cell Neurosci 2023; 17:1221147. [PMID: 37545877 PMCID: PMC10399118 DOI: 10.3389/fncel.2023.1221147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Neuropeptide Y (NPY) is an abundantly expressed peptide in the nervous system. Its widespread distribution along with its receptors, both centrally and peripherally, indicates its broad functions in numerous biological processes. However, the low endogenous concentration and diffuse distribution of NPY make it challenging to study its actions and dynamics directly and comprehensively. Studies on the role of NPY have primarily been limited to exogenous application, transgene expression, or knock-out in biological systems, which are often combined with pharmacological probes to delineate the involvement of specific NPY receptors. Therefore, to better understand the function of NPY in time and space, direct visualization of the real-time dynamics of endogenous NPY is a valuable and desired tool. Using the first-generation and newly developed intensiometric green fluorescent G-protein-coupled NPY sensor (GRAB NPY1.0), we, for the first time, demonstrate and characterize the direct detection of endogenously released NPY in cultured cortical neurons. A dose-dependent fluorescent signal was observed upon exogenous NPY application in nearly all recorded neurons. Pharmacologically evoked neuronal activity induced a significant increase in fluorescent signal in 32% of neurons, reflecting the release of NPY, despite only 3% of all neurons containing NPY. The remaining pool of neurons expressing the sensor were either non-responsive or displayed a notable decline in the fluorescent signal. Such decline in fluorescent signal was not rescued in cortical cultures transduced with an NPY overexpression vector, where 88% of the neurons were NPY-positive. Overexpression of NPY did, however, result in sensor signals that were more readily distinguishable. This may suggest that biological factors, such as subtle changes in intracellular pH, could interfere with the fluorescent signal, and thereby underestimate the release of endogenous NPY when using this new sensor in its present configuration. However, the development of next-generation NPY GRAB sensor technology is expected soon, and will eventually enable much-wanted studies on endogenous NPY release dynamics in both cultured and intact biological systems.
Collapse
Affiliation(s)
- Emma Kragelund Christensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ainoa Konomi-Pilkati
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joscha Rombach
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Raquel Comaposada-Baro
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Andreas Toft Sørensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Rahman MM, Islam MR, Supti FA, Dhar PS, Shohag S, Ferdous J, Shuvo SK, Akter A, Hossain MS, Sharma R. Exploring the Therapeutic Effect of Neurotrophins and Neuropeptides in Neurodegenerative Diseases: at a Glance. Mol Neurobiol 2023:10.1007/s12035-023-03328-5. [PMID: 37052791 DOI: 10.1007/s12035-023-03328-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophins and neuropeptides are the essential regulators of peripheral nociceptive nerves that help to induce, sensitize, and maintain pain. Neuropeptide has a neuroprotective impact as it increases trophic support, regulates calcium homeostasis, and reduces excitotoxicity and neuroinflammation. In contrast, neurotrophins target neurons afflicted by ischemia, epilepsy, depression, and eating disorders, among other neuropsychiatric conditions. Neurotrophins are reported to inhibit neuronal death. Strategies maintained for "brain-derived neurotrophic factor (BDNF) therapies" are to upregulate BDNF levels using the delivery of protein and genes or compounds that target BDNF production and boosting BDNF signals by expanding with BDNF mimetics. This review discusses the mechanisms of neurotrophins and neuropeptides against acute neural damage as well as highlighting neuropeptides as a potential therapeutic agent against Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), and Machado-Joseph disease (MJD), the signaling pathways affected by neurotrophins and their receptors in both standard and diseased CNS systems, and future perspectives that can lead to the potent application of neurotrophins and neuropeptides in neurodegenerative diseases (NDs).
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
7
|
Central Interaction Between L-Ornithine and Neuropeptide Y in the Regulation of Feeding Behavior of Neonatal Chicks. J Poult Sci 2023; 60:2023004. [PMID: 36756047 PMCID: PMC9884638 DOI: 10.2141/jpsa.2023004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 01/25/2023] Open
Abstract
Ornithine has been identified as a potential satiety signal in the brains of neonatal chicks. We hypothesized that brain nutrient signals such as amino acids and appetite-related neuropeptides synergistically regulate food intake. To test this hypothesis, we investigated the interaction between neuropeptide Y (NPY) and ornithine in the control of feeding behavior in chicks and the associated central and peripheral amino acid metabolic processes. Five-day-old chicks were intracerebroventricularly injected with saline, NPY (375 pmol), or NPY plus ornithine (2 or 4 μmol) at 10 μl per chick, and then subjected to ad libitum feeding conditions; food intake was monitored for 30 min after injection. Brain and plasma samples were collected after the experiment to determine free amino acid concentrations. Co-injection of NPY and ornithine significantly attenuated the orexigenic effect induced by NPY in a dose-dependent manner. Central NPY significantly decreased amino adipic acid, asparagine, γ-aminobutyric acid, leucine, phenylalanine, tyrosine, and isoleucine levels, but significantly increased lysine levels in the brain. Co-injection of NPY and ornithine significantly increased ornithine and proline levels in all examined brain regions, but decreased diencephalic tryptophan and glycine levels compared with those of the control and NPY-alone groups. Co-injection of NPY and high-dose ornithine significantly decreased methionine levels in all brain regions. Central NPY significantly suppressed the plasma concentrations of amino acids, including proline, asparagine, methionine, phenylalanine, tyrosine, leucine, isoleucine, glycine, glutamine, alanine, arginine, and valine, and this reduction was greater when NPY was co-injected with ornithine. These results suggest that brain ornithine interacts with NPY to regulate food intake in neonatal chicks. Furthermore, central NPY may induce an anabolic effect that is modified by co-injection with ornithine.
Collapse
|
8
|
Cellot G, Jacquemin L, Reina G, Franceschi Biagioni A, Fontanini M, Chaloin O, Nishina Y, Bianco A, Ballerini L. Bonding of Neuropeptide Y on Graphene Oxide for Drug Delivery Applications to the Central Nervous System. ACS APPLIED NANO MATERIALS 2022; 5:17640-17651. [PMID: 36583122 PMCID: PMC9791619 DOI: 10.1021/acsanm.2c03409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/21/2022] [Indexed: 05/20/2023]
Abstract
Nanoscale graphene-based materials (GBMs) enable targeting subcellular structures of the nervous system, a feature crucial for the successful engineering of alternative nanocarriers to deliver drugs and to treat neurodisorders. Among GBMs, graphene oxide (GO) nanoflakes, showing good dispersibility in water solution and being rich of functionalizable oxygen groups, are ideal core structures for carrying biological active molecules to the brain, such as the neuropeptide Y (NPY). In addition, when unconjugated, these nanomaterials have been reported to modulate neuronal function per se. Although some GBM-based nanocarriers have been tested both in vitro and in vivo, a thorough characterization of covalent binding impact on the biological properties of the carried molecule and/or of the nanomaterial is still missing. Here, a copper(I)-catalyzed alkyne-azide cycloaddition strategy was employed to synthesize the GO-NPY complex. By investigating through electrophysiology the impact of these conjugates on the activity of hippocampal neurons, we show that the covalent modification of the nanomaterial, while making GO an inert platform for the vectorized delivery, enhances the duration of NPY pharmacological activity. These findings support the future use of GO for the development of smart platforms for nervous system drug delivery.
Collapse
Affiliation(s)
- Giada Cellot
- International
School for Advanced Studies, SISSA, Via Bonomea n. 265, 34136Trieste, Italy
| | - Lucas Jacquemin
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg ISIS, 67000Strasbourg, France
| | - Giacomo Reina
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg ISIS, 67000Strasbourg, France
| | | | - Mario Fontanini
- International
School for Advanced Studies, SISSA, Via Bonomea n. 265, 34136Trieste, Italy
| | - Olivier Chaloin
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg ISIS, 67000Strasbourg, France
| | - Yuta Nishina
- Graduate
School of Natural Science and Technology and Research Core for Interdisciplinary
Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama700-8530, Japan
| | - Alberto Bianco
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg ISIS, 67000Strasbourg, France
| | - Laura Ballerini
- International
School for Advanced Studies, SISSA, Via Bonomea n. 265, 34136Trieste, Italy
| |
Collapse
|
9
|
Smith NK, Kondev V, Hunt TR, Grueter BA. Neuropeptide Y modulates excitatory synaptic transmission and promotes social behavior in the mouse nucleus accumbens. Neuropharmacology 2022; 217:109201. [PMID: 35917875 PMCID: PMC9836361 DOI: 10.1016/j.neuropharm.2022.109201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 01/14/2023]
Abstract
Social interactions define the human experience, but these integral behaviors are disrupted in many psychiatric disorders. Social behaviors have evolved over millennia, and neuromodulatory systems that promote social behavior in invertebrates are also present in mammalian brains. One such conserved neuromodulator, neuropeptide Y (NPY), acts through several receptors including the Y1r, Y2r, and Y5r. These receptors are present in brain regions that control social behavior, including the nucleus accumbens (NAc). However, whether NPY modulates NAc neurotransmission is unknown. Using whole-cell patch-clamp electrophysiology of NAc neurons, we find that multiple NPY receptors regulate excitatory synaptic transmission in a cell-type specific manner. At excitatory synapses onto D1+ MSNs, Y1r activity enhances transmission while Y2r suppresses transmission. At excitatory synapses onto D1- MSNs, Y5r activity enhances transmission while Y2r suppresses transmission. Directly infusing NPY or the Y1r agonist [Leu31, Pro34]-NPY into the NAc significantly increases social interaction with an unfamiliar conspecific. Inhibition of an enzyme that breaks down NPY, dipeptidyl peptidase IV (DPP-IV), shifts the effect of NPY on D1+ MSNs to a Y1r dominated phenotype. Together, these results increase our understanding of how NPY regulates neurotransmission in the NAc and identify a novel mechanism underlying the control of social behavior. Further, they reveal a potential strategy to shift NPY signaling for therapeutic gain.
Collapse
Affiliation(s)
- Nicholas K. Smith
- Neuroscience Graduate Program, Vanderbilt University; Nashville, TN 37232, USA
| | - Veronika Kondev
- Neuroscience Graduate Program, Vanderbilt University; Nashville, TN 37232, USA
| | - Thomas R. Hunt
- College of Arts and Sciences, Vanderbilt University; Nashville, TN 37232, USA
| | - Brad A. Grueter
- Vanderbilt Brain Institute, Vanderbilt University; Nashville, TN 37232, USA,Department of Anesthesiology, Vanderbilt University Medical Center; Nashville, TN 37232, USA,Vanderbilt Center for Addiction Research, Vanderbilt University; Nashville, TN 37232, USA,Department of Molecular Physiology and Biophysics, Vanderbilt University; Nashville, TN 37232, USA,Department of Pharmacology, Vanderbilt University; Nashville, TN, 37232, USA,Corresponding author. 1161 21st Avenue South * T4202-MCN Nashville, TN, 37232-2520, USA, (B.A. Grueter)
| |
Collapse
|
10
|
Dai W, Liu J, Qiu Y, Teng Z, Li S, Yuan H, Huang J, Xiang H, Tang H, Wang B, Chen J, Wu H. Gut Microbial Dysbiosis and Cognitive Impairment in Bipolar Disorder: Current Evidence. Front Pharmacol 2022; 13:893567. [PMID: 35677440 PMCID: PMC9168430 DOI: 10.3389/fphar.2022.893567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Recent studies have reported that the gut microbiota influences mood and cognitive function through the gut-brain axis, which is involved in the pathophysiology of neurocognitive and mental disorders, including Parkinson’s disease, Alzheimer’s disease, and schizophrenia. These disorders have similar pathophysiology to that of cognitive dysfunction in bipolar disorder (BD), including neuroinflammation and dysregulation of various neurotransmitters (i.e., serotonin and dopamine). There is also emerging evidence of alterations in the gut microbial composition of patients with BD, suggesting that gut microbial dysbiosis contributes to disease progression and cognitive impairment in BD. Therefore, microbiota-centered treatment might be an effective adjuvant therapy for BD-related cognitive impairment. Given that studies focusing on connections between the gut microbiota and BD-related cognitive impairment are lagging behind those on other neurocognitive disorders, this review sought to explore the potential mechanisms of how gut microbial dysbiosis affects cognitive function in BD and identify potential microbiota-centered treatment.
Collapse
Affiliation(s)
- Wenyu Dai
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jieyu Liu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Qiu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Yuan
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Xiang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
11
|
Saklani P, Khan H, Gupta S, Kaur A, Singh TG. Neuropeptides: Potential neuroprotective agents in ischemic injury. Life Sci 2022; 288:120186. [PMID: 34852271 DOI: 10.1016/j.lfs.2021.120186] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
AIM Ischemic damage to the brain is linked to an increased rate of morbidity and mortality worldwide. In certain parts of the world, it remains a leading cause of mortality and the primary cause of long-term impairment. Ischemic injury is exacerbated when particular neuropeptides are removed, or their function in the brain is blocked, whereas supplying such neuropeptides lowers ischemic harm. Here, we have discussed the role of neuropeptides in ischemic injury. MATERIALS & METHODS Numerous neuropeptides had their overexpression following cerebral ischemia. Neuropeptides such as NPY, CGRP, CART, SP, BK, PACAP, oxytocin, nociception, neurotensin and opioid peptides act as transmitters, documented in several "in vivo" and "in vitro" studies. Neuropeptides provide neuroprotection by activating the survival pathways or inhibiting the death pathways, i.e., MAPK, BDNF, Nitric Oxide, PI3k/Akt and NF-κB. KEY FINDINGS Neuropeptides have numerous beneficial effects in ischemic models, including antiapoptotic, anti-inflammatory, and antioxidant actions that provide a powerful protective impact in neurons when combined. These innovative therapeutic substances have the potential to treat ischemia injury due to their pleiotropic modes of action. SIGNIFICANCE This review emphasizes the neuroprotective role of neuropeptides in ischemic injury via modulation of various signalling pathways i.e., MAPK, BDNF, Nitric Oxide, PI3k/Akt and NF-κB.
Collapse
Affiliation(s)
- Priyanka Saklani
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | |
Collapse
|
12
|
Duriez P, Nilsson IAK, Le Thuc O, Alexandre D, Chartrel N, Rovere C, Chauveau C, Gorwood P, Tolle V, Viltart O. Exploring the Mechanisms of Recovery in Anorexia Nervosa through a Translational Approach: From Original Ecological Measurements in Human to Brain Tissue Analyses in Mice. Nutrients 2021; 13:nu13082786. [PMID: 34444945 PMCID: PMC8401511 DOI: 10.3390/nu13082786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022] Open
Abstract
Anorexia nervosa (AN) is a severe eating disorder where caloric restriction, excessive physical activity and metabolic alterations lead to life-threatening situations. Despite weight restoration after treatment, a significant part of patients experience relapses. In this translational study, we combined clinical and preclinical approaches. We describe preliminary data about the effect of weight gain on the symptomatology of patients suffering from acute AN (n = 225) and partially recovered (n = 41). We measured more precisely physical activity with continuous cardiac monitoring in a sub-group (n = 68). Using a mouse model, we investigated whether a long-term food restriction followed by nutritional recovery associated or not with physical activity may differentially impact peripheral and central homeostatic regulation. We assessed the plasma concentration of acyl ghrelin, desacyl ghrelin and leptin and the mRNA expression of hypothalamic neuropeptides and their receptors. Our data show an effect of undernutrition history on the level of physical activity in AN. The preclinical model supports an important role of physical activity in the recovery process and points out the leptin system as one factor that can drive a reliable restoration of metabolic variables through the hypothalamic regulation of neuropeptides involved in feeding behavior.
Collapse
Affiliation(s)
- Philibert Duriez
- Institute of Psychiatry and Neuroscience of Paris (IPNP), University of Paris, INSERM UMR-S 1266, F-75014 Paris, France; (P.D.); (P.G.); (V.T.)
- GHU Paris Psychiatry and Neurosciences, Hospital Sainte-Anne, F-75014 Paris, France
| | - Ida A. K. Nilsson
- Department of Molecular Medicine & Surgery, Karolinska Institutet, Centre for Eating Disorders Innovation (CEDI), Medical University, Karolinska Institutet, S-17176 Stockholm, Sweden;
| | - Ophelia Le Thuc
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), University of Nice-Sophia Antipolis, F-06560 Valbonne, France; (O.L.T.); (C.R.)
| | - David Alexandre
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Normandie, UNIROUEN, F-76821 Mont-Saint-Aignan, France; (D.A.); (N.C.)
| | - Nicolas Chartrel
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Normandie, UNIROUEN, F-76821 Mont-Saint-Aignan, France; (D.A.); (N.C.)
| | - Carole Rovere
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), University of Nice-Sophia Antipolis, F-06560 Valbonne, France; (O.L.T.); (C.R.)
| | - Christophe Chauveau
- Marrow Adiposity and Bone Laboratory (MABLab), University of Littoral Côté d’Opale, CHRU Lille, F-62327 Boulogne sur Mer, France;
- Faculty of Sciences and Technologies, University of Lille, F-59650 Villeneuve d’Ascq, France
| | - Philip Gorwood
- Institute of Psychiatry and Neuroscience of Paris (IPNP), University of Paris, INSERM UMR-S 1266, F-75014 Paris, France; (P.D.); (P.G.); (V.T.)
- GHU Paris Psychiatry and Neurosciences, Hospital Sainte-Anne, F-75014 Paris, France
| | - Virginie Tolle
- Institute of Psychiatry and Neuroscience of Paris (IPNP), University of Paris, INSERM UMR-S 1266, F-75014 Paris, France; (P.D.); (P.G.); (V.T.)
| | - Odile Viltart
- Institute of Psychiatry and Neuroscience of Paris (IPNP), University of Paris, INSERM UMR-S 1266, F-75014 Paris, France; (P.D.); (P.G.); (V.T.)
- Faculty of Sciences and Technologies, University of Lille, F-59650 Villeneuve d’Ascq, France
- Correspondence: ; Tel.: +33-6-76-88-05-06
| |
Collapse
|
13
|
Przykaza Ł, Kozniewska E. Ligands of the Neuropeptide Y Y2 Receptors as a Potential Multitarget Therapeutic Approach for the Protection of the Neurovascular Unit Against Acute Ischemia/Reperfusion: View from the Perspective of the Laboratory Bench. Transl Stroke Res 2021; 13:12-24. [PMID: 34292517 PMCID: PMC8766383 DOI: 10.1007/s12975-021-00930-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023]
Abstract
Ischemic stroke is the third leading cause of death and disability worldwide, with no available satisfactory prevention or treatment approach. The current treatment is limited to the use of “reperfusion methods,” i.e., an intravenous or intra-arterial infusion of a fibrinolytic agent, mechanical removal of the clot by thrombectomy, or a combination of both methods. It should be stressed, however, that only approximately 5% of all acute strokes are eligible for fibrinolytic treatment and fewer than 10% for thrombectomy. Despite the tremendous progress in understanding of the pathomechanisms of cerebral ischemia, the promising results of basic research on neuroprotection are not currently transferable to human stroke. A possible explanation for this failure is that experiments on in vivo animal models involve healthy young animals, and the experimental protocols seldom consider the importance of protecting the whole neurovascular unit (NVU), which ensures intracranial homeostasis and is seriously damaged by ischemia/reperfusion. One of the endogenous protective systems activated during ischemia and in neurodegenerative diseases is represented by neuropeptide Y (NPY). It has been demonstrated that activation of NPY Y2 receptors (Y2R) by a specific ligand decreases the volume of the postischemic infarction and improves performance in functional tests of rats with arterial hypertension subjected to middle cerebral artery occlusion/reperfusion. This functional improvement suggests the protection of the NVU. In this review, we focus on NPY and discuss the potential, multidirectional protective effects of Y2R agonists against acute focal ischemia/reperfusion injury, with special reference to the NVU.
Collapse
Affiliation(s)
- Łukasz Przykaza
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute Polish Academy of Sciences, A. Pawińskiego Str. 5, 02-106, Warsaw, Poland
| | - Ewa Kozniewska
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute Polish Academy of Sciences, A. Pawińskiego Str. 5, 02-106, Warsaw, Poland.
| |
Collapse
|
14
|
Tanaka M, Yamada S, Watanabe Y. The Role of Neuropeptide Y in the Nucleus Accumbens. Int J Mol Sci 2021; 22:ijms22147287. [PMID: 34298907 PMCID: PMC8307209 DOI: 10.3390/ijms22147287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Neuropeptide Y (NPY), an abundant peptide in the central nervous system, is expressed in neurons of various regions throughout the brain. The physiological and behavioral effects of NPY are mainly mediated through Y1, Y2, and Y5 receptor subtypes, which are expressed in regions regulating food intake, fear and anxiety, learning and memory, depression, and posttraumatic stress. In particular, the nucleus accumbens (NAc) has one of the highest NPY concentrations in the brain. In this review, we summarize the role of NPY in the NAc. NPY is expressed principally in medium-sized aspiny neurons, and numerous NPY immunoreactive fibers are observed in the NAc. Alterations in NPY expression under certain conditions through intra-NAc injections of NPY or receptor agonists/antagonists revealed NPY to be involved in the characteristic functions of the NAc, such as alcohol intake and drug addiction. In addition, control of mesolimbic dopaminergic release via NPY receptors may take part in these functions. NPY in the NAc also participates in fat intake and emotional behavior. Accumbal NPY neurons and fibers may exert physiological and pathophysiological actions partly through neuroendocrine mechanisms and the autonomic nervous system.
Collapse
Affiliation(s)
- Masaki Tanaka
- Department of Anatomy, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
- Correspondence: ; Tel.: +81-75-251-5300
| | - Shunji Yamada
- Department of Anatomy, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
| | - Yoshihisa Watanabe
- Department of Basic Geriatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
| |
Collapse
|
15
|
Kornhuber J, Zoicas I. Neuropeptide Y prolongs non-social memory in a brain region- and receptor-specific way in male mice. Neuropharmacology 2020; 175:108199. [PMID: 32535011 DOI: 10.1016/j.neuropharm.2020.108199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022]
Abstract
Neuropeptide Y (NPY) and its receptors are highly expressed in brain regions involved in learning and memory processes. We have previously shown that intracerebroventricular administration of NPY prolongs the retention of non-social memory in the object discrimination test. Here, we aimed to identify the brain regions which mediate these memory-enhancing effects of NPY. We show that NPY (0.1 nmol/0.2 μl/side) prolongs retention of non-social memory when administered into the dorsolateral septum (DLS) and medial amygdala (MeA), but not when administered into the dorsal hippocampus, central amygdala and basolateral amygdala. In the DLS, the effects of NPY were blocked by the Y1 receptor antagonist BIBO3304 trifluoroacetate (0.2 nmol/0.2 μl/side), but not by the Y2 receptor antagonist BIIE0246 (0.2 nmol/0.2 μl/side). In the MeA, on the other hand, BIIE0246, but not BIBO3304 trifluoroacetate blocked the effects of NPY. This study demonstrates that NPY exerts Y1 receptor-mediated memory-enhancing effects in the DLS and Y2 receptor-mediated memory-enhancing effects in the MeA, and suggests that distinct brain regions and receptor subtypes are recruited to mediate the effects of NPY on non-social memory.
Collapse
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
16
|
Li Y, Zhang J. The Effect of Acute Erythromycin Exposure on the Swimming Ability of Zebrafish ( Danio rerio) and Medaka ( Oryzias latipes). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103389. [PMID: 32414023 PMCID: PMC7277679 DOI: 10.3390/ijerph17103389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/20/2022]
Abstract
Erythromycin is a widely used antibiotic, and erythromycin contamination may pose a threat to aquatic organisms. However, little is known about the adverse effects of erythromycin on swimming ability. To quantify erythromycin-induced damage to fish swimming ability, Oryzias latipes and Danio rerio were acutely exposed to erythromycin. The swimming ability of the experimental fish was measured after exposure to varying doses of erythromycin (2 µg/L, 20 µg/L, 200 µg/L, and 2 mg/L) for 96 h. Burst speed (Uburst) and critical swimming speed (Ucrit) of experimental fish significantly decreased. In addition, gene expression analysis of O. latipes and D. rerio under erythromycin treatment (2 mg/L) showed that the expression of genes related to energy metabolism in the muscle was significantly reduced in both species of fish. However, the gene expression pattern in the head of the two species was differentially impacted; D. rerio showed endocrine disruption, while phototransduction was impacted in O. latipes. The results of our study may be used as a reference to control erythromycin pollution in natural rivers.
Collapse
|
17
|
Ramírez-Orozco RE, García-Ruiz R, Morales P, Villalón CM, Villafán-Bernal JR, Marichal-Cancino BA. Potential metabolic and behavioural roles of the putative endocannabinoid receptors GPR18, GPR55 and GPR119 in feeding. Curr Neuropharmacol 2020; 17:947-960. [PMID: 31146657 PMCID: PMC7052828 DOI: 10.2174/1570159x17666190118143014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 01/28/2023] Open
Abstract
Endocannabinoids are ancient biomolecules involved in several cellular (e.g., metabolism) and physiological (e.g., eating behaviour) functions. Indeed, eating behaviour alterations in marijuana users have led to investigate the orexigen-ic/anorexigenic effects of cannabinoids in animal/human models. This increasing body of research suggests that the endo-cannabinoid system plays an important role in feeding control. Accordingly, within the endocannabinoid system, canna-binoid receptors, enzymes and genes represent potential therapeutic targets for dealing with multiple metabolic and behav-ioural dysfunctions (e.g., obesity, anorexia, etc.). Paradoxically, our understanding on the endocannabinoid system as a cel-lular mediator is yet limited. For example: (i) only two cannabinoid receptors have been classified, but they are not enough to explain the pharmacological profile of several experimental effects induced by cannabinoids; and (ii) several orphan G pro-tein-coupled receptors (GPCRs) interact with cannabinoids and we do not know how to classify them (e.g., GPR18, GPR55 and GPR119; amongst others). On this basis, the present review attempts to summarize the lines of evidence supporting the potential role of GPR18, GPR55 and GPR119 in metabolism and feeding control that may explain some of the divergent effects and puzzling data re-lated to cannabinoid research. Moreover, their therapeutic potential in feeding behaviour alterations will be considered.
Collapse
Affiliation(s)
- Ricardo E Ramírez-Orozco
- Departamento de Nutricion y Cultura Fisica, Centro de Ciencias de la Salud, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags, Mexico
| | - Ricardo García-Ruiz
- Departamento de Fisiologia, Facultad de Medicina. Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Paula Morales
- Instituto de Quimica Fisica Rocasolano, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Carlos M Villalón
- Departamento de Farmacobiologia, Cinvestav- Coapa, Czda. Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, 14330 Ciudad de Mexico, Mexico
| | - J Rafael Villafán-Bernal
- Departamento de Cirugia, Centro de Ciencias de la Salud, Universidad Autonoma de Aguascalientes, CP 20131 Aguascalientes, Ags, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiologia y Farmacologia, Centro de Ciencias Basicas, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags, Mexico
| |
Collapse
|
18
|
Jakobsson JET, Ma H, Lagerström MC. Neuropeptide Y in itch regulation. Neuropeptides 2019; 78:101976. [PMID: 31668651 DOI: 10.1016/j.npep.2019.101976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/03/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Itch is a somatosensory sensation that informs the organism about the presence of potentially harmful substances or parasites, and initiates scratching to remove the threat. Itch-inducing (pruritogenic) substances activate primary afferent neurons in the skin through interactions with specific receptors that converts the stimulus into an electrical signal. These signals are conveyed to the dorsal horn of the spinal cord through the release of neurotransmitters such as natriuretic polypeptide b and somatostatin, leading to an integrated response within a complex spinal interneuronal network. A large sub-population of somatostatin-expressing spinal interneurons also carry the Neuropeptide Y (NPY) Y1 receptor, indicating that NPY and somatostatin partly regulate the same neuronal pathway. This review focuses on recent findings regarding the role of the NPY/Y1 and somatostatin/SST2A receptor in itch, and also presents data integrating the two neurotransmitter systems.
Collapse
Affiliation(s)
- Jon E T Jakobsson
- Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Haisha Ma
- Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | | |
Collapse
|
19
|
Ma H, Gao T, Jakobsson JET, Weman HM, Xu B, Larhammar D, Lagerström MC. The Neuropeptide Y Y 2 Receptor Is Coexpressed with Nppb in Primary Afferent Neurons and Y 2 Activation Reduces Histaminergic and IL-31-Induced Itch. J Pharmacol Exp Ther 2019; 372:73-82. [PMID: 31771994 DOI: 10.1124/jpet.119.262584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023] Open
Abstract
Itch stimuli are detected by specialized primary afferents that convey the signal to the spinal cord, but how itch transmission is regulated is still not completely known. Here, we investigated the roles of the neuropeptide Y (NPY)/Y2 receptor system on scratch behavior. The inhibitory Y2 receptor is expressed on mouse primary afferents, and intrathecal administration of the Y2 agonist peptide YY (PYY)3-36 reduced scratch episode frequency and duration induced by compound 48/80, an effect that could be reversed by intrathecal preadministration of the Y2 antagonist BIIE0246. Also, scratch episode duration induced by histamine could be reduced by PYY3-36 In contrast, scratch behavior induced by α-methyl-5HT, protease-activated receptor-2-activating peptide SLIGRL, chloroquine, topical dust mite extract, or mechanical itch induced by von Frey filaments was unaffected by stimulation of Y2 Primary afferent neurons expressing the Npy2r gene were found to coexpress itch-associated markers such as natriuretic peptide precursor b, oncostatin M receptor, and interleukin (IL) 31 receptor A. Accordingly, intrathecal PYY3-36 reduced the scratch behavior induced by IL-31. Our findings imply that the NPY/Y2 system reduces histaminergic and IL-31-associated itch through presynaptic inhibition of a subpopulation of itch-associated primary afferents. SIGNIFICANCE STATEMENT: The spinal neuropeptide Y system dampens scratching behavior induced by histaminergic compounds and interleukin 31, a cytokine involved in atopic dermatitis, through interactions with the Y2 receptor. The Y2 receptor is expressed by primary afferent neurons that are rich in itch-associated neurotransmitters and receptors such as somatostatin, natriuretic peptide precursor b, and interleukin 31 receptors.
Collapse
Affiliation(s)
- Haisha Ma
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Tianle Gao
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Hannah M Weman
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Bo Xu
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
20
|
Energy Homeostasis and Obesity: The Therapeutic Role of Anorexigenic and Orexigenic Peptide. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Campos-Ordonez T, Zarate-Lopez D, Ibarra-Castaneda N, Buritica J, Gonzalez-Perez O. Cyclohexane Inhalation Produces Long-Lasting Alterations in the Hippocampal Integrity and Reward-Seeking Behavior in the Adult Mouse. Cell Mol Neurobiol 2019; 39:435-449. [PMID: 30771197 DOI: 10.1007/s10571-019-00660-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
Cyclohexane (CHX) is an organic solvent commonly used as a drug-of-abuse. This drug increases the oxidative stress and glial reactivity in the hippocampus, which suggests that this brain region is vulnerable to CHX effects. This study aimed to establish the behavioral changes and the pathological alterations that occur in the Cornu Ammonis 3 (CA3) and Dentate Gyrus (DG) after a long-lasting exposure to CHX. We exposed CD1 mice to a recreational-like dose of CHX (~ 30,000 ppm) for 30 days and explored its consequences in motor skills, reward-seeking behavior, and the CA3 and DG hippocampal subfields. Twenty-four hours after the last administration of CHX, we found a significant decrease in the number of c-Fos+ cells in the hippocampal CA3 and DG regions. This event coincided with an increased in NMDAR1 expression and apoptotic cells in the CA3 region. At day 13th without CHX, we found a persistent reduction in the number of c-Fos+ and TUNEL+ cells in DG. At both time points, the CHX-exposed mice showed a strong overexpression of neuropeptide Y (NPY) in the CA3 stratum lucidum and the hippocampal hilus. In parallel, we used an operant-based task to assess motor performance and operant conditioning learning. The behavioral analysis indicated that CHX did not modify the acquisition of operant conditioning tasks, but affected some motor skills and increased the reward-seeking behavior. Altogether, this evidence reveals that CHX exposure provokes long-lasting changes in the hippocampal subfields, induces motor impairments and increases the motivation-guided behavior. These findings can help understand the deleterious effect of CHX into the adult hippocampus and unveil its potential to trigger addiction-like behaviors.
Collapse
Affiliation(s)
- Tania Campos-Ordonez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
- Physiological Sciences PhD Program, School of Medicine, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
| | - David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
- Physiological Sciences PhD Program, School of Medicine, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
| | - Nereida Ibarra-Castaneda
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
| | - Jonathan Buritica
- Centro de Estudios e Investigaciones en Comportamiento, University of Guadalajara, St. Francisco de Quevedo 180, 44130, Guadalajara, Jalisco, Mexico
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico.
| |
Collapse
|
22
|
van den Pol AN, Acuna C, Davis JN, Huang H, Zhang X. Defining the caudal hypothalamic arcuate nucleus with a focus on anorexic excitatory neurons. J Physiol 2019; 597:1605-1625. [PMID: 30618146 PMCID: PMC6418765 DOI: 10.1113/jp277152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/03/2019] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Excitatory glutamate neurons are sparse in the rostral hypothalamic arcuate nucleus (ARC), the subregion that has received the most attention in the past. In striking contrast, excitatory neurons are far more common (by a factor of 10) in the caudal ARC, an area which has received relatively little attention. These glutamate cells may play a negative role in energy balance and food intake. They can show an increase in phosphorylated Stat-3 in the presence of leptin, are electrically excited by the anorectic neuromodulator cholecystokinin, and inhibited by orexigenic neuromodulators neuropeptide Y, met-enkephalin, dynorphin and the catecholamine dopamine. The neurons project local axonal connections that excite other ARC neurons including proopiomelanocortin neurons that can play an important role in obesity. These data are consistent with models suggesting that the ARC glutamatergic neurons may play both a rapid and a slower role in acting as anorectic neurons in CNS control of food intake and energy homeostasis. ABSTRACT Here we interrogate a unique class of excitatory neurons in the hypothalamic arcuate nucleus (ARC) that utilizes glutamate as a fast neurotransmitter using mice expressing GFP under control of the vesicular glutamate transporter 2 (vGluT2) promoter. These neurons show a unique distribution, synaptic characterization, cellular physiology and response to neuropeptides involved in energy homeostasis. Although apparently not previously appreciated, the caudal ARC showed a far greater density of vGluT2 cells than the rostral ARC, as seen in transgenic vGluT2-GFP mice and mRNA analysis. After food deprivation, leptin induced an increase in phosphorylated Stat-3 in vGluT2-positive neurons, indicating a response to hormonal cues of energy state. Based on whole-cell recording electrophysiology in brain slices, vGluT2 neurons were spontaneously active with a spike frequency around 2 Hz. vGluT2 cells were responsive to a number of neuropeptides related to energy homeostasis; they were excited by the anorectic peptide cholecystokinin, but inhibited by orexigenic neuropeptide Y, dynorphin and met-enkephalin, consistent with an anorexic role in energy homeostasis. Dopamine, associated with the hedonic aspect of enhancing food intake, inhibited vGluT2 neurons. Optogenetic excitation of vGluT2 cells evoked EPSCs in neighbouring neurons, indicating local synaptic excitation of other ARC neurons. Microdrop excitation of ARC glutamate cells in brain slices rapidly increased excitatory synaptic activity in anorexigenic proopiomelanocortin neurons. Together these data support the perspective that vGluT2 cells may be more prevalent in the ARC than previously appreciated, and play predominantly an anorectic role in energy metabolism.
Collapse
Affiliation(s)
| | - Claudio Acuna
- Department of NeurosurgeryYale University School of MedicineNew HavenCT06520USA
| | - John N. Davis
- Department of NeurosurgeryYale University School of MedicineNew HavenCT06520USA
| | - Hao Huang
- Department of NeurosurgeryYale University School of MedicineNew HavenCT06520USA
| | - Xiaobing Zhang
- Department of NeurosurgeryYale University School of MedicineNew HavenCT06520USA
| |
Collapse
|
23
|
Spike-Related Electrophysiological Identification of Cultured Hippocampal Excitatory and Inhibitory Neurons. Mol Neurobiol 2019; 56:6276-6292. [DOI: 10.1007/s12035-019-1506-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/23/2019] [Indexed: 11/27/2022]
|
24
|
Tan CMJ, Green P, Tapoulal N, Lewandowski AJ, Leeson P, Herring N. The Role of Neuropeptide Y in Cardiovascular Health and Disease. Front Physiol 2018; 9:1281. [PMID: 30283345 PMCID: PMC6157311 DOI: 10.3389/fphys.2018.01281] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
Neuropeptide Y (NPY) is an abundant sympathetic co-transmitter, widely found in the central and peripheral nervous systems and with diverse roles in multiple physiological processes. In the cardiovascular system it is found in neurons supplying the vasculature, cardiomyocytes and endocardium, and is involved in physiological processes including vasoconstriction, cardiac remodeling, and angiogenesis. It is increasingly also implicated in cardiovascular disease pathogenesis, including hypertension, atherosclerosis, ischemia/infarction, arrhythmia, and heart failure. This review will focus on the physiological and pathogenic role of NPY in the cardiovascular system. After summarizing the NPY receptors which predominantly mediate cardiovascular actions, along with their signaling pathways, individual disease processes will be considered. A thorough understanding of these roles may allow therapeutic targeting of NPY and its receptors.
Collapse
Affiliation(s)
- Cheryl M J Tan
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peregrine Green
- Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, Oxford, United Kingdom
| | - Nidi Tapoulal
- Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, Oxford, United Kingdom
| | - Adam J Lewandowski
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul Leeson
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Neil Herring
- Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Activation of NPY-Y2 receptors ameliorates disease pathology in the R6/2 mouse and PC12 cell models of Huntington's disease. Exp Neurol 2018; 302:112-128. [DOI: 10.1016/j.expneurol.2018.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022]
|
26
|
Jeong I, Kim E, Kim S, Kim HK, Lee DW, Seong JY, Park HC. mRNA expression and metabolic regulation of npy and agrp1/2 in the zebrafish brain. Neurosci Lett 2018; 668:73-79. [PMID: 29329911 DOI: 10.1016/j.neulet.2018.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/23/2017] [Accepted: 01/09/2018] [Indexed: 11/25/2022]
Abstract
Neuropeptide Y (NPY) is an evolutionarily conserved neuropeptide implicated in feeding regulation in vertebrates. In mammals, NPY neurons coexpress Agouti-related protein (AgRP) in the arcuate nucleus of the hypothalamus, and NPY/AgRP neurons activate orexigenic signaling to increase food intake. Zebrafish express npy and two agrp genes, agrp1 and agrp2, in the brain. Similar to mammals, NPY and AgRP1 act as orexigenic factors in zebrafish, but the exact distribution of NPY and AgRP neurons in the zebrafish brain and the regulation of these genes by metabolic states remain unclear. In this study, we analyzed the tissue distribution of npy, agrp1, and agrp2 mRNA in the brain of larval and adult zebrafish. We detected the expression of agrp1, but not npy, in the hypothalamus of larval zebrafish. In the adult zebrafish brain, npy mRNA expression was detected in the dorsal area of the periventricular and lateral hypothalamus, but fasting induced upregulation of npy only in the lateral hypothalamus, indicating that NPY neurons in this area are implicated in feeding regulation. However, consistent with the findings in larval zebrafish, NPY neurons in the hypothalamus did not coexpress AgRP1. In contrast, fasting resulted in a dramatic increase in AgRP1 neurons in the ventral periventricular hypothalamus, which do not coexpress NPY. In addition, we found for the first time that npy- and agrp1-expressing neurons function as GABAergic inhibitory neurons in zebrafish, as they do in mammals. Taken together, our results show that the zebrafish NPY/AgRP system is involved in appetite regulation. In addition, our data suggest that although npy and agrp1 were initially expressed in distinct neurons, evolution has resulted in their coexpression in mammalian hypothalamic neurons.
Collapse
Affiliation(s)
- Inyoung Jeong
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea
| | - Eunmi Kim
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea
| | - Suhyun Kim
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea
| | - Hwan-Ki Kim
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea
| | - Dong-Won Lee
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea
| | - Jae Young Seong
- Department of Biomedical Sciences, Korea University, Seoul, 136-705, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea.
| |
Collapse
|
27
|
Zhu P, Zhang Z, Huang X, Liang S, Khandekar N, Song Z, Lin S. RANKL Reduces Body Weight and Food Intake via the Modulation of Hypothalamic NPY/CART Expression. Int J Med Sci 2018; 15:969-977. [PMID: 30013437 PMCID: PMC6036154 DOI: 10.7150/ijms.24373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/31/2018] [Indexed: 12/16/2022] Open
Abstract
The receptor activator of nuclear factor-κB ligand (RANKL) modulates energy metabolism. However, how RANKL regulates energy homeostasis is still not clear. This study aims to investigate the central mechanisms by which central administration of RANKL inhibits food intake and causes weight loss in mice. We carried out a systematic and in-depth analysis of the neuronal pathways by which RANKL mediates catabolic effects. After intracerebroventricle (i.c.v.) injection of RANKL, the expression of neuropeptide Y (NPY) mRNA in the Arc was significantly decreased, while the CART mRNA expression dramatically increased in the Arc and DMH. However, the agouti-related protein (AgRP) and pro-opiomelanocortin (POMC) mRNA had no significant changes compared with control groups. Together, the results suggest that central administration of RANKL reduces food intake and causes weight loss via modulating the hypothalamic NPY/CART pathways.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China
| | - Zhihui Zhang
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China
| | - Xufeng Huang
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Shiyu Liang
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China
| | - Neeta Khandekar
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Zhiyuan Song
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China
| | - Shu Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China.,School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| |
Collapse
|
28
|
da Silva AA, Freeman JN, Hall JE, do Carmo JM. Control of appetite, blood glucose, and blood pressure during melanocortin-4 receptor activation in normoglycemic and diabetic NPY-deficient mice. Am J Physiol Regul Integr Comp Physiol 2017; 314:R533-R539. [PMID: 29351428 DOI: 10.1152/ajpregu.00293.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although central melanocortin 4 receptor (MC4R) blockade abolishes the central nervous system (CNS)-mediated anorexogenic, antidiabetic, and cardiovascular actions of leptin, chronic MC4R stimulation fails to completely mimic the effects of leptin. Because neuropeptide Y (NPY) and MC4R exert opposite effects on cardiovascular and metabolic functions, we tested the role of NPY in offsetting the long-term actions of MC4R activation. Wild-type (WT) and NPY-deficient (NPY-/-) mice were implanted with telemetry probes for measuring mean arterial pressure (MAP) and heart rate (HR) 24 h/day. After the mice recovered from surgery and stable baseline measurements, the MC3/4R agonist melanotan II (MTII, 120 μg·kg-1·day-1 iv) was infused for 7 days followed by a recovery period. No major differences between groups were observed at baseline except for slightly higher food intake and HR in NPY-/- mice (4.3 ± 0.2 vs. 3.4 ± 0.2 g/day and 567 ± 14 vs. 522 ± 13 beats/min). Chronic MTII infusion reduced food intake in both groups while causing transient increases in MAP and HR only in WT mice (peaks of 11 ± 3 mmHg and 126 ± 13 beats/min). To examine whether NPY deficiency would amplify the antidiabetic effects of MC4R activation, diabetes was induced with streptozotocin (STZ) 1 wk before baseline measurements were taken, and the same experimental protocol was followed. In WT and NPY-/- mice, STZ-induced diabetes led to similar hyperphagia, hyperglycemia, and weight loss, which were not reversed by chronic MTII treatment. Our results demonstrate that chronic MC4R activation, even in NPY-deficient mice, does not mimic chronic antidiabetic, cardiovascular, or metabolic actions of leptin, and that NPY is not essential for hyperphagia or cardiovascular changes associated with diabetes.
Collapse
Affiliation(s)
- Alexandre A da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center , Jackson, Mississippi.,Barão de Mauá University Center , Ribeirão Preto, Sao Paulo , Brazil.,Universidade Estadual de Minas Gerais, Passos, Minas Gerais , Brazil
| | - J Nathan Freeman
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center , Jackson, Mississippi
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center , Jackson, Mississippi
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
29
|
Gupta R, Ma Y, Wang M, Whim MD. AgRP-Expressing Adrenal Chromaffin Cells Are Involved in the Sympathetic Response to Fasting. Endocrinology 2017; 158:2572-2584. [PMID: 28531318 PMCID: PMC5551550 DOI: 10.1210/en.2016-1268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/16/2017] [Indexed: 01/23/2023]
Abstract
Fasting evokes a homeostatic response that maintains circulating levels of energy-rich metabolites and increases the drive to eat. Centrally, this reflex activates a small population of hypothalamic neurons that are characterized by the expression of AgRP, a neuropeptide with an extremely restricted distribution. Apart from the hypothalamus, the only other site with substantial expression is the adrenal gland, but there is disagreement about which cells synthesize AgRP. Using immunohistochemistry, flow cytometry, and reverse transcription-polymerase chain reaction, we show AgRP is present in the mouse adrenal medulla and is expressed by neuroendocrine chromaffin cells that also synthesize the catecholamines and neuropeptide Y. Short-term fasting led to an increase in adrenal AgRP expression. Because AgRP can act as an antagonist at MC3/4 receptors, we tested whether melanotan II, an MC3/4 receptor agonist, could regulate pre- and postsynaptic signaling within the adrenal medulla. Melanotan II decreased the paired-pulse ratio of evoked synaptic currents recorded in chromaffin cells; this effect was blocked by exogenous AgRP. In contrast, neither melanotan II nor AgRP altered the optogenetically evoked release of catecholamines from isolated chromaffin cells. These results are consistent with the idea that AgRP regulates the strength of the sympathetic input by modulation of presynaptic MC3/4 receptors located on preganglionic neurons. We conclude that a small population of neuroendocrine cells in the adrenal medulla, and the arcuate nucleus of the hypothalamus, express AgRP and neuropeptide Y and are functionally involved in the systemic response to fasting.
Collapse
Affiliation(s)
- Rajesh Gupta
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Yunbing Ma
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Manqi Wang
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Matthew D. Whim
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
30
|
Robinson SL, Thiele TE. The Role of Neuropeptide Y (NPY) in Alcohol and Drug Abuse Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:177-197. [PMID: 29056151 DOI: 10.1016/bs.irn.2017.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuropeptide Y (NPY) is a neuromodulator that is widely expressed throughout the central nervous system (CNS) and which is cosecreted with classic neurotransmitters including GABA and glutamate. There is a long history of research implicating a role for NPY in modulating neurobiological responses to alcohol (ethanol) as well as other drugs of abuse. Both ethanol exposure and withdrawal from chronic ethanol have been shown to produce changes in NPY and NPY receptor protein levels and mRNA expression in the CNS. Importantly, manipulations of NPY Y1 and Y2 receptor signaling have been shown to alter ethanol consumption and self-administration in a brain region-specific manner, with Y1 receptor activation and Y2 receptor blockade in regions of the extended amygdala promoting robust reductions of ethanol intake. Similar observations have been made in studies examining neurobiological responses to nicotine, psychostimulants, and opioids. When taken together with observations of potential genetic linkage between the NPY system and the human alcohol abuse disorders, NPY represents a promising target for treating problematic alcohol and drug use, and in protecting individuals from relapse during abstinence.
Collapse
Affiliation(s)
- Stacey L Robinson
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Todd E Thiele
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
31
|
Shi Z, Madden CJ, Brooks VL. Arcuate neuropeptide Y inhibits sympathetic nerve activity via multiple neuropathways. J Clin Invest 2017. [PMID: 28628036 PMCID: PMC5490747 DOI: 10.1172/jci92008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity increases sympathetic nerve activity (SNA) via activation of proopiomelanocortin neurons in the arcuate nucleus (ArcN), and this action requires simultaneous withdrawal of tonic neuropeptide Y (NPY) sympathoinhibition. However, the sites and neurocircuitry by which NPY decreases SNA are unclear. Here, using designer receptors exclusively activated by designer drugs (DREADDs) to selectively activate or inhibit ArcN NPY neurons expressing agouti-related peptide (AgRP) in mice, we have demonstrated that this neuronal population tonically suppresses splanchnic SNA (SSNA), arterial pressure, and heart rate via projections to the paraventricular nucleus (PVN) and dorsomedial hypothalamus (DMH). First, we found that ArcN NPY/AgRP fibers closely appose PVN and DMH presympathetic neurons. Second, nanoinjections of NPY or an NPY receptor Y1 (NPY1R) antagonist into PVN or DMH decreased or increased SSNA, respectively. Third, blockade of DMH NPY1R reversed the sympathoinhibition elicited by selective, DREADD-mediated activation of ArcN NPY/AgRP neurons. Finally, stimulation of ArcN NPY/AgRP terminal fields in the PVN and DMH decreased SSNA. Considering that chronic obesity decreases ArcN NPY content, we propose that the ArcN NPY neuropathway to the PVN and DMH is pivotal in obesity-induced elevations in SNA.
Collapse
Affiliation(s)
- Zhigang Shi
- Department of Physiology and Pharmacology and
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
32
|
West KS, Roseberry AG. Neuropeptide-Y alters VTA dopamine neuron activity through both pre- and postsynaptic mechanisms. J Neurophysiol 2017; 118:625-633. [PMID: 28469002 DOI: 10.1152/jn.00879.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 11/22/2022] Open
Abstract
The mesocorticolimbic dopamine system, the brain's reward system, regulates many different behaviors including food intake, food reward, and feeding-related behaviors, and there is increasing evidence that hypothalamic feeding-related neuropeptides alter dopamine neuron activity to affect feeding. For example, neuropeptide-Y (NPY), a strong orexigenic hypothalamic neuropeptide, increases motivation for food when injected into the ventral tegmental area (VTA). How NPY affects the activity of VTA dopamine neurons to regulate feeding behavior is unknown, however. In these studies we have used whole cell patch-clamp electrophysiology in acute brain slices from mice to examine how NPY affects VTA dopamine neuron activity. NPY activated an outward current that exhibited characteristics of a G protein-coupled inwardly rectifying potassium channel current in ~60% of dopamine neurons tested. In addition to its direct effects on VTA dopamine neurons, NPY also decreased the amplitude and increased paired-pulse ratios of evoked excitatory postsynaptic currents in a subset of dopamine neurons, suggesting that NPY decreases glutamatergic transmission through a presynaptic mechanism. Interestingly, NPY also strongly inhibited evoked inhibitory postsynaptic currents onto dopamine neurons by a presynaptic mechanism. Overall these studies demonstrate that NPY utilizes multiple mechanisms to affect VTA dopamine neuron activity, and they provide an important advancement in our understanding of how NPY acts in the VTA to control feeding behavior.NEW & NOTEWORTHY Neuropeptide-Y (NPY) has been shown to act on mesolimbic dopamine circuits to increase motivated behaviors toward food, but it is unclear exactly how NPY causes these responses. Here, we demonstrate that NPY directly inhibited a subset of ventral tegmental area (VTA) dopamine neurons through the activation of G protein-coupled inwardly rectifying potassium currents, and it inhibited both excitatory postsynaptic currents and inhibitory postsynaptic currents onto subsets of dopamine neurons through a presynaptic mechanism. Thus NPY uses multiple mechanisms to dynamically control VTA dopamine neuron activity.
Collapse
Affiliation(s)
- Katherine Stuhrman West
- Department of Biology, Georgia State University, Atlanta, Georgia.,The Neuroscience Institute, Georgia State University, Atlanta, Georgia; and
| | - Aaron G Roseberry
- Department of Biology, Georgia State University, Atlanta, Georgia; .,The Neuroscience Institute, Georgia State University, Atlanta, Georgia; and.,The Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| |
Collapse
|
33
|
Thongrod S, Changklungmoa N, Chansela P, Siangcham T, Kruangkum T, Suwansa-Ard S, Saetan J, Sroyraya M, Tinikul Y, Wanichanon C, Sobhon P. Characterization and tissue distribution of neuropeptide F in the eyestalk and brain of the male giant freshwater prawn, Macrobrachium rosenbergii. Cell Tissue Res 2016; 367:181-195. [DOI: 10.1007/s00441-016-2538-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|
34
|
Beclin C, Follert P, Stappers E, Barral S, Coré N, de Chevigny A, Magnone V, Lebrigand K, Bissels U, Huylebroeck D, Bosio A, Barbry P, Seuntjens E, Cremer H. miR-200 family controls late steps of postnatal forebrain neurogenesis via Zeb2 inhibition. Sci Rep 2016; 6:35729. [PMID: 27767083 PMCID: PMC5073329 DOI: 10.1038/srep35729] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/04/2016] [Indexed: 12/28/2022] Open
Abstract
During neurogenesis, generation, migration and integration of the correct numbers of each neuron sub-type depends on complex molecular interactions in space and time. MicroRNAs represent a key control level allowing the flexibility and stability needed for this process. Insight into the role of this regulatory pathway in the brain is still limited. We performed a sequential experimental approach using postnatal olfactory bulb neurogenesis in mice, starting from global expression analyses to the investigation of functional interactions between defined microRNAs and their targets. Deep sequencing of small RNAs extracted from defined compartments of the postnatal neurogenic system demonstrated that the miR-200 family is specifically induced during late neuronal differentiation stages. Using in vivo strategies we interfered with the entire miR-200 family in loss- and gain-of-function settings, showing a role of miR-200 in neuronal maturation. This function is mediated by targeting the transcription factor Zeb2. Interestingly, so far functional interaction between miR-200 and Zeb2 has been exclusively reported in cancer or cultured stem cells. Our data demonstrate that this regulatory interaction is also active during normal neurogenesis.
Collapse
Affiliation(s)
- Christophe Beclin
- IBDM, Aix-Marseille Université, CNRS, UMR7288, 13288 Marseille, France
| | - Philipp Follert
- IBDM, Aix-Marseille Université, CNRS, UMR7288, 13288 Marseille, France
| | - Elke Stappers
- Laboratory of Molecular Biology, Dept Development and Regeneration, KULeuven, 3000 Leuven, Belgium
| | - Serena Barral
- IBDM, Aix-Marseille Université, CNRS, UMR7288, 13288 Marseille, France.,Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Nathalie Coré
- IBDM, Aix-Marseille Université, CNRS, UMR7288, 13288 Marseille, France
| | | | - Virginie Magnone
- CNRS and University Nice Sophia Antipolis, IPMC, Sophia Antipolis, France
| | - Kévin Lebrigand
- CNRS and University Nice Sophia Antipolis, IPMC, Sophia Antipolis, France
| | - Ute Bissels
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Danny Huylebroeck
- Laboratory of Molecular Biology, Dept Development and Regeneration, KULeuven, 3000 Leuven, Belgium.,Dept Cell Biology, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | | | - Pascal Barbry
- CNRS and University Nice Sophia Antipolis, IPMC, Sophia Antipolis, France
| | - Eve Seuntjens
- Laboratory of Molecular Biology, Dept Development and Regeneration, KULeuven, 3000 Leuven, Belgium.,GIGA-Neurosciences, Université de Liège, 4000 Liège, Belgium
| | - Harold Cremer
- IBDM, Aix-Marseille Université, CNRS, UMR7288, 13288 Marseille, France
| |
Collapse
|
35
|
Zhu P, Sun W, Zhang C, Song Z, Lin S. The role of neuropeptide Y in the pathophysiology of atherosclerotic cardiovascular disease. Int J Cardiol 2016; 220:235-41. [DOI: 10.1016/j.ijcard.2016.06.138] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/01/2016] [Accepted: 06/23/2016] [Indexed: 01/08/2023]
|
36
|
Schmeltzer SN, Herman JP, Sah R. Neuropeptide Y (NPY) and posttraumatic stress disorder (PTSD): A translational update. Exp Neurol 2016; 284:196-210. [PMID: 27377319 PMCID: PMC8375392 DOI: 10.1016/j.expneurol.2016.06.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a trauma-evoked syndrome, with variable prevalence within the human population due to individual differences in coping and resiliency. In this review, we discuss evidence supporting the relevance of neuropeptide Y (NPY), a stress regulatory transmitter in PTSD. We consolidate findings from preclinical, clinical, and translational studies of NPY that are of relevance to PTSD with an attempt to provide a current update of this area of research. NPY is abundantly expressed in forebrain limbic and brainstem areas that regulate stress and emotional behaviors. Studies in rodents demonstrate a role for NPY in stress responses, anxiety, fear, and autonomic regulation, all relevant to PTSD symptomology. Genetic studies support an association of NPY polymorphisms with stress coping and affect. Importantly, cerebrospinal fluid (CSF) measurements in combat veterans provide direct evidence of NPY association with PTSD diagnosis and symptomology. In addition, NPY involvement in pain, depression, addiction, and metabolism may be relevant to comorbidities associated with PTSD. Collectively, the literature supports the relevance of NPY to PTSD pathophysiology, although knowledge gaps remain. The NPY system is an attractive target in terms of understanding the physiological basis of PTSD as well as treatment of the disorder.
Collapse
Affiliation(s)
- Sarah N Schmeltzer
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Renu Sah
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States; VA Medical Center, Cincinnati, OH, 45220, United States.
| |
Collapse
|
37
|
Gumbs MC, van den Heuvel JK, la Fleur SE. The effect of obesogenic diets on brain Neuropeptide Y. Physiol Behav 2016; 162:161-73. [DOI: 10.1016/j.physbeh.2016.04.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/18/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022]
|
38
|
Kakizawa K, Watanabe M, Mutoh H, Okawa Y, Yamashita M, Yanagawa Y, Itoi K, Suda T, Oki Y, Fukuda A. A novel GABA-mediated corticotropin-releasing hormone secretory mechanism in the median eminence. SCIENCE ADVANCES 2016; 2:e1501723. [PMID: 27540587 PMCID: PMC4988769 DOI: 10.1126/sciadv.1501723] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 07/19/2016] [Indexed: 05/13/2023]
Abstract
Corticotropin-releasing hormone (CRH), which is synthesized in the paraventricular nucleus (PVN) of the hypothalamus, plays an important role in the endocrine stress response. The excitability of CRH neurons is regulated by γ-aminobutyric acid (GABA)-containing neurons projecting to the PVN. We investigated the role of GABA in the regulation of CRH release. The release of CRH was impaired, accumulating in the cell bodies of CRH neurons in heterozygous GAD67-GFP (green fluorescent protein) knock-in mice (GAD67(+/GFP)), which exhibited decreased GABA content. The GABAA receptor (GABAAR) and the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1), but not the K(+)-Cl(-) cotransporter (KCC2), were expressed in the terminals of the CRH neurons at the median eminence (ME). In contrast, CRH neuronal somata were enriched with KCC2 but not with NKCC1. Thus, intracellular Cl(-) concentrations ([Cl(-)]i) may be increased at the terminals of CRH neurons compared with concentrations in the cell body. Moreover, GABAergic terminals projecting from the arcuate nucleus were present in close proximity to CRH-positive nerve terminals. Furthermore, a GABAAR agonist increased the intracellular calcium (Ca(2+)) levels in the CRH neuron terminals but decreased the Ca(2+) levels in their somata. In addition, the increases in Ca(2+) concentrations were prevented by an NKCC1 inhibitor. We propose a novel mechanism by which the excitatory action of GABA maintains a steady-state CRH release from axon terminals in the ME.
Collapse
Affiliation(s)
- Keisuke Kakizawa
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Second Division, Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Hiroki Mutoh
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yuta Okawa
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Second Division, Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Miho Yamashita
- Second Division, Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Takafumi Suda
- Second Division, Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yutaka Oki
- Department of Family and Community Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
39
|
Sliwoski G, Schubert M, Stichel J, Weaver D, Beck-Sickinger AG, Meiler J. Discovery of Small-Molecule Modulators of the Human Y4 Receptor. PLoS One 2016; 11:e0157146. [PMID: 27294784 PMCID: PMC4905667 DOI: 10.1371/journal.pone.0157146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/25/2016] [Indexed: 12/11/2022] Open
Abstract
The human neuropeptide Y4 receptor (Y4R) and its native ligand, pancreatic polypeptide, are critically involved in the regulation of human metabolism by signaling satiety and regulating food intake, as well as increasing energy expenditure. Thus, this receptor represents a putative target for treatment of obesity. With respect to new approaches to treat complex metabolic disorders, especially in multi-receptor systems, small molecule allosteric modulators have been in the focus of research in the last years. However, no positive allosteric modulators or agonists of the Y4R have been described so far. In this study, small molecule compounds derived from the Niclosamide scaffold were identified by high-throughput screening to increase Y4R activity. Compounds were characterized for their potency and their effects at the human Y4R and as well as their selectivity towards Y1R, Y2R and Y5R. These compounds provide a structure-activity relationship profile around this common scaffold and lay the groundwork for hit-to-lead optimization and characterization of positive allosteric modulators of the Y4R.
Collapse
Affiliation(s)
- Gregory Sliwoski
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig, Germany
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Mario Schubert
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Jan Stichel
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Annette G. Beck-Sickinger
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig University, Leipzig, Germany
- * E-mail: (JM); (ABS)
| | - Jens Meiler
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (JM); (ABS)
| |
Collapse
|
40
|
Verma D, Hörmer B, Bellmann-Sickert K, Thieme V, Beck-Sickinger AG, Herzog H, Sperk G, Tasan RO. Pancreatic polypeptide and its central Y4 receptors are essential for cued fear extinction and permanent suppression of fear. Br J Pharmacol 2016; 173:1925-38. [PMID: 26844810 PMCID: PMC4882497 DOI: 10.1111/bph.13456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 12/18/2022] Open
Abstract
Background and purpose Avoiding danger and finding food are closely related behaviours that are essential for surviving in a natural environment. Growing evidence supports an important role of gut‐brain peptides in modulating energy homeostasis and emotional‐affective behaviour. For instance, postprandial release of pancreatic polypeptide (PP) reduced food intake and altered stress‐induced motor activity and anxiety by activating central Y4 receptors. Experimental approach We characterized [K30(PEG2)]hPP2‐36 as long‐acting Y4 receptor agonist and injected it peripherally into wildtype and Y4 receptor knockout (Y4KO) C57Bl/6NCrl mice to investigate the role of Y4 receptors in fear conditioning. Extinction and relapse after extinction was measured by spontaneous recovery and renewal. Key results The Y4KO mice showed impaired cued and context fear extinction without affecting acquisition, consolidation or recall of fear. Correspondingly, peripheral injection of [K30(PEG2)]hPP2‐36 facilitated extinction learning upon fasting, an effect that was long‐lasting and generalized. Furthermore, peripherally applied [K30(PEG2)]hPP2‐36 before extinction inhibited the activation of orexin‐expressing neurons in the lateral hypothalamus in WT, but not in Y4KO mice. Conclusions and implications Our findings suggests suppression of excessive arousal as a possible mechanism for the extinction‐promoting effect of central Y4 receptors and provide strong evidence that fear extinction requires integration of vegetative stimuli with cortical and subcortical information, a process crucially depending on Y4 receptors. Importantly, in the lateral hypothalamus two peptide systems, PP and orexin, interact to generate an emotional response adapted to the current homeostatic state. Detailed investigations of feeding‐relevant genes may thus deliver multiple intervention points for treating anxiety‐related disorders.
Collapse
Affiliation(s)
- D Verma
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - B Hörmer
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | | | - V Thieme
- Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | | | - H Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - G Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - R O Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
41
|
Dopamine/Tyrosine Hydroxylase Neurons of the Hypothalamic Arcuate Nucleus Release GABA, Communicate with Dopaminergic and Other Arcuate Neurons, and Respond to Dynorphin, Met-Enkephalin, and Oxytocin. J Neurosci 2016; 35:14966-82. [PMID: 26558770 DOI: 10.1523/jneurosci.0293-15.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED We employ transgenic mice with selective expression of tdTomato or cre recombinase together with optogenetics to investigate whether hypothalamic arcuate (ARC) dopamine/tyrosine hydroxylase (TH) neurons interact with other ARC neurons, how they respond to hypothalamic neuropeptides, and to test whether these cells constitute a single homogeneous population. Immunostaining with dopamine and TH antisera was used to corroborate targeted transgene expression. Using whole-cell recording on a large number of neurons (n = 483), two types of neurons with different electrophysiological properties were identified in the dorsomedial ARC where 94% of TH neurons contained immunoreactive dopamine: bursting and nonbursting neurons. In contrast to rat, the regular oscillations of mouse bursting neurons depend on a mechanism involving both T-type calcium and A-type potassium channel activation, but are independent of gap junction coupling. Optogenetic stimulation using cre recombinase-dependent ChIEF-AAV-DJ expressed in ARC TH neurons evoked postsynaptic GABA currents in the majority of neighboring dopamine and nondopamine neurons, suggesting for the first time substantial synaptic projections from ARC TH cells to other ARC neurons. Numerous met-enkephalin (mENK) and dynorphin-immunoreactive boutons appeared to contact ARC TH neurons. mENK inhibited both types of TH neuron through G-protein coupled inwardly rectifying potassium currents mediated by δ and μ opioid receptors. Dynorphin-A inhibited both bursting and nonbursting TH neurons by activating κ receptors. Oxytocin excited both bursting and nonbursting neurons. These results reveal a complexity of TH neurons that communicate extensively with neurons within the ARC. SIGNIFICANCE STATEMENT Here, we show that the great majority of mouse hypothalamic arcuate nucleus (ARC) neurons that synthesize TH in the dorsomedial ARC also contain immunoreactive dopamine, and show either bursting or nonbursting electrical activity. Unlike rats, the mechanism underlying bursting was not dependent on gap junctions but required T-type calcium and A-type potassium channel activation. Neuropeptides dynorphin and met-enkephalin inhibited dopamine neurons, whereas oxytocin excited them. Most ventrolateral ARC TH cells did not contain dopamine and did not show bursting electrical activity. TH-containing neurons appeared to release synaptic GABA within the ARC onto dopamine neurons and unidentified neurons, suggesting that the cells not only control pituitary hormones but also may modulate nearby neurons.
Collapse
|
42
|
Qi Y, Fu M, Herzog H. Y2 receptor signalling in NPY neurons controls bone formation and fasting induced feeding but not spontaneous feeding. Neuropeptides 2016; 55:91-7. [PMID: 26444586 DOI: 10.1016/j.npep.2015.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 12/24/2022]
Abstract
Y2 receptors have been implicated in the development of obesity and are a potential target for obesity treatment due to their known role of inhibiting neuropeptide Y (NPY) induced feeding responses. However, the precise neuronal population on which Y2 receptors act to fulfil this role is less clear. Here we utilise a novel inducible, postnatal onset NPY neurons specific deletion model to investigate the functional consequences of loss of Y2 signalling in this population of neurons on feeding and energy homeostasis regulation. While the consequences of lack of Y2 signalling in NPY neurons are confirmed in terms of the uncoupling of suppression/increasing of NPY and pro-opiomelanocortin (POMC) mRNA expression in the arcuate nuclei (Arc), respectively, this lack of Y2 signalling surprisingly does not have any significant effect on spontaneous food intake. Fasting induced food intake, however, is strongly increased but only in the first 1h after re-feeding. Consequently no significant changes in body weight are being observed although body weight gain is increased in male mice after postnatal onset Y2 deletion. Importantly, another known function of central Y2 receptor signalling, the suppression of bone formation is conserved in this conditional model with whole body bone mineral content being decreased. Taken together this model confirms the critical role of Y2 signalling to control NPY and associated POMC expression in the Arc, but also highlights the possibility that others, non-NPY neuronal Y2 receptors, are also involved in controlling feeding and energy homeostasis regulation.
Collapse
Affiliation(s)
- Yue Qi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Melissa Fu
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| |
Collapse
|
43
|
Stuber GD, Wise RA. Lateral hypothalamic circuits for feeding and reward. Nat Neurosci 2016; 19:198-205. [PMID: 26814589 PMCID: PMC4927193 DOI: 10.1038/nn.4220] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022]
Abstract
In experiments conducted over 60 years ago, the lateral hypothalamic area (LHA) was identified as a critical neuroanatomical substrate for motivated behavior. Electrical stimulation of the LHA induces voracious feeding even in well-fed animals. In the absence of food, animals will work tirelessly, often lever-pressing thousands of times per hour, for electrical stimulation at the same site that provokes feeding, drinking and other species-typical motivated behaviors. Here we review the classic findings from electrical stimulation studies and integrate them with more recent work that has used contemporary circuit-based approaches to study the LHA. We identify specific anatomically and molecularly defined LHA elements that integrate diverse information arising from cortical, extended amygdala and basal forebrain networks to ultimately generate a highly specified and invigorated behavioral state conveyed via LHA projections to downstream reward and feeding-specific circuits.
Collapse
Affiliation(s)
- Garret D. Stuber
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Roy A. Wise
- Intramural Research Program National Institute on Drug Abuse, NIH/DHHS, Baltimore, MD 21224, USA
| |
Collapse
|
44
|
Sun X, Fukami T, Li T, Desai M, Ross MG. Preferential development of neuropeptide Y/GABA circuit in hypothalamic arcuate nucleus in postnatal rats. Brain Res 2016; 1635:27-40. [PMID: 26790345 DOI: 10.1016/j.brainres.2016.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 12/22/2022]
Abstract
The hypothalamus, which plays a critical role in regulation of energy homeostasis, is formed during the perinatal period and thus vulnerable to fetal/newborn environmental conditions. We investigated synaptogenesis and neurotransmission of neurons in arcuate nucleus of the hypothalamus (ARH) during the postnatal period using immunohistochemical and electrophysiological methods. Our results show that the density of neuropeptide Y (NPY) fibers increases abruptly after the second postnatal week. NPY and proopiomelanocortin (POMC) immunoreactive fibers/varicosities puncta are mutually juxtaposed to perikarya of both neurons with increasing NPY and decreasing POMC apposition until the third postnatal week. The frequencies of spontaneous GABAergic inhibitory and glutamatergic excitatory postsynaptic currents (sIPSC and sEPSC) increase with age, with action potential dependent sIPSCs predominant during first postnatal week and sEPSCs thereafter. The presynaptic function of ARH synapses appears to reach adult levels around the age of weaning, while the postsynaptic receptors are still undergoing modification, evidenced by changes of frequencies, amplitudes and deactivation kinetics of PSCs. The number of NPY fibers juxtaposed to NPY neurons is correlated with the frequency of postsynaptic currents, suggesting that NPY/GABA release may facilitate maturation of synapses on their innervated neurons. Our results indicate that a neural circuit in ARH with a stronger NPY/GABAergic tone undergoes significant development during the postnatal period, which may be important for the maturation and/or remodeling of ARH neural circuits.
Collapse
Affiliation(s)
- Xiaoping Sun
- Department of Obstetrics and Gynecology, Los Angeles Biomedical Research Institute and Harbor-UCLA Medical Center, Torrance, CA 90502, United States; David Geffen School of Medicine at University of California, Los Angeles, CA 90095, United States
| | - Tatsuya Fukami
- Department of Obstetrics and Gynecology, Los Angeles Biomedical Research Institute and Harbor-UCLA Medical Center, Torrance, CA 90502, United States
| | - Tie Li
- Department of Obstetrics and Gynecology, Los Angeles Biomedical Research Institute and Harbor-UCLA Medical Center, Torrance, CA 90502, United States
| | - Mina Desai
- Department of Obstetrics and Gynecology, Los Angeles Biomedical Research Institute and Harbor-UCLA Medical Center, Torrance, CA 90502, United States; David Geffen School of Medicine at University of California, Los Angeles, CA 90095, United States
| | - Michael G Ross
- Department of Obstetrics and Gynecology, Los Angeles Biomedical Research Institute and Harbor-UCLA Medical Center, Torrance, CA 90502, United States; David Geffen School of Medicine at University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
45
|
Khandekar N, Berning BA, Sainsbury A, Lin S. The role of pancreatic polypeptide in the regulation of energy homeostasis. Mol Cell Endocrinol 2015; 418 Pt 1:33-41. [PMID: 26123585 DOI: 10.1016/j.mce.2015.06.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/16/2015] [Accepted: 06/03/2015] [Indexed: 12/13/2022]
Abstract
Imbalances in normal regulation of food intake can cause obesity and related disorders. Inadequate therapies for such disorders necessitate better understanding of mechanisms that regulate energy homeostasis. Pancreatic polypeptide (PP), a robust anorexigenic hormone, effectively modulates food intake and energy homeostasis, thus potentially aiding anti-obesity therapeutics. Intra-gastric and intra-intestinal infusion of nutrients stimulate PP secretion from the gastrointestinal tract, leading to vagal stimulation that mediates complex actions via the neuropeptide Y4 receptor in arcuate nucleus of the hypothalamus, subsequently activating key hypothalamic nuclei and dorsal vagal complex of the brainstem to influence energy homeostasis and body composition. Novel studies indicate affinity of PP for the relatively underexplored neuropeptide y6 receptor, mediating actions via the suprachiasmatic nucleus and pathways involving vasoactive intestinal polypeptide and insulin like growth factor 1. This review highlights detailed mechanisms by which PP mediates its actions on energy balance through various areas in the brain.
Collapse
Affiliation(s)
- Neeta Khandekar
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Britt A Berning
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Amanda Sainsbury
- The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Shu Lin
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
46
|
van den Heuvel JK, Furman K, Gumbs MC, Eggels L, Opland DM, Land BB, Kolk SM, Narayanan N, Fliers E, Kalsbeek A, DiLeone RJ, la Fleur SE. Neuropeptide Y activity in the nucleus accumbens modulates feeding behavior and neuronal activity. Biol Psychiatry 2015; 77:633-41. [PMID: 25109664 PMCID: PMC4295932 DOI: 10.1016/j.biopsych.2014.06.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/23/2014] [Accepted: 06/11/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Neuropeptide Y (NPY) is a hypothalamic neuropeptide that plays a prominent role in feeding and energy homeostasis. Expression of the NPY Y1 receptor (Y1R) is highly concentrated in the nucleus accumbens (Acb), a region important in the regulation of palatable feeding. In this study, we performed a number of experiments to investigate the actions of NPY in the Acb. METHODS First, we determined caloric intake and food choice after bilateral administration of NPY in the Acb in rats on a free-choice diet of saturated fat, 30% sucrose solution, and standard chow and whether this was mediated by the Y1R. Second, we measured the effect of intra-Acb NPY on neuronal activity using in vivo electrophysiology. Third, we examined co-localization of Y1R with enkephalin and dynorphin neurons and the effect of NPY on preproenkephalin messenger RNA levels in the striatum using fluorescent and radioactive in situ hybridization. Finally, using retrograde tracing, we examined whether NPY neurons in the arcuate nucleus projected to the Acb. RESULTS In rats on the free-choice, high-fat, high-sugar diet, intra-Acb NPY increased intake of fat, but not sugar or chow, and this was mediated by the Y1R. Intra-Acb NPY reduced neuronal firing, as well as preproenkephalin messenger RNA expression in the striatum. Moreover, Acb enkephalin neurons expressed Y1R and arcuate nucleus NPY neurons projected to the Acb. CONCLUSIONS NPY reduces neuronal firing in the Acb resulting in increased palatable food intake. Together, our neuroanatomical, pharmacologic, and neuronal activity data support a role and mechanism for intra-Acb NPY-induced fat intake.
Collapse
|
47
|
Bari A, Dec A, Lee AW, Lee J, Song D, Dale E, Peterson J, Zorn S, Huang X, Campbell B, Robbins TW, West AR. Enhanced inhibitory control by neuropeptide Y Y5 receptor blockade in rats. Psychopharmacology (Berl) 2015; 232:959-73. [PMID: 25194952 DOI: 10.1007/s00213-014-3730-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/24/2014] [Indexed: 12/25/2022]
Abstract
RATIONALE The neuropeptide Y (NPY) system acts in synergy with the classic neurotransmitters to regulate a large variety of functions including autonomic, affective, and cognitive processes. Research on the effects of NPY in the central nervous system has focused on food intake control and affective processes, but growing evidence of NPY involvement in attention-deficit/hyperactivity disorder (ADHD) and other psychiatric conditions motivated the present study. OBJECTIVES We tested the effects of the novel and highly selective NPY Y5 receptor antagonist Lu AE00654 on impulsivity and the underlying cortico-striatal circuitry in rats to further explore the possible involvement of the NPY system in pathologies characterized by inattention and impulsive behavior. RESULTS A low dose of Lu AE00654 (0.03 mg/kg) selectively facilitated response inhibition as measured by the stop-signal task, whereas no effects were found at higher doses (0.3 and 3 mg/kg). Systemic administration of Lu AE00654 also enhanced the inhibitory influence of the dorsal frontal cortex on neurons in the caudate-putamen, this fronto-striatal circuitry being implicated in the executive control of behavior. Finally, by locally injecting a Y5 agonist, we observed reciprocal activation between dorsal frontal cortex and caudate-putamen neurons. Importantly, the effects of the Y5 agonist were attenuated by pretreatment with Lu AE00654, confirming the presence of Y5 binding sites modulating functional interactions within frontal-subcortical circuits. CONCLUSIONS These results suggest that the NPY system modulates inhibitory neurotransmission in brain areas important for impulse control, and may be relevant for the treatment of pathologies such as ADHD and drug abuse.
Collapse
Affiliation(s)
- A Bari
- Behavioral and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Loh K, Herzog H, Shi YC. Regulation of energy homeostasis by the NPY system. Trends Endocrinol Metab 2015; 26:125-35. [PMID: 25662369 DOI: 10.1016/j.tem.2015.01.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
Obesity develops when energy intake exceeds energy expenditure over time. Numerous neurotransmitters, hormones, and factors have been implicated to coordinately control energy homeostasis, centrally and peripherally. However, the neuropeptide Y (NPY) system has emerged as the one with the most critical functions in this process. While NPY centrally promotes feeding and reduces energy expenditure, peptide YY (PYY) and pancreatic polypeptide (PP), the other family members, mediate satiety. Importantly, recent research has uncovered additional functions for these peptides that go beyond the simple feeding/satiety circuits and indicate a more extensive function in controlling energy homeostasis. In this review, we will discuss the actions of the NPY system in the regulation of energy balance, with a particular focus on energy expenditure.
Collapse
Affiliation(s)
- Kim Loh
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| |
Collapse
|
49
|
Hablitz LM, Molzof HE, Paul JR, Johnson RL, Gamble KL. Suprachiasmatic nucleus function and circadian entrainment are modulated by G protein-coupled inwardly rectifying (GIRK) channels. J Physiol 2014; 592:5079-92. [PMID: 25217379 DOI: 10.1113/jphysiol.2014.282079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
G protein signalling within the central circadian oscillator, the suprachiasmatic nucleus (SCN), is essential for conveying time-of-day information. We sought to determine whether G protein-coupled inwardly rectifying potassium channels (GIRKs) modulate SCN physiology and circadian behaviour. We show that GIRK current and GIRK2 protein expression are greater during the day. Pharmacological inhibition of GIRKs and genetic loss of GIRK2 depolarized the day-time resting membrane potential of SCN neurons compared to controls. Behaviourally, GIRK2 knockout (KO) mice failed to shorten free running period in response to wheel access in constant darkness and entrained more rapidly to a 6 h advance of a 12 h:12 h light-dark (LD) cycle than wild-type (WT) littermate controls. We next examined whether these effects were due to disrupted signalling of neuropeptide Y (NPY), which is known to mediate non-photic phase shifts, attenuate photic phase shifts and activate GIRKs. Indeed, GIRK2 KO SCN slices had significantly fewer silent cells in response to NPY, likely contributing to the absence of NPY-induced phase advances of PER2::LUC rhythms in organotypic SCN cultures from GIRK2 KO mice. Finally, GIRK channel activation is sufficient to cause a non-photic-like phase advance of PER2::LUC rhythms on a Per2(Luc+/-) background. These results suggest that rhythmic regulation of GIRK2 protein and channel function in the SCN contributes to day-time resting membrane potential, providing a mechanism for the fine tuning responses to non-photic and photic stimuli. Further investigation could provide insight into disorders with circadian disruption comorbidities such as epilepsy and addiction, in which GIRK channels have been implicated.
Collapse
Affiliation(s)
- L M Hablitz
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - H E Molzof
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - R L Johnson
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - K L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
50
|
Ono M, Oliver DL. Asymmetric temporal interactions of sound-evoked excitatory and inhibitory inputs in the mouse auditory midbrain. J Physiol 2014; 592:3647-69. [PMID: 24951623 DOI: 10.1113/jphysiol.2014.275446] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In the auditory midbrain, synaptic mechanisms responsible for the precise temporal coding of inputs in the brainstem are absent. Instead, in the inferior colliculus (IC), the diverse temporal firing patterns must be coded by other synaptic mechanisms, about which little is known. Here, we demonstrate the temporal characteristics of sound-evoked excitatory and inhibitory postsynaptic currents (seEPSCs and seIPSCs, respectively) in vivo in response to long-duration tones. The seEPSCs and seIPSCs differ in the variability of their temporal properties. The seEPSCs have either early or late current peaks, and the early-peaked currents may be either transient or sustained varieties. The seIPSCs have only early-peaked sustained responses but often have offset responses. When measured in a single neuron, the seIPSC peaks usually follow early, transient seEPSCs, but the seIPSCs precede latest-peaking seEPSCs. A model of the firing produced by the integration of asymmetric seEPSCs and seIPSCs showed that the temporal pattern of the early-peaked sustained neurons was easily modified by changing the parameters of the seIPSC. These results suggest that the considerable variability in the peak time and duration of the seEPSCs shapes the overall time course of firing and often precedes or follows the less variable seIPSC. Despite this, the inhibitory currents are potent in modifying the firing patterns, and the inhibitory response to sound offset appears to be one area where the integration of excitatory and inhibitory synaptic currents is lacking. Thus, the integration of sound-evoked activity in the IC often employs the asymmetric temporal interaction of excitatory and inhibitory synaptic currents to shape the firing pattern of the neuron.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA
| | - Douglas L Oliver
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA
| |
Collapse
|