1
|
Bearss RJ, Oliver IA, Neuman PN, Abdulmajeed WI, Ackerman JM, Piet R. Activation of ionotropic and group I metabotropic glutamate receptors stimulates kisspeptin neuron activity in mice. J Neuroendocrinol 2024:e13456. [PMID: 39414384 DOI: 10.1111/jne.13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024]
Abstract
Different populations of hypothalamic kisspeptin (KISS1) neurons located in the rostral periventricular area of the third ventricle (RP3V) and arcuate nucleus (ARC) are thought to generate the sex-specific patterns of gonadotropin secretion. These neuronal populations integrate gonadal sex steroid feedback with internal and external cues relayed via the actions of neurotransmitters and neuropeptides. The excitatory amino acid neurotransmitter glutamate, the main excitatory neurotransmitter in the brain, plays a role in regulating gonadotropin secretion, at least partially through engaging KISS1 signaling. The expression and function of individual glutamate receptor subtypes in KISS1 neurons, however, are not well characterized. Here, we used GCaMP-based calcium imaging and patch-clamp electrophysiology to assess the impact of activating individual ionotropic (iGluR) and group I metabotropic (mGluR) glutamate receptors on KISS1 neuron activity in the mouse RP3V and ARC. Our results indicate that activation of all iGluR subtypes and of group I mGluRs, likely mGluR1, consistently drives activity in the majority of KISS1 neurons within the RP3V and ARC of males and females. Our results also revealed, somewhat unexpectedly, sex- and region-specific differences. Indeed, activating (S)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type iGluRs evoked larger responses in female ARCKISS1 neurons than in their male counterparts whereas activating group I mGluRs induced larger responses in RP3VKISS1 neurons than in ARCKISS1 neurons in females. Together, our findings suggest that glutamatergic neurotransmission in KISS1 neurons, and its impact on the activity of these cells, might be sex- and region-dependent in mice.
Collapse
Affiliation(s)
- Robin J Bearss
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Isabella A Oliver
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Peighton N Neuman
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Wahab I Abdulmajeed
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Jennifer M Ackerman
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Richard Piet
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
2
|
Buo C, Bearss RJ, Novak AG, Anello AE, Dakin JJ, Piet R. Serotonin stimulates female preoptic area kisspeptin neurons via activation of type 2 serotonin receptors in mice. Front Endocrinol (Lausanne) 2023; 14:1212854. [PMID: 37900129 PMCID: PMC10602649 DOI: 10.3389/fendo.2023.1212854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
Background The neuroendocrine control of ovulation is orchestrated by neuronal circuits that ultimately drive the release of gonadotropin-releasing hormone (GnRH) from the hypothalamus to trigger the preovulatory surge in luteinizing hormone (LH) secretion. While estrogen feedback signals are determinant in triggering activation of GnRH neurons, through stimulation of afferent kisspeptin neurons in the rostral periventricular area of the third ventricle (RP3VKISS1 neurons), many neuropeptidergic and classical neurotransmitter systems have been shown to regulate the LH surge. Among these, several lines of evidence indicate that the monoamine neurotransmitter serotonin (5-HT) has an excitatory, permissive, influence over the generation of the surge, via activation of type 2 5-HT (5-HT2) receptors. The mechanisms through which this occurs, however, are not well understood. We hypothesized that 5-HT exerts its influence on the surge by stimulating RP3VKISS1 neurons in a 5-HT2 receptor-dependent manner. Methods We tested this using kisspeptin neuron-specific calcium imaging and electrophysiology in brain slices obtained from male and female mice. Results We show that exogenous 5-HT reversibly increases the activity of the majority of RP3VKISS1 neurons. This effect is more prominent in females than in males, is likely mediated directly at RP3VKISS1 neurons and requires activation of 5-HT2 receptors. The functional impact of 5-HT on RP3VKISS1 neurons, however, does not significantly vary during the estrous cycle. Conclusion Taken together, these data suggest that 5-HT2 receptor-mediated stimulation of RP3VKISS1 neuron activity might be involved in mediating the influence of 5-HT on the preovulatory LH surge.
Collapse
Affiliation(s)
- Carrie Buo
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Robin J. Bearss
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Alyssa G. Novak
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Anna E. Anello
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Jordan J. Dakin
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Richard Piet
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
3
|
Piet R. Circadian and kisspeptin regulation of the preovulatory surge. Peptides 2023; 163:170981. [PMID: 36842628 DOI: 10.1016/j.peptides.2023.170981] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
Fertility in mammals is ultimately controlled by a small population of neurons - the gonadotropin-releasing hormone (GnRH) neurons - located in the ventral forebrain. GnRH neurons control gonadal function through the release of GnRH, which in turn stimulates the secretion of the anterior pituitary gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH). In spontaneous ovulators, ovarian follicle maturation eventually stimulates, via sex steroid feedback, the mid-cycle surge in GnRH and LH secretion that causes ovulation. The GnRH/LH surge is initiated in many species just before the onset of activity through processes controlled by the central circadian clock, ensuring that the neuroendocrine control of ovulation and sex behavior are coordinated. This review aims to give an overview of anatomical and functional studies that collectively reveal some of the mechanisms through which the central circadian clock regulates GnRH neurons and their afferent circuits to drive the preovulatory surge.
Collapse
Affiliation(s)
- Richard Piet
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States.
| |
Collapse
|
4
|
Bi-directional modulation of hyperpolarization-activated cation currents (I h) by ethanol in rat hippocampal CA3 pyramidal neurons. Neuropharmacology 2023; 227:109423. [PMID: 36690323 DOI: 10.1016/j.neuropharm.2023.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
It is widely acknowledged that ethanol (EtOH) can alter many neuronal functions, including synaptic signaling, firing discharge, and membrane excitability, through its interaction with multiple membrane proteins and intracellular pathways. Previous work has demonstrated that EtOH enhances the firing rate of hippocampal GABAergic interneurons and thus the presynaptic GABA release at CA1 and CA3 inhibitory synapses through a positive modulation of the hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels. Activation of HCN channels produce an inward current, commonly called Ih, which plays an essential role in generating/regulating specific neuronal activities in GABAergic interneurons and principal glutamatergic pyramidal neurons such as those in the CA3 subregion. Since the direct effect of EtOH on HCN channels expressed in CA3 pyramidal neurons was not thoroughly elucidated, we investigated the possible interaction between EtOH and HCN channels and the impact on excitability and postsynaptic integration of these neurons. Patch-clamp recordings were performed in single CA3 pyramidal neurons from acute male rat coronal hippocampal slices. Our results show that EtOH modulates HCN-mediated Ih in a concentration-dependent and bi-directional manner, with a positive modulation at lower (20 mM) and an inhibitory action at higher (60-80 mM) concentrations. The modulation of Ih by EtOH was mimicked by forskolin, antagonized by different drugs that selectively interfere with the AC/cAMP/PKA intracellular pathway, as well as by the selective HCN inhibitor ZD7288. Altogether, these data further support the evidence that HCN channels may represent an important molecular target through which EtOH may regulate neuronal activity.
Collapse
|
5
|
Sedative Properties of Dexmedetomidine Are Mediated Independently from Native Thalamic Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel Function at Clinically Relevant Concentrations. Int J Mol Sci 2022; 24:ijms24010519. [PMID: 36613961 PMCID: PMC9820684 DOI: 10.3390/ijms24010519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Dexmedetomidine is a selective α2-adrenoceptor agonist and appears to disinhibit endogenous sleep-promoting pathways, as well as to attenuate noradrenergic excitation. Recent evidence suggests that dexmedetomidine might also directly inhibit hyperpolarization-activated cyclic-nucleotide gated (HCN) channels. We analyzed the effects of dexmedetomidine on native HCN channel function in thalamocortical relay neurons of the ventrobasal complex of the thalamus from mice, performing whole-cell patch-clamp recordings. Over a clinically relevant range of concentrations (1-10 µM), the effects of dexmedetomidine were modest. At a concentration of 10 µM, dexmedetomidine significantly reduced maximal Ih amplitude (relative reduction: 0.86 [0.78-0.91], n = 10, and p = 0.021), yet changes to the half-maximal activation potential V1/2 occurred exclusively in the presence of the very high concentration of 100 µM (-4,7 [-7.5--4.0] mV, n = 10, and p = 0.009). Coincidentally, only the very high concentration of 100 µM induced a significant deceleration of the fast component of the HCN activation time course (τfast: +135.1 [+64.7-+151.3] ms, n = 10, and p = 0.002). With the exception of significantly increasing the membrane input resistance (starting at 10 µM), dexmedetomidine did not affect biophysical membrane properties and HCN channel-mediated parameters of neuronal excitability. Hence, the sedative qualities of dexmedetomidine and its effect on the thalamocortical network are not decisively shaped by direct inhibition of HCN channel function.
Collapse
|
6
|
Kauffman AS. Neuroendocrine mechanisms underlying estrogen positive feedback and the LH surge. Front Neurosci 2022; 16:953252. [PMID: 35968365 PMCID: PMC9364933 DOI: 10.3389/fnins.2022.953252] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/08/2022] [Indexed: 01/26/2023] Open
Abstract
A fundamental principle in reproductive neuroendocrinology is sex steroid feedback: steroid hormones secreted by the gonads circulate back to the brain to regulate the neural circuits governing the reproductive neuroendocrine axis. These regulatory feedback loops ultimately act to modulate gonadotropin-releasing hormone (GnRH) secretion, thereby affecting gonadotropin secretion from the anterior pituitary. In females, rising estradiol (E2) during the middle of the menstrual (or estrous) cycle paradoxically "switch" from being inhibitory on GnRH secretion ("negative feedback") to stimulating GnRH release ("positive feedback"), resulting in a surge in GnRH secretion and a downstream LH surge that triggers ovulation. While upstream neural afferents of GnRH neurons, including kisspeptin neurons in the rostral hypothalamus, are proposed as critical loci of E2 feedback action, the underlying mechanisms governing the shift between E2 negative and positive feedback are still poorly understood. Indeed, the precise cell targets, neural signaling factors and receptors, hormonal pathways, and molecular mechanisms by which ovarian-derived E2 indirectly stimulates GnRH surge secretion remain incompletely known. In many species, there is also a circadian component to the LH surge, restricting its occurrence to specific times of day, but how the circadian clock interacts with endocrine signals to ultimately time LH surge generation also remains a major gap in knowledge. Here, we focus on classic and recent data from rodent models and discuss the consensus knowledge of the neural players, including kisspeptin, the suprachiasmatic nucleus, and glia, as well as endocrine players, including estradiol and progesterone, in the complex regulation and generation of E2-induced LH surges in females.
Collapse
|
7
|
Jamieson BB, Piet R. Kisspeptin neuron electrophysiology: Intrinsic properties, hormonal modulation, and regulation of homeostatic circuits. Front Neuroendocrinol 2022; 66:101006. [PMID: 35640722 DOI: 10.1016/j.yfrne.2022.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
Abstract
The obligatory role of kisspeptin (KISS1) and its receptor (KISS1R) in regulating the hypothalamic-pituitary-gonadal axis, puberty and fertility was uncovered in 2003. In the few years that followed, an impressive body of work undertaken in many species established that neurons producing kisspeptin orchestrate gonadotropin-releasing hormone (GnRH) neuron activity and subsequent GnRH and gonadotropin hormone secretory patterns, through kisspeptin-KISS1R signaling, and mediate many aspects of gonadal steroid hormone feedback regulation of GnRH neurons. Here, we review knowledge accrued over the past decade, mainly in genetically modified mouse models, of the electrophysiological properties of kisspeptin neurons and their regulation by hormonal feedback. We also discuss recent progress in our understanding of the role of these cells within neuronal circuits that control GnRH neuron activity and GnRH secretion, energy balance and, potentially, other homeostatic and reproductive functions.
Collapse
Affiliation(s)
| | - Richard Piet
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
8
|
Stincic TL, Kelly MJ. Estrogenic regulation of reproduction and energy homeostasis by a triumvirate of hypothalamic arcuate neurons. J Neuroendocrinol 2022; 34:e13145. [PMID: 35581942 DOI: 10.1111/jne.13145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022]
Abstract
Pregnancy is energetically demanding and therefore, by necessity, reproduction and energy balance are inextricably linked. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy or produce unhealthy offspring. Gonadotropin-releasing hormone neurons are responsible for initiating both the pulsatile and subsequent surge release of luteinizing hormone to control ovulation. Meticulous work has identified two hypothalamic populations of kisspeptin (Kiss1) neurons that are critical for this pattern of release. The involvement of the hypothalamus is unsurprising because its quintessential function is to couple the endocrine and nervous systems, coordinating energy balance and reproduction. Estrogens, more specifically 17β-estradiol (E2 ), orchestrate the activity of a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool, these cells differentiate into ARH kisspeptin, pro-opiomelanocortin (POMC), and agouti related peptide/neuropeptide Y (AgRP) neurons. Although the excitability of all these subpopulations is subject to genomic and rapid estrogenic regulation, Kiss1 neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we review recent findings on how Kiss1 neurons interact with gonadotropin-releasing hormone, AgRP and POMC neurons, as well as how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction. In particular, we highlight how Kiss1 and POMC neurons conspire to inhibit AgRP neurons and diminish food motivation in service of reproductive success.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| |
Collapse
|
9
|
Xie Q, Kang Y, Zhang C, Xie Y, Wang C, Liu J, Yu C, Zhao H, Huang D. The Role of Kisspeptin in the Control of the Hypothalamic-Pituitary-Gonadal Axis and Reproduction. Front Endocrinol (Lausanne) 2022; 13:925206. [PMID: 35837314 PMCID: PMC9273750 DOI: 10.3389/fendo.2022.925206] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/30/2022] [Indexed: 01/07/2023] Open
Abstract
The discovery of kisspeptin as a critical central regulatory factor of GnRH release has given people a novel understanding of the neuroendocrine regulation in human reproduction. Kisspeptin activates the signaling pathway by binding to its receptor kisspeptin receptor (KISS1R) to promote GnRH secretion, thereby regulating the hypothalamic-pituitary-gonadal axis (HPG) axis. Recent studies have shown that kisspeptin neurons located in arcuate nucleus (ARC) co-express neurokinin B (NKB) and dynorphin (Dyn). Such neurons are called KNDy neurons. KNDy neurons participate in the positive and negative feedback of estrogen to GnRH secretion. In addition, kisspeptin is a key factor in the initiation of puberty, and also regulates the processes of female follicle development, oocyte maturation, and ovulation through the HPG axis. In male reproduction, kisspeptin also plays an important role, getting involved in the regulation of Leydig cells, spermatogenesis, sperm functions and reproductive behaviors. Mutations in the KISS1 gene or disorders of the kisspeptin/KISS1R system may lead to clinical symptoms such as idiopathic hypogonadotropic hypogonadism (iHH), central precocious puberty (CPP) and female infertility. Understanding the influence of kisspeptin on the reproductive axis and related mechanisms will help the future application of kisspeptin in disease diagnosis and treatment. In this review, we critically appraise the role of kisspeptin in the HPG axis, including its signaling pathways, negative and positive feedback mechanisms, and its control on female and male reproduction.
Collapse
Affiliation(s)
- Qinying Xie
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Kang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlu Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Xie
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuxiong Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caiqian Yu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Zhao
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghui Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Yang H, Fu L, Luo Q, Li L, Zheng F, Liu X, Zhao Z, Wang Z, Xu H. Comparative Analysis and Identification of Differentially Expressed microRNAs in the Hypothalamus of Kazakh Sheep Exposed to Different Photoperiod Conditions. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1315-1325. [PMID: 34903161 DOI: 10.1134/s0006297921100126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNA) plays an important role in several mammalian biological regulatory processes by post-transcriptionally regulating gene expression. However, there is little information on the miRNAs involved in the photoperiodism pathway that controls seasonal activity. To enhance our knowledge on the effect of different photoperiod conditions on miRNA, we divided Kazakh sheep into two groups: one exposed to a long photoperiod (LP, 16L:8D) and another with exposed to a short photoperiod (SP, 8L:16D) under supplemental feeding conditions. Further we compared the related miRNAs and target genes between the two groups. Fifteen differentially expressed miRNAs were identified, which were associated with 310 regulatory pathways covering photoperiodism, reproductive hormones, and nutrition. The miR-136-GNAQ pair was selected and validated as a differentially expressed, and a dual-luciferase reporter assay showed that the negative feedback loop existed between them. Examination of the expression profile revealed that the GNAQ expression was low in the estrous females both under LP and SP conditions, but high expression of GNAQ was observed in the anestrous females under LP conditions. Moreover, functional analysis revealed that KISS1 and GnRH expression was upregulated when GNAQ expression was downregulated in the hypothalamic cells, whereas DIO2 and TSHB expression was downregulated. Thus, miR-136-GNAQ might act as a switch in the regulation of seasonal estrus under different photoperiod conditions. These findings further enrich our understanding of the relationship between miRNAs and seasonal regulation of reproductive activity. Furthermore, our study provides novel insights into the miRNA-mediated regulatory mechanisms for overcoming photoinhibition in the seasonally breeding mammals, such as Kazakh sheep.
Collapse
Affiliation(s)
- Heng Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 404100, China. .,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 404100, China
| | - Lin Fu
- Research Institute of Herbivorous Livestock, Chongqing Academy of Animal Sciences, Chongqing, 404100, China
| | - Qifeng Luo
- College of Veterinary Medicine, Southwest University, Chongqing, 404100, China
| | - Licai Li
- College of Veterinary Medicine, Southwest University, Chongqing, 404100, China
| | - Fangling Zheng
- College of Veterinary Medicine, Southwest University, Chongqing, 404100, China
| | - Xianxia Liu
- College of Animal Science and Technology, Shihezi University, Xinjiang, 830000, China
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, Xinjiang, 830000, China
| | - Zhiying Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 404100, China
| | - Huihao Xu
- College of Veterinary Medicine, Southwest University, Chongqing, 404100, China.
| |
Collapse
|
11
|
Jamieson BB, Bouwer GT, Campbell RE, Piet R. Estrous Cycle Plasticity in the Central Clock Output to Kisspeptin Neurons: Implications for the Preovulatory Surge. Endocrinology 2021; 162:6213415. [PMID: 33824970 DOI: 10.1210/endocr/bqab071] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/19/2022]
Abstract
Coordination of ovulation and behavior is critical to reproductive success in many species. During the female estrous cycle, the preovulatory gonadotropin surge occurs when ovarian follicles reach maturity and, in rodents, it begins just before the daily onset of activity, ensuring that ovulation coincides with sex behavior. Timing of the surge relies on projections from the suprachiasmatic nucleus (SCN), the locus of the central circadian clock, to hypothalamic circuits that regulate gonadotropin secretion. The cellular mechanisms through which the SCN controls these circuits and gates the preovulatory surge to the appropriate estrous cycle stage, however, are poorly understood. We investigated in mice the functional impact of SCN arginine-vasopressin (AVP) neuron projections to kisspeptin (Kiss1) neurons in the rostral periventricular area of the third ventricle (RP3VKiss1), responsible for generating the preovulatory surge. Conditional anterograde tracing revealed that SCNAVP neurons innervate approximately half of the RP3VKiss1 neurons. Optogenetic activation of SCNAVP projections in brain slices caused an AVP-mediated stimulation of RP3VKiss1 action potential firing in proestrus, the cycle stage when the surge is generated. This effect was less prominent in diestrus, the preceding cycle stage, and absent in estrus, following ovulation. Remarkably, in estrus, activation of SCNAVP projections resulted in GABA-mediated inhibition of RP3VKiss1 neuron firing, an effect rarely encountered in other cycle stages. Together, these data reveal functional plasticity in SCNAVP neuron output that drives opposing effects on RP3VKiss1 neuron activity across the ovulatory cycle. This might contribute to gating activation of the preovulatory surge to the appropriate estrous cycle stage.
Collapse
Affiliation(s)
- Bradley B Jamieson
- Centre for Neuroendocrinology & Department of Physiology, University of Otago, Dunedin 9054, New Zealand
| | - Gregory T Bouwer
- Centre for Neuroendocrinology & Department of Physiology, University of Otago, Dunedin 9054, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology & Department of Physiology, University of Otago, Dunedin 9054, New Zealand
| | - Richard Piet
- Centre for Neuroendocrinology & Department of Physiology, University of Otago, Dunedin 9054, New Zealand
- Brain Health Research Institute & Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
12
|
Stincic TL, Rønnekleiv OK, Kelly MJ. Membrane and nuclear initiated estrogenic regulation of homeostasis. Steroids 2021; 168:108428. [PMID: 31229508 PMCID: PMC6923613 DOI: 10.1016/j.steroids.2019.108428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/08/2019] [Accepted: 06/18/2019] [Indexed: 11/23/2022]
Abstract
Reproduction and energy balance are inextricably linked in order to optimize the evolutionary fitness of an organism. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy and produce unhealthy or obesity-prone offspring. The quintessential function of the hypothalamus is to act as a bridge between the endocrine and nervous systems, coordinating fertility and autonomic functions. Across the female reproductive cycle various motivations wax and wane, following levels of ovarian hormones. Estrogens, more specifically 17β-estradiol (E2), coordinate a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool of cells, this triumvirate is composed of the kisspeptin (Kiss1ARH), proopiomelanocortin (POMC), and neuropeptide Y/agouti-related peptide (AgRP) neurons. Although the excitability of these neuronal subpopulations is subject to genomic and rapid estrogenic regulation, kisspeptin neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we will review the recent findings on the synaptic interactions between Kiss1, AgRP and POMC neurons and how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Oline K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, United States
| | - Martin J Kelly
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, United States.
| |
Collapse
|
13
|
Zhang W, Li SS, Han Y, Xu XH. Sex Differences in Electrophysiological Properties of Mouse Medial Preoptic Area Neurons Revealed by In Vitro Whole-cell Recordings. Neurosci Bull 2021; 37:166-182. [PMID: 32888180 PMCID: PMC7870743 DOI: 10.1007/s12264-020-00565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/14/2020] [Indexed: 10/23/2022] Open
Abstract
Despite extensive characterization of sex differences in the medial preoptic area (mPOA) of the hypothalamus, we know surprisingly little about whether or how male and female mPOA neurons differ electrophysiologically, especially in terms of neuronal firing and behavioral pattern generation. In this study, by performing whole-cell patch clamp recordings of the mPOA, we investigated the influences of sex, cell type, and gonadal hormones on the electrophysiological properties of mPOA neurons. Notably, we uncovered significant sex differences in input resistance (male > female) and in the percentage of neurons that displayed post-inhibitory rebound (male > female). Furthermore, we found that the current mediated by the T-type Ca2+ channel (IT), which is known to underlie post-inhibitory rebound, was indeed larger in male mPOA neurons. Thus, we have identified salient electrophysiological properties of mPOA neurons, namely IT and post-inhibitory rebound, that are male-biased and likely contribute to the sexually dimorphic display of behaviors.
Collapse
Affiliation(s)
- Wen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China
| | - Shuai-Shuai Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Han
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China.
| |
Collapse
|
14
|
Adaptive Resetting of Tuberoinfundibular Dopamine (TIDA) Network Activity during Lactation in Mice. J Neurosci 2020; 40:3203-3216. [PMID: 32209609 DOI: 10.1523/jneurosci.1553-18.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/22/2023] Open
Abstract
Giving birth triggers a wide repertoire of physiological and behavioral changes in the mother to enable her to feed and care for her offspring. These changes require coordination and are often orchestrated from the CNS, through as of yet poorly understood mechanisms. A neuronal population with a central role in puerperal changes is the tuberoinfundibular dopamine (TIDA) neurons that control release of the pituitary hormone, prolactin, which triggers key maternal adaptations, including lactation and maternal care. Here, we used Ca2+ imaging on mice from both sexes and whole-cell recordings on female mouse TIDA neurons in vitro to examine whether they adapt their cellular and network activity according to reproductive state. In the high-prolactin state of lactation, TIDA neurons shift to faster membrane potential oscillations, a reconfiguration that reverses upon weaning. During the estrous cycle, however, which includes a brief, but pronounced, prolactin peak, oscillation frequency remains stable. An increase in the hyperpolarization-activated mixed cation current, Ih, possibly through unmasking as dopamine release drops during nursing, may partially explain the reconfiguration of TIDA rhythms. These findings identify a reversible plasticity in hypothalamic network activity that can serve to adapt the dam for motherhood.SIGNIFICANCE STATEMENT Motherhood requires profound behavioral and physiological adaptations to enable caring for offspring, but the underlying CNS changes are poorly understood. Here, we show that, during lactation, neuroendocrine dopamine neurons, the "TIDA" cells that control prolactin secretion, reorganize their trademark oscillations to discharge in faster frequencies. Unlike previous studies, which typically have focused on structural and transcriptional changes during pregnancy and lactation, we demonstrate a functional switch in activity and one that, distinct from previously described puerperal modifications, reverses fully on weaning. We further provide evidence that a specific conductance (Ih) contributes to the altered network rhythm. These findings identify a new facet of maternal brain plasticity at the level of membrane properties and consequent ensemble activity.
Collapse
|
15
|
Moenter SM, Silveira MA, Wang L, Adams C. Central aspects of systemic oestradiol negative- and positive-feedback on the reproductive neuroendocrine system. J Neuroendocrinol 2020; 32:e12724. [PMID: 31054210 PMCID: PMC6829026 DOI: 10.1111/jne.12724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/24/2022]
Abstract
The central nervous system regulates fertility via the release of gonadotrophin-releasing hormone (GnRH). This control revolves around the hypothalamic-pituitary-gonadal axis, which operates under traditional homeostatic feedback by sex steroids from the gonads in males and most of the time in females. An exception is the late follicular phase in females, when homeostatic feedback is suspended and a positive-feedback response to oestradiol initiates the preovulatory surges of GnRH and luteinising hormone. Here, we briefly review the history of how mechanisms underlying central control of ovulation by circulating steroids have been studied, discuss the relative merit of different model systems and integrate some of the more recent findings in this area into an overall picture of how this phenomenon occurs.
Collapse
Affiliation(s)
- Suzanne M. Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109
| | - Marina A. Silveira
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
| | - Luhong Wang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
| | - Caroline Adams
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
| |
Collapse
|
16
|
Wang L, Moenter SM. Differential Roles of Hypothalamic AVPV and Arcuate Kisspeptin Neurons in Estradiol Feedback Regulation of Female Reproduction. Neuroendocrinology 2020; 110:172-184. [PMID: 31466075 PMCID: PMC7047625 DOI: 10.1159/000503006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/28/2019] [Indexed: 11/19/2022]
Abstract
Mammalian reproductive function includes puberty onset and completion, reproductive cyclicity, steroidogenesis, gametogenesis, fertilization, pregnancy, and lactation; all are indispensable to perpetuate species. Reproductive cycles are critical for providing the hormonal milieu needed for follicular development and maturation of eggs, but cycles, in and of themselves, do not guarantee ovulation will occur. Here, we review the roles in female reproductive neuroendocrine function of two hypothalamic populations that produce the neuropeptide kisspeptin, demonstrating distinct roles in maintaining cycles and ovulation.
Collapse
Affiliation(s)
- Luhong Wang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA,
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA,
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA,
| |
Collapse
|
17
|
Gotlieb N, Baker CN, Moeller J, Kriegsfeld LJ. Time-of-day-dependent sensitivity of the reproductive axis to RFamide-related peptide-3 inhibition in female Syrian hamsters. J Neuroendocrinol 2019; 31:e12798. [PMID: 31550401 PMCID: PMC6991702 DOI: 10.1111/jne.12798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/15/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022]
Abstract
In spontaneously ovulating rodent species, the timing of the luteinising hormone (LH) surge is controlled by the master circadian pacemaker in the suprachiasmatic nucleus (SCN). The SCN initiates the LH surge via the coordinated control of two opposing neuropeptidergic systems that lie upstream of the gonadotrophin-releasing hormone (GnRH) neuronal system: the stimulatory peptide, kisspeptin, and the inhibitory peptide, RFamide-related peptide-3 (RFRP-3; the mammalian orthologue of avian gonadotrophin-inhibitory hormone [GnIH]). We have previously shown that the GnRH system exhibits time-dependent sensitivity to kisspeptin stimulation, further contributing to the precise timing of the LH surge. To examine whether this time-dependent sensitivity of the GnRH system is unique to kisspeptin or a more common mechanism of regulatory control, we explored daily changes in the response of the GnRH system to RFRP-3 inhibition. Female Syrian hamsters were ovariectomised to eliminate oestradiol (E2 )-negative-feedback and RFRP-3 or saline was centrally administered in the morning or late afternoon. LH concentrations and Lhβ mRNA expression did not differ between morning RFRP-3-and saline-treated groups, although they were markedly suppressed by RFRP-3 administration in the afternoon. However, RFRP-3 inhibition of circulating LH at the time of the surge does not appear to act via the GnRH system because no differences in medial preoptic area Gnrh or RFRP-3 receptor Gpr147 mRNA expression were observed. Rather, RFRP-3 suppressed arcuate nucleus Kiss1 mRNA expression and potentially impacted pituitary gonadotrophs directly. Taken together, these findings reveal time-dependent responsiveness of the reproductive axis to RFRP-3 inhibition, possibly via variation in the sensitivity of arcuate nucleus kisspeptin neurones to this neuropeptide.
Collapse
Affiliation(s)
- Neta Gotlieb
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA
| | - Cydni N. Baker
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA
| | - Jacob Moeller
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Lance J. Kriegsfeld
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Graduate Group in Endocrinology, University of California Berkeley, Berkeley, CA, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
18
|
Wang L, Vanacker C, Burger LL, Barnes T, Shah YM, Myers MG, Moenter SM. Genetic dissection of the different roles of hypothalamic kisspeptin neurons in regulating female reproduction. eLife 2019; 8:e43999. [PMID: 30946012 PMCID: PMC6491090 DOI: 10.7554/elife.43999] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022] Open
Abstract
The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Estradiol induces negative feedback on pulsatile GnRH/luteinizing hormone (LH) release and positive feedback generating preovulatory GnRH/LH surges. Negative and positive feedbacks are postulated to be mediated by kisspeptin neurons in arcuate and anteroventral periventricular (AVPV) nuclei, respectively. Kisspeptin-specific ERα knockout mice exhibit disrupted LH pulses and surges. This knockout approach is neither location-specific nor temporally controlled. We utilized CRISPR-Cas9 to disrupt ERα in adulthood. Mice with ERα disruption in AVPV kisspeptin neurons have typical reproductive cycles but blunted LH surges, associated with decreased excitability of these neurons. Mice with ERα knocked down in arcuate kisspeptin neurons showed disrupted cyclicity, associated with increased glutamatergic transmission to these neurons. These observations suggest that activational effects of estradiol regulate surge generation and maintain cyclicity through AVPV and arcuate kisspeptin neurons, respectively, independent from its role in the development of hypothalamic kisspeptin neurons or puberty onset.
Collapse
Affiliation(s)
- Luhong Wang
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUnited States
| | - Charlotte Vanacker
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUnited States
| | - Laura L Burger
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUnited States
| | - Tammy Barnes
- Department of Internal MedicineUniversity of MichiganAnn ArborUnited States
| | - Yatrik M Shah
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUnited States
| | - Martin G Myers
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUnited States
- Department of Internal MedicineUniversity of MichiganAnn ArborUnited States
| | - Suzanne M Moenter
- Department of Internal MedicineUniversity of MichiganAnn ArborUnited States
- Department of Obstetrics & GynecologyUniversity of MichiganAnn ArborUnited States
| |
Collapse
|
19
|
Hill JW, Elias CF. Neuroanatomical Framework of the Metabolic Control of Reproduction. Physiol Rev 2019; 98:2349-2380. [PMID: 30109817 DOI: 10.1152/physrev.00033.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A minimum amount of energy is required for basic physiological processes, such as protein biosynthesis, thermoregulation, locomotion, cardiovascular function, and digestion. However, for reproductive function and survival of the species, extra energy stores are necessary. Production of sex hormones and gametes, pubertal development, pregnancy, lactation, and parental care all require energy reserves. Thus the physiological systems that control energy homeostasis and reproductive function coevolved in mammals to support both individual health and species subsistence. In this review, we aim to gather scientific knowledge produced by laboratories around the world on the role of the brain in integrating metabolism and reproduction. We describe essential neuronal networks, highlighting key nodes and potential downstream targets. Novel animal models and genetic tools have produced substantial advances, but critical gaps remain. In times of soaring worldwide obesity and metabolic dysfunction, understanding the mechanisms by which metabolic stress alters reproductive physiology has become crucial for human health.
Collapse
Affiliation(s)
- Jennifer W Hill
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| | - Carol F Elias
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
20
|
Meseke M, Neumüller F, Brunne B, Li X, Anstötz M, Pohlkamp T, Rogalla MM, Herz J, Rune GM, Bender RA. Distal Dendritic Enrichment of HCN1 Channels in Hippocampal CA1 Is Promoted by Estrogen, but Does Not Require Reelin. eNeuro 2018; 5:ENEURO.0258-18.2018. [PMID: 30406178 PMCID: PMC6220572 DOI: 10.1523/eneuro.0258-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/20/2018] [Accepted: 08/26/2018] [Indexed: 12/28/2022] Open
Abstract
HCN1 compartmentalization in CA1 pyramidal cells, essential for hippocampal information processing, is believed to be controlled by the extracellular matrix protein Reelin. Expression of Reelin, in turn, is stimulated by 17β-estradiol (E2). In this study, we therefore tested whether E2 regulates the compartmentalization of HCN1 in CA1 via Reelin. In organotypic entorhino-hippocampal cultures, we found that E2 promotes HCN1 distal dendritic enrichment via the G protein-coupled estrogen receptor GPER1, but apparently independent of Reelin, because GST-RAP, known to reduce Reelin signaling, did not prevent E2-induced HCN1 enrichment in distal CA1. We therefore re-examined the role of Reelin for the regulation of HCN1 compartmentalization and could not detect effects of reduced Reelin signaling on HCN1 distribution in CA1, either in the (developmental) slice culture model or in tamoxifen-inducible conditional reelin knockout mice during adulthood. We conclude that for HCN1 channel compartmentalization in CA1 pyramidal cells, Reelin is not as essential as previously proposed, and E2 effects on HCN1 distribution in CA1 are mediated by mechanisms that do not involve Reelin. Because HCN1 localization was not altered at different phases of the estrous cycle, gonadally derived estradiol is unlikely to regulate HCN1 channel compartmentalization, while the pattern of immunoreactivity of aromatase, the final enzyme of estradiol synthesis, argues for a role of local hippocampal E2 synthesis.
Collapse
Affiliation(s)
- Maurice Meseke
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Florian Neumüller
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Bianka Brunne
- Institute of Structural Neurobiology, Center of Molecular Neurobiology, Hamburg 20246, Germany
| | - Xiaoyu Li
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Max Anstötz
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Theresa Pohlkamp
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Meike M. Rogalla
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Gabriele M. Rune
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Roland A. Bender
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| |
Collapse
|
21
|
Qiu J, Rivera HM, Bosch MA, Padilla SL, Stincic TL, Palmiter RD, Kelly MJ, Rønnekleiv OK. Estrogenic-dependent glutamatergic neurotransmission from kisspeptin neurons governs feeding circuits in females. eLife 2018; 7:e35656. [PMID: 30079889 PMCID: PMC6103748 DOI: 10.7554/elife.35656] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/24/2018] [Indexed: 11/13/2022] Open
Abstract
The neuropeptides tachykinin2 (Tac2) and kisspeptin (Kiss1) in hypothalamic arcuate nucleus Kiss1 (Kiss1ARH) neurons are essential for pulsatile release of GnRH and reproduction. Since 17β-estradiol (E2) decreases Kiss1 and Tac2 mRNA expression in Kiss1ARH neurons, the role of Kiss1ARH neurons during E2-driven anorexigenic states and their coordination of POMC and NPY/AgRP feeding circuits have been largely ignored. Presently, we show that E2 augmented the excitability of Kiss1ARH neurons by amplifying Cacna1g, Hcn1 and Hcn2 mRNA expression and T-type calcium and h-currents. E2 increased Slc17a6 mRNA expression and glutamatergic synaptic input to arcuate neurons, which excited POMC and inhibited NPY/AgRP neurons via metabotropic receptors. Deleting Slc17a6 in Kiss1 neurons eliminated glutamate release and led to conditioned place preference for sucrose in E2-treated KO female mice. Therefore, the E2-driven increase in Kiss1 neuronal excitability and glutamate neurotransmission may play a key role in governing the motivational drive for palatable food in females.
Collapse
Affiliation(s)
- Jian Qiu
- Department of Physiology and PharmacologyOregon Health and Science UniversityPortlandUnited States
| | - Heidi M Rivera
- Department of Physiology and PharmacologyOregon Health and Science UniversityPortlandUnited States
| | - Martha A Bosch
- Department of Physiology and PharmacologyOregon Health and Science UniversityPortlandUnited States
| | - Stephanie L Padilla
- Department of BiochemistryHoward Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Todd L Stincic
- Department of Physiology and PharmacologyOregon Health and Science UniversityPortlandUnited States
| | - Richard D Palmiter
- Department of BiochemistryHoward Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Martin J Kelly
- Department of Physiology and PharmacologyOregon Health and Science UniversityPortlandUnited States
- Division of NeuroscienceOregon National Primate Research Center, Oregon Health and Science UniversityBeavertonUnited States
| | - Oline K Rønnekleiv
- Department of Physiology and PharmacologyOregon Health and Science UniversityPortlandUnited States
- Division of NeuroscienceOregon National Primate Research Center, Oregon Health and Science UniversityBeavertonUnited States
| |
Collapse
|
22
|
Hellier V, Brock O, Candlish M, Desroziers E, Aoki M, Mayer C, Piet R, Herbison A, Colledge WH, Prévot V, Boehm U, Bakker J. Female sexual behavior in mice is controlled by kisspeptin neurons. Nat Commun 2018; 9:400. [PMID: 29374161 PMCID: PMC5786055 DOI: 10.1038/s41467-017-02797-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022] Open
Abstract
Sexual behavior is essential for the survival of many species. In female rodents, mate preference and copulatory behavior depend on pheromones and are synchronized with ovulation to ensure reproductive success. The neural circuits driving this orchestration in the brain have, however, remained elusive. Here, we demonstrate that neurons controlling ovulation in the mammalian brain are at the core of a branching neural circuit governing both mate preference and copulatory behavior. We show that male odors detected in the vomeronasal organ activate kisspeptin neurons in female mice. Classical kisspeptin/Kiss1R signaling subsequently triggers olfactory-driven mate preference. In contrast, copulatory behavior is elicited by kisspeptin neurons in a parallel circuit independent of Kiss1R involving nitric oxide signaling. Consistent with this, we find that kisspeptin neurons impinge onto nitric oxide-synthesizing neurons in the ventromedial hypothalamus. Our data establish kisspeptin neurons as a central regulatory hub orchestrating sexual behavior in the female mouse brain. Mate preference and copulatory behavior in female rodents are coordinated with the ovulation cycles of the animal. This study shows that hypothalamic kisspeptin neurons control both mate choice and copulation, and therefore, that sexual behavior and ovulation may be synchronized by the same neuropeptide.
Collapse
Affiliation(s)
- Vincent Hellier
- GIGA Neurosciences, Neuroendocrinology, University of Liege, 4000, Liege, Belgium
| | - Olivier Brock
- GIGA Neurosciences, Neuroendocrinology, University of Liege, 4000, Liege, Belgium.,Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Michael Candlish
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421, Homburg, Germany
| | - Elodie Desroziers
- GIGA Neurosciences, Neuroendocrinology, University of Liege, 4000, Liege, Belgium
| | - Mari Aoki
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421, Homburg, Germany
| | | | - Richard Piet
- Center for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| | - Allan Herbison
- Center for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| | - William Henry Colledge
- Reproductive Physiology Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Vincent Prévot
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Inserm U1172, F- 59000, Lille Cedex, France
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421, Homburg, Germany.
| | - Julie Bakker
- GIGA Neurosciences, Neuroendocrinology, University of Liege, 4000, Liege, Belgium. .,Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Vanacker C, Moya MR, DeFazio RA, Johnson ML, Moenter SM. Long-Term Recordings of Arcuate Nucleus Kisspeptin Neurons Reveal Patterned Activity That Is Modulated by Gonadal Steroids in Male Mice. Endocrinology 2017; 158:3553-3564. [PMID: 28938398 PMCID: PMC5659697 DOI: 10.1210/en.2017-00382] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/25/2017] [Indexed: 11/19/2022]
Abstract
Pulsatile release of gonadotropin-releasing hormone (GnRH) is key to fertility. Pulse frequency is modulated by gonadal steroids and likely arises subsequent to coordination of GnRH neuron firing activity. The source of rhythm generation and the site of steroid feedback remain critical unanswered questions. Arcuate neurons that synthesize kisspeptin, neurokinin B, and dynorphin (KNDy) may be involved in both of these processes. We tested the hypotheses that action potential firing in KNDy neurons is episodic and that gonadal steroids regulate this pattern. Targeted extracellular recordings were made of green fluorescent protein-identified KNDy neurons in brain slices from adult male mice that were intact, castrated, or castrated and treated with estradiol or dihydrotestosterone (DHT). KNDy neurons exhibited marked peaks and nadirs in action potential firing activity during recordings lasting 1 to 3.5 hours. Peaks, identified by Cluster analysis, occurred more frequently in castrated than intact mice, and either estradiol or DHT in vivo or blocking neurokinin type 3 receptor in vitro restored peak frequency to intact levels. The frequency of peaks in firing rate and estradiol regulation of this frequency is similar to that observed for GnRH neurons, whereas DHT suppressed firing in KNDy but not GnRH neurons. We further examined the patterning of action potentials to identify bursts that may be associated with increased neuromodulator release. Burst frequency and duration are increased in castrated compared with intact and steroid-treated mice. The observation that KNDy neurons fire in an episodic manner that is regulated by steroid feedback is consistent with a role for these neurons in GnRH pulse generation and regulation.
Collapse
Affiliation(s)
- Charlotte Vanacker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Manuel Ricu Moya
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - R. Anthony DeFazio
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Michael L. Johnson
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Suzanne M. Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
24
|
Vastagh C, Liposits Z. Impact of Proestrus on Gene Expression in the Medial Preoptic Area of Mice. Front Cell Neurosci 2017; 11:183. [PMID: 28725181 PMCID: PMC5495965 DOI: 10.3389/fncel.2017.00183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/15/2017] [Indexed: 11/13/2022] Open
Abstract
The antero-ventral periventricular zone (AVPV) and medial preoptic area (MPOA) have been recognized as gonadal hormone receptive regions of the rodent brain that-via wiring to gonadotropin-releasing hormone (GnRH) neurons-contribute to orchestration of the preovulatory GnRH surge. We hypothesized that neural genes regulating the induction of GnRH surge show altered expression in proestrus. Therefore, we compared the expression of 48 genes obtained from intact proestrous and metestrous mice, respectively, by quantitative real-time PCR (qPCR) method. Differential expression of 24 genes reached significance (p < 0.05). Genes upregulated in proestrus encoded neuropeptides (kisspeptin (KP), galanin (GAL), neurotensin (NT), cholecystokinin (CCK)), hormone receptors (growth hormone secretagogue receptor, μ-opioid receptor), gonadal steroid receptors (estrogen receptor alpha (ERα), progesterone receptor (PR), androgen receptor (AR)), solute carrier family proteins (vesicular glutamate transporter 2, vesicular monoamine transporter 2), proteins of transmitter synthesis (tyrosine hydroxylase (TH)) and transmitter receptor subunit (AMPA4), and other proteins (uncoupling protein 2, nuclear receptor related 1 protein). Proestrus evoked a marked downregulation of genes coding for adenosine A2a receptor, vesicular gamma-aminobutyric acid (GABA) transporter, 4-aminobutyrate aminotransferase, tachykinin precursor 1, NT receptor 3, arginine vasopressin receptor 1A, cannabinoid receptor 1, ephrin receptor A3 and aldehyde dehydrogenase 1 family, member L1. Immunocytochemistry was used to visualize the proteins encoded by Kiss1, Gal, Cck and Th genes in neuronal subsets of the AVPV/MPOA of the proestrous mice. The results indicate that gene expression of the AVPV/MPOA is significantly modified at late proestrus including genes that code for neuropeptides, gonadal steroid hormone receptors and synaptic vesicle transporters. These events support cellular and neuronal network requirements of the positive estradiol feedback action and contribute to preparation of the GnRH neuron system for the pre-ovulatory surge release.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary.,Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| |
Collapse
|
25
|
Abstract
The gonadotropin-releasing hormone (GnRH) neuronal network generates pulse and surge modes of gonadotropin secretion critical for puberty and fertility. The arcuate nucleus kisspeptin neurons that innervate the projections of GnRH neurons in and around their neurosecretory zone are key components of the pulse generator in all mammals. By contrast, kisspeptin neurons located in the preoptic area project to GnRH neuron cell bodies and proximal dendrites and are involved in surge generation in female rodents (and possibly other species). The hypothalamic-pituitary-gonadal axis develops embryonically but, apart from short periods of activation immediately after birth, remains suppressed through a combination of gonadal and non-gonadal mechanisms. At puberty onset, the pulse generator reactivates, probably owing to progressive stimulatory influences on GnRH neurons from glial and neurotransmitter signalling, and the re-emergence of stimulatory arcuate kisspeptin input. In females, the development of pulsatile gonadotropin secretion enables final maturation of the surge generator that ultimately triggers the first ovulation. Representation of the GnRH neuronal network as a series of interlocking functional modules could help conceptualization of its functioning in different species. Insights into pulse and surge generation are expected to aid development of therapeutic strategies ameliorating pubertal disorders and infertility in the clinic.
Collapse
Affiliation(s)
- Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| |
Collapse
|
26
|
Excitability and Burst Generation of AVPV Kisspeptin Neurons Are Regulated by the Estrous Cycle Via Multiple Conductances Modulated by Estradiol Action. eNeuro 2016; 3:eN-NWR-0094-16. [PMID: 27280155 PMCID: PMC4895127 DOI: 10.1523/eneuro.0094-16.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
The preovulatory secretory surge of gonadotropin-releasing hormone (GnRH) is crucial for fertility and is regulated by a switch of estradiol feedback action from negative to positive. GnRH neurons likely receive estradiol feedback signals via ERα-expressing afferents. Kisspeptin neurons in anteroventral periventricular nucleus (AVPV) are thought to be critical for estradiol-positive feedback induction of the GnRH surge. We examined the electrophysiological properties of GFP-identified AVPV kisspeptin neurons in brain slices from mice on the afternoon of diestrus (negative feedback) and proestrus (positive feedback, time of surge). Extracellular recordings revealed increased firing frequency and action potential bursts on proestrus versus diestrus. Whole-cell recordings were used to study the intrinsic mechanisms of bursting. Upon depolarization, AVPV kisspeptin neurons exhibited tonic firing or depolarization-induced bursts (DIB). Both tonic and DIB cells exhibited bursts induced by rebound from hyperpolarization. DIB occurred similarly on both cycle stages, but rebound bursts were observed more often on proestrus. DIB and rebound bursts were both sensitive to Ni2+, suggesting that T-type Ca2+ currents (ITs) are involved. IT current density was greater on proestrus versus diestrus. In addition to IT, persistent sodium current (INaP) facilitated rebound bursting. On diestrus, 4-aminopyridine-sensitive potassium currents contributed to reduced rebound bursts in both tonic and DIB cells. Manipulation of specific sex steroids suggests that estradiol induces the changes that enhance AVPV kisspeptin neuron excitability on proestrus. These observations indicate cycle-driven changes in circulating estradiol increased overall action potential generation and burst firing in AVPV kisspeptin neurons on proestrus versus diestrus by regulating multiple intrinsic currents.
Collapse
|
27
|
Derouiche L, Keller M, Martini M, Duittoz AH, Pillon D. Developmental Exposure to Ethinylestradiol Affects Reproductive Physiology, the GnRH Neuroendocrine Network and Behaviors in Female Mouse. Front Neurosci 2015; 9:463. [PMID: 26696819 PMCID: PMC4673314 DOI: 10.3389/fnins.2015.00463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/23/2015] [Indexed: 01/10/2023] Open
Abstract
During development, environmental estrogens are able to induce an estrogen mimetic action that may interfere with endocrine and neuroendocrine systems. The present study investigated the effects on the reproductive function in female mice following developmental exposure to pharmaceutical ethinylestradiol (EE2), the most widespread and potent synthetic steroid present in aquatic environments. EE2 was administrated in drinking water at environmentally relevant (ENVIR) or pharmacological (PHARMACO) doses [0.1 and 1 μg/kg (body weight)/day respectively], from embryonic day 10 until postnatal day 40. Our results show that both groups of EE2-exposed females had advanced vaginal opening and shorter estrus cycles, but a normal fertility rate compared to CONTROL females. The hypothalamic population of GnRH neurons was affected by EE2 exposure with a significant increase in the number of perikarya in the preoptic area of the PHARMACO group and a modification in their distribution in the ENVIR group, both associated with a marked decrease in GnRH fibers immunoreactivity in the median eminence. In EE2-exposed females, behavioral tests highlighted a disturbed maternal behavior, a higher lordosis response, a lack of discrimination between gonad-intact and castrated males in sexually experienced females, and an increased anxiety-related behavior. Altogether, these results put emphasis on the high sensitivity of sexually dimorphic behaviors and neuroendocrine circuits to disruptive effects of EDCs.
Collapse
Affiliation(s)
- Lyes Derouiche
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Matthieu Keller
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Mariangela Martini
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Anne H Duittoz
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Delphine Pillon
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| |
Collapse
|
28
|
Abstract
The cellular mechanisms governing the impact of the central circadian clock on neuronal networks are incompletely understood. We examine here the influence of the suprachiasmatic nucleus output neuropeptide arginine-vasopressin (AVP) on the activity of preoptic area kisspeptin neurons. These cells integrate circadian and hormonal signals within the neuronal network that regulates fertility in females. Electrophysiological recordings in brain slices from kisspeptin-GFP mice showed that AVP dose-dependently increased the firing rate of most kisspeptin neurons. These actions were mediated directly at the kisspeptin neuron. Experiments in mice expressing the calcium indicator GCaMP3 in kisspeptin neurons enabled simultaneous monitoring of intracellular calcium concentrations ([Ca(2+)]i) in multiple cells and revealed that AVP increased [Ca(2+)]i in >80% of diestrous kisspeptin neurons via a mechanism involving voltage-gated calcium channels. We next examined whether AVP signaling in kisspeptin neurons was time and ovarian cycle dependent. AVP exerted the same effects on diestrous and proestrous days of the ovarian cycle, whether hours before [zeitgeber time 4 (ZT4)-ZT6] or just before (ZT10) the expected time of the proestrous preovulatory luteinizing hormone surge. Remarkably, however, AVP signaling was critically dependent on circulating ovarian steroids as AVP no longer excited preoptic kisspeptin neurons in ovariectomized mice, an effect that was fully restored by estradiol treatment. Together, these studies show that AVP exerts a potent and direct stimulatory influence upon the electrical activity and [Ca(2+)]i of most preoptic kisspeptin neurons. Unexpectedly, estrogen is found to permit circadian AVP signaling at preoptic kisspeptin neurons rather than dynamically modulate its activity throughout the estrous cycle.
Collapse
|
29
|
Qiu X, Dao H, Wang M, Heston A, Garcia KM, Sangal A, Dowling AR, Faulkner LD, Molitor SC, Elias CF, Hill JW. Insulin and Leptin Signaling Interact in the Mouse Kiss1 Neuron during the Peripubertal Period. PLoS One 2015; 10:e0121974. [PMID: 25946091 PMCID: PMC4422586 DOI: 10.1371/journal.pone.0121974] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/05/2015] [Indexed: 11/18/2022] Open
Abstract
Reproduction requires adequate energy stores for parents and offspring to survive. Kiss1 neurons, which are essential for fertility, have the potential to serve as the central sensors of metabolic factors that signal to the reproductive axis the presence of stored calories. Paradoxically, obesity is often accompanied by infertility. Despite excess circulating levels of insulin and leptin, obese individuals exhibit resistance to both metabolic factors in many neuron types. Thus, resistance to insulin or leptin in Kiss1 neurons could lead to infertility. Single deletion of the receptors for either insulin or the adipokine leptin from Kiss1 neurons does not impair adult reproductive dysfunction. However, insulin and leptin signaling pathways may interact in such a way as to obscure their individual functions. We hypothesized that in the presence of genetic or obesity-induced concurrent insulin and leptin resistance, Kiss1 neurons would be unable to maintain reproductive function. We therefore induced a chronic hyperinsulinemic and hyperleptinemic state in mice lacking insulin receptors in Kiss1 neurons through high fat feeding and examined the impact on fertility. In an additional, genetic model, we ablated both leptin and insulin signaling in Kiss1 neurons (IR/LepRKiss mice). Counter to our hypothesis, we found that the addition of leptin insensitivity did not alter the reproductive phenotype of IRKiss mice. We also found that weight gain, body composition, glucose and insulin tolerance were normal in mice of both genders. Nonetheless, leptin and insulin receptor deletion altered pubertal timing as well as LH and FSH levels in mid-puberty in a reciprocal manner. Our results confirm that Kiss1 neurons do not directly mediate the critical role that insulin and leptin play in reproduction. However, during puberty kisspeptin neurons may experience a critical window of susceptibility to the influence of metabolic factors that can modify the onset of fertility.
Collapse
Affiliation(s)
- Xiaoliang Qiu
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
| | - Hoangha Dao
- Department of Bioengineering, University of Toledo, Toledo, Ohio, United States of America
| | - Mengjie Wang
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Amelia Heston
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Kaitlyn M. Garcia
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Alisha Sangal
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Abigail R. Dowling
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Latrice D. Faulkner
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Scott C. Molitor
- Department of Bioengineering, University of Toledo, Toledo, Ohio, United States of America
| | - Carol F. Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jennifer W. Hill
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- Department of Obstetrics-Gynecology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
30
|
Zhang C, Bosch MA, Qiu J, Rønnekleiv OK, Kelly MJ. 17β-Estradiol increases persistent Na(+) current and excitability of AVPV/PeN Kiss1 neurons in female mice. Mol Endocrinol 2015; 29:518-27. [PMID: 25734516 DOI: 10.1210/me.2014-1392] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In vitro slice studies have revealed that there are significant differences in the spontaneous firing activity between anteroventral periventricular/periventricular preoptic nucleus (AVPV/PeN) and arcuate nucleus (ARC) kisspeptin (Kiss1) neurons in females. Although both populations express similar endogenous conductances, we have discovered that AVPV/PeN Kiss1 neurons express a subthreshold, persistent sodium current (INaP) that dramatically alters their firing activity. Based on whole-cell recording of Kiss1-Cre-green fluorescent protein (GFP) neurons, INaP was 4-fold greater in AVPV/PeN vs ARC Kiss1 neurons. An LH surge-producing dose of 17β-estradiol (E2) that increased Kiss1 mRNA expression in the AVPV/PeN, also augmented INaP in AVPV/PeN neurons by 2-fold. Because the activation threshold for INaP was close to the resting membrane potential (RMP) of AVPV/PeN Kiss1 neurons (-54 mV), it rendered them much more excitable and spontaneously active vs ARC Kiss1 neurons (RMP = -66 mV). Single-cell RT-PCR revealed that AVPV/PeN Kiss1 neurons expressed the requisite sodium channel α-subunit transcripts, NaV1.1, NaV1.2, and NaV1.6 and β subunits, β2 and β4. Importantly, NaV1.1α and -β2 transcripts in AVPV/PeN, but not ARC, were up-regulated 2- to 3-fold by a surge-producing dose of E2, similar to the transient calcium current channel subunit Cav3.1. The transient calcium current collaborates with INaP to generate burst firing, and selective blockade of INaP by riluzole significantly attenuated rebound burst firing and spontaneous activity. Therefore, INaP appears to play a prominent role in AVPV/PeN Kiss1 neurons to generate spontaneous, repetitive burst firing, which is required for the high-frequency-stimulated release of kisspeptin for exciting GnRH neurons and potentially generating the GnRH surge.
Collapse
Affiliation(s)
- Chunguang Zhang
- Department of Physiology and Pharmacology (C.Z., M.A.B., J.Q., O.K.R., M.J.K.), Oregon Health and Science University, Portland, Oregon 97239; and Division of Neuroscience (O.K.R., M.J.K.), Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006
| | | | | | | | | |
Collapse
|
31
|
Dubois SL, Acosta-Martínez M, DeJoseph MR, Wolfe A, Radovick S, Boehm U, Urban JH, Levine JE. Positive, but not negative feedback actions of estradiol in adult female mice require estrogen receptor α in kisspeptin neurons. Endocrinology 2015; 156:1111-20. [PMID: 25545386 PMCID: PMC4330313 DOI: 10.1210/en.2014-1851] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hypothalamic kisspeptin (Kiss1) neurons express estrogen receptor α (ERα) and exert control over GnRH/LH secretion in female rodents. It has been proposed that estradiol (E2) activation of ERα in kisspeptin neurons in the arcuate nucleus (ARC) suppresses GnRH/LH secretion (negative feedback), whereas E2 activation of ERα in kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) mediates the release of preovulatory GnRH/LH surges (positive feedback). To test these hypotheses, we generated mice bearing kisspeptin cell-specific deletion of ERα (KERαKO) and treated them with E2 regimens that evoke either negative or positive feedback actions on GnRH/LH secretion. Using negative feedback regimens, as expected, E2 effectively suppressed LH levels in ovariectomized (OVX) wild-type (WT) mice to the levels seen in ovary-intact mice. Surprisingly, however, despite the fact that E2 regulation of Kiss1 mRNA expression was abrogated in both the ARC and AVPV of KERαKO mice, E2 also effectively decreased LH levels in OVX KERαKO mice to the levels seen in ovary-intact mice. Conversely, using a positive feedback regimen, E2 stimulated LH surges in WT mice, but had no effect in KERαKO mice. These experiments clearly demonstrate that ERα in kisspeptin neurons is required for the positive, but not negative feedback actions of E2 on GnRH/LH secretion in adult female mice. It remains to be determined whether the failure of KERαKO mice to exhibit GnRH/LH surges reflects the role of ERα in the development of kisspeptin neurons, in the active signaling processes leading to the release of GnRH/LH surges, or both.
Collapse
Affiliation(s)
- Sharon L Dubois
- Neuroscience Training Program (S.L.D.), Department of Neuroscience (S.L.D., J.E.L.), University of Wisconsin-Madison, Madison, Wisconsin 53715; Department of Physiology and Biophysics (M.A.-M.), Stony Brook University, Stony Brook, New York 11794; Department of Physiology and Biophysics (M.R.D., J.H.U.), Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064; Department of Pediatrics (A.W., S.R.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Pharmacology and Toxicology (U.B.), University of Saarland School of Medicine, Homburg, Germany D-66421; and Wisconsin National Primate Research Center (J.E.L.), Madison, Wisconsin 53715
| | | | | | | | | | | | | | | |
Collapse
|
32
|
He JL, Li JN, Zuo CM, Wang LQ, Wen X, Zuo M, Guan J, Wu D, Song DX, Yu X, Qu MY, Liu Y, Qiao GF, Li BY. Potentiation of 17β-estradiol on neuroexcitability by HCN-mediated neuromodulation of fast-afterhyperpolarization and late-afterdepolarization in low-threshold and sex-specific myelinated Ah-type baroreceptor neurons via GPR30 in female rats. Int J Cardiol 2015; 182:174-8. [DOI: 10.1016/j.ijcard.2014.12.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/21/2014] [Indexed: 10/24/2022]
|
33
|
Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nat Commun 2015; 6:6385. [PMID: 25721933 PMCID: PMC4351556 DOI: 10.1038/ncomms7385] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/26/2015] [Indexed: 11/08/2022] Open
Abstract
Reproductive competence in mammals depends on the projection of gonadotropin-releasing hormone (GnRH) neurons to the hypothalamic median eminence (ME) and the timely release of GnRH into the hypothalamic-pituitary-gonadal axis. In adult rodents, GnRH neurons and the specialized glial cells named tanycytes periodically undergo cytoskeletal plasticity. However, the mechanisms that regulate this plasticity are still largely unknown. We demonstrate that Semaphorin7A, expressed by tanycytes, plays a dual role, inducing the retraction of GnRH terminals and promoting their ensheathment by tanycytic end feet via the receptors PlexinC1 and Itgb1, respectively. Moreover, Semaphorin7A expression is regulated during the oestrous cycle by the fluctuating levels of gonadal steroids. Genetic invalidation of Semaphorin7A receptors in mice induces neuronal and glial rearrangements in the ME and abolishes normal oestrous cyclicity and fertility. These results show a role for Semaphorin7A signalling in mediating periodic neuroglial remodelling in the adult ME during the ovarian cycle.
Collapse
|
34
|
GABAergic transmission to kisspeptin neurons is differentially regulated by time of day and estradiol in female mice. J Neurosci 2015; 34:16296-308. [PMID: 25471569 DOI: 10.1523/jneurosci.3057-14.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) secretion is regulated by estradiol feedback. This feedback switches from negative to positive in females; this switch depends on time of day in many species. Estradiol feedback is likely conveyed via afferents. Kisspeptin neurons of the arcuate nucleus and anteroventral-periventricular region (AVPV) may differentially regulate GnRH neurons during negative and positive feedback, respectively. We tested estradiol and time of day regulation of GABAergic transmission and postsynaptic response to GABA in these two populations using transgenic mice with GFP-identified kisspeptin neurons. Ovariectomized (OVX) mice treated or not with estradiol (E) were studied in the AM (negative feedback) or PM (positive feedback). GABAA receptor reversal potential was unaffected by time of day or estradiol. GABA depolarized the membrane potential of arcuate neurons from OVX+E mice; this response was blunted in cells from OVX mice. GABA hyperpolarized AVPV kisspeptin neurons, except in the OVX PM group in which GABA did not alter membrane potential attributable to a PM hyperpolarization of baseline membrane potential. In both kisspeptin neuron populations from OVX mice, the frequency of GABAergic spontaneous postsynaptic currents was increased in the PM; this increase was blunted by estradiol. In arcuate, but not AVPV, kisspeptin neurons, estradiol reduced miniature postsynaptic current amplitude independent of time of day. Using nonstationary fluctuation analysis and diazepam to manipulate GABAA receptor apparent affinity, the decrease in arcuate miniature postsynaptic current amplitude was attributed to decreased number of receptors bound by GABA. Time of day and estradiol feedback thus both target presynaptic and postsynaptic mechanisms to differentially regulate kisspeptin neurons via GABAergic transmission.
Collapse
|
35
|
Kumar D, Candlish M, Periasamy V, Avcu N, Mayer C, Boehm U. Specialized subpopulations of kisspeptin neurons communicate with GnRH neurons in female mice. Endocrinology 2015; 156:32-8. [PMID: 25337655 DOI: 10.1210/en.2014-1671] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The neuropeptide kisspeptin is a potent stimulator of GnRH neurons and has been implicated as a major regulator of the hypothalamus-pituitary-gonadal axis. There are mainly two anatomically segregated populations of neurons that express kisspeptin in the female hypothalamus: one in the anteroventral periventricular nucleus (AVPV) and the other in the arcuate nucleus (ARC). Distinct roles have been proposed for AVPV and ARC kisspeptin neurons during reproductive maturation and in mediating estrogen feedback on the hypothalamus-pituitary-gonadal axis in adults. Despite their pivotal role in the regulation of reproductive physiology, little is known about kisspeptin neuron connectivity. Although previous data suggest heterogeneity within the AVPV and ARC kisspeptin neuron populations, how many and which of these potential kisspeptin neuron subpopulations are actually communicating with GnRH neurons is not known. Here we used a combinatorial genetic transsynaptic tracing strategy to start to analyze the connectivity of individual kisspeptin neurons with the GnRH neuron population in female mice with a single-cell resolution. We find that only subsets of AVPV and ARC kisspeptin neurons are synaptically connected with GnRH neurons. We demonstrate that the majority of kisspeptin neurons within the AVPV and ARC does not communicate with GnRH neurons. Furthermore, we show that all kisspeptin neurons within the AVPV connected to GnRH neurons are estrogen sensitive and that most of these express tyrosine hydroxylase. Our data demonstrate functional specialization within the two kisspeptin neuron populations.
Collapse
Affiliation(s)
- Devesh Kumar
- Department of Pharmacology and Toxicology (D.K., M.C., V.P., U.B.), University of Saarland School of Medicine, D-66421 Homburg, Germany; and Institute for Neural Signal Transduction (N.A., C.M.), Center for Molecular Neurobiology, D-20253 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Hill M, Dušková M, Stárka L. Dehydroepiandrosterone, its metabolites and ion channels. J Steroid Biochem Mol Biol 2015; 145:293-314. [PMID: 24846830 DOI: 10.1016/j.jsbmb.2014.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/06/2014] [Accepted: 05/11/2014] [Indexed: 11/20/2022]
Abstract
This review is focused on the physiological and pathophysiological relevance of steroids influencing the activities of the central and peripheral nervous systems with regard to their concentrations in body fluids and tissues in various stages of human life like the fetal development or pregnancy. The data summarized in this review shows that DHEA and its unconjugated and sulfated metabolites are physiologically and pathophysiologically relevant in modulating numerous ion channels and participate in vital functions of the human organism. DHEA and its unconjugated and sulfated metabolites including 5α/β-reduced androstane steroids participate in various physiological and pathophysiological processes like the management of GnRH cyclic release, regulation of glandular and neurotransmitter secretions, maintenance of glucose homeostasis on one hand and insulin insensitivity on the other hand, control of skeletal muscle and smooth muscle activities including vasoregulation, promotion of tolerance to ischemia and other neuroprotective effects. In respect of prevalence of steroid sulfates over unconjugated steroids in the periphery and the opposite situation in the CNS, the sulfated androgens and androgen metabolites reach relevance in peripheral organs. The unconjugated androgens and estrogens are relevant in periphery and so much the more in the CNS due to higher concentrations of most unconjugated steroids in the CNS tissues than in circulation and peripheral organs. This article is part of a Special Issue entitled "Essential role of DHEA".
Collapse
Affiliation(s)
- M Hill
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| | - M Dušková
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| | - L Stárka
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| |
Collapse
|
37
|
Giacobini P. Shaping the Reproductive System: Role of Semaphorins in Gonadotropin-Releasing Hormone Development and Function. Neuroendocrinology 2015; 102:200-15. [PMID: 25967979 DOI: 10.1159/000431021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/28/2015] [Indexed: 11/19/2022]
Abstract
The semaphorin proteins, which contribute to the morphogenesis and homeostasis of a wide range of systems, are among the best-studied families of guidance cues. Much recent research has focused on the role of semaphorins in the development and adult activity of hormone systems and, reciprocally, how circulating reproductive hormones regulate their expression and function. Specifically, several reports have focused on the molecular mechanisms underlying the effects of semaphorins on the migration, survival and structural and functional plasticity of neurons that secrete gonadotropin-releasing hormone (GnRH), essential for the acquisition and maintenance of reproductive competence in mammals. Alterations in the development of this neuroendocrine system lead to anomalous or absent GnRH secretion, resulting in heterogeneous reproductive disorders such as congenital hypogonadotropic hypogonadism (CHH) or other conditions characterized by infertility or subfertility. This review summarizes current knowledge of the role of semaphorins and their receptors on the development, differentiation and plasticity of the GnRH system. In addition, the involvement of genetic deficits in semaphorin signaling in some forms of CHH in humans is discussed.
Collapse
Affiliation(s)
- Paolo Giacobini
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, School of Medicine, University of Lille, and Institut de Médecine Prédictive et de Recherche Thérapeutique, IFR114, Lille, France
| |
Collapse
|
38
|
Piet R, de Croft S, Liu X, Herbison AE. Electrical properties of kisspeptin neurons and their regulation of GnRH neurons. Front Neuroendocrinol 2015; 36:15-27. [PMID: 24907402 DOI: 10.1016/j.yfrne.2014.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/01/2014] [Accepted: 05/27/2014] [Indexed: 01/19/2023]
Abstract
Kisspeptin neurons are critical components of the neuronal network controlling the activity of the gonadotropin-releasing hormone (GnRH) neurons. A variety of genetically-manipulated mouse models have recently facilitated the study of the electrical activity of the two principal kisspeptin neuron populations located in the rostral periventricular area of the third ventricle (RP3V) and arcuate nucleus (ARN) in acute brain slices. We discuss here the mechanisms and pathways through which kisspeptin neurons regulate GnRH neuron activity. We then examine the different kisspeptin-green fluorescent protein mouse models being used for kisspeptin electrophysiology and the data obtained to date for RP3V and ARN kisspeptin neurons. In light of these new observations on the spontaneous firing rates, intrinsic membrane properties, and neurotransmitter regulation of kisspeptin neurons, we speculate on the physiological roles of the different kisspeptin populations.
Collapse
Affiliation(s)
- Richard Piet
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Simon de Croft
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Xinhuai Liu
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
39
|
Rønnekleiv OK, Zhang C, Bosch MA, Kelly MJ. Kisspeptin and Gonadotropin-Releasing Hormone Neuronal Excitability: Molecular Mechanisms Driven by 17β-Estradiol. Neuroendocrinology 2014; 102:184-93. [PMID: 25612870 PMCID: PMC4459938 DOI: 10.1159/000370311] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022]
Abstract
Kisspeptin is a neuropeptide that signals via a Gαq-coupled receptor, GPR54, in gonadotropin-releasing hormone (GnRH) neurons and is essential for pubertal maturation and fertility. Kisspeptin depolarizes and excites GnRH neurons primarily through the activation of canonical transient receptor potential (TRPC) channels and the inhibition of K+ channels. The gonadal steroid 17β-estradiol (E2) upregulates not only kisspeptin (Kiss1) mRNA but also increases the excitability of the rostral forebrain Kiss1 neurons. In addition, a primary postsynaptic action of E2 on GnRH neurons is to upregulate the expression of channel transcripts that orchestrate the downstream signaling of kisspeptin in GnRH neurons. These include not only TRPC4 channels but also low-voltage-activated T-type calcium channels and high-voltage-activated L-, N- and R-type calcium channel transcripts. Moreover, E2 has direct membrane-initiated actions to alter the excitability of GnRH neurons by enhancing ATP-sensitive potassium channel activity, which is critical for maintaining GnRH neurons in a hyperpolarized state for the recruitment of T-type calcium channels that are important for burst firing. Therefore, E2 modulates the excitability of GnRH neurons as well as of Kiss1 neurons by altering the expression and/or function of ion channels; moreover, kisspeptin provides critical excitatory input to GnRH neurons to facilitate burst firing activity and peptide release.
Collapse
Affiliation(s)
- Oline K. Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Chunguang Zhang
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
| | - Martha A. Bosch
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
| | - Martin J. Kelly
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
| |
Collapse
|
40
|
Gonadal steroid neuromodulation of developing and mature hypothalamic neuronal networks. Curr Opin Neurobiol 2014; 29:96-102. [DOI: 10.1016/j.conb.2014.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/05/2014] [Indexed: 11/21/2022]
|
41
|
Hasebe M, Kanda S, Shimada H, Akazome Y, Abe H, Oka Y. Kiss1 neurons drastically change their firing activity in accordance with the reproductive state: insights from a seasonal breeder. Endocrinology 2014; 155:4868-80. [PMID: 25247469 DOI: 10.1210/en.2014-1472] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kisspeptin (Kiss) neurons show drastic changes in kisspeptin expression in response to the serum sex steroid concentration in various vertebrate species. Thus, according to the reproductive states, kisspeptin neurons are suggested to modulate various neuronal activities, including the regulation of GnRH neurons in mammals. However, despite their reproductive state-dependent regulation, there is no physiological analysis of kisspeptin neurons in seasonal breeders. Here we generated the first kiss1-enhanced green fluorescent protein transgenic line of a seasonal breeder, medaka, for histological and electrophysiological analyses using a whole-brain in vitro preparation in which most synaptic connections are intact. We found histologically that Kiss1 neurons in the nucleus ventralis tuberis (NVT) projected to the preoptic area, hypothalamus, pituitary, and ventral telencephalon. Therefore, NVT Kiss1 neurons may regulate various homeostatic functions and innate behaviors. Electrophysiological analyses revealed that they show various firing patterns, including bursting. Furthermore, we found that their firings are regulated by the resting membrane potential. However, bursting was not induced from the other firing patterns with a current injection, suggesting that it requires some chronic modulations of intrinsic properties such as channel expression. Finally, we found that NVT Kiss1 neurons drastically change their neuronal activities according to the reproductive state and the estradiol levels. Taken together with the previous reports, we here conclude that the breeding condition drastically alters the Kiss1 neuron activities in both gene expression and firing activities, the latter of which is strongly related to Kiss1 release, and the Kiss1 peptides regulate the activities of various neural circuits through their axonal projections.
Collapse
Affiliation(s)
- Masaharu Hasebe
- Department of Biological Sciences (M.H., S.K., H.S., Y.A., Y.O.), Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; and Laboratory of Fish Biology (H.A.), Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Scharfman HE, MacLusky NJ. Sex differences in the neurobiology of epilepsy: a preclinical perspective. Neurobiol Dis 2014; 72 Pt B:180-92. [PMID: 25058745 DOI: 10.1016/j.nbd.2014.07.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/08/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022] Open
Abstract
When all of the epilepsies are considered, sex differences are not always clear, despite the fact that many sex differences are known in the normal brain. Sex differences in epilepsy in laboratory animals are also unclear, although robust effects of sex on seizures have been reported, and numerous effects of gonadal steroids have been shown throughout the rodent brain. Here we discuss several reasons why sex differences in seizure susceptibility are unclear or are difficult to study. Examples of robust sex differences in laboratory rats, such as the relative resistance of adult female rats to the chemoconvulsant pilocarpine compared to males, are described. We also describe a novel method that has shed light on sex differences in neuropathology, which is a relatively new technique that will potentially contribute to sex differences research in the future. The assay we highlight uses the neuronal nuclear antigen NeuN to probe sex differences in adult male and female rats and mice. In females, weak NeuN expression defines a sex difference that previous neuropathological studies have not described. We also show that in adult rats, social isolation stress can obscure the normal effects of 17β-estradiol to increase excitability in area CA3 of the hippocampus. These data underscore the importance of controlling behavioral stress in studies of seizure susceptibility in rodents and suggest that behavioral stress may be one factor that has led to inconsistencies in outcomes of sex differences research. These and other issues have made it difficult to translate our increasing knowledge about the effects of gonadal hormones on the brain to improved treatment for men and women with epilepsy.
Collapse
Affiliation(s)
- Helen E Scharfman
- Department of Child & Adolescent Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Physiology & Neuroscience, New York University Langone Medical Center, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA.
| | - Neil J MacLusky
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
43
|
Zmora N, Stubblefield J, Golan M, Servili A, Levavi-Sivan B, Zohar Y. The medio-basal hypothalamus as a dynamic and plastic reproduction-related kisspeptin-gnrh-pituitary center in fish. Endocrinology 2014; 155:1874-86. [PMID: 24484170 DOI: 10.1210/en.2013-1894] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Kisspeptin regulates reproductive events, including puberty and ovulation, primarily via GnRH neurons. Prolonged treatment of prepubertal striped bass females with kisspeptin (Kiss) 1 or Kiss2 peptides failed to enhance puberty but suggested a gnrh-independent pituitary control pathway. Kiss2 inhibited, but Kiss1 stimulated, FShβ expression and gonadal development, although hypophysiotropic gnrh1 and gnrh receptor expression remained unchanged. In situ hybridization and immunohistochemistry on brains and pituitaries revealed a differential plasticity between the 2 kisspeptin neurons. The differences were most pronounced at the prespawning phase in 2 regions along the path of gnrh1 axons: the nucleus lateralis tuberis (NLT) and the neurohypophysis. Kiss1 neurons appeared in the NLT and innervated the neurohypophysis of prespawning males and females, reaching Lh gonadotropes in the proximal pars distalis. Males, at all reproductive stages, had Kiss2 innervations in the NLT and the neurohypophysis, forming large axonal bundles in the former and intermingling with gnrh1 axons. Unlike in males, only preovulatory females had massive NLT-neurohypophysis staining of kiss2. Kiss2 neurons showed a distinct appearance in the NLT pars ventralis-equivalent region only in spawning zebrafish, indicating that this phenomenon is widespread. These results underscore the NLT as important nuclei for kisspeptin action in 2 facets: 1) kisspeptin-gnrh interaction, both kisspeptins are involved in the regulation of gnrh release, in a stage- and sex-dependent manner, especially at the prespawning phase; and 2) gnrh-independent effect of Kiss peptides on the pituitary, which together with the plastic nature of their neuronal projections to the pituitary implies that a direct gonadotropic regulation is plausible.
Collapse
MESH Headings
- Animals
- Aquaculture
- Axons/drug effects
- Axons/metabolism
- Bass/physiology
- Dose-Response Relationship, Drug
- Drug Implants
- Female
- Fertility Agents, Female/pharmacology
- Fish Proteins/biosynthesis
- Fish Proteins/genetics
- Fish Proteins/metabolism
- Follicle Stimulating Hormone, beta Subunit/biosynthesis
- Follicle Stimulating Hormone, beta Subunit/genetics
- Follicle Stimulating Hormone, beta Subunit/metabolism
- Gonadotropin-Releasing Hormone/genetics
- Gonadotropin-Releasing Hormone/metabolism
- Hypothalamo-Hypophyseal System/cytology
- Hypothalamo-Hypophyseal System/drug effects
- Hypothalamo-Hypophyseal System/growth & development
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamus, Middle/cytology
- Hypothalamus, Middle/drug effects
- Hypothalamus, Middle/growth & development
- Hypothalamus, Middle/metabolism
- Kisspeptins/administration & dosage
- Kisspeptins/metabolism
- Kisspeptins/pharmacology
- Maryland
- Pituitary Gland, Posterior/cytology
- Pituitary Gland, Posterior/drug effects
- Pituitary Gland, Posterior/growth & development
- Pituitary Gland, Posterior/metabolism
- Sexual Maturation/drug effects
- Up-Regulation/drug effects
- Xenopus Proteins/administration & dosage
- Xenopus Proteins/metabolism
- Xenopus Proteins/pharmacology
Collapse
Affiliation(s)
- Nilli Zmora
- Department of Marine Biotechnology (N.Z., J.S., Y.Z.), University of Maryland Baltimore County and Institute of Marine and Environmental Technology, Baltimore, Maryland 21202; Faculty of Agriculture, Food and Environment (M.G., B.L.-S.), The Hebrew University, Rehobot, Israel 76100; and Ifremer (A.S.), Unité de Physiologie Fonctionnelle des Organismes Marins, Laboratoire des sciences de l'environnement marin Unité mixte de recherche 6539, Plouzané 29280, France
| | | | | | | | | | | |
Collapse
|
44
|
Yeo SH, Clarkson J, Herbison AE. Kisspeptin-gpr54 signaling at the GnRH neuron is necessary for negative feedback regulation of luteinizing hormone secretion in female mice. Neuroendocrinology 2014; 100:191-7. [PMID: 25301053 DOI: 10.1159/000368608] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022]
Abstract
Kisspeptin-Gpr54 signaling is critical for regulating the activity of gonadotropin-releasing hormone (GnRH) neurons in mammals. Previous studies have shown that the negative feedback mechanism is disrupted in global Gpr54-null mutants. The present investigation aimed to determine (1) if a lack of cyclical estrogen exposure of the GnRH neuronal network in the life-long hypogonadotropic Gpr54-null mice contributed to their failed negative feedback mechanism and (2) the cellular location of disrupted kisspeptin-Gpr54 signaling. Plasma luteinizing hormone (LH) concentrations were determined in individual adult female mice when intact, following ovariectomy (OVX) and in response to an acute injection of 17β-estradiol (E2). Control mice exhibited a characteristic rise in LH after OVX that was suppressed by acute E2. Global Gpr54-null mice failed to exhibit any post-OVX increase in LH or response to E2. Adult female global Gpr54-null mice given a cyclical regimen of estradiol for three cycles prior to OVX also failed to exhibit any post-OVX increase in LH or response to E2. To address whether Gpr54 signaling at the GnRH neuron itself was necessary for the failed response to OVX in global Gpr54-null animals, adult female mice with a GnRH neuron-selective deletion of Gpr54 were examined. These mice also failed to exhibit any post-OVX increase in LH or response to E2. These experiments demonstrate defective negative feedback in global Gpr54-null mice that cannot be attributed to a lack of prior exposure of the GnRH neuronal network to cyclical estradiol. The absence of negative feedback in GnRH neuron-selective Gpr54-null mice demonstrates the necessity of direct kisspeptin signaling at the GnRH neuron for this mechanism to occur.
Collapse
Affiliation(s)
- Shel-Hwa Yeo
- Centre for Neuroendocrinology, Department of Physiology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
45
|
Zhang C, Tonsfeldt KJ, Qiu J, Bosch MA, Kobayashi K, Steiner RA, Kelly MJ, Rønnekleiv OK. Molecular mechanisms that drive estradiol-dependent burst firing of Kiss1 neurons in the rostral periventricular preoptic area. Am J Physiol Endocrinol Metab 2013; 305:E1384-97. [PMID: 24105416 PMCID: PMC3882370 DOI: 10.1152/ajpendo.00406.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Kisspeptin (Kiss1) neurons in the rostral periventricular area of the third ventricle (RP3V) provide excitatory drive to gonadotropin-releasing hormone (GnRH) neurons to control fertility. Using whole cell patch clamp recording and single-cell (sc)RT-PCR techniques targeting Kiss1-CreGFP or tyrosine hydroxylase (TH)-EGFP neurons, we characterized the biophysical properties of these neurons and identified the critical intrinsic properties required for burst firing in 17β-estradiol (E2)-treated, ovariectomized female mice. One-fourth of the RP3V Kiss1 neurons exhibited spontaneous burst firing. RP3V Kiss1 neurons expressed a hyperpolarization-activated h-current (Ih) and a T-type calcium current (IT), which supported hyperpolarization-induced rebound burst firing. Under voltage clamp conditions, all Kiss1 neurons expressed a kinetically fast Ih that was augmented 3.4-fold by high (LH surge-producing)-E2 treatment. scPCR analysis of Kiss1 neurons revealed abundant expression of the HCN1 channel transcripts. Kiss1 neurons also expressed a Ni(2+)- and TTA-P2-sensitive IT that was augmented sixfold with high-E2 treatment. CaV3.1 mRNA was also highly expressed in these cells. Current clamp analysis revealed that rebound burst firing was induced in RP3V Kiss1 neurons in high-E2-treated animals, and the majority of Kiss1 neurons had a hyperpolarization threshold of -84.7 mV, which corresponded to the V½ for IT de-inactivation. Finally, Kiss1 neurons in the RP3V were hyperpolarized by μ- and κ-opioid and GABAB receptor agonists, suggesting that these pathways also contribute to rebound burst firing. Therefore, Kiss1 neurons in the RP3V express the critical channels and receptors that permit E2-dependent rebound burst firing and provide the biophysical substrate that drives the preovulatory surge of GnRH.
Collapse
Affiliation(s)
- Chunguang Zhang
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland Oregon
| | | | | | | | | | | | | | | |
Collapse
|