1
|
Lacagnina AF, Dong TN, Iyer RR, Boesch LF, Khan S, Mohamed MK, Clem RL. Ventral hippocampal interneurons govern extinction and relapse of contextual associations. Cell Rep 2024; 43:114880. [PMID: 39425930 DOI: 10.1016/j.celrep.2024.114880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/02/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Contextual memories are critical for survival but must be extinguished when new conditions render them nonproductive. By most accounts, extinction forms a new memory that competes with the original association for control over behavior, but the underlying circuit mechanisms remain largely enigmatic. Here, we demonstrate that extinction of contextual fear conditioning recruits somatostatin interneurons (SST-INs) in the ventral hippocampus. Correspondingly, real-time activity of SST-INs correlates with transitions between immobility and movement, signaling exit from defensive freezing bouts. Optogenetic manipulation of SST-INs but not parvalbumin interneurons (PV-INs) elicits bidirectional changes in freezing that are specific to the context in which extinction was acquired. Finally, similar effects were obtained following extinction of sucrose-based appetitive conditioning, in which SST-IN inhibition triggers relapse to reward seeking. These data suggest that ventral hippocampal SST-INs play a fundamental role in extinction that is independent of affective valence and may be related to their disruption of spontaneous emotional responses.
Collapse
Affiliation(s)
- Anthony F Lacagnina
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tri N Dong
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rasika R Iyer
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leonie F Boesch
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saqib Khan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mazen K Mohamed
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roger L Clem
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Huerta PT, Strohl JJ, Carrión J. Brain imaging and machine learning reveal uncoupled functional network for contextual threat memory in long sepsis. RESEARCH SQUARE 2024:rs.3.rs-4870916. [PMID: 39483911 PMCID: PMC11527171 DOI: 10.21203/rs.3.rs-4870916/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Positron emission tomography (PET) is a highly sensitive tool for studying physiology and metabolism through positron-emitting radionuclides that label molecular targets in the body with unparalleled specificity, without disturbing their biological function. Here, we introduce a small-animal technique called behavioral task-associated PET (beta-PET) consisting of two scans: the first after a mouse is familiarized with a conditioning chamber, and the second upon recall of contextual threat. Associative threat conditioning occurs between the scans. Beta-PET focuses on brain regions encoding threat memory (e.g., amygdala, prefrontal cortex) and contextual aspects (e.g., hippocampus, subiculum, entorhinal cortex). Our results show that beta-PET identifies a biologically defined functional network encoding contextual threat memory and its uncoupling in a mouse model of long sepsis. Moreover, machine learning algorithms (linear logistic regression) and ordinal trends analysis demonstrate that beta-PET robustly predicts the behavioral defense response and its breakdown during long sepsis.
Collapse
Affiliation(s)
| | | | - Joseph Carrión
- Feinstein Institutes for Medical Research, Northwell Health
| |
Collapse
|
3
|
McNaughton N, Bannerman D. The homogenous hippocampus: How hippocampal cells process available and potential goals. Prog Neurobiol 2024; 240:102653. [PMID: 38960002 DOI: 10.1016/j.pneurobio.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
We present here a view of the firing patterns of hippocampal cells that is contrary, both functionally and anatomically, to conventional wisdom. We argue that the hippocampus responds to efference copies of goals encoded elsewhere; and that it uses these to detect and resolve conflict or interference between goals in general. While goals can involve space, hippocampal cells do not encode spatial (or other special types of) memory, as such. We also argue that the transverse circuits of the hippocampus operate in an essentially homogeneous way along its length. The apparently different functions of different parts (e.g. memory retrieval versus anxiety) result from the different (situational/motivational) inputs on which those parts perform the same fundamental computational operations. On this view, the key role of the hippocampus is the iterative adjustment, via Papez-like circuits, of synaptic weights in cell assemblies elsewhere.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, POB56, Dunedin 9054, New Zealand.
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, England, UK
| |
Collapse
|
4
|
Boyle LM, Posani L, Irfan S, Siegelbaum SA, Fusi S. Tuned geometries of hippocampal representations meet the computational demands of social memory. Neuron 2024; 112:1358-1371.e9. [PMID: 38382521 PMCID: PMC11186585 DOI: 10.1016/j.neuron.2024.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/03/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Social memory consists of two processes: the detection of familiar compared with novel conspecifics and the detailed recollection of past social episodes. We investigated the neural bases for these processes using calcium imaging of dorsal CA2 hippocampal pyramidal neurons, known to be important for social memory, during social/spatial encounters with novel conspecifics and familiar littermates. Whereas novel individuals were represented in a low-dimensional geometry that allows for generalization of social identity across different spatial locations and of location across different identities, littermates were represented in a higher-dimensional geometry that supports high-capacity memory storage. Moreover, familiarity was represented in an abstract format, independent of individual identity. The degree to which familiarity increased the dimensionality of CA2 representations for individual mice predicted their performance in a social novelty recognition memory test. Thus, by tuning the geometry of structured neural activity, CA2 is able to meet the demands of distinct social memory processes.
Collapse
Affiliation(s)
- Lara M Boyle
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10027, USA
| | - Lorenzo Posani
- Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | | | - Steven A Siegelbaum
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Pharmacology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| | - Stefano Fusi
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
5
|
Nikbakht N, Pofahl M, Miguel-López A, Kamali F, Tchumatchenko T, Beck H. Efficient encoding of aversive location by CA3 long-range projections. Cell Rep 2024; 43:113957. [PMID: 38489262 DOI: 10.1016/j.celrep.2024.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Memorizing locations that are harmful or dangerous is a key capability of all organisms and requires an integration of affective and spatial information. In mammals, the dorsal hippocampus mainly processes spatial information, while the intermediate to ventral hippocampal divisions receive affective information via the amygdala. However, how spatial and aversive information is integrated is currently unknown. To address this question, we recorded the activity of hippocampal long-range CA3 axons at single-axon resolution in mice forming an aversive spatial memory. We show that intermediate CA3 to dorsal CA3 (i-dCA3) projections rapidly overrepresent areas preceding the location of an aversive stimulus due to a spatially selective addition of new place-coding axons followed by spatially non-specific stabilization. This sequence significantly improves the encoding of location by the i-dCA3 axon population. These results suggest that i-dCA3 axons transmit a precise, denoised, and stable signal indicating imminent danger to the dorsal hippocampus.
Collapse
Affiliation(s)
- Negar Nikbakht
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin Pofahl
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Albert Miguel-López
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Fateme Kamali
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Tatjana Tchumatchenko
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany; University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Heinz Beck
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany; University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Bonn, Germany.
| |
Collapse
|
6
|
Lacagnina AF, Dong TN, Iyer RR, Khan S, Mohamed MK, Clem RL. Ventral hippocampal interneurons govern extinction and relapse of contextual associations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568835. [PMID: 38077077 PMCID: PMC10705382 DOI: 10.1101/2023.11.28.568835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Contextual associations are critical for survival but must be extinguished when new conditions render them nonproductive. By most accounts, extinction forms a new memory that competes with the original association for control over behavior, but the mechanisms underlying this competition remain largely enigmatic. Here we find the retrieval of contextual fear conditioning and extinction yield contrasting patterns of activity in prefrontal cortex and ventral hippocampus. Within ventral CA1, activation of somatostatin-expressing interneurons (SST-INs) occurs preferentially during extinction retrieval and correlates with differences in input synaptic transmission. Optogenetic manipulation of these cells but not parvalbumin interneurons (PV-INs) elicits bidirectional changes in fear expression following extinction, and the ability of SST-INs to gate fear is specific to the context in which extinction was acquired. A similar pattern of results was obtained following reward-based extinction. These data show that ventral hippocampal SST-INs are critical for extinguishing prior associations and thereby gate relapse of both aversive and appetitive responses.
Collapse
|
7
|
Pronier É, Morici JF, Girardeau G. The role of the hippocampus in the consolidation of emotional memories during sleep. Trends Neurosci 2023; 46:912-925. [PMID: 37714808 DOI: 10.1016/j.tins.2023.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 09/17/2023]
Abstract
Episodic memory relies on the hippocampus, a heterogeneous brain region with distinct functions. Spatial representations in the dorsal hippocampus (dHPC) are crucial for contextual memory, while the ventral hippocampus (vHPC) is more involved in emotional processing. Here, we review the literature in rodents highlighting the anatomical and functional properties of the hippocampus along its dorsoventral axis that underlie its role in contextual and emotional memory encoding, consolidation, and retrieval. We propose that the coordination between the dorsal and vHPC through theta oscillations during rapid eye movement (REM) sleep, and through sharp-wave ripples during non-REM (NREM) sleep, might facilitate the transfer of contextual information for integration with valence-related processing in other structures of the network. Further investigation into the physiology of the vHPC and its connections with other brain areas is needed to deepen the current understanding of emotional memory consolidation during sleep.
Collapse
Affiliation(s)
- Éléonore Pronier
- Institut du Fer à Moulin, Inserm U1270, Sorbonne Université, Paris, France
| | | | | |
Collapse
|
8
|
Barth AM, Jelitai M, Vasarhelyi-Nagy MF, Varga V. Aversive stimulus-tuned responses in the CA1 of the dorsal hippocampus. Nat Commun 2023; 14:6841. [PMID: 37891171 PMCID: PMC10611787 DOI: 10.1038/s41467-023-42611-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Throughout life animals inevitably encounter unforeseen threatening events. Activity of principal cells in the hippocampus is tuned for locations and for salient stimuli in the animals' environment thus forming a map known to be pivotal for guiding behavior. Here, we explored if a code of threatening stimuli exists in the CA1 region of the dorsal hippocampus of mice by recording neuronal response to aversive stimuli delivered at changing locations. We have discovered a rapidly emerging, location independent response to innoxious aversive stimuli composed of the coordinated activation of subgroups of pyramidal cells and connected interneurons. Activated pyramidal cells had higher basal firing rate, more probably participated in ripples, targeted more interneurons than place cells and many of them lacked place fields. We also detected aversive stimulus-coupled assemblies dominated by the activated neurons. Notably, these assemblies could be observed even before the delivery of the first aversive event. Finally, we uncovered the systematic shift of the spatial code from the aversive to, surprisingly, the reward location during the fearful stimulus. Our results uncovered components of the dorsal CA1 circuit possibly key for re-sculpting the spatial map in response to abrupt aversive events.
Collapse
Affiliation(s)
- Albert M Barth
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, 1083, Hungary.
- Cerebral Cortex Research Group, Institute of Experimental Medicine, Budapest, 1083, Hungary.
| | - Marta Jelitai
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | | | - Viktor Varga
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, 1083, Hungary.
| |
Collapse
|
9
|
Xu J, Wang Y, Zuo Y, Lv S, Li D. Repeated neonatal Needle-pricking stimulation alter neurodevelopment in adolescent rats. Brain Dev 2023; 45:413-421. [PMID: 37121792 DOI: 10.1016/j.braindev.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
OBJECTIVE To explore the repeated pain stimulation in neonatal rats affects their cognitive and memory abilities during puberty, and the proliferation expression of hippocampal neurons. METHODS Postnatal 1 day (P1) SD rats were randomly divided into two groups, and the skin of the needle group was pricked for seven days consecutively while the skin of the control group was stroked for the same period of time. The rats in both groups were weighed every week, and the Morris water maze experiment was performed from P44 to P49 to test the cognitive and memory abilities of the rats. On P50, the hippocampal tissue was extracted for observation of pathological features and the expressions of Ki-67 and caspase 3 were determined. RESULTS With the increase of the days, the body weight of the rats in the needle group increased slightly slower than that of the control group. The escape latency of the needle group was significantly higher than that of the control group in the water maze test at P45 and P48, and the number of times the rats crossing the platform in the needle group was lower than that of the control group. The HE staining of the hippocampal tissue showed that the cells in the needle group were disorganized, with irregular morphology. Under the electron microscope, the structure of neuron cells and organelles is changed in the hippocampal CA1 region of rats. It showed a decrease in the Ki-67 expression and an increase in caspase 3 in the needle group. CONCLUSION Repeated experience of needle-pricking stimulation in neonatal rats can cause cognitive impairment and memory loss in puberty, disrupt hippocampal organization, and diminish neuronal proliferation.
Collapse
Affiliation(s)
- Jing Xu
- Department of Neonatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Youhui Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yu Zuo
- Department of Neonatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shuai Lv
- Department of Neonatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Dong Li
- Department of Neonatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China; Department of Neonatology, Dalian Women and Children's Medical Group, Dalian, Liaoning Province, China.
| |
Collapse
|
10
|
Wu WY, Yiu E, Ophir AG, Smith DM. Effects of social context manipulation on dorsal and ventral hippocampal neuronal responses. Hippocampus 2023; 33:830-843. [PMID: 36789678 PMCID: PMC11127721 DOI: 10.1002/hipo.23507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/14/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
The hippocampus is critical for contextual memory and has recently been implicated in various kinds of social memory. Traditionally, studies of hippocampal context coding have manipulated elements of the background environment, such as the shape and color of the apparatus. These manipulations produce large shifts in the spatial firing patterns, a phenomenon known as remapping. These findings suggest that the hippocampus encodes and differentiates contexts by generating unique spatial firing patterns for each environment a subject encounters. However, we do not know whether the hippocampus encodes social contexts defined by the presence of particular conspecifics. We examined this by exposing rats to a series of manipulations of the social context, including the presence of familiar male, unfamiliar male and female conspecifics, in order to determine whether remapping is a plausible mechanism for encoding socially-defined contexts. Because the dorsal and ventral regions of the hippocampus are thought to play different roles in spatial and social cognition, we recorded neurons in both regions. Surprisingly, we found little evidence of remapping in response to manipulation of the social context in either the dorsal or ventral hippocampus, although we saw typical remapping in response to changing the background color. This result suggests that remapping is not the primary mechanism for encoding different social contexts. However, we found that a subset of hippocampal neurons fired selectively near the cages that contained the conspecifics, and these responses were most prevalent in the ventral hippocampus. We also found a striking increase in the spatial information content of ventral hippocampal firing patterns. These results indicate that the ventral hippocampus is sensitive to changes in the social context and neurons that respond selectively near the conspecific cages could play an important, if not fully understood role in encoding the conjunction of conspecifics, their location and the environment.
Collapse
Affiliation(s)
- Wen-Yi Wu
- Department of Psychology, Cornell University, Ithaca, New York, USA
| | - Eunice Yiu
- Department of Psychology, Cornell University, Ithaca, New York, USA
| | | | - David M Smith
- Department of Psychology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
11
|
Ziółkowska M, Borczyk M, Cały A, Tomaszewski KF, Nowacka A, Nalberczak-Skóra M, Śliwińska MA, Łukasiewicz K, Skonieczna E, Wójtowicz T, Wlodarczyk J, Bernaś T, Salamian A, Radwanska K. Phosphorylation of PSD-95 at serine 73 in dCA1 is required for extinction of contextual fear. PLoS Biol 2023; 21:e3002106. [PMID: 37155709 DOI: 10.1371/journal.pbio.3002106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/18/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
The updating of contextual memories is essential for survival in a changing environment. Accumulating data indicate that the dorsal CA1 area (dCA1) contributes to this process. However, the cellular and molecular mechanisms of contextual fear memory updating remain poorly understood. Postsynaptic density protein 95 (PSD-95) regulates the structure and function of glutamatergic synapses. Here, using dCA1-targeted genetic manipulations in vivo, combined with ex vivo 3D electron microscopy and electrophysiology, we identify a novel, synaptic mechanism that is induced during attenuation of contextual fear memories and involves phosphorylation of PSD-95 at Serine 73 in dCA1. Our data provide the proof that PSD-95-dependent synaptic plasticity in dCA1 is required for updating of contextual fear memory.
Collapse
Affiliation(s)
- Magdalena Ziółkowska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Borczyk
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Department Molecular Neuropharmacology, Maj Institute of Pharmacology of Polish Academy of Sciences, Krakow, Poland
| | - Anna Cały
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kamil F Tomaszewski
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Agata Nowacka
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Maria Nalberczak-Skóra
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Alicja Śliwińska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Imaging Tissue Structure and Function, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kacper Łukasiewicz
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Psychiatry Clinic, Medical University of Bialystok, Białystok, Poland
| | - Edyta Skonieczna
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Cell Biophysics, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tytus Bernaś
- Laboratory of Imaging Tissue Structure and Function, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Department of Anatomy and Neurology, VCU School of Medicine, Richmond, Virginia, United States of America
| | - Ahmad Salamian
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
12
|
Kobayashi KS, Matsuo N. Persistent representation of the environment in the hippocampus. Cell Rep 2023; 42:111989. [PMID: 36640328 DOI: 10.1016/j.celrep.2022.111989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/23/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
In the hippocampus, environmental changes elicit rearrangement of active neuronal ensembles or remapping of place cells. However, it remains elusive how the brain ensures a consistent representation of a certain environment itself despite salient events occurring there. Here, we longitudinally tracked calcium dynamics of dorsal hippocampal CA1 neurons in mice subjected to contextual fear conditioning and extinction training. Overall population activities were significantly changed by fear conditioning and were responsive to footshocks and freezing. However, a small subset of neurons, termed environment cells, were consistently active in a specific environment irrespective of experiences. A decoder modeling study showed that these cells, but not place cells, were able to predict the environment to which the mouse was exposed. Environment cells might underlie the constancy of cognition for distinct environments across time and events. Additionally, our study highlights the functional heterogeneity of cells in the hippocampus.
Collapse
Affiliation(s)
- Kyogo S Kobayashi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan.
| | - Naoki Matsuo
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
13
|
Activity Patterns of Individual Neurons and Ensembles Correlated with Retrieval of a Contextual Memory in the Dorsal CA1 of Mouse Hippocampus. J Neurosci 2023; 43:113-124. [PMID: 36332977 PMCID: PMC9838698 DOI: 10.1523/jneurosci.1407-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
The hippocampus is crucial for retrieval of contextual memories. The activation of a subpopulation of neurons in the dorsal CA1 (dCA1) of the hippocampus is required for memory retrieval. Given that hippocampal neurons exhibit distinct patterns of response during memory retrieval, the activity patterns of individual neurons or ensembles may be critically involved in memory retrieval. However, this relation has been unclear. To investigate this question, we used an in vivo microendoscope calcium imaging technique to optically record neuronal activity in the dCA1 of male and female mice. We observed that a portion of dCA1 neurons increased their responses to the learned context after contextual fear conditioning (FC), resulting in overall increase in response of neuronal population compared with simple context exposure. Such increased response was specific to the conditioned context as it disappeared in neutral context. The magnitude of increase in neuronal responses by FC was proportional to memory strength during retrieval. The increases in activity preferentially occurred during the putative sharp wave ripple events and were not simply because of animal's movement and immobility. At the ensemble level, synchronous cell activity patterns were associated with memory retrieval. Accordingly, when such patterns were more similar between conditioned and neutral context, animals displayed proportionally more similar level of freezing. Together, these results indicate that increase in responses of individual neurons and synchronous cell activity patterns in the dCA1 neuronal network are critically involved in representing a contextual memory recall.SIGNIFICANCE STATEMENT Neurons in the dorsal CA1 of the hippocampus are crucial for memory retrieval. By using in vivo calcium imaging methods for recording neuronal activity, we demonstrate that dCA1 neurons increased their responses to the learned context specifically by FC and such changes correlated with memory strength during retrieval. Moreover, distinct synchronous cell activity patterns were formed by FC and involved in representing contextual memory retrieval. These findings reveal dynamic activity features of dCA1 neurons that are involved in contextual memory retrieval.
Collapse
|
14
|
Zhang H, Chen L, Johnston KG, Crapser J, Green KN, Ha NML, Tenner AJ, Holmes TC, Nitz DA, Xu X. Degenerate mapping of environmental location presages deficits in object-location encoding and memory in the 5xFAD mouse model for Alzheimer's disease. Neurobiol Dis 2023; 176:105939. [PMID: 36462718 PMCID: PMC10187684 DOI: 10.1016/j.nbd.2022.105939] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
A key challenge in developing diagnosis and treatments for Alzheimer's disease (AD) is to detect abnormal network activity at as early a stage as possible. To date, behavioral and neurophysiological investigations in AD model mice have yet to conduct a longitudinal assessment of cellular pathology, memory deficits, and neurophysiological correlates of neuronal activity. We therefore examined the temporal relationships between pathology, neuronal activities and spatial representation of environments, as well as object location memory deficits across multiple stages of development in the 5xFAD mice model and compared these results to those observed in wild-type mice. We performed longitudinal in vivo calcium imaging with miniscope on hippocampal CA1 neurons in behaving mice. We find that 5xFAD mice show amyloid plaque accumulation, depressed neuronal calcium activity during immobile states, and degenerate and unreliable hippocampal neuron spatial tuning to environmental location at early stages by 4 months of age while their object location memory (OLM) is comparable to WT mice. By 8 months of age, 5xFAD mice show deficits of OLM, which are accompanied by progressive degradation of spatial encoding and, eventually, impaired CA1 neural tuning to object-location pairings. Furthermore, depressed neuronal activity and unreliable spatial encoding at early stage are correlated with impaired performance in OLM at 8-month-old. Our results indicate the close connection between impaired hippocampal tuning to object-location and the presence of OLM deficits. The results also highlight that depressed baseline firing rates in hippocampal neurons during immobile states and unreliable spatial representation precede object memory deficits and predict memory deficits at older age, suggesting potential early opportunities for AD detecting.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697, United States of America
| | - Lujia Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697, United States of America; Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America
| | - Kevin G Johnston
- Department of Mathematics, University of California, Irvine, CA 92697, United States of America
| | - Joshua Crapser
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA 92697, United States of America
| | - Kim N Green
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA 92697, United States of America; Center for Neural Circuit Mapping, University of California, Irvine, CA 92697, United States of America
| | - Nicole My-Linh Ha
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697, United States of America
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA 92697, United States of America
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697, United States of America; Center for Neural Circuit Mapping, University of California, Irvine, CA 92697, United States of America
| | - Douglas A Nitz
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, United States of America; Center for Neural Circuit Mapping, University of California, Irvine, CA 92697, United States of America.
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697, United States of America; Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America; Center for Neural Circuit Mapping, University of California, Irvine, CA 92697, United States of America.
| |
Collapse
|
15
|
Krishnan S, Heer C, Cherian C, Sheffield MEJ. Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal. Nat Commun 2022; 13:6662. [PMID: 36333323 PMCID: PMC9636178 DOI: 10.1038/s41467-022-34465-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Hippocampal place cells support reward-related spatial memories by forming a cognitive map that over-represents reward locations. The strength of these memories is modulated by the extent of reward expectation during encoding. However, the circuit mechanisms underlying this modulation are unclear. Here we find that when reward expectation is extinguished in mice, they remain engaged with their environment, yet place cell over-representation of rewards vanishes, place field remapping throughout the environment increases, and place field trial-to-trial reliability decreases. Interestingly, Ventral Tegmental Area (VTA) dopaminergic axons in CA1 exhibit a ramping reward-proximity signal that depends on reward expectation and inhibiting VTA dopaminergic neurons largely replicates the effects of extinguishing reward expectation. We conclude that changing reward expectation restructures CA1 cognitive maps and determines map reliability by modulating the dopaminergic VTA-CA1 reward-proximity signal. Thus, internal states of high reward expectation enhance encoding of spatial memories by reinforcing hippocampal cognitive maps associated with reward.
Collapse
Affiliation(s)
- Seetha Krishnan
- Department of Neurobiology and Institute for Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Chad Heer
- Department of Neurobiology and Institute for Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Chery Cherian
- Department of Neurobiology and Institute for Neuroscience, University of Chicago, Chicago, IL, 60637, USA
| | - Mark E J Sheffield
- Department of Neurobiology and Institute for Neuroscience, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
16
|
Mo F, Xu Z, Yang G, Fan P, Wang Y, Lu B, Liu J, Wang M, Jing L, Xu W, Li M, Shan J, Song Y, Cai X. Single-neuron detection of place cells remapping in short-term memory using motion microelectrode arrays. Biosens Bioelectron 2022; 217:114726. [PMID: 36174358 DOI: 10.1016/j.bios.2022.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
Place cells establish rapid mapping relationships between the external environment and themselves in a new context. However, the mapping relationships of environmental cues to place cells in short-term memory is still completely unknown. In this work, we designed a silicon-based motion microelectrode array (mMEA) and an implantation device to record electrophysiological signals of place cells in CA1, CA3, and DG regions in the hippocampus of ten mice in motion, and investigated the corresponding place fields under distal or local cues in just a few minutes. The mMEA can expand the detection area and greatly lower the motion noise. Finding and recording place cells of moving mice in short-term memory is made possible by the mMEA. The place-related cells were found for the first time. Unlike place cells, which only fire in a particular position of the environment, place-related cells fire in numerous areas of the environment. Furthermore, place cells in the CA1 and CA3 have the most stable place memory for time-preferred single cues, and they fire in concert with place-related cells during short-term memory dynamics, whereas place cells in the DG regions have overlapping and unstable place memory in a multi-cue context. These results demonstrate the consistency of place cells in CA1 and CA3 and reflect their different roles in spatial memory processing during familiarization with new environments. The mMEA provides a platform for studying the place cells of short-term memory.
Collapse
Affiliation(s)
- Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gucheng Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Penghui Fan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Botao Lu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luyi Jing
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin Shan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Sanna F, Serra MP, Boi M, Bratzu J, Poddighe L, Sanna F, Carta A, Corda MG, Giorgi O, Melis MR, Argiolas A, Quartu M. Neuroplastic changes in c-Fos, ΔFosB, BDNF, trkB, and Arc expression in the hippocampus of male Roman rats: differential effects of sexual activity. Hippocampus 2022; 32:529-551. [PMID: 35716117 PMCID: PMC9327517 DOI: 10.1002/hipo.23448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/07/2022] [Accepted: 05/21/2022] [Indexed: 11/28/2022]
Abstract
Sexual activity causes differential changes in the expression of markers of neural activation (c-Fos and ΔFosB) and neural plasticity (Arc and BDNF/trkB), as determined either by Western Blot (BDNF, trkB, Arc, and ΔFosB) or immunohistochemistry (BDNF, trkB, Arc, and c-Fos), in the hippocampus of male Roman high (RHA) and low avoidance (RLA) rats, two psychogenetically selected rat lines that display marked differences in sexual behavior (RHA rats exhibit higher sexual motivation and better copulatory performance than RLA rats). Both methods showed (with some differences) that sexual activity modifies the expression levels of these markers in the hippocampus of Roman rats depending on: (i) the level of sexual experience, that is, changes were usually more evident in sexually naïve than in experienced rats; (ii) the hippocampal partition, that is, BDNF and Arc increased in the dorsal but tended to decrease in the ventral hippocampus; (iii) the marker considered, that is, in sexually experienced animals BDNF, c-Fos, and Arc levels were similar to those of controls, while ΔFosB levels increased; and (iv) the rat line, that is, changes were usually larger in RHA than RLA rats. These findings resemble those of early studies in RHA and RLA rats showing that sexual activity influences the expression of these markers in the nucleus accumbens, medial prefrontal cortex, and ventral tegmental area, and show for the first time that also in the hippocampus sexual activity induces neural activation and plasticity, events that occur mainly during the first phase of the acquisition of sexual experience and depend on the genotypic/phenotypic characteristics of the animals.
Collapse
Affiliation(s)
- Fabrizio Sanna
- Department of Biomedical Sciences, Section of Neuroscience and Clinical PharmacologyUniversity of Cagliari, Cittadella Universitaria di MonserratoCagliariItaly
| | - Maria Pina Serra
- Department of Biomedical Sciences, Section of CytomorphologyUniversity of Cagliari, Cittadella Universitaria di MonserratoCagliariItaly
| | - Marianna Boi
- Department of Biomedical Sciences, Section of CytomorphologyUniversity of Cagliari, Cittadella Universitaria di MonserratoCagliariItaly
| | - Jessica Bratzu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical PharmacologyUniversity of Cagliari, Cittadella Universitaria di MonserratoCagliariItaly
| | - Laura Poddighe
- Department of Biomedical Sciences, Section of CytomorphologyUniversity of Cagliari, Cittadella Universitaria di MonserratoCagliariItaly
| | - Francesco Sanna
- Department of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical SciencesUniversity of Cagliari, Cittadella Universitaria di MonserratoCagliariItaly
| | - Antonella Carta
- Department of Biomedical Sciences, Section of CytomorphologyUniversity of Cagliari, Cittadella Universitaria di MonserratoCagliariItaly
| | - Maria Giuseppa Corda
- Department of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical SciencesUniversity of Cagliari, Cittadella Universitaria di MonserratoCagliariItaly
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical SciencesUniversity of Cagliari, Cittadella Universitaria di MonserratoCagliariItaly
| | - Maria Rosaria Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical PharmacologyUniversity of Cagliari, Cittadella Universitaria di MonserratoCagliariItaly
| | - Antonio Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical PharmacologyUniversity of Cagliari, Cittadella Universitaria di MonserratoCagliariItaly
- Neuroscience Institute, National Research Council of Italy, Section of CagliariCittadella Universitaria di MonserratoCagliariItaly
| | - Marina Quartu
- Department of Biomedical Sciences, Section of CytomorphologyUniversity of Cagliari, Cittadella Universitaria di MonserratoCagliariItaly
| |
Collapse
|
18
|
GABAergic CA1 neurons are more stable following context changes than glutamatergic cells. Sci Rep 2022; 12:10310. [PMID: 35725588 PMCID: PMC9209472 DOI: 10.1038/s41598-022-13799-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/27/2022] [Indexed: 12/31/2022] Open
Abstract
The CA1 region of the hippocampus contains both glutamatergic pyramidal cells and GABAergic interneurons. Numerous reports have characterized glutamatergic CAMK2A cell activity, showing how these cells respond to environmental changes such as local cue rotation and context re-sizing. Additionally, the long-term stability of spatial encoding and turnover of these cells across days is also well-characterized. In contrast, these classic hippocampal experiments have never been conducted with CA1 GABAergic cells. Here, we use chronic calcium imaging of male and female mice to compare the neural activity of VGAT and CAMK2A cells during exploration of unaltered environments and also during exposure to contexts before and after rotating and changing the length of the context across multiple recording days. Intriguingly, compared to CAMK2A cells, VGAT cells showed decreased remapping induced by environmental changes, such as context rotations and contextual length resizing. However, GABAergic neurons were also less likely than glutamatergic neurons to remain active and exhibit consistent place coding across recording days. Interestingly, despite showing significant spatial remapping across days, GABAergic cells had stable speed encoding between days. Thus, compared to glutamatergic cells, spatial encoding of GABAergic cells is more stable during within-session environmental perturbations, but is less stable across days. These insights may be crucial in accurately modeling the features and constraints of hippocampal dynamics in spatial coding.
Collapse
|
19
|
Lee JQ, McHugh R, Morgan E, Sutherland RJ, McDonald RJ. Behaviour-driven Arc expression is greater in dorsal than ventral CA1 regardless of task or sex differences. Behav Brain Res 2022; 423:113790. [PMID: 35149121 DOI: 10.1016/j.bbr.2022.113790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022]
Abstract
Evidence from genetic, behavioural, anatomical, and physiological study suggests that the hippocampus functionally differs across its longitudinal (dorsoventral or septotemporal) axis. Although, how to best characterize functional and representational differences in the hippocampus across its long axis remains unclear. While some suggest that the hippocampus can be divided into dorsal and ventral subregions that support distinct cognitive functions, others posit that these regions vary in their granularity of representation, wherein spatial-temporal resolution decreases in the ventral (temporal) direction. Importantly, the cognitive and granular hypotheses also make distinct predictions on cellular recruitment dynamics under conditions when animals perform tasks with qualitatively different cognitive-behavioural demands. One interpretation of the cognitive function account implies that dorsal and ventral cellular recruitment differs depending on relevant behavioural demands, while the granularity account suggests similar recruitment dynamics regardless of the nature of the task performed. Here, we quantified cellular recruitment with the immediate early gene (IEG) Arc across the entire longitudinal CA1 axis in female and male rats performing spatial- and fear-guided memory tasks. Our results show that recruitment is greater in dorsal than ventral CA1 regardless of task or sex, and thus support a granular view of hippocampal function across the long axis. We further discuss how future experiments might determine the relative contributions of cognitive function and granularity of representation to neuronal activity dynamics in hippocampal circuits.
Collapse
Affiliation(s)
- J Quinn Lee
- Department of Neuroscience, Science Commons, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6T5, Canada; Department of Psychiatry, Douglas Hospital Research Centre, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada.
| | - Rebecca McHugh
- Department of Neuroscience, Science Commons, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6T5, Canada
| | - Erik Morgan
- Department of Neuroscience, Science Commons, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6T5, Canada
| | - Robert J Sutherland
- Department of Neuroscience, Science Commons, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6T5, Canada
| | - Robert J McDonald
- Department of Neuroscience, Science Commons, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6T5, Canada
| |
Collapse
|
20
|
|
21
|
Tomar A, McHugh TJ. The impact of stress on the hippocampal spatial code. Trends Neurosci 2021; 45:120-132. [PMID: 34916083 DOI: 10.1016/j.tins.2021.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Hippocampal function is severely compromised by prolonged, uncontrollable stress. However, how stress alters neural representations of our surroundings and events that occur within them remains less clear. We review hippocampal place cell studies that examine how spatial coding is affected by acute and chronic stress, as well as by stress accompanying fear conditioning. Emerging data suggest that chronic stress disrupts the acuity and specificity of CA1 spatial coding, both in familiar and novel contexts, and alters hippocampal oscillations. By contrast, acute stress may have a facilitatory impact on spatial representations. These findings encourage a fresh look at the documented stress-induced changes in hippocampal anatomy and in vitro excitability, and offer a new perspective on the links between stress and memory.
Collapse
Affiliation(s)
- Anupratap Tomar
- Center for Synaptic Plasticity, School of Physiology, Pharmacology, and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, Japan.
| |
Collapse
|
22
|
Ross TW, Easton A. The Hippocampal Horizon: Constructing and Segmenting Experience for Episodic Memory. Neurosci Biobehav Rev 2021; 132:181-196. [PMID: 34826509 DOI: 10.1016/j.neubiorev.2021.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022]
Abstract
How do we recollect specific events that have occurred during continuous ongoing experience? There is converging evidence from non-human animals that spatially modulated cellular activity of the hippocampal formation supports the construction of ongoing events. On the other hand, recent human oriented event cognition models have outlined that our experience is segmented into discrete units, and that such segmentation can operate on shorter or longer timescales. Here, we describe a unification of how these dynamic physiological mechanisms of the hippocampus relate to ongoing externally and internally driven event segmentation, facilitating the demarcation of specific moments during experience. Our cross-species interdisciplinary approach offers a novel perspective in the way we construct and remember specific events, leading to the generation of many new hypotheses for future research.
Collapse
Affiliation(s)
- T W Ross
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, United Kingdom; Centre for Learning and Memory Processes, Durham University, United Kingdom.
| | - A Easton
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, United Kingdom; Centre for Learning and Memory Processes, Durham University, United Kingdom
| |
Collapse
|
23
|
Kong MS, Kim EJ, Park S, Zweifel LS, Huh Y, Cho J, Kim JJ. 'Fearful-place' coding in the amygdala-hippocampal network. eLife 2021; 10:e72040. [PMID: 34533133 PMCID: PMC8500711 DOI: 10.7554/elife.72040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/17/2021] [Indexed: 12/03/2022] Open
Abstract
Animals seeking survival needs must be able to assess different locations of threats in their habitat. However, the neural integration of spatial and risk information essential for guiding goal-directed behavior remains poorly understood. Thus, we investigated simultaneous activities of fear-responsive basal amygdala (BA) and place-responsive dorsal hippocampus (dHPC) neurons as rats left the safe nest to search for food in an exposed space and encountered a simulated 'predator.' In this realistic situation, BA cells increased their firing rates and dHPC place cells decreased their spatial stability near the threat. Importantly, only those dHPC cells synchronized with the predator-responsive BA cells remapped significantly as a function of escalating risk location. Moreover, optogenetic stimulation of BA neurons was sufficient to cause spatial avoidance behavior and disrupt place fields. These results suggest a dynamic interaction of BA's fear signalling cells and dHPC's spatial coding cells as animals traverse safe-danger areas of their environment.
Collapse
Affiliation(s)
- Mi-Seon Kong
- Department of Psychology, University of WashingtonSeattleUnited States
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
| | - Eun Joo Kim
- Department of Psychology, University of WashingtonSeattleUnited States
| | - Sanggeon Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans UniversitySeoulRepublic of Korea
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital, Catholic Kwandong UniversityIncheonRepublic of Korea
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Yeowool Huh
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital, Catholic Kwandong UniversityIncheonRepublic of Korea
- Department of Medical Science, College of Medicine, Catholic Kwandong UniversityGangneungRepublic of Korea
| | - Jeiwon Cho
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans UniversitySeoulRepublic of Korea
| | - Jeansok J Kim
- Department of Psychology, University of WashingtonSeattleUnited States
| |
Collapse
|
24
|
Wang W, Schuette PJ, La-Vu MQ, Torossian A, Tobias BC, Ceko M, Kragel PA, Reis FMCV, Ji S, Sehgal M, Maesta-Pereira S, Chakerian M, Silva AJ, Canteras NS, Wager T, Kao JC, Adhikari A. Dorsal premammillary projection to periaqueductal gray controls escape vigor from innate and conditioned threats. eLife 2021; 10:e69178. [PMID: 34468312 PMCID: PMC8457830 DOI: 10.7554/elife.69178] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/28/2021] [Indexed: 02/04/2023] Open
Abstract
Escape from threats has paramount importance for survival. However, it is unknown if a single circuit controls escape vigor from innate and conditioned threats. Cholecystokinin (cck)-expressing cells in the hypothalamic dorsal premammillary nucleus (PMd) are necessary for initiating escape from innate threats via a projection to the dorsolateral periaqueductal gray (dlPAG). We now show that in mice PMd-cck cells are activated during escape, but not other defensive behaviors. PMd-cck ensemble activity can also predict future escape. Furthermore, PMd inhibition decreases escape speed from both innate and conditioned threats. Inhibition of the PMd-cck projection to the dlPAG also decreased escape speed. Intriguingly, PMd-cck and dlPAG activity in mice showed higher mutual information during exposure to innate and conditioned threats. In parallel, human functional magnetic resonance imaging data show that a posterior hypothalamic-to-dlPAG pathway increased activity during exposure to aversive images, indicating that a similar pathway may possibly have a related role in humans. Our data identify the PMd-dlPAG circuit as a central node, controlling escape vigor elicited by both innate and conditioned threats.
Collapse
Affiliation(s)
- Weisheng Wang
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Peter J Schuette
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Mimi Q La-Vu
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Anita Torossian
- University of California, Los AngelesLos AngelesUnited States
| | - Brooke C Tobias
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Marta Ceko
- Institute of Cognitive Science, University of ColoradoBoulderUnited States
| | | | - Fernando MCV Reis
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Shiyu Ji
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Megha Sehgal
- Department of Neurobiology, University of California, Los AngelesLos AngelesUnited States
| | | | - Meghmik Chakerian
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Alcino J Silva
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
- Department of Neurobiology, University of California, Los AngelesLos AngelesUnited States
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los AngelesLos AngelesUnited States
| | | | - Tor Wager
- University of ColoradoBoulderUnited States
| | - Jonathan C Kao
- Electrical and Computer Engineering, University of California, Los AngelesLos AngelesUnited States
| | - Avishek Adhikari
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
25
|
Gallistel C. The physical basis of memory. Cognition 2021; 213:104533. [DOI: 10.1016/j.cognition.2020.104533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022]
|
26
|
Reis FMCV, Liu J, Schuette PJ, Lee JY, Maesta-Pereira S, Chakerian M, Wang W, Canteras NS, Kao JC, Adhikari A. Shared Dorsal Periaqueductal Gray Activation Patterns during Exposure to Innate and Conditioned Threats. J Neurosci 2021; 41:5399-5420. [PMID: 33883203 PMCID: PMC8221602 DOI: 10.1523/jneurosci.2450-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 02/02/2023] Open
Abstract
The brainstem dorsal periaqueductal gray (dPAG) has been widely recognized as being a vital node orchestrating the responses to innate threats. Intriguingly, recent evidence also shows that the dPAG mediates defensive responses to fear conditioned contexts. However, it is unknown whether the dPAG displays independent or shared patterns of activation during exposure to innate and conditioned threats. It is also unclear how dPAG ensembles encode and predict diverse defensive behaviors. To address this question, we used miniaturized microscopes to obtain recordings of the same dPAG ensembles during exposure to a live predator and a fear conditioned context in male mice. dPAG ensembles encoded not only distance to threat, but also relevant features, such as predator speed and angular offset between mouse and threat. Furthermore, dPAG cells accurately encoded numerous defensive behaviors, including freezing, stretch-attend postures, and escape. Encoding of behaviors and of distance to threat occurred independently in dPAG cells. dPAG cells also displayed a shared representation to encode these behaviors and distance to threat across innate and conditioned threats. Last, we also show that escape could be predicted by dPAG activity several seconds in advance. Thus, dPAG activity dynamically tracks key kinematic and behavioral variables during exposure to threats, and exhibits similar patterns of activation during defensive behaviors elicited by innate or conditioned threats. These data indicate that a common pathway may be recruited by the dPAG during exposure to a wide variety of threat modalities.SIGNIFICANCE STATEMENT The dorsal periaqueductal gray (dPAG) is critical to generate defensive behaviors during encounters with threats of multiple modalities. Here we use longitudinal calcium transient recordings of dPAG ensembles in freely moving mice to show that this region uses shared patterns of activity to represent distance to an innate threat (a live predator) and a conditioned threat (a shock grid). We also show that dPAG neural activity can predict diverse defensive behaviors. These data indicate the dPAG uses conserved population-level activity patterns to encode and coordinate defensive behaviors during exposure to both innate and conditioned threats.
Collapse
Affiliation(s)
- Fernando M C V Reis
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095
| | - Jinhan Liu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095
| | - Peter J Schuette
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095
| | - Johannes Y Lee
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095
| | - Sandra Maesta-Pereira
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095
| | - Meghmik Chakerian
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095
| | - Weisheng Wang
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Jonathan C Kao
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
27
|
Reis FM, Lee JY, Maesta-Pereira S, Schuette PJ, Chakerian M, Liu J, La-Vu MQ, Tobias BC, Ikebara JM, Kihara AH, Canteras NS, Kao JC, Adhikari A. Dorsal periaqueductal gray ensembles represent approach and avoidance states. eLife 2021; 10:64934. [PMID: 33955356 PMCID: PMC8133778 DOI: 10.7554/elife.64934] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Animals must balance needs to approach threats for risk assessment and to avoid danger. The dorsal periaqueductal gray (dPAG) controls defensive behaviors, but it is unknown how it represents states associated with threat approach and avoidance. We identified a dPAG threatavoidance ensemble in mice that showed higher activity farther from threats such as the open arms of the elevated plus maze and a predator. These cells were also more active during threat avoidance behaviors such as escape and freezing, even though these behaviors have antagonistic motor output. Conversely, the threat approach ensemble was more active during risk assessment behaviors and near threats. Furthermore, unsupervised methods showed that avoidance/approach states were encoded with shared activity patterns across threats. Lastly, the relative number of cells in each ensemble predicted threat avoidance across mice. Thus, dPAG ensembles dynamically encode threat approach and avoidance states, providing a flexible mechanism to balance risk assessment and danger avoidance.
Collapse
Affiliation(s)
- Fernando McV Reis
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Johannes Y Lee
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, United States
| | - Sandra Maesta-Pereira
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Peter J Schuette
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Meghmik Chakerian
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Jinhan Liu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, United States
| | - Mimi Q La-Vu
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Brooke C Tobias
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| | - Juliane M Ikebara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Alexandre Hiroaki Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jonathan C Kao
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, United States
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
28
|
Coordination of escape and spatial navigation circuits orchestrates versatile flight from threats. Neuron 2021; 109:1848-1860.e8. [PMID: 33861942 DOI: 10.1016/j.neuron.2021.03.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
Abstract
Naturalistic escape requires versatile context-specific flight with rapid evaluation of local geometry to identify and use efficient escape routes. It is unknown how spatial navigation and escape circuits are recruited to produce context-specific flight. Using mice, we show that activity in cholecystokinin-expressing hypothalamic dorsal premammillary nucleus (PMd-cck) cells is sufficient and necessary for context-specific escape that adapts to each environment's layout. In contrast, numerous other nuclei implicated in flight only induced stereotyped panic-related escape. We reasoned the dorsal premammillary nucleus (PMd) can induce context-specific escape because it projects to escape and spatial navigation nuclei. Indeed, activity in PMd-cck projections to thalamic spatial navigation circuits is necessary for context-specific escape induced by moderate threats but not panic-related stereotyped escape caused by perceived asphyxiation. Conversely, the PMd projection to the escape-inducing dorsal periaqueductal gray projection is necessary for all tested escapes. Thus, PMd-cck cells control versatile flight, engaging spatial navigation and escape circuits.
Collapse
|
29
|
Olevska A, Spanagel R, Bernardi RE. Impaired contextual fear conditioning in RasGRF2 mutant mice is likely Ras-ERK-dependent. Neurobiol Learn Mem 2021; 181:107435. [PMID: 33831510 DOI: 10.1016/j.nlm.2021.107435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Ras/Raf/MEK/ERK (Ras-ERK) signaling has been shown to play an important role in fear acquisition. However, little information is known regarding the mechanisms that contribute to the regulation of this pathway in terms of the learning of conditioned fears. Ras Guanine Nucleotide Releasing Factor 2 (RasGRF2) is one of two guanine nucleotide exchange factors (GEF) that regulates the Ras-ERK signaling pathway in a Ca2+-dependent manner via control of the cycling of Ras isoforms between an inactive and active state. Here we sought to determine the role of RasGRF2 on contextual fear conditioning in RasGRF2 knockout (KO) and their wild type (WT) counterparts. Male KO and WT mice underwent a single session of contextual fear conditioning (12 min, 4 unsignaled shocks), followed by either daily 12-min retention trials or the molecular analysis of Ras activation and pERK1/2 activity. KO mice showed an impaired acquisition of contextual fear, as demonstrated by reduced freezing during fear conditioning and 24-hr retention tests relative to WT mice. Ras analysis following fear conditioning demonstrated a reduction in Ras activation in the hippocampus as well as a reduction in pERK1/2 in the CA1 region of the hippocampus in KO mice, suggesting that the decrease in fear conditioning in KO mice is at least in part due to the impairment of Ras-ERK signaling in the hippocampus during learning. These data indicate a role for RasGRF2 in contextual fear conditioning in mice that may be Ras-ERK-dependent.
Collapse
Affiliation(s)
- Anastasia Olevska
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.
| |
Collapse
|