1
|
Grajales-Reyes JG, Chen B, Meseguer D, Schneeberger M. Burning Question: How Does Our Brain Process Positive and Negative Cues Associated with Thermosensation? Physiology (Bethesda) 2024; 39:0. [PMID: 38536114 PMCID: PMC11368520 DOI: 10.1152/physiol.00034.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 05/16/2024] Open
Abstract
Whether it is the dramatic suffocating sensation from a heat wave in the summer or the positive reinforcement arising from a hot drink on a cold day; we can certainly agree that our thermal environment underlies our daily rhythms of sensation. Extensive research has focused on deciphering the central circuits responsible for conveying the impact of thermogenesis on mammalian behavior. Here, we revise the recent literature responsible for defining the behavioral correlates that arise from thermogenic fluctuations in mammals. We transition from the physiological significance of thermosensation to the circuitry responsible for the autonomic or behavioral responses associated with it. Subsequently, we delve into the positive and negative valence encoded by thermoregulatory processes. Importantly, we emphasize the crucial junctures where reward, pain, and thermoregulation intersect, unveiling a complex interplay within these neural circuits. Finally, we briefly outline fundamental questions that are pending to be addressed in the field. Fully deciphering the thermoregulatory circuitry in mammals will have far-reaching medical implications. For instance, it may lead to the identification of novel targets to overcome thermal pain or allow the maintenance of our core temperature in prolonged surgeries.
Collapse
Affiliation(s)
- Jose G Grajales-Reyes
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Bandy Chen
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| | - David Meseguer
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| | - Marc Schneeberger
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
2
|
Zeng ML, Kong S, Chen TX, Peng BW. Transient Receptor Potential Vanilloid 4: a Double-Edged Sword in the Central Nervous System. Mol Neurobiol 2023; 60:1232-1249. [PMID: 36434370 DOI: 10.1007/s12035-022-03141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel that can be activated by diverse stimuli, such as heat, mechanical force, hypo-osmolarity, and arachidonic acid metabolites. TRPV4 is widely expressed in the central nervous system (CNS) and participates in many significant physiological processes. However, accumulative evidence has suggested that deficiency, abnormal expression or distribution, and overactivation of TRPV4 are involved in pathological processes of multiple neurological diseases. Here, we review the latest studies concerning the known features of this channel, including its expression, structure, and its physiological and pathological roles in the CNS, proposing an emerging therapeutic strategy for CNS diseases.
Collapse
Affiliation(s)
- Meng-Liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuo Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Tao-Xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.
| |
Collapse
|
3
|
Brown EF, Fronius M, Brown CH. Vasopressin regulation of maternal body fluid balance in pregnancy and lactation: A role for TRPV channels? Mol Cell Endocrinol 2022; 558:111764. [PMID: 36038076 DOI: 10.1016/j.mce.2022.111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/16/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022]
Abstract
Renal water reabsorption increases in pregnancy and lactation to expand maternal blood volume to cope with the cardiovascular demands of the developing fetus and new-born baby. Vasopressin (antidiuretic hormone) promotes renal water reabsorption and its secretion is principally stimulated by body fluid osmolality. Hence, lowered osmolality normally decreases vasopressin secretion. However, despite water retention profoundly reducing osmolality in pregnancy and lactation, vasopressin levels are maintained to drive blood volume expansion. Despite its importance for successful reproduction, the cellular mechanisms that maintain vasopressin secretion in the face of decreased osmolality during pregnancy and lactation are unknown. Vasopressin is secreted by neurons that are intrinsically osmosensitive through expression of N-terminal truncated-transient receptor potential vanilloid-1 channel, ΔN-TRPV1, which is mechanically activated by osmotically-induced cell shrinkage to increase vasopressin neuron activity. Vasopressin neurons also express TRPV4 but the role of TRPV4 in vasopressin neuron function is not well characterised. Here, we summarise our novel evidence showing that TRPV4 forms functional channels with ΔN-TRPV1 that have a greater single-channel conductance compared to channels with ΔN-TRPV1 alone. We propose that upregulation of TRPV4 heteromerisation with ΔN-TRPV1 might maintain vasopressin secretion in pregnancy and lactation to expand blood volume for successful reproduction.
Collapse
Affiliation(s)
- Emily F Brown
- Brain Health Research Centre, University of Otago, Dunedin, Aotearoa New Zealand; Centre for Neuroendocrinology, University of Otago, Dunedin, Aotearoa New Zealand; HeartOtago, University of Otago, Dunedin, Aotearoa New Zealand; Department of Physiology, University of Otago, Dunedin, Aotearoa New Zealand.
| | - Martin Fronius
- HeartOtago, University of Otago, Dunedin, Aotearoa New Zealand; Department of Physiology, University of Otago, Dunedin, Aotearoa New Zealand.
| | - Colin H Brown
- Brain Health Research Centre, University of Otago, Dunedin, Aotearoa New Zealand; Centre for Neuroendocrinology, University of Otago, Dunedin, Aotearoa New Zealand; HeartOtago, University of Otago, Dunedin, Aotearoa New Zealand; Department of Physiology, University of Otago, Dunedin, Aotearoa New Zealand.
| |
Collapse
|
4
|
Sudbury JR, Zaelzer C, Trudel E, Bumagin A, Bourque CW. Synaptic control of rat magnocellular neurosecretory cells by warm-sensing neurons in the organum vasculosum lamina terminalis. J Neuroendocrinol 2022; 34:e13214. [PMID: 36426844 DOI: 10.1111/jne.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Increases in core body temperature cause secretion of vasopressin (vasopressin, antidiuretic hormone) to promote water reabsorption and blunt water losses incurred through homeostatic evaporative cooling. Subtypes of transient receptor potential vanilloid (Trpv) channels have been shown to contribute to the intrinsic regulation of vasopressin-releasing magnocellular neurosecretory cells (MNCs) in the supraoptic nucleus (SON) and paraventricular nucleus (PVN). However, MNCs in vivo can also be excited by local heating of the adjacent preoptic area, indicating they receive thermosensory information from other areas. Here, we investigated whether neurons in the organum vasculosum lamina terminalis (OVLT) contribute to this process using in vitro electrophysiological approaches in male rats. We found that the majority of OVLT neurons are thermosensitive in the physiological range (36-39°C) and that this property is retained under conditions blocking synaptic transmission. A subset of these neurons could be antidromically activated by electrical stimulation in the SON. Whole cell recordings from SON MNCs revealed that heating significantly increases the rate of spontaneous excitatory postsynaptic currents (sEPCSs), and that this response is abolished by lesions targeting the OVLT, but not by bilateral lesions placed in the adjacent preoptic area. Finally, local heating of the OVLT caused a significant excitation of MNCs in the absence of temperature changes in the SON, and this effect was blocked by inhibitors of ionotropic glutamate receptors. These findings indicate that the OVLT serves as an important thermosensory nucleus and contributes to the activation of MNCs during physiological heating.
Collapse
Affiliation(s)
- Jessica R Sudbury
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Cristian Zaelzer
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Eric Trudel
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Anna Bumagin
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Charles W Bourque
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
5
|
TRPV1-Mediated Sensing of Sodium and Osmotic Pressure in POMC Neurons in the Arcuate Nucleus of the Hypothalamus. Nutrients 2022; 14:nu14132600. [PMID: 35807782 PMCID: PMC9268643 DOI: 10.3390/nu14132600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The central melanocortin system conducted by anorexigenic pro-opiomelanocortin (POMC) neurons and orexigenic agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus (ARC) not only regulates feeding behavior but also blood pressure. Excessive salt intake raises the Na+ concentration ([Na+]) in the cerebrospinal fluid (CSF) and worsens hypertension. The blood–brain barrier is immature in the ARC. Therefore, both AgRP and POMC neurons in the ARC have easy access to the electrolytes in the blood and can sense changes in their concentrations. However, the sensitivity of AgRP and POMC neurons to Na+ remains unclear. This study aimed to explore how the changes in the extracellular Na+ concentration ([Na+]) influence these neurons by measuring the cytosolic Ca2+ concentration ([Ca2+]i) in the single neurons isolated from the ARC that were subsequently immunocytochemically identified as AgRP or POMC neurons. Both AgRP and POMC neurons responded to increases in both [Na+] and osmolarity in C57BL/6 mice. In contrast, in transient receptor potential vanilloid 1 (TRPV1) knockout (KO) mice, POMC neurons failed to respond to increases in both [Na+] and osmolarity, while they responded to high glucose and angiotensin II levels with increases in [Ca2+]i. Moreover, in KO mice fed a high-salt diet, the expression of POMC was lower than that in wild-type mice. These results demonstrate that changes in [Na+] and osmolarity are sensed by the ARC POMC neurons via the TRPV1-dependent mechanism.
Collapse
|
6
|
Meza RC, Ancatén-González C, Chiu CQ, Chávez AE. Transient Receptor Potential Vanilloid 1 Function at Central Synapses in Health and Disease. Front Cell Neurosci 2022; 16:864828. [PMID: 35518644 PMCID: PMC9062234 DOI: 10.3389/fncel.2022.864828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1), a ligand-gated nonselective cation channel, is well known for mediating heat and pain sensation in the periphery. Increasing evidence suggests that TRPV1 is also expressed at various central synapses, where it plays a role in different types of activity-dependent synaptic changes. Although its precise localizations remain a matter of debate, TRPV1 has been shown to modulate both neurotransmitter release at presynaptic terminals and synaptic efficacy in postsynaptic compartments. In addition to being required in these forms of synaptic plasticity, TRPV1 can also modify the inducibility of other types of plasticity. Here, we highlight current evidence of the potential roles for TRPV1 in regulating synaptic function in various brain regions, with an emphasis on principal mechanisms underlying TRPV1-mediated synaptic plasticity and metaplasticity. Finally, we discuss the putative contributions of TRPV1 in diverse brain disorders in order to expedite the development of next-generation therapeutic treatments.
Collapse
Affiliation(s)
- Rodrigo C Meza
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlos Ancatén-González
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Chiayu Q Chiu
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Andrés E Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
7
|
Rountree CM, Meng C, Troy JB, Saggere L. Mechanical Stimulation of the Retina: Therapeutic Feasibility and Cellular Mechanism. IEEE Trans Neural Syst Rehabil Eng 2019; 26:1075-1083. [PMID: 29752243 DOI: 10.1109/tnsre.2018.2822322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinal prostheses that seek to restore vision by artificially stimulating retinal neurons with electrical current are an emerging treatment for photoreceptor degenerative diseases but face difficulties achieving naturalistic vision with high spatial resolution. Here, we report the unexpected discovery of a technique for mechanically stimulating retinal neurons with the potential to bypass the limitations of electrical stimulation. We found that pulsatile injections of standard Ames medium solution into explanted retinas of wild type rats under certain injection conditions (pulse-width > 50ms at 0.69 kPa pressure) elicit spatially localized retinal responses similar to light-evoked responses. The same injections made into photoreceptor degenerated retinas of transgenic S334ter-3 rats also elicit robust neural responses. We investigated the cellular mechanism causing these responses, by repeating the injections after treating the retinas with a pharmacological blocker of the transient receptor potential vanilloid (TRPV) channel group, a common mechanoreceptor found on retinal neurons, and observed a significant reduction in retinal ganglion cell spike rate response amplitudes. Together, these data reveal that therapeutic mechanical stimulation of the retina, occurring in part through TRPV channel activation, is feasible and this little explored neurostimulation paradigm could be useful in stimulating photoreceptor degenerated retinas for vision restoration.
Collapse
|
8
|
Boltana S, Sanhueza N, Donoso A, Aguilar A, Crespo D, Vergara D, Arriagada G, Morales-Lange B, Mercado L, Rey S, Tort L, Mackenzie S. The expression of TRPV channels, prostaglandin E2 and pro-inflammatory cytokines during behavioural fever in fish. Brain Behav Immun 2018; 71:169-181. [PMID: 29574261 DOI: 10.1016/j.bbi.2018.03.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/07/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023] Open
Abstract
A fever, or increased body temperature, is a symptom of inflammation, which is a complex defence reaction of the organism to pathogenic infections. After pathogens enter the body, immune cells secrete a number of agents, the functions of which stimulate the body to develop a functional immune and fever response. In mammals it is known that PGE2 is the principal mediator of fever. The extent to which PGE2 and other pro-inflammatory cytokines such as TNF-α, IL-6, or IL-1β could be involved in the induction of behavioural fever in fish remains to be clarified. Several members of the transient receptor potential (TRP) family of ion channels have been implicated as transducers of thermal stimuli, including TRPV1 and TRPV2, which are activated by heat. Here we show that members of the TRP family, TRPV1 and TRPV4, may participate in the coordination of temperature sensing during the behavioural fever. To examine the behavioral fever mechanism in Salmo salar an infection with IPNV, infectious pancreatic necrosis virus, was carried out by an immersion challenge with 10 × 105 PFU/mL-1 of IPNV. Behavioural fever impacted upon the expression levels of both TRPV1 and TRPV4 mRNAs after the viral challenge and revealed a juxtaposed regulation of TRPV channels. Our results suggest that an increase in the mRNA abundance of TRPV1 is tightly correlated with a significant elevation in the expression of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and PGE2) in the Pre-Optic Area (POA) and cytokine release in plasma. Together, these data indicate that the reduction of TRPV4 expression during behavioural fever may contribute to the onset of behavioural fever influencing movement toward higher water temperatures. Our data also suggest an effect of TRPV channels in the regulation of behavioural fever through activation of EP3 receptors in the central nervous system by PGE2 induced by plasma-borne cytokines. These results highlight for first time in mobile ectotherms the key role of pro-inflammatory cytokines and TRPV channels in behavioural fever that likely involves a complex integration of prostaglandin induction, cytokine recognition and temperature sensing.
Collapse
Affiliation(s)
- Sebastian Boltana
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, 4030000 Concepción, Chile.
| | - Nataly Sanhueza
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, 4030000 Concepción, Chile
| | - Andrea Donoso
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, 4030000 Concepción, Chile
| | - Andrea Aguilar
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, 4030000 Concepción, Chile
| | - Diego Crespo
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Kruyt Building, Room O809, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Daniela Vergara
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, 4030000 Concepción, Chile
| | - Gabriel Arriagada
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, 4030000 Concepción, Chile
| | - Byron Morales-Lange
- Grupo de Marcadores Inmunologicos, Instituto de Biologia, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Luis Mercado
- Grupo de Marcadores Inmunologicos, Instituto de Biologia, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Sonia Rey
- Institute of Aquaculture, University of Stirling, Stirling, Stirlingshire FK9 4LA, UK
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain
| | - Simon Mackenzie
- Institute of Aquaculture, University of Stirling, Stirling, Stirlingshire FK9 4LA, UK
| |
Collapse
|
9
|
Jeong JH, Lee DK, Liu SM, Chua SC, Schwartz GJ, Jo YH. Activation of temperature-sensitive TRPV1-like receptors in ARC POMC neurons reduces food intake. PLoS Biol 2018; 16:e2004399. [PMID: 29689050 PMCID: PMC5915833 DOI: 10.1371/journal.pbio.2004399] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/20/2018] [Indexed: 01/05/2023] Open
Abstract
Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC) respond to numerous hormonal and neural signals, resulting in changes in food intake. Here, we demonstrate that ARC POMC neurons express capsaicin-sensitive transient receptor potential vanilloid 1 receptor (TRPV1)-like receptors. To show expression of TRPV1-like receptors in ARC POMC neurons, we use single-cell reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, electrophysiology, TRPV1 knock-out (KO), and TRPV1-Cre knock-in mice. A small elevation of temperature in the physiological range is enough to depolarize ARC POMC neurons. This depolarization is blocked by the TRPV1 receptor antagonist and by Trpv1 gene knockdown. Capsaicin-induced activation reduces food intake that is abolished by a melanocortin receptor antagonist. To selectively stimulate TRPV1-like receptor-expressing ARC POMC neurons in the ARC, we generate an adeno-associated virus serotype 5 (AAV5) carrying a Cre-dependent channelrhodopsin-2 (ChR2)–enhanced yellow fluorescent protein (eYFP) expression cassette under the control of the two neuronal POMC enhancers (nPEs). Optogenetic stimulation of TRPV1-like receptor-expressing POMC neurons decreases food intake. Hypothalamic temperature is rapidly elevated and reaches to approximately 39 °C during treadmill running. This elevation is associated with a reduction in food intake. Knockdown of the Trpv1 gene exclusively in ARC POMC neurons blocks the feeding inhibition produced by increased hypothalamic temperature. Taken together, our findings identify a melanocortinergic circuit that links acute elevations in hypothalamic temperature with acute reductions in food intake. Intense exercise acutely decreases appetite and subsequent food intake. As exercise is accompanied by increased body temperature, we hypothesized that a rise in body temperature during exercise plays a role in reducing food intake. The hypothalamic neurons are major components of the neural circuits that control feeding in response to hormones and neural signals. Among hypothalamic neurons, those that express proopiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus are important in controlling food intake. In this study, we found that these POMC-expressing neurons express TRPV1-like thermoreceptors that are activated by an increase in temperature within the physiological range in mice. We also showed that an increase in body temperature during exercise is directly sensed by these POMC-expressing neurons through activation of the TRPV1-like receptors. Hence, this study provides a novel perspective on the cellular mechanisms underlying energy balance: body temperature reduces food intake via TRPV1-like receptors in POMC-expressing neurons in the arcuate nucleus of the hypothalamus.
Collapse
Affiliation(s)
- Jae Hoon Jeong
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, United States of America
| | - Dong Kun Lee
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, United States of America
- Department of Physiology, College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Shun-Mei Liu
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, United States of America
| | - Streamson C. Chua
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, United States of America
| | - Gary J. Schwartz
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, United States of America
| | - Young-Hwan Jo
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, United States of America
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Bansal V, Fisher TE. Osmotic activation of a Ca 2+-dependent phospholipase C pathway that regulates ∆N TRPV1-mediated currents in rat supraoptic neurons. Physiol Rep 2018; 5:5/8/e13259. [PMID: 28432255 PMCID: PMC5408288 DOI: 10.14814/phy2.13259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/08/2017] [Indexed: 01/12/2023] Open
Abstract
The magnocellular neurosecretory cells (MNCs) of the hypothalamus regulate body fluid balance by releasing the hormones vasopressin (VP) and oxytocin (OT) in an osmolality‐dependent manner. Elevations of external osmolality increase MNC firing and hormone release. MNC osmosensitivity is largely due to activation of a mechanosensitive non‐selective cation current that responds to osmotically‐evoked changes in MNC volume and is mediated by an N‐terminal variant of the TRPV1 channel (∆N TRPV1). We report a novel mechanism by which increases in osmolality may modulate ∆N TRPV1‐mediated currents and thus influence MNC electrical behaviour. We showed previously that acute elevations of external osmolality activate the enzyme phospholipase C (PLC) in isolated MNCs. We now show that the osmotic activation of PLC has a time course and dose‐dependence that is consistent with a role in MNC osmosensitivity and that it contributes to the osmotically‐evoked increase in non‐selective cation current in MNCs through a protein kinase C‐dependent pathway. We furthermore show that the mechanism of osmotic activation of PLC requires an increase in internal Ca2+ that depends on influx through L‐type Ca2+ channels. Our data therefore suggest that MNCs possess an osmotically‐activated Ca2+‐dependent PLC that contributes to the osmotic activation of ∆N TRPV1 and may therefore be important in MNC osmosensitivity and in central osmoregulation.
Collapse
Affiliation(s)
- Vimal Bansal
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Thomas E Fisher
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
Cellular populations and thermosensing mechanisms of the hypothalamic thermoregulatory center. Pflugers Arch 2018; 470:809-822. [DOI: 10.1007/s00424-017-2101-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
12
|
White JPM, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev 2017; 96:911-73. [PMID: 27252279 DOI: 10.1152/physrev.00016.2015] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz (Nat Cell Biol 2: 695-702, 2000) and Liedtke (Cell 103: 525-535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.
Collapse
Affiliation(s)
- John P M White
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mario Cibelli
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Laszlo Urban
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Bernd Nilius
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Istvan Nagy
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
13
|
Kumar S, Singh U, Goswami C, Singru PS. Transient receptor potential vanilloid 5 (TRPV5), a highly Ca 2+ -selective TRP channel in the rat brain: relevance to neuroendocrine regulation. J Neuroendocrinol 2017; 29. [PMID: 28235149 DOI: 10.1111/jne.12466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 11/28/2022]
Abstract
Recent studies suggest an important role for transient receptor potential vanilloid (TRPV) ion channels in neural and neuroendocrine regulation. The TRPV subfamily consists of six members: TRPV1-6. While the neuroanatomical and functional correlates of TRPV1-4 have been studied extensively, relevant information about TRPV5 and TRPV6, which are highly selective for Ca2+ , is limited. We detected TRPV5 mRNA expression in the olfactory bulb, cortex, hypothalamus, hippocampus, midbrain, brainstem and cerebellum of the rat. TRPV5-immunoreactive neurones were conspicuously seen in the hypothalamic paraventricular (PVN), supraoptic (SON), accessory neurosecretory (ANS), supraoptic nucleus, retrochiasmatic part (SOR), arcuate (ARC) and medial tuberal nuclei, hippocampus, midbrain, brainstem and cerebellum. Glial cells also showed TRPV5-immunoreactivity. To test the neuroendocrine relevance of TRPV5, we focused on vasopressin, oxytocin and cocaine- and amphetamine-regulated transcript (CART) as representative candidate markers with which TRPV5 may co-exist. In the hypothalamic neurones, co-expression of TRPV5 was observed with vasopressin (PVN: 50.73±3.82%; SON: 75.91±2.34%; ANS: 49.12±4.28%; SOR: 100%) and oxytocin (PVN: 6.88±1.21; SON: 63.34±5.69%; ANS: 20.4±4.14; SOR: 86.5±1.74%). While ARC neurones express oestrogen receptors, 17β-oestradiol regulates TRPV5, as well as CART neurones and astrocytes, in the ARC. Furthermore, ARC CART neurones are known to project to the preoptic area, and innervate and regulate GnRH neurones. Using double-immunofluorescence, glial fibrillary acidic protein-labelled astrocytes and the majority of CART neurones in the ARC showed TRPV5-immunoreactivity. Following iontophoresis of retrograde neuronal tracer, cholera toxin β (CtB) into the anteroventral periventricular nucleus and median preoptic nucleus, retrograde accumulation of CtB was observed in most TRPV5-equipped ARC CART neurones. Next, we determined the response of TRPV5-elements in the ARC during the oestrous cycle. Compared to pro-oestrus, a significant increase (P<.001) in the percentage of TRPV5-expressing CART neurones was observed during oestrus, metoestrus, and dioestrus. TRPV5-immunoreactivity in the astrocytes, however, showed a significant increase during metoestrus and dioestrus. We suggest that the TRPV5 ion channel may serve as an important regulator of neural and neuroendocrine pathways in the brain.
Collapse
Affiliation(s)
- S Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - U Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - C Goswami
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - P S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| |
Collapse
|
14
|
Abstract
The posterior pituitary gland secretes oxytocin and vasopressin (the antidiuretic hormone) into the blood system. Oxytocin is required for normal delivery of the young and for delivery of milk to the young during lactation. Vasopressin increases water reabsorption in the kidney to maintain body fluid balance and causes vasoconstriction to increase blood pressure. Oxytocin and vasopressin secretion occurs from the axon terminals of magnocellular neurons whose cell bodies are principally found in the hypothalamic supraoptic nucleus and paraventricular nucleus. The physiological functions of oxytocin and vasopressin depend on their secretion, which is principally determined by the pattern of action potentials initiated at the cell bodies. Appropriate secretion of oxytocin and vasopressin to meet the challenges of changing physiological conditions relies mainly on integration of afferent information on reproductive, osmotic, and cardiovascular status with local regulation of magnocellular neurons by glia as well as intrinsic regulation by the magnocellular neurons themselves. This review focuses on the control of magnocellular neuron activity with a particular emphasis on their regulation by reproductive function, body fluid balance, and cardiovascular status. © 2016 American Physiological Society. Compr Physiol 6:1701-1741, 2016.
Collapse
Affiliation(s)
- Colin H Brown
- Brain Health Research Centre, Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Kim S, Barry DM, Liu XY, Yin S, Munanairi A, Meng QT, Cheng W, Mo P, Wan L, Liu SB, Ratnayake K, Zhao ZQ, Gautam N, Zheng J, Karunarathne WKA, Chen ZF. Facilitation of TRPV4 by TRPV1 is required for itch transmission in some sensory neuron populations. Sci Signal 2016; 9:ra71. [PMID: 27436359 DOI: 10.1126/scisignal.aaf1047] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The transient receptor potential channels (TRPs) respond to chemical irritants and temperature. TRPV1 responds to the itch-inducing endogenous signal histamine, and TRPA1 responds to the itch-inducing chemical chloroquine. We showed that, in sensory neurons, TRPV4 is important for both chloroquine- and histamine-induced itch and that TRPV1 has a role in chloroquine-induced itch. Chloroquine-induced scratching was reduced in mice in which TRPV1 was knocked down or pharmacologically inhibited. Both TRPV4 and TRPV1 were present in some sensory neurons. Pharmacological blockade of either TRPV4 or TRPV1 significantly attenuated the Ca(2+) response of sensory neurons exposed to histamine or chloroquine. Knockout of Trpv1 impaired Ca(2+) responses and reduced scratching behavior evoked by a TRPV4 agonist, whereas knockout of Trpv4 did not alter TRPV1-mediated capsaicin responses. Electrophysiological analysis of human embryonic kidney (HEK) 293 cells coexpressing TRPV4 and TRPV1 revealed that the presence of both channels enhanced the activation kinetics of TRPV4 but not of TRPV1. Biochemical and biophysical studies suggested a close proximity between TRPV4 and TRPV1 in dorsal root ganglion neurons and in cultured cells. Thus, our studies identified TRPV4 as a channel that contributes to both histamine- and chloroquine-induced itch and indicated that the function of TRPV4 in itch signaling involves TRPV1-mediated facilitation. TRP facilitation through the formation of heteromeric complexes could be a prevalent mechanism by which the vast array of somatosensory information is encoded in sensory neurons.
Collapse
Affiliation(s)
- Seungil Kim
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Devin M Barry
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xian-Yu Liu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shijin Yin
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Admire Munanairi
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Qing-Tao Meng
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Cheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, P.R. China
| | - Ping Mo
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Nanhai Hospital of Southern Medical University, Foshan 528000, P.R. China
| | - Li Wan
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shen-Bin Liu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Zhong-Qiu Zhao
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Narasimhan Gautam
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jie Zheng
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA 95616, USA
| | | | - Zhou-Feng Chen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
16
|
Choe KY, Trudel E, Bourque CW. Effects of Salt Loading on the Regulation of Rat Hypothalamic Magnocellular Neurosecretory Cells by Ionotropic GABA and Glycine Receptors. J Neuroendocrinol 2016; 28. [PMID: 26833894 DOI: 10.1111/jne.12372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/12/2016] [Accepted: 01/23/2016] [Indexed: 12/18/2022]
Abstract
Synaptic and extrasynaptic transmission mediated by ionotropic GABA and glycine receptors plays a critical role in shaping the action potential firing (spiking) activity of hypothalamic magnocellular neurosecretory cells and therefore determines the rate at which vasopressin and oxytocin are released from the neurohypophysis. The inhibitory effect of these transmitters relies on the maintenance of a low concentration of intracellular chloride ions such that, when activated by GABA or glycine, a hyperpolarisation of the neuronal membrane potential results. In this review, we highlight the various ways by which the two types of inhibitory receptors contribute to homeostasis by fine-tuning the spiking rate of vasopressin-releasing magnocellular neurosecretory cells in a manner dependent on the hydration state of the animal. In addition, we review the currently available evidence on how the strength of these inhibitory pathways can be regulated during chronic hypernatraemia via a form of activity-dependent depolarisation of the chloride reversal potential, leading to an abolition of these inhibitory pathways potentially causing sodium-dependent elevations in blood pressure.
Collapse
Affiliation(s)
- K Y Choe
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - E Trudel
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - C W Bourque
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
17
|
Sappington RM, Sidorova T, Ward NJ, Chakravarthy R, Ho KW, Calkins DJ. Activation of transient receptor potential vanilloid-1 (TRPV1) influences how retinal ganglion cell neurons respond to pressure-related stress. Channels (Austin) 2016; 9:102-13. [PMID: 25713995 DOI: 10.1080/19336950.2015.1009272] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Our recent studies implicate the transient receptor potential vanilloid-1 (TRPV1) channel as a mediator of retinal ganglion cell (RGC) function and survival. With elevated pressure in the eye, TRPV1 increases in RGCs, supporting enhanced excitability, while Trpv1 -/- accelerates RGC degeneration in mice. Here we find TRPV1 localized in monkey and human RGCs, similar to rodents. Expression increases in RGCs exposed to acute changes in pressure. In retinal explants, contrary to our animal studies, both Trpv1 -/- and pharmacological antagonism of the channel prevented pressure-induced RGC apoptosis, as did chelation of extracellular Ca(2+). Finally, while TRPV1 and TRPV4 co-localize in some RGC bodies and form a protein complex in the retina, expression of their mRNA is inversely related with increasing ocular pressure. We propose that TRPV1 activation by pressure-related insult in the eye initiates changes in expression that contribute to a Ca(2+)-dependent adaptive response to maintain excitatory signaling in RGCs.
Collapse
Affiliation(s)
- Rebecca M Sappington
- a The Vanderbilt Eye Institute and Vanderbilt Brain Institute ; Vanderbilt University School of Medicine ; Nashville , TN USA
| | | | | | | | | | | |
Collapse
|
18
|
Effects of Peritoneal Sepsis on Rat Central Osmoregulatory Neurons Mediating Thirst and Vasopressin Release. J Neurosci 2015; 35:12188-97. [PMID: 26338329 DOI: 10.1523/jneurosci.5420-13.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Sepsis is a life-threatening condition caused by the systemic inflammatory response to a bacterial infection. Although much is known about the cellular and molecular changes that characterize the peripheral inflammatory response to sepsis, almost nothing is known of the neuronal changes that cause associated perturbations in the central control of homeostasis. Osmoregulation is one of the key homeostatic systems perturbed during sepsis. In healthy subjects, systemic hypertonicity normally excites osmoreceptor neurons in the organum vasculosum laminae terminalis (OVLT), which then activates downstream neurons that induce a parallel increase in water intake and arginine vasopressin (AVP) secretion to promote fluid expansion and maintain blood pressure. However, recent studies have shown that the early phase of sepsis is associated with increased AVP levels and suppressed thirst. Here we examined the electrophysiological properties of OVLT neurons and magnocellular neurosecretory cells (MNCs) in acute in vitro preparations obtained from rats subjected to sham surgery or cecal ligation and puncture (CLP). We found that the intrinsic excitability of OVLT neurons was not affected significantly 18-24 h after CLP. However, OVLT neurons in CLP rats were hyperpolarized significantly compared with shams. Moreover, a reduced proportion of these cells displayed spontaneous electrical activity and osmoresponsiveness in septic animals. In contrast, the osmoresponsiveness of MNCs was only attenuated by CLP, and a larger proportion of these neurons displayed spontaneous electrical activity in septic animals. These results suggest that acute sepsis disrupts centrally mediated osmoregulatory reflexes through differential effects on the properties of neurons in the OVLT and supraoptic nucleus. SIGNIFICANCE STATEMENT Sepsis is a life-threatening condition caused by the systemic inflammatory response to bacterial infection. Although the early phase of sepsis features impaired thirst and enhanced vasopressin release, the basis for these defects is unknown. Here, we show that cecal ligation and puncture (CLP) in rats impairs the osmoresponsiveness of neurons in the organum vasculosum lamina terminalis (OVLT; which drives thirst) and attenuates that of neurosecretory neurons in the supraoptic nucleus (SON; which secrete oxytocin and vasopressin). Notably, we found that OVLT neurons are hyperpolarized and electrically silenced. In contrast, CLP increased the proportion of SON neurons displaying spontaneous electrical activity. Therefore, CLP affects the properties of osmoregulatory neurons in a manner that can affect systemic osmoregulation.
Collapse
|
19
|
Lötsch J, Dimova V, Ultsch A, Lieb I, Zimmermann M, Geisslinger G, Oertel BG. A small yet comprehensive subset of human experimental pain models emerging from correlation analysis with a clinical quantitative sensory testing protocol in healthy subjects. Eur J Pain 2015; 20:777-89. [PMID: 26492152 DOI: 10.1002/ejp.803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2015] [Indexed: 11/11/2022]
Abstract
BACKGROUND Picturing the complexity of pain in human experimental settings has increased the predictivity for clinical pain but requires increasingly complex test batteries. This raises problems in studies in which time is objectively limited, for example by the course of action of an analgesic drug. We addressed the selection of a small yet comprehensive set of pain tests for the use in such a situation. METHOD Nineteen different pain measures from 'classical' pain models (n = 9) and a clinically established QST-pain test battery (n = 10), were obtained from 72 healthy volunteers (34 men). The nonparametric correlation structure among the various pain measures was analysed using Ward clustering. RESULTS Four clusters emerged, each consisting of highly correlated pain measures. The pain model groups emerged comprised (I) pain thresholds and tolerances to blunt pressure or electrical pain; (II) pain thresholds to thermal stimuli; (III) pain measures obtained following application of punctate mechanical, intranasal CO2 chemical or cutaneous laser heat stimuli; and (IV) detection thresholds to thermal stimuli. The first three clusters agreed with an immediate mechanistic interpretation as reflecting C-fibre mediated pain, thermal pain and Aδ-fibre mediated pain, respectively, whereas the last cluster contained non-painful measures and was disregarded. CONCLUSIONS When basing a selection of a small comprehensive set of pain models on the assumption that highly correlated pain measures account for redundant results and therefore, one member of each group suffices an economic yet comprehensive pain study, results suggest inclusion of established C-fibre, Aδ-fibre mediated and thermal pain measures.
Collapse
Affiliation(s)
- J Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - V Dimova
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - A Ultsch
- DataBionics Research Group, University of Marburg, Hans-Meerwein-Straße, 35032, Marburg, Germany
| | - I Lieb
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - M Zimmermann
- DataBionics Research Group, University of Marburg, Hans-Meerwein-Straße, 35032, Marburg, Germany
| | - G Geisslinger
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - B G Oertel
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Zaelzer C, Hua P, Prager-Khoutorsky M, Ciura S, Voisin D, Liedtke W, Bourque C. ΔN-TRPV1: A Molecular Co-detector of Body Temperature and Osmotic Stress. Cell Rep 2015; 13:23-30. [DOI: 10.1016/j.celrep.2015.08.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 07/25/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022] Open
|
21
|
Computed ABC Analysis for Rational Selection of Most Informative Variables in Multivariate Data. PLoS One 2015; 10:e0129767. [PMID: 26061064 PMCID: PMC4465645 DOI: 10.1371/journal.pone.0129767] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/13/2015] [Indexed: 11/24/2022] Open
Abstract
Objective Multivariate data sets often differ in several factors or derived statistical parameters, which have to be selected for a valid interpretation. Basing this selection on traditional statistical limits leads occasionally to the perception of losing information from a data set. This paper proposes a novel method for calculating precise limits for the selection of parameter sets. Methods The algorithm is based on an ABC analysis and calculates these limits on the basis of the mathematical properties of the distribution of the analyzed items. The limits im-plement the aim of any ABC analysis, i.e., comparing the increase in yield to the required additional effort. In particular, the limit for set A, the “important few”, is optimized in a way that both, the effort and the yield for the other sets (B and C), are minimized and the additional gain is optimized. Results As a typical example from biomedical research, the feasibility of the ABC analysis as an objective replacement for classical subjective limits to select highly relevant variance components of pain thresholds is presented. The proposed method improved the biological inter-pretation of the results and increased the fraction of valid information that was obtained from the experimental data. Conclusions The method is applicable to many further biomedical problems in-cluding the creation of diagnostic complex biomarkers or short screening tests from comprehensive test batteries. Thus, the ABC analysis can be proposed as a mathematically valid replacement for traditional limits to maximize the information obtained from multivariate research data.
Collapse
|
22
|
Wang H, Siemens J. TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature (Austin) 2015; 2:178-87. [PMID: 27227022 PMCID: PMC4843888 DOI: 10.1080/23328940.2015.1040604] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/13/2022] Open
Abstract
In humans, the TRP superfamily of cation channels includes 27 related molecules that respond to a remarkable variety of chemical and physical stimuli. While physiological roles for many TRP channels remain unknown, over the past years several have been shown to function as molecular sensors in organisms ranging from yeast to humans. In particular, TRP channels are now known to constitute important components of sensory systems, where they participate in the detection or transduction of osmotic, mechanical, thermal, or chemosensory stimuli. We here summarize our current understanding of the role individual members of this versatile receptor family play in thermosensation and thermoregulation, and also touch upon their immerging role in metabolic control.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pharmacology; University of Heidelberg ; Heidelberg, Germany
| | - Jan Siemens
- Department of Pharmacology; University of Heidelberg ; Heidelberg, Germany
| |
Collapse
|
23
|
Bagriantsev SN, Gracheva EO. Molecular mechanisms of temperature adaptation. J Physiol 2015; 593:3483-91. [PMID: 25433072 DOI: 10.1113/jphysiol.2014.280446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/21/2014] [Indexed: 11/08/2022] Open
Abstract
Thermal perception is a fundamental physiological process pertaining to the vast majority of organisms. In vertebrates, environmental temperature is detected by the primary afferents of the somatosensory neurons in the skin, which express a 'choir' of ion channels tuned to detect particular temperatures. Nearly two decades of research have revealed a number of receptor ion channels that mediate the perception of several temperature ranges, but most still remain molecularly orphaned. Yet even within this well-researched realm, most of our knowledge largely pertains to two closely related species of rodents, mice and rats. While these are standard biomedical research models, mice and rats provide a limited perspective to elucidate the general principles that drive somatosensory evolution. In recent years, significant advances have been made in understanding the molecular mechanism of temperature adaptation in evolutionarily distant vertebrates and in organisms with acute thermal sensitivity. These studies have revealed the remarkable versatility of the somatosensory system and highlighted adaptations at the molecular level, which often include changes in biophysical properties of ion channels from the transient receptor potential family. Exploiting non-standard animal models has the potential to provide unexpected insights into general principles of thermosensation and thermoregulation, unachievable using the rodent model alone.
Collapse
Affiliation(s)
- Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT , 06520, USA
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT , 06520, USA.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT , 06520, USA
| |
Collapse
|
24
|
Saxena A, Bachelor M, Park YH, Carreno FR, Nedungadi TP, Cunningham JT. Angiotensin II induces membrane trafficking of natively expressed transient receptor potential vanilloid type 4 channels in hypothalamic 4B cells. Am J Physiol Regul Integr Comp Physiol 2014; 307:R945-55. [PMID: 25080500 DOI: 10.1152/ajpregu.00224.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Transient receptor potential vanilloid family type 4 (TRPV4) channels are expressed in central neuroendocrine neurons and have been shown to be polymodal in other systems. We previously reported that in the rodent, a model of dilutional hyponatremia associated with hepatic cirrhosis, TRPV4 expression is increased in lipid rafts from the hypothalamus and that this effect may be angiotensin dependent. In this study, we utilized the immortalized neuroendocrine rat hypothalamic 4B cell line to more directly test the effects of angiotensin II (ANG II) on TRPV4 expression and function. Our results demonstrate the expression of corticotropin-releasing factor (CRF) transcripts, for sex-determining region Y (SRY) (male genotype), arginine vasopressin (AVP), TRPV4, and ANG II type 1a and 1b receptor in 4B cells. After a 1-h incubation in ANG II (100 nM), 4B cells showed increased TRPV4 abundance in the plasma membrane fraction, and this effect was prevented by the ANG II type 1 receptor antagonist losartan (1 μM) and by a Src kinase inhibitor PP2 (10 μM). Ratiometric calcium imaging experiments demonstrated that ANG II incubation potentiated TRPV4 agonist (GSK 1016790A, 20 nM)-induced calcium influx (control 18.4 ± 2.8% n = 5 and ANG II 80.5 ± 2.4% n = 5). This ANG II-induced increase in calcium influx was also blocked by 1 μM losartan and 10 μM PP2 (losartan 26.4 ± 3.8% n = 5 and PP2 19.7 ± 3.9% n = 5). Our data suggests that ANG II can increase TRPV4 channel membrane expression in 4B cells through its action on AT1R involving a Src kinase pathway.
Collapse
Affiliation(s)
- Ashwini Saxena
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Martha Bachelor
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Yong H Park
- Department of Pharmacology and Neuroscience & North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
| | - Flavia R Carreno
- Department of Pharmacology & Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - T Prashant Nedungadi
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - J Thomas Cunningham
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas;
| |
Collapse
|
25
|
Brito R, Sheth S, Mukherjea D, Rybak LP, Ramkumar V. TRPV1: A Potential Drug Target for Treating Various Diseases. Cells 2014; 3:517-45. [PMID: 24861977 PMCID: PMC4092862 DOI: 10.3390/cells3020517] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel present on sensory neurons which is activated by heat, protons, capsaicin and a variety of endogenous lipids termed endovanilloids. As such, TRPV1 serves as a multimodal sensor of noxious stimuli which could trigger counteractive measures to avoid pain and injury. Activation of TRPV1 has been linked to chronic inflammatory pain conditions and peripheral neuropathy, as observed in diabetes. Expression of TRPV1 is also observed in non-neuronal sites such as the epithelium of bladder and lungs and in hair cells of the cochlea. At these sites, activation of TRPV1 has been implicated in the pathophysiology of diseases such as cystitis, asthma and hearing loss. Therefore, drugs which could modulate TRPV1 channel activity could be useful for the treatment of conditions ranging from chronic pain to hearing loss. This review describes the roles of TRPV1 in the normal physiology and pathophysiology of selected organs of the body and highlights how drugs targeting this channel could be important clinically.
Collapse
Affiliation(s)
- Rafael Brito
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Sandeep Sheth
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Debashree Mukherjea
- Department of Surgery (Otoloryngalogy), Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Leonard P Rybak
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Vickram Ramkumar
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| |
Collapse
|
26
|
Mohammed M, Ootsuka Y, Blessing W. Brown adipose tissue thermogenesis contributes to emotional hyperthermia in a resident rat suddenly confronted with an intruder rat. Am J Physiol Regul Integr Comp Physiol 2014; 306:R394-400. [PMID: 24452545 PMCID: PMC3949111 DOI: 10.1152/ajpregu.00475.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Body temperature increases when individuals experience salient, emotionally significant events. There is controversy concerning the contribution of nonshivering thermogenesis in brown adipose tissue (BAT) to emotional hyperthermia. In the present study we compared BAT, core body, and brain temperature, and tail blood flow, simultaneously measured, to determine whether BAT thermogenesis contributes to emotional hyperthermia in a resident Sprague-Dawley rat when an intruder rat, either freely-moving or confined to a small cage, is suddenly introduced into the cage of the resident rat for 30 min. Introduction of the intruder rat promptly increased BAT, body, and brain temperatures in the resident rat. For the caged intruder these temperature increases were 1.4 ± 0.2, 0.8 ± 0.1, 1.0 ± 0.1°C, respectively, with the increase in BAT temperature being significantly greater (P < 0.01) than the increases in body and brain. The initial 5-min slope of the BAT temperature record (0.18 ± 0.02°C/min) was significantly greater (P < 0.01) than the corresponding value for body (0.10 ± 0.01°C/min) and brain (0.09 ± 0.02°C/min). Tail artery pulse amplitude fell acutely when the intruder rat was introduced, possibly contributing to the increases in body and brain temperature. Prior blockade of β3 adrenoceptors (SR59230A 10 mg/kg ip) significantly reduced the amplitude of each temperature increase. Intruder-evoked increases in BAT temperature were similar in resident rats maintained at 11°C for 3 days. In the caged intruder situation there is no bodily contact between the rats, so the stimulus is psychological rather than physical. Our study thus demonstrates that BAT thermogenesis contributes to increases in body and brain temperature occurring during emotional hyperthermia.
Collapse
Affiliation(s)
- Mazher Mohammed
- Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
27
|
Lötsch J, Hummel T, Warskulat U, Coste O, Häussinger D, Geisslinger G, Tegeder I. Congenital taurine deficiency in mice is associated with reduced sensitivity to nociceptive chemical stimulation. Neuroscience 2013; 259:63-70. [PMID: 24321512 DOI: 10.1016/j.neuroscience.2013.11.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/04/2013] [Accepted: 11/20/2013] [Indexed: 01/06/2023]
Abstract
The amino acid taurine is required for development and functioning of the central and peripheral nervous system where it exerts osmoregulatory, neuromodulatory and anti-apoptotic actions. It is subject to cellular import by the taurine transporter slc6a6. Absence of the transporter and consequently, absence of taurine leads to several neurologic deficits and sensory losses. In a slc6a6 knock-out mouse model, consequences of congenital taurine deficiency were assessed in nociceptive sensory processes. The formalin assay, hot plate assay, and summated generator potentials in response to local nociceptive stimulation with gaseous CO2 were applied. Reduced responsiveness of slc6a6(-/-) mice to nociceptive stimulation was observed in particular to chemical nociceptive stimuli. Scl6a6 knock-out mice spent significantly less time licking the formalin injected paw and displayed smaller amplitudes of the nociceptive nasal mucosa potentials than wild-type mice (p=0.002 and 0.01 respectively). In contrast, withdrawal latencies on a hot plate did not significantly differ, suggesting that intracellular taurine deficits lead in particular to a hyposensitivity of nociceptive sensory neurons sensitive to noxious chemical stimulation. As hereditary absence of taurine affects biological processes of anatomical structure development, the altered nociceptive responses likely reflect consequences of compromised peripheral nervous system development.
Collapse
Affiliation(s)
- J Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; Fraunhofer Institute of Molecular Biology and Applied Ecology-Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | - T Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, University of Dresden Medical School, Fetscherstr. 74, D-01307 Dresden, Germany
| | - U Warskulat
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - O Coste
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - D Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - G Geisslinger
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; Fraunhofer Institute of Molecular Biology and Applied Ecology-Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - I Tegeder
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| |
Collapse
|