1
|
Tao C, Zhang GW, Sun WJ, Huang JJ, Zhang LI, Tao HW. Excitation-inhibition imbalance in medial preoptic area circuits underlies chronic stress-induced depression-like states. Nat Commun 2024; 15:8575. [PMID: 39362860 PMCID: PMC11452203 DOI: 10.1038/s41467-024-52727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Dysregulation of brain homeostasis is associated with neuropsychiatric conditions such as major depressive disorder. However, underlying neural-circuit mechanisms remain not well-understood. We show in mice that chronic restraint stress (CRS) and social defeat stress (SDS) are both associated with disruption of excitation (E)-inhibition (I) balance, with increased E/I ratios, in medial preoptic area (MPOA) circuits, but through affecting different neuronal types. CRS results in elevated activity in glutamatergic neurons, and their suppression mitigates CRS-induced depressive-like behaviors. Paraventricular hypothalamic input to these neurons contributes to induction but not expression of depressive-like behaviors. Their projections to ventral tegmental area and periaqueductal gray/dorsal raphe suppress midbrain dopaminergic and serotonergic activity, respectively, and mediate expression of divergent depressive-like symptoms. By contrast, SDS results in reduced activity of GABAergic neurons, and their activation alleviates SDS-induced depressive-like behaviors. Thus, E/I imbalance with relatively increased excitation in MPOA circuits may be a general mechanism underlying depression caused by different etiological factors.
Collapse
Affiliation(s)
- Can Tao
- Zilkha Neurogenetic Institute and Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Guang-Wei Zhang
- Zilkha Neurogenetic Institute and Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Wen-Jian Sun
- Zilkha Neurogenetic Institute and Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute and Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Graduate Program in Biological and Biomedical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute and Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute and Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
2
|
Huang ST, Wu K, Guo MM, Shao S, Hua R, Zhang YM. Glutamatergic and GABAergic anteroventral BNST projections to PVN CRH neurons regulate maternal separation-induced visceral pain. Neuropsychopharmacology 2023; 48:1778-1788. [PMID: 37516802 PMCID: PMC10579407 DOI: 10.1038/s41386-023-01678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Early-life stress (ELS) is thought to cause the development of visceral pain disorders. While some individuals are vulnerable to visceral pain, others are resilient, but the intrinsic circuit and molecular mechanisms involved remain largely unclear. Herein, we demonstrate that inbred mice subjected to maternal separation (MS) could be separated into susceptible and resilient subpopulations by visceral hypersensitivity evaluation. Through a combination of chemogenetics, optogenetics, fiber photometry, molecular and electrophysiological approaches, we discovered that susceptible mice presented activation of glutamatergic projections or inhibition of GABAergic projections from the anteroventral bed nucleus of the stria terminalis (avBNST) to paraventricular nucleus (PVN) corticotropin-releasing hormone (CRH) neurons. However, resilience develops as a behavioral adaptation partially due to restoration of PVN SK2 channel expression and function. Our findings suggest that PVN CRH neurons are dually regulated by functionally opposing avBNST neurons and that this circuit may be the basis for neurobiological vulnerability to visceral pain.
Collapse
Affiliation(s)
- Si-Ting Huang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Miao-Miao Guo
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shuai Shao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Rong Hua
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Emergency Department, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221116, Jiangsu, China
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
3
|
Chen T, Zhu SJ, Xu S, Wang YQ, Aji A, Zhang C, Wang H, Li FL, Chu YX. Resting-state fMRI reveals changes within the anxiety and social avoidance circuitry of the brain in mice with psoriasis-like skin lesions. Exp Dermatol 2023; 32:1900-1914. [PMID: 37622736 DOI: 10.1111/exd.14914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
Psoriasis is an autoimmune skin disease that often co-occurs with psychological morbidities such as anxiety and depression, and psychosocial issues also lead psoriasis patients to avoid other people. However, the precise mechanism underlying the comorbidity of psoriasis and anxiety is unknown. Also, whether the social avoidance phenomenon seen in human patients also exists in psoriasis-like animal models remains unknown. In the present study, anxiety-like behaviours and social avoidance-like behaviours were observed in an imiquimod-induced psoriasis-like C57-BL6 mouse model along with typical psoriasis-like dermatitis and itch-like behaviours. The 11.7T resting-state functional magnetic resonance imaging showed differences in brain regions between the model and control group, and voxel-based morphometry showed that the grey matter volume changed in the basal forebrain region, anterior commissure intrabulbar and striatum in the psoriasis-like mice. Seed-based resting state functional connectivity analysis revealed connectivity changes in the amygdala, periaqueductal gray, raphe nuclei and lateral septum. We conclude that the imiquimod-induced psoriasis-like C57-BL6 mouse model is well suited for mechanistic studies and for performing preclinical therapeutic trials for treating anxiety and pathological social avoidance in psoriasis patients.
Collapse
Affiliation(s)
- Teng Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Sheng-Jie Zhu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuai Xu
- Department of Neurology, Institute of Science and Technology for Brain-Inspired Intelligence, Zhongshan Hospital, Human Phenome Institute, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| | - Yu-Quan Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Abudula Aji
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Chen Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - He Wang
- Department of Neurology, Institute of Science and Technology for Brain-Inspired Intelligence, Zhongshan Hospital, Human Phenome Institute, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| | - Fu-Lun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Douglass AM, Resch JM, Madara JC, Kucukdereli H, Yizhar O, Grama A, Yamagata M, Yang Z, Lowell BB. Neural basis for fasting activation of the hypothalamic-pituitary-adrenal axis. Nature 2023; 620:154-162. [PMID: 37495689 PMCID: PMC11168300 DOI: 10.1038/s41586-023-06358-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
Fasting initiates a multitude of adaptations to allow survival. Activation of the hypothalamic-pituitary-adrenal (HPA) axis and subsequent release of glucocorticoid hormones is a key response that mobilizes fuel stores to meet energy demands1-5. Despite the importance of the HPA axis response, the neural mechanisms that drive its activation during energy deficit are unknown. Here, we show that fasting-activated hypothalamic agouti-related peptide (AgRP)-expressing neurons trigger and are essential for fasting-induced HPA axis activation. AgRP neurons do so through projections to the paraventricular hypothalamus (PVH), where, in a mechanism not previously described for AgRP neurons, they presynaptically inhibit the terminals of tonically active GABAergic afferents from the bed nucleus of the stria terminalis (BNST) that otherwise restrain activity of corticotrophin-releasing hormone (CRH)-expressing neurons. This disinhibition of PVHCrh neurons requires γ-aminobutyric acid (GABA)/GABA-B receptor signalling and potently activates the HPA axis. Notably, stimulation of the HPA axis by AgRP neurons is independent of their induction of hunger, showing that these canonical 'hunger neurons' drive many distinctly different adaptations to the fasted state. Together, our findings identify the neural basis for fasting-induced HPA axis activation and uncover a unique means by which AgRP neurons activate downstream neurons: through presynaptic inhibition of GABAergic afferents. Given the potency of this disinhibition of tonically active BNST afferents, other activators of the HPA axis, such as psychological stress, may also work by reducing BNST inhibitory tone onto PVHCrh neurons.
Collapse
Affiliation(s)
- Amelia M Douglass
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jon M Resch
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hakan Kucukdereli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Abhinav Grama
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Masahito Yamagata
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Zongfang Yang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Liu X, He J, Jiang W, Wen S, Xiao Z. The Roles of Periaqueductal Gray and Dorsal Raphe Nucleus Dopaminergic Systems in the Mechanisms of Thermal Hypersensitivity and Depression in Mice. THE JOURNAL OF PAIN 2023; 24:1213-1228. [PMID: 36796500 DOI: 10.1016/j.jpain.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/05/2023] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Depression and thermal hypersensitivity share pathogenic features and symptomology, but their pathophysiologic interactions have not been fully elucidated. Dopaminergic systems in the ventrolateral periaqueductal gray (vlPAG) and dorsal raphe nucleus have been implicated in these conditions due to their antinociception and antidepression effects, although their specific roles and underlying mechanisms remain obscure. In this study, chronic unpredictable mild stress (CMS) was used to induce depression-like behaviors and thermal hypersensitivity in C57BL/6J (wild-type) or dopamine transporter promoter mice to establish a mouse model of pain and depression comorbidity. Microinjections of quinpirole, a dopamine D2 receptor agonist, up-regulated D2 receptor expression in dorsal raphe nucleus and reduced depressive behaviors and thermal hypersensitivity with CMS, while dorsal raphe nucleus injections of JNJ-37822681, an antagonist of D2 receptors, had the reciprocal effect on dopamine D2 receptor expression and behaviors. Moreover, using a chemical genetics approach to activate or inhibit dopaminergic neurons in vlPAG ameliorated or exacerbated depression-like behaviors and thermal hypersensitivity, respectively, in dopamine transporter promoter-Cre CMS mice. Collectively these results demonstrated the specific role of vlPAG and dorsal raphe nucleus dopaminergic systems in the regulation of pain and depression comorbidity in mice. PERSPECTIVE: The current study provides insights into the complex mechanisms underlying thermal hypersensitivity induced by depression, and the findings suggest that pharmacological and chemogenetic modulation of dopaminergic systems in the vlPAG and dorsal raphe nucleus may be a promising therapeutic strategy to simultaneously mitigate pain and depression.
Collapse
Affiliation(s)
- Xingfeng Liu
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, Guizhou, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingxin He
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei Jiang
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Song Wen
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhi Xiao
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, Guizhou, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
6
|
Halladay LR, Herron SM. Lasting impact of postnatal maternal separation on the developing BNST: Lifelong socioemotional consequences. Neuropharmacology 2023; 225:109404. [PMID: 36572178 PMCID: PMC9926961 DOI: 10.1016/j.neuropharm.2022.109404] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Nearly one percent of children in the US experience childhood neglect or abuse, which can incite lifelong emotional and behavioral disorders. Many studies investigating the neural underpinnings of maleffects inflicted by early life stress have largely focused on dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. Newer veins of evidence suggest that exposure to early life stressors can interrupt neural development in extrahypothalamic areas as well, including the bed nucleus of the stria terminalis (BNST). One widely used approach in this area is rodent maternal separation (MS), which typically consists of separating pups from the dam for extended periods of time, over several days during the first weeks of postnatal life - a time when pups are highly dependent on maternal care for survival. MS has been shown to incite myriad lasting effects not limited to increased anxiety-like behavior, hyper-responsiveness to stressors, and social behavior deficits. The behavioral effects of MS are widespread and thus unlikely to be limited to hypothalamic mechanisms. Recent work has highlighted the BNST as a critical arbiter of some of the consequences of MS, especially socioemotional behavioral deficits. The BNST is a well-documented modulator of anxiety, reward, and social behavior by way of its connections with hypothalamic and extra-hypothalamic systems. Moreover, during the postnatal period when MS is typically administered, the BNST undergoes critical neural developmental events. This review highlights evidence that MS interferes with neural development to permanently alter BNST circuitry, which may account for a variety of behavioral deficits seen following early life stress. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.
Collapse
Affiliation(s)
- Lindsay R Halladay
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA.
| | - Steven M Herron
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| |
Collapse
|
7
|
Wang X, Ge S, Zhang C. Bed nuclei of the stria terminalis: A key hub in the modulation of anxiety. Eur J Neurosci 2023; 57:900-917. [PMID: 36725691 DOI: 10.1111/ejn.15926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023]
Abstract
The bed nuclei of the stria terminalis (BST) is recognised as a pivotal integrative centre for monitoring emotional valence. It is implicated in the regulation of diverse affective states and motivated behaviours, and decades of research have firmly established its critical role in anxiety-related behavioural processes. Researchers have recently intricately dissected the BST's dynamic activities, its connection patterns and its functions with respect to specific cell types using multiple techniques such as optogenetics, in vivo calcium imaging and transgenic tools to unmask the complex circuitry mechanisms that underlie anxiety. In this review, we principally focus on studies of anxiety-involved neuromodulators within the BST and provide a comprehensive architecture of the anxiety network-highlighting the BST as a key hub in orchestrating anxiety-like behaviour. We posit that these promising efforts will contribute to the identification of an accurate roadmap for future treatment of anxiety disorders.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shenglin Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengxin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Su Y, Wang B, Ye J, Wang Y, Cui Y, Chen C, Ruan N, Hu Z, Li L, Liu H, Xie H. Dexmedetomidine improves the acute stress reactivity of male rat through interventions of serum- and glucocorticoid-inducible kinase 1 and nNOS in the bed nucleus of the stria terminalis. Biochem Biophys Res Commun 2023; 638:155-162. [PMID: 36459879 DOI: 10.1016/j.bbrc.2022.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/24/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Moderate acute stress responses are beneficial for adaptation and maintenance of homeostasis. Exposure of male rat to stress induces effects in the bed nucleus of the stria terminalis (BNST), for it can be activated by the same stimuli that induce activation of the hypothalamic-pituitary-adrenal axis. However, the underlying mechanism of the BNST on male stress reactivity remains unclear. In this study, we explored whether systematic administration of dexmedetomidine (DEXM) altered the acute stress reactivity through its effect on the BNST. Male Sprague-Dawley rats in the stress (STRE) group, DEXM group, and the DEXM + GSK-650394 (GSK, an antagonist of serum- and glucocorticoid-inducible kinase 1 (SGK1)) group, except those in the vehicle (VEH) group, underwent 1-h restraint plus water-immersion (RPWI) exposure. All the rats proceeded the open field test (OFT) 24 h before RPWI and 1 h after RPWI. After the second OFT, the rats received VEH, DEXM (75 μg/kg i.p.), or were pretreated with GSK (2 μM i.p.) 0.5 h ahead of DEXM respectively. The third OFT was conducted 6 h after drug administration and then the rats were sacrificed. The rats that experienced RPWI showed dramatically elevated serum corticosterone (CORT), multiplied neuronal nitric oxide synthase (nNOS) and SGK1 in the BNST, and terrible OFT behavior. We discovered when the nNOS and SGK1 were decreased in the rat BNST through DEXM treatment, the serum CORT was reduced and the OFT manifestation was ameliorated, whereas these were restrained by GSK application. Our results reveal that modest interventions to SGK1 and nNOS in the BNST improve the male rat reactivity to acute stress, and DEXM was one modulator of these effects.
Collapse
Affiliation(s)
- Ying Su
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Benfu Wang
- Department of Anesthesiology, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jianwen Ye
- Department of Anesthesiology, The Second Clinical College of Wenzhou Medical University, Wenzhou, China
| | - Yixuan Wang
- Department of Anesthesiology, The Second Clinical College of Wenzhou Medical University, Wenzhou, China
| | - Yanhua Cui
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunjiang Chen
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Naqi Ruan
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiyan Hu
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Li
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huacheng Liu
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Hong Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Johnson SB, Lingg RT, Skog TD, Hinz DC, Romig-Martin SA, Viau V, Narayanan NS, Radley JJ. Activity in a prefrontal-periaqueductal gray circuit overcomes behavioral and endocrine features of the passive coping stress response. Proc Natl Acad Sci U S A 2022; 119:e2210783119. [PMID: 36306326 PMCID: PMC9636920 DOI: 10.1073/pnas.2210783119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
The question of how the brain links behavioral and biological features of defensive responses has remained elusive. The importance of this problem is underscored by the observation that behavioral passivity in stress coping is associated with elevations in glucocorticoid hormones, and each may carry risks for susceptibility to a host of stress-related diseases. Past work implicates the medial prefrontal cortex (mPFC) in the top-down regulation of stress-related behaviors; however, it is unknown whether such changes have the capacity to buffer against the longer-lasting biological consequences associated with aversive experiences. Using the shock probe defensive burying test in rats to naturalistically measure behavioral and endocrine features of coping, we observed that the active behavioral component of stress coping is associated with increases in activity along a circuit involving the caudal mPFC and midbrain dorsolateral periaqueductal gray (PAG). Optogenetic manipulations of the caudal mPFC-to-dorsolateral PAG pathway bidirectionally modulated active (escape and defensive burying) behaviors, distinct from a rostral mPFC-ventrolateral PAG circuit that instead limited passive (immobility) behavior. Strikingly, under conditions that biased rats toward a passive coping response set, including exaggerated stress hormonal output and increased immobility, excitation of the caudal mPFC-dorsolateral PAG projection significantly attenuated each of these features. These results lend insight into how the brain coordinates response features to overcome passive coping and may be of importance for understanding how activated neural systems promote stress resilience.
Collapse
Affiliation(s)
- Shane B. Johnson
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
| | - Ryan T. Lingg
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
| | - Timothy D. Skog
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
| | - Dalton C. Hinz
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
| | - Sara A. Romig-Martin
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
| | - Victor Viau
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Nandakumar S. Narayanan
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
- Department of Neurology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242
| | - Jason J. Radley
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| |
Collapse
|
10
|
Cole AB, Montgomery K, Bale TL, Thompson SM. What the hippocampus tells the HPA axis: Hippocampal output attenuates acute stress responses via disynaptic inhibition of CRF+ PVN neurons. Neurobiol Stress 2022; 20:100473. [PMID: 35982732 PMCID: PMC9379952 DOI: 10.1016/j.ynstr.2022.100473] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
The hippocampus exerts inhibitory feedback on the release of glucocorticoids. Because the major hippocampal efferent projections are excitatory, it has been hypothesized that this inhibition is mediated by populations of inhibitory neurons in the hypothalamus or elsewhere. These regions would be excited by hippocampal efferents and project to corticotropin-releasing factor (CRF) cells in the paraventricular nucleus of the hypothalamus (PVN). A direct demonstration of the synaptic responses elicited by hippocampal outputs in PVN cells or upstream GABAergic interneurons has not been provided previously. Here, we used viral vectors to express channelrhodopsin (ChR) and enhanced yellow fluorescent protein (EYFP) in pyramidal cells in the ventral hippocampus (vHip) in mice expressing tdTomato in GABA- or CRF-expressing neurons. We observed dense innervation of the bed nucleus of the stria terminalis (BNST) by labeled vHip axons and sparse labeling within the PVN. Using whole-cell voltage-clamp recording in parasagittal brain slices containing the BNST and PVN, photostimulation of vHip terminals elicited rapid excitatory postsynaptic currents (EPSCs) and longer-latency inhibitory postsynaptic currents (IPSCs) in both CRF+ and GAD + cells. The ratio of synaptic excitation and inhibition was maintained in CRF + cells during 20 Hz stimulus trains. Photostimulation of hippocampal afferents to the BNST and PVN in vivo inhibited the rise in blood glucocorticoid levels produced by acute restraint stress. We thus provide functional evidence suggesting that hippocampal output to the BNST contributes to a net inhibition of the hypothalamic-pituitary axis, providing further mechanistic insights into this process using methods with enhanced spatial and temporal resolution.
Collapse
Affiliation(s)
- Anthony B. Cole
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Medical Scientist Training Program, Departments of University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kristen Montgomery
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tracy L. Bale
- Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Scott M. Thompson
- Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, USA
| |
Collapse
|
11
|
Banihashemi L, Peng CW, Rangarajan A, Karim HT, Wallace ML, Sibbach BM, Singh J, Stinley MM, Germain A, Aizenstein HJ. Childhood Threat Is Associated With Lower Resting-State Connectivity Within a Central Visceral Network. Front Psychol 2022; 13:805049. [PMID: 35310241 PMCID: PMC8927539 DOI: 10.3389/fpsyg.2022.805049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Childhood adversity is associated with altered or dysregulated stress reactivity; these altered patterns of physiological functioning persist into adulthood. Evidence from both preclinical animal models and human neuroimaging studies indicates that early life experience differentially influences stressor-evoked activity within central visceral neural circuits proximally involved in the control of stress responses, including the subgenual anterior cingulate cortex (sgACC), paraventricular nucleus of the hypothalamus (PVN), bed nucleus of the stria terminalis (BNST) and amygdala. However, the relationship between childhood adversity and the resting-state connectivity of this central visceral network remains unclear. To this end, we examined relationships between childhood threat and childhood socioeconomic deprivation, the resting-state connectivity between our regions of interest (ROIs), and affective symptom severity and diagnoses. We recruited a transdiagnostic sample of young adult males and females (n = 100; mean age = 27.28, SD = 3.99; 59 females) with a full distribution of maltreatment history and symptom severity across multiple affective disorders. Resting-state data were acquired using a 7.2-min functional magnetic resonance imaging (fMRI) sequence; noted ROIs were applied as masks to determine ROI-to-ROI connectivity. Threat was determined by measures of childhood traumatic events and abuse. Socioeconomic deprivation (SED) was determined by a measure of childhood socioeconomic status (parental education level). Covarying for age, race and sex, greater childhood threat was significantly associated with lower BNST-PVN, amygdala-sgACC and PVN-sgACC connectivity. No significant relationships were found between SED and resting-state connectivity. BNST-PVN connectivity was associated with the number of lifetime affective diagnoses. Exposure to threat during early development may entrain altered patterns of resting-state connectivity between these stress-related ROIs in ways that contribute to dysregulated neural and physiological responses to stress and subsequent affective psychopathology.
Collapse
Affiliation(s)
- Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Layla Banihashemi,
| | - Christine W. Peng
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anusha Rangarajan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Helmet T. Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Meredith L. Wallace
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brandon M. Sibbach
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jaspreet Singh
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mark M. Stinley
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anne Germain
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Howard J. Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Raitiere MN. The Elusive "Switch Process" in Bipolar Disorder and Photoperiodism: A Hypothesis Centering on NADPH Oxidase-Generated Reactive Oxygen Species Within the Bed Nucleus of the Stria Terminalis. Front Psychiatry 2022; 13:847584. [PMID: 35782417 PMCID: PMC9243387 DOI: 10.3389/fpsyt.2022.847584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
One of the most striking and least understood aspects of mood disorders involves the "switch process" which drives the dramatic state changes characteristic of bipolar disorder. In this paper we explore the bipolar switch mechanism as deeply grounded in forms of seasonal switching (for example, from summer to winter phenotypes) displayed by many mammalian species. Thus we develop a new and unifying hypothesis that involves four specific claims, all converging to demonstrate a deeper affinity between the bipolar switch process and the light-sensitive (photoperiodic) nonhuman switch sequence than has been appreciated. First, we suggest that rapid eye movement (REM) sleep in both human and nonhuman plays a key role in probing for those seasonal changes in length of day that trigger the organism's characteristic involutional response (in certain animals, hibernation) to shorter days. Second, we claim that this general mammalian response requires the integrity of a neural circuit centering on the anterior bed nucleus of the stria terminalis. Third, we propose that a key molecular mediator of the switch process in both nonhumans and seasonal humans involves reactive oxygen species (ROS) of a particular provenance, namely those created by the enzyme NADPH oxidase (NOX). This position diverges from one currently prominent among students of bipolar disorder. In that tradition, the fact that patients afflicted with bipolar-spectrum disorders display indices of oxidative damage is marshaled to support the conclusion that ROS, escaping adventitiously from mitochondria, have a near-exclusive pathological role. Instead, we believe that ROS, originating instead in membrane-affiliated NOX enzymes upstream from mitochondria, take part in an eminently physiological signaling process at work to some degree in all mammals. Fourth and finally, we speculate that the diversion of ROS from that purposeful, genetically rooted seasonal switching task into the domain of human pathology represents a surprisingly recent phenomenon. It is one instigated mainly by anthropogenic modifications of the environment, especially "light pollution."
Collapse
Affiliation(s)
- Martin N Raitiere
- Department of Psychiatry, Providence St. Vincent Medical Center, Portland, OR, United States
| |
Collapse
|
13
|
Lin S, Du Y, Xia Y, Xie Y, Xiao L, Wang G. Advances in optogenetic studies of depressive-like behaviors and underlying neural circuit mechanisms. Front Psychiatry 2022; 13:950910. [PMID: 36159933 PMCID: PMC9492959 DOI: 10.3389/fpsyt.2022.950910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUNDS The neural circuit mechanisms underlying depression remain unclear. Recently optogenetics has gradually gained recognition as a novel technique to regulate the activity of neurons with light stimulation. Scientists are now transferring their focus to the function of brain regions and neural circuits in the pathogenic progress of depression. Deciphering the circuitry mechanism of depressive-like behaviors may help us better understand the symptomatology of depression. However, few studies have summarized current progress on optogenetic researches into the neural circuit mechanisms of depressive-like behaviors. AIMS This review aimed to introduce fundamental characteristics and methodologies of optogenetics, as well as how this technique achieves specific neuronal control with spatial and temporal accuracy. We mainly summarized recent progress in neural circuit discoveries in depressive-like behaviors using optogenetics and exhibited the potential of optogenetics as a tool to investigate the mechanism and possible optimization underlying antidepressant treatment such as ketamine and deep brain stimulation. METHODS A systematic review of the literature published in English mainly from 2010 to the present in databases was performed. The selected literature is then categorized and summarized according to their neural circuits and depressive-like behaviors. CONCLUSIONS Many important discoveries have been made utilizing optogenetics. These findings support optogenetics as a powerful and potential tool for studying depression. And our comprehension to the etiology of depression and other psychiatric disorders will also be more thorough with this rapidly developing technique in the near future.
Collapse
Affiliation(s)
- Shanshan Lin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiwei Du
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yujie Xia
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yumeng Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Kaouane N, Ada S, Hausleitner M, Haubensak W. Dorsal Bed Nucleus of the Stria Terminalis-Subcortical Output Circuits Encode Positive Bias in Pavlovian Fear and Reward. Front Neural Circuits 2022; 15:772512. [PMID: 34970123 PMCID: PMC8713515 DOI: 10.3389/fncir.2021.772512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Opposite emotions like fear and reward states often utilize the same brain regions. The bed nucleus of the stria terminalis (BNST) comprises one hub for processing fear and reward processes. However, it remains unknown how dorsal BNST (dBNST) circuits process these antagonistic behaviors. Here, we exploited a combined Pavlovian fear and reward conditioning task that exposed mice to conditioned tone stimuli (CS)s, either paired with sucrose delivery or footshock unconditioned stimuli (US). Pharmacological inactivation identified the dorsal BNST as a crucial element for both fear and reward behavior. Deep brain calcium imaging revealed opposite roles of two distinct dBNST neuronal output pathways to the periaqueductal gray (PAG) or paraventricular hypothalamus (PVH). dBNST neural activity profiles differentially process valence and Pavlovian behavior components: dBNST-PAG neurons encode fear CS, whereas dBNST-PVH neurons encode reward responding. Optogenetic activation of BNST-PVH neurons increased reward seeking, whereas dBNST-PAG neurons attenuated freezing. Thus, dBNST-PVH or dBNST-PAG circuitry encodes oppositely valenced fear and reward states, while simultaneously triggering an overall positive affective response bias (increased reward seeking while reducing fear responses). We speculate that this mechanism amplifies reward responding and suppresses fear responses linked to BNST dysfunction in stress and addictive behaviors.
Collapse
Affiliation(s)
- Nadia Kaouane
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Sibel Ada
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Marlene Hausleitner
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Wulf Haubensak
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.,Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Povysheva N, Zheng H, Rinaman L. Glucagon-like peptide 1 receptor-mediated stimulation of a GABAergic projection from the bed nucleus of the stria terminalis to the hypothalamic paraventricular nucleus. Neurobiol Stress 2021; 15:100363. [PMID: 34277897 PMCID: PMC8271176 DOI: 10.1016/j.ynstr.2021.100363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/14/2023] Open
Abstract
We previously reported that GABAergic neurons within the ventral anterior lateral bed nucleus of the stria terminalis (alBST) express glucagon-like peptide 1 receptor (GLP1R) in rats, and that virally-mediated “knock-down” of GLP1R expression in the alBST prolongs the hypothalamic-pituitary-adrenal axis response to acute stress. Given other evidence that a GABAergic projection pathway from ventral alBST serves to limit stress-induced activation of the HPA axis, we hypothesized that GLP1 signaling promotes activation of GABAergic ventral alBST neurons that project directly to the paraventricular nucleus of the hypothalamus (PVN). After PVN microinjection of fluorescent retrograde tracer followed by preparation of ex vivo rat brain slices, whole-cell patch clamp recordings were made in identified PVN-projecting neurons within the ventral alBST. Bath application of Exendin-4 (a specific GLP1R agonist) indirectly depolarized PVN-projecting neurons in the ventral alBST and adjacent hypothalamic parastrial nucleus (PS) through a network-dependent increase in excitatory synaptic inputs, coupled with a network-independent reduction in inhibitory inputs. Additional retrograde tracing experiments combined with in situ hybridization confirmed that PVN-projecting neurons within the ventral alBST/PS are GABAergic, and do not express GLP1R mRNA. Conversely, GLP1R mRNA is expressed by a subset of neurons that project into the ventral alBST and were likely contained within coronal ex vivo slices, including GABAergic neurons within the oval subnucleus of the dorsal alBST and glutamatergic neurons within the substantia innominata. Our novel findings reveal potential GLP1R-mediated mechanisms through which the alBST exerts inhibitory control over the endocrine HPA axis.
Collapse
Affiliation(s)
- Nadya Povysheva
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Huiyuan Zheng
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Linda Rinaman
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
16
|
Wang D, Wang W, Jiang S, Ma H, Lian H, Meng F, Liu J, Cui M, You J, Liu C, Zhao D, Hu F, Liu D, Li C. Regulation of depression-related behaviors by GABAergic neurons in the lateral septum through periaqueductal gray neuronal projections. J Psychiatr Res 2021; 137:202-214. [PMID: 33691232 DOI: 10.1016/j.jpsychires.2021.02.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/28/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022]
Abstract
Major depressive disorder (MDD) is a serious and widespread mental illness worldwide. The abnormality of neuronal networks may contribute to the etiology of MDD. However, the neural connections underlying the main symptoms of MDD need further elucidation. Here, we found that GABAergic neurons in the lateral septum (LS) were activated by chronic unpredictable stress (CUS), with increased numbers of ΔFosB-labeled neurons. LS neuronal activity was modulated using a chemogenetic approach. Activation of LS neurons caused a depressive phenotype, as shown by increased immobility in the forced swim test, and induced increased susceptibility to subthreshold chronic stress, as indicated by decreased female urine sniffing time and preference for sucrose in depression-related behavior detection, whereas suppression of LS neuronal activity induced an antidepressant effect under basal and stressed conditions. Moreover, we found that the LS showed strong neuronal projections to the dorsal periaqueductal gray (dPAG); activation of dPAG-projecting GABAergic neurons in the LS produced the same depressive behaviors and stress susceptibility as induced by the activation of the majority of LS GABAergic neurons. Finally, we found that activation of neuronal fibers in the dPAG derived from the LS showed depression-related behaviors, as suggested by the decreased female urine sniffing time and sucrose preference in female urine sniffing and sucrose preference tests respectively. Our findings indicate that LS is a key depression-controlling nucleus, and that the LS-PAG projection is an essential effector circuit for morbidity and treatment in depression.
Collapse
Affiliation(s)
- Dan Wang
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wentao Wang
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - He Ma
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Haifeng Lian
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Minghu Cui
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jingjing You
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Di Zhao
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fengai Hu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dunjiang Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
17
|
Fakhoury M. Optogenetics: A revolutionary approach for the study of depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110094. [PMID: 32890694 DOI: 10.1016/j.pnpbp.2020.110094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/13/2020] [Accepted: 08/30/2020] [Indexed: 10/24/2022]
Abstract
Depression is a severe and chronic mental disorder that affects millions of individuals worldwide. Symptoms include depressed mood, loss of interest, reduced motivation and suicidal thoughts. Even though findings from genetic, molecular and imaging studies have helped provide some clues regarding the mechanisms underlying depression-like behaviors, there are still many unanswered questions that need to be addressed. Optogenetics, a technique developed in the early 2000s, has proved effective in the study and treatment of depression and depression-like behaviors and has revolutionized already known experimental techniques. This technique employs light and genetic tools to either inhibit or excite specific neurons or pathways within the brain. In this review paper, an up-to-date understanding of the use of optogenetics in the study of depression-like behaviors is provided, along with suggestions for future research directions.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut Campus, Lebanon.
| |
Collapse
|
18
|
Molendijk ML, de Kloet ER. Forced swim stressor: Trends in usage and mechanistic consideration. Eur J Neurosci 2021; 55:2813-2831. [PMID: 33548153 PMCID: PMC9291081 DOI: 10.1111/ejn.15139] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
The acquired immobility response during the “forced swim test (FST)” is not a rodent model of depression, but the test has some validity in predicting a compound's antidepressant potential. Nevertheless, 60% of the about 600 papers that were published annually the past 2 years label the rodent's immobility response as depression‐like behaviour, but the relative contribution per country is changing. When the Editors‐in‐Chief of 5 journals publishing most FST papers were asked for their point of view on labelling immobility as depression‐like behaviour and despair, they responded that they primarily rely on the reviewers regarding scientific merit of the submission. One Editor informs authors of the recent NIMH notice (https://grants.nih.gov/grants/guide/notice‐files/NOT‐MH‐19‐053.html) which encourages investigators to use animal models “for” addressing neurobiological questions rather than as model “of” specific mental disorders. The neurobiological questions raised by use of the FST fall in two categories. First, research on the role of endocrine and metabolic factors, with roots in the 1980s, and with focus on the bottom‐up action of glucocorticoids on circuits processing salient information, executive control and memory consolidation. Second, recent findings using novel technological and computational advances that have allowed great progress in charting top‐down control in the switch from active to passive coping with the inescapable stressor executed by neuronal ensembles of the medial prefrontal cortex via the peri‐aquaductal grey. It is expected that combining neural top‐down and endocrine bottom‐up approaches will provide new insights in the role of stress‐coping and adaptation in pathogenesis of mental disorders.
Collapse
Affiliation(s)
- Marc L Molendijk
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
| | - E Ronald de Kloet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Glover LR, McFadden KM, Bjorni M, Smith SR, Rovero NG, Oreizi-Esfahani S, Yoshida T, Postle AF, Nonaka M, Halladay LR, Holmes A. A prefrontal-bed nucleus of the stria terminalis circuit limits fear to uncertain threat. eLife 2020; 9:60812. [PMID: 33319747 PMCID: PMC7899651 DOI: 10.7554/elife.60812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
In many cases of trauma, the same environmental stimuli that become associated with aversive events are experienced on other occasions without adverse consequence. We examined neural circuits underlying partially reinforced fear (PRF), whereby mice received tone-shock pairings on half of conditioning trials. Tone-elicited freezing was lower after PRF conditioning than fully reinforced fear (FRF) conditioning, despite an equivalent number of tone-shock pairings. PRF preferentially activated medial prefrontal cortex (mPFC) and bed nucleus of the stria terminalis (BNST). Chemogenetic inhibition of BNST-projecting mPFC neurons increased PRF, not FRF, freezing. Multiplexing chemogenetics with in vivo neuronal recordings showed elevated infralimbic cortex (IL) neuronal activity during CS onset and freezing cessation; these neural correlates were abolished by chemogenetic mPFC→BNST inhibition. These data suggest that mPFC→BNST neurons limit fear to threats with a history of partial association with an aversive stimulus, with potential implications for understanding the neural basis of trauma-related disorders.
Collapse
Affiliation(s)
- Lucas R Glover
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Kerry M McFadden
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Max Bjorni
- Department of Psychology, Santa Clara University, Santa Clara, United States
| | - Sawyer R Smith
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Natalie G Rovero
- Department of Psychology, Santa Clara University, Santa Clara, United States
| | - Sarvar Oreizi-Esfahani
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Takayuki Yoshida
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Abagail F Postle
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Mio Nonaka
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| | - Lindsay R Halladay
- Department of Psychology, Santa Clara University, Santa Clara, United States
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States
| |
Collapse
|
20
|
Yang PS, Peng HY, Lin TB, Hsieh MC, Lai CY, Lee AS, Wang HH, Ho YC. NMDA receptor partial agonist GLYX-13 alleviates chronic stress-induced depression-like behavior through enhancement of AMPA receptor function in the periaqueductal gray. Neuropharmacology 2020; 178:108269. [DOI: 10.1016/j.neuropharm.2020.108269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
|
21
|
Xia F, Kheirbek MA. Circuit-Based Biomarkers for Mood and Anxiety Disorders. Trends Neurosci 2020; 43:902-915. [PMID: 32917408 PMCID: PMC7606349 DOI: 10.1016/j.tins.2020.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/23/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022]
Abstract
Mood and anxiety disorders are complex heterogeneous syndromes that manifest in dysfunctions across multiple brain regions, cell types, and circuits. Biomarkers using brain-wide activity patterns in humans have proven useful in distinguishing between disorder subtypes and identifying effective treatments. In order to improve biomarker identification, it is crucial to understand the basic circuitry underpinning brain-wide activity patterns. Leveraging a large repertoire of techniques, animal studies have examined roles of specific cell types and circuits in driving maladaptive behavior. Recent advances in multiregion recording techniques, data-driven analysis approaches, and machine-learning-based behavioral analysis tools can further push the boundary of animal studies and bridge the gap with human studies, to assess how brain-wide activity patterns encode and drive emotional behavior. Together, these efforts will allow identifying more precise biomarkers to enhance diagnosis and treatment.
Collapse
Affiliation(s)
- Frances Xia
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Mazen A Kheirbek
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
22
|
Chou D. Brain-derived neurotrophic factor in the ventrolateral periaqueductal gray contributes to (2R,6R)-hydroxynorketamine-mediated actions. Neuropharmacology 2020; 170:108068. [DOI: 10.1016/j.neuropharm.2020.108068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/26/2020] [Accepted: 03/22/2020] [Indexed: 12/24/2022]
|
23
|
Ko CY, Yang YB, Chou D, Xu JH. The Ventrolateral Periaqueductal Gray Contributes to Depressive-Like Behaviors in Recovery of Inflammatory Bowel Disease Rat Model. Front Neurosci 2020; 14:254. [PMID: 32265648 PMCID: PMC7105903 DOI: 10.3389/fnins.2020.00254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) experience depression, even in the remission phase of IBD symptoms. Although mapping depression-associated brain regions through the gut-brain axis can contribute to understanding the process, the mechanisms remain unclear. Our previous results support the idea that glutamatergic transmission in the ventrolateral periaqueductal gray (vlPAG) mediates stress-induced depression-like behaviors. Thus, we hypothesize that the vlPAG plays a role in regulating depression during remission of IBD. METHODS We used dextran sulfate sodium (DSS)-induced visceral pain model to evoke depression-like behaviors, assessed by tail suspension test (TST) and sucrose preference test (SPT), and electrophysiological recordings from vlPAG. RESULTS Symptoms of animals modeling IBD were relieved by replacing DSS solution with normal drinking water, but their depression-like behaviors sustained. Moreover, the impairment of glutamatergic neurotransmission in vlPAG was sustained as well. Pharmacologically, microinfusion of the glutamate receptor 1 (GluR1) antagonist NASPM into vlPAG mimicked the depression-like behaviors. Furthermore, intra-vlPAG application of AMPA and AMPA receptor-mediated antidepressant (2R,6R)-hydroxynorketamine [(2R,6R)-HNK] reversed the DSS-induced depression-like behaviors in the remission phase of visceral abnormalities. CONCLUSION Our results suggest that vlPAG glutamatergic transmission mediates depression-like behaviors during remission of DSS-induced visceral pain, suggesting that vlPAG mapping to the gut-brain axis contributes to depression during remission of IBD.
Collapse
Affiliation(s)
- Chih-Yuan Ko
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
- Department of Clinical Nutrition, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, Quanzhou, China
- The Sleep Medicine Key Laboratory of Fujian Medical Universities, Fujian Province University, Quanzhou, China
| | - Ya-Bi Yang
- Physical Examination Center, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Dylan Chou
- Department of Physiology, Zunyi Medical University, Zhuhai, China
| | - Jian-Hua Xu
- Department of Tumor Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| |
Collapse
|
24
|
Bed nuclei of the stria terminalis modulate memory consolidation via glucocorticoid-dependent and -independent circuits. Proc Natl Acad Sci U S A 2020; 117:8104-8114. [PMID: 32193346 DOI: 10.1073/pnas.1915501117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
There is extensive evidence that glucocorticoid hormones enhance memory consolidation, helping to ensure that emotionally significant events are well remembered. Prior findings suggest that the anteroventral region of bed nuclei of the stria terminalis (avBST) regulates glucocorticoid release, suggesting the potential for avBST activity to influence memory consolidation following an emotionally arousing learning event. To investigate this issue, male Sprague-Dawley rats underwent inhibitory avoidance training and repeated measurement of stress hormones, immediately followed by optogenetic manipulations of either the avBST or its projections to downstream regions, and 48 h later were tested for retention. The results indicate that avBST inhibition augmented posttraining pituitary-adrenal output and enhanced the memory for inhibitory avoidance training. Pretreatment with a glucocorticoid synthesis inhibitor blocked the memory enhancement as well as the potentiated corticosterone response, indicating the dependence of the memory enhancement on glucocorticoid release during the immediate posttraining period. In contrast, posttraining avBST stimulation decreased retention yet had no effect on stress hormonal output. Subsequent experiments revealed that inhibition of avBST input to the paraventricular hypothalamus enhanced stress hormonal output and subsequent retention, whereas stimulation did not affect either. Conversely, stimulation-but not inhibition-of avBST input to the ventrolateral periaqueductal gray impaired consolidation, whereas neither manipulation affected glucocorticoid secretion. These findings indicate that divergent pathways from the avBST are responsible for the mnemonic effects of avBST inhibition versus stimulation and do so via glucocorticoid-dependent and -independent mechanisms, respectively.
Collapse
|
25
|
Focke CMB, Iremonger KJ. Rhythmicity matters: Circadian and ultradian patterns of HPA axis activity. Mol Cell Endocrinol 2020; 501:110652. [PMID: 31738971 DOI: 10.1016/j.mce.2019.110652] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Oscillations are a fundamental feature of neural and endocrine systems. The hypothalamic-pituitary-adrenal (HPA) axis dynamically controls corticosteroid secretion in basal conditions and in response to stress. Across the 24-h day, HPA axis activity oscillates with both an ultradian and circadian rhythm. These rhythms have been shown to be important for regulating metabolism, inflammation, mood, cognition and stress responsiveness. Here we will discuss the neural and endocrine mechanisms driving these rhythms, the physiological importance of these rhythms and health consequences when they are disrupted.
Collapse
Affiliation(s)
- Caroline M B Focke
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
26
|
Kinlein SA, Karatsoreos IN. The hypothalamic-pituitary-adrenal axis as a substrate for stress resilience: Interactions with the circadian clock. Front Neuroendocrinol 2020; 56:100819. [PMID: 31863788 PMCID: PMC7643247 DOI: 10.1016/j.yfrne.2019.100819] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 10/29/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022]
Abstract
Stress, primarily processed via the hypothalamic-pituitary-adrenal (HPA) axis, engages biological pathways throughout the brain and body which promote adaptation and survival to changing environmental demands. Adaptation to environmental challenges is compromised when these pathways are no longer functioning optimally. The physiological and behavioral mechanisms through which HPA axis function influences stress adaptation and resilience are not fully elucidated. Our understanding of stress biology and disease must take into account the complex interactions between the endocrine system, neural circuits, and behavioral coping strategies. In addition, further consideration must be taken concerning influences of other aspects of physiology, including the circadian clock which is critical for regulation of daily changes in HPA activity. While adding a layer of complexity, it also offers targets for intervention. Understanding the role of HPA function in mediating these diverse biological responses will lead to important insights about how to bolster successful stress adaptation and promote stress resilience.
Collapse
Affiliation(s)
- Scott A Kinlein
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States
| | - Ilia N Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States; Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
27
|
Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci Biobehav Rev 2020; 108:48-77. [DOI: 10.1016/j.neubiorev.2019.10.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022]
|
28
|
Biselli T, Lange SS, Sablottny L, Steffen J, Walther A. Optogenetic and chemogenetic insights into the neurocircuitry of depression-like behaviour: A systematic review. Eur J Neurosci 2019; 53:9-38. [PMID: 31633833 DOI: 10.1111/ejn.14603] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 09/13/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
Major depressive disorder (MDD) and its treatment are challenges for global health. Optogenetics and chemogenetics are driving MDD research forward by unveiling causal relations between cell-type-specific control of neurons and depressive-like behaviour in rodents. Using a systematic search process, in this review, a set of 43 original studies applying optogenetic or chemogenetic techniques in rodent models of depression was identified. Our aim was to provide an examination of all available studies elucidating central neuronal mechanisms leading to depressive-like behaviour in rodents and thereby unveiling the most promising routes for future research. A complex interacting network of relevant structures, in which central circuitries causally related to depressive-like behaviour are implicated, has been identified. As most relevant structures emerge: medial prefrontal cortex, anterior cingulate cortex, amygdala, nucleus accumbens, ventral tegmental area, hippocampus and raphe nuclei. Further evidence, though examined by only few studies, emerges for structures like the lateral habenula, or medial dorsal thalamus. Most of the identified brain areas have previously been associated with MDD neuropathology, but now evidence can be provided for causal pathological mechanisms within a complex cortico-limbic reward circuitry. However, the studies also show conflicting results concerning the mechanisms underlying the causal involvement of specific circuitries. Comparability of studies is partly limited since even small deviations in methodological approaches lead to different outcomes. Factors influencing study outcomes were identified and need to be considered in future studies (e.g. frequency used for stimulation, time and duration of stimulation, limitations of applied animal models of MDD).
Collapse
Affiliation(s)
- Tom Biselli
- Biological Psychology, TU Dresden, Dresden, Germany
| | | | | | | | - Andreas Walther
- Biological Psychology, TU Dresden, Dresden, Germany.,Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Planchez B, Surget A, Belzung C. Animal models of major depression: drawbacks and challenges. J Neural Transm (Vienna) 2019; 126:1383-1408. [PMID: 31584111 PMCID: PMC6815270 DOI: 10.1007/s00702-019-02084-y] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Major depression is a leading contributor to the global burden of disease. This situation is mainly related to the chronicity and/or recurrence of the disorder, and to poor response to antidepressant therapy. Progress in this area requires valid animal models. Current models are based either on manipulating the environment to which rodents are exposed (during the developmental period or adulthood) or biological underpinnings (i.e. gene deletion or overexpression of candidate genes, targeted lesions of brain areas, optogenetic control of specific neuronal populations, etc.). These manipulations can alter specific behavioural and biological outcomes that can be related to different symptomatic and pathophysiological dimensions of major depression. However, animal models of major depression display substantial shortcomings that contribute to the lack of innovative pharmacological approaches in recent decades and which hamper our capabilities to investigate treatment-resistant depression. Here, we discuss the validity of these models, review putative models of treatment-resistant depression, major depression subtypes and recurrent depression. Furthermore, we identify future challenges regarding new paradigms such as those proposing dimensional rather than categorical approaches to depression.
Collapse
Affiliation(s)
| | | | - Catherine Belzung
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
- UMR 1253, iBrain, UFR Sciences et Techniques, Parc Grandmont, 37200, Tours, France.
| |
Collapse
|
30
|
Ketamine metabolite (2R,6R)-hydroxynorketamine enhances aggression via periaqueductal gray glutamatergic transmission. Neuropharmacology 2019; 157:107667. [PMID: 31207251 DOI: 10.1016/j.neuropharm.2019.107667] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 12/17/2022]
Abstract
(2R,6R)-hydroxynorketamine (HNK), a metabolite of ketamine, has recently been suggested to be a potent antidepressant for treating animal depression and has rapid-onset and long-lasting action through potentiating glutamatergic transmission. However, its other effects are still unclear. In the present study, we tested the effects of (2R,6R)-HNK on offensive aggression. A resident-intruder (RI) test was used as the main model to test elements of offensive aggression, including threats and bites. Electrophysiological recordings in the ventrolateral periaqueductal gray (vlPAG) were used to measure the functions of glutamatergic synaptic transmission. A single systemic injection of (2R,6R)-HNK, but not (2S,6S)-HNK, increased elements of offensive aggression, including threats and bites, in a dose-dependent manner with long-lasting action. Moreover, (2R,6R)-HNK increased the input-output curve, the AMPA-mediated current, and the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) and decreased the paired-pulse ratio (PPR) in the vlPAG. Furthermore, intra-vlPAG application of (2R,6R)-HNK increased aggressive and biting behaviors, which were abolished by an intra-vlPAG pretreatment with the AMPA receptors antagonist, CNQX. Notably, the intra-vlPAG CNQX pretreatment eliminated systemic (2R,6R)-HNK-enhanced aggressive and biting behaviors. The results of this suggest that (2R,6R)-HNK evokes offensive aggression by increasing vlPAG glutamatergic transmission. Although (2R,6R)-HNK is currently suggested to be effective for treating depression, its side effect of increasing offensive aggression should be a subject of concern in future drug development and therapy.
Collapse
|
31
|
Muir J, Lopez J, Bagot RC. Wiring the depressed brain: optogenetic and chemogenetic circuit interrogation in animal models of depression. Neuropsychopharmacology 2019; 44:1013-1026. [PMID: 30555161 PMCID: PMC6461994 DOI: 10.1038/s41386-018-0291-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
The advent of optogenetics and chemogenetics has revolutionized the study of neural circuit mechanisms of behavioral dysregulation in psychiatric disease. These powerful technologies allow manipulation of specific neurons to determine causal relationships between neuronal activity and behavior. Optogenetic tools have been key to mapping the circuitry underlying depression-like behavior in animal models, clarifying the contribution of the ventral tegmental area, nucleus accumbens, medial prefrontal cortex, ventral hippocampus, and other limbic areas, to stress susceptibility. In comparison, chemogenetics have been relatively underutilized, despite offering unique advantages for probing long-term effects of manipulating neuronal activity. The ongoing development of optogenetic tools to probe in vivo function of ever-more specific circuits, combined with greater integration of chemogenetic tools and recent advances in vivo imaging techniques will continue to advance our understanding of the circuit mechanisms of depression.
Collapse
Affiliation(s)
- Jessie Muir
- 0000 0004 1936 8649grid.14709.3bIntegrated Program in Neuroscience, McGill University, Montréal, QC Canada
| | - Joëlle Lopez
- 0000 0004 1936 8649grid.14709.3bDepartment of Psychology, McGill University, Montréal, QC Canada
| | - Rosemary C. Bagot
- 0000 0004 1936 8649grid.14709.3bDepartment of Psychology, McGill University, Montréal, QC Canada ,Ludmer Center for Neuroinformatics and Mental Health, Montréal, QC Canada
| |
Collapse
|
32
|
Molendijk ML, de Kloet ER. Coping with the forced swim stressor: Current state-of-the-art. Behav Brain Res 2019; 364:1-10. [DOI: 10.1016/j.bbr.2019.02.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
|
33
|
Zheng H, Reiner DJ, Hayes MR, Rinaman L. Chronic Suppression of Glucagon-Like Peptide-1 Receptor (GLP1R) mRNA Translation in the Rat Bed Nucleus of the Stria Terminalis Reduces Anxiety-Like Behavior and Stress-Induced Hypophagia, But Prolongs Stress-Induced Elevation of Plasma Corticosterone. J Neurosci 2019; 39:2649-2663. [PMID: 30683681 PMCID: PMC6445994 DOI: 10.1523/jneurosci.2180-18.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 01/26/2023] Open
Abstract
The anterior lateral bed nucleus of the stria terminalis (alBST) expresses glucagon-like peptide-1 receptors (GLP1Rs) and receives input from caudal brainstem GLP1 neurons. GLP1 administered centrally reduces food intake and increases anxiety-like behavior and plasma corticosterone (cort) levels in rats, whereas central GLP1R antagonism has opposite effects. Anxiogenic threats and other stressors robustly activate c-fos expression in both GLP1-producing neurons and also in neurons within alBST subregions expressing GLP1R. To examine the functional role of GLP1R signaling within the alBST, adult male Sprague Dawley rats received bilateral alBST-targeted injections of an adeno-associated virus (AAV) vector expressing short hairpin RNA (shRNA) to knock down the translation of GLP1R mRNA (GLP1R-KD rats), or similar injections of a control AAV (CTRL rats). In situ hybridization revealed that GLP1R mRNA is expressed in a subset of GABAergic alBST neurons, and quantitative real-time PCR confirmed that GLP1R-KD rats displayed a significant 60% reduction in translatable GLP1R mRNA. Compared with CTRL rats, GLP1R-KD rats gained more body weight over time and displayed less anxiety-like behavior, including a loss of light-enhanced acoustic startle and less stress-induced hypophagia. Conversely, while baseline plasma cort levels were similar in GLP1R-KD and CTRL rats, GLP1R-KD rats displayed a prolonged stress-induced elevation of plasma cort levels. GLP1R-KD and CTRL rats displayed similar home cage food intake and a similar hypophagic response to systemic Exendin-4, a GLP1R agonist that crosses the blood-brain barrier. We conclude that GLP1R expressed within the alBST contributes to multiple behavioral responses to anxiogenic threats, yet also serves to limit the plasma cort response to acute stress.SIGNIFICANCE STATEMENT Anxiety is an affective and physiological state that supports threat avoidance. Identifying the neural bases of anxiety-like behaviors in animal models is essential for understanding mechanisms that contribute to normative and pathological anxiety in humans. In rats, anxiety/avoidance behaviors can be elicited or enhanced by visceral or cognitive threats that increase glucagon-like peptide-1 (GLP1) signaling from the caudal brainstem to the hypothalamus and limbic forebrain. Data reported here support a role for limbic GLP1 receptor signaling to enhance anxiety-like behavior and to attenuate stress-induced elevations in plasma cort levels in rats. Improved understanding of central GLP1 neural pathways that impact emotional responses to stress could expand potential therapeutic options for anxiety and other stress-related disorders in humans.
Collapse
MESH Headings
- Animals
- Anxiety/metabolism
- Anxiety/prevention & control
- Anxiety/psychology
- Appetite Regulation/drug effects
- Appetite Regulation/physiology
- Biomarkers/blood
- Corticosterone/blood
- Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors
- Glucagon-Like Peptide-1 Receptor/genetics
- Glucagon-Like Peptide-1 Receptor/metabolism
- Male
- Protein Biosynthesis/drug effects
- Protein Biosynthesis/physiology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/administration & dosage
- Rats
- Rats, Sprague-Dawley
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Septal Nuclei/metabolism
- Stress, Psychological/blood
- Stress, Psychological/genetics
- Stress, Psychological/psychology
Collapse
Affiliation(s)
- Huiyuan Zheng
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32303, and
| | - David J Reiner
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32303, and
| |
Collapse
|
34
|
de Kloet ER, de Kloet SF, de Kloet CS, de Kloet AD. Top-down and bottom-up control of stress-coping. J Neuroendocrinol 2019; 31:e12675. [PMID: 30578574 PMCID: PMC6519262 DOI: 10.1111/jne.12675] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
In this 30th anniversary issue review, we focus on the glucocorticoid modulation of limbic-prefrontocortical circuitry during stress-coping. This action of the stress hormone is mediated by mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) that are co-expressed abundantly in these higher brain regions. Via both receptor types, the glucocorticoids demonstrate, in various contexts, rapid nongenomic and slower genomic actions that coordinate consecutive stages of information processing. MR-mediated action optimises stress-coping, whereas, in a complementary fashion, the memory storage of the selected coping strategy is promoted via GR. We highlight the involvement of adipose tissue in the allocation of energy resources to central regulation of stress reactions, point to still poorly understood neuronal ensembles in the prefrontal cortex that underlie cognitive flexibility critical for effective coping, and evaluate the role of cortisol as a pleiotropic regulator in vulnerability to, and treatment of, trauma-related psychiatric disorders.
Collapse
Affiliation(s)
- Edo R. de Kloet
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Sybren F. de Kloet
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive ResearchVU‐University of AmsterdamAmsterdamThe Netherlands
| | | | - Annette D. de Kloet
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleFlorida
| |
Collapse
|
35
|
Prefrontal-Bed Nucleus Circuit Modulation of a Passive Coping Response Set. J Neurosci 2018; 39:1405-1419. [PMID: 30573644 DOI: 10.1523/jneurosci.1421-18.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/16/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022] Open
Abstract
One of the challenges facing neuroscience entails localization of circuits and mechanisms accounting for how multiple features of stress responses are organized to promote survival during adverse experiences. The rodent medial prefrontal cortex (mPFC) is generally regarded as a key site for cognitive and affective information processing, and the anteroventral bed nuclei of the stria terminalis (avBST) integrates homeostatic information from a variety of sources, including the mPFC. Thus, we proposed that the mPFC is capable of generating multiple features (endocrine, behavioral) of adaptive responses via its influence over the avBST. To address this possibility, we first optogenetically inhibited input to avBST from the rostral prelimbic cortical region of mPFC and observed concurrent increases in immobility and hypothalamo-pituitary-adrenal (HPA) output in male rats during tail suspension, whereas photostimulation of this pathway decreased immobility during the same challenge. Anatomical tracing experiments confirmed projections from the rostral prelimbic subfield to separate populations of avBST neurons, and from these to HPA effector neurons in the paraventricular hypothalamic nucleus, and to aspects of the midbrain periaqueductal gray that coordinate passive defensive behaviors. Finally, stimulation and inhibition of the prelimbic-avBST pathway, respectively, decreased and increased passive coping in the shock-probe defensive burying test, without having any direct effect on active coping (burying) behavior. These results define a new neural substrate in the coordination of a response set that involves the gating of passive, rather than active, coping behaviors while restraining neuroendocrine activation to optimize adaptation during threat exposure.SIGNIFICANCE STATEMENT The circuits and mechanisms accounting for how multiple features of responses are organized to promote adaptation have yet to be elucidated. Our report identifies a prefrontal-bed nucleus pathway that organizes a response set capable of gating passive coping behaviors while concurrently restraining neuroendocrine activation during exposure to inescapable stressors. These data provide insight into the central organization of how multiple features of responses are integrated to promote adaptation during adverse experiences, and how disruption in one neural pathway may underlie a broad array of maladaptive responses in stress-related psychiatric disorders.
Collapse
|
36
|
Han SY, Clarkson J, Piet R, Herbison AE. Optical Approaches for Interrogating Neural Circuits Controlling Hormone Secretion. Endocrinology 2018; 159:3822-3833. [PMID: 30304401 DOI: 10.1210/en.2018-00594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/03/2018] [Indexed: 11/19/2022]
Abstract
Developments in optical imaging and optogenetics are transforming the functional investigation of neuronal networks throughout the brain. Recent studies in the neuroendocrine field have used genetic mouse models combined with a variety of light-activated optical tools as well as GCaMP calcium imaging to interrogate the neural circuitry controlling hormone secretion. The present review highlights the benefits and caveats of these approaches for undertaking both acute brain slice and functional studies in vivo. We focus on the use of channelrhodopsin and the inhibitory optogenetic tools, archaerhodopsin and halorhodopsin, in addition to GCaMP imaging of individual cells in vitro and neural populations in vivo using fiber photometry. We also address issues around the use of genetic vs viral delivery of encoded proteins to specific Cre-expressing cell populations, their quantification, and the use of conscious vs anesthetized animal models. To date, optogenetics and GCaMP imaging have proven useful in dissecting functional circuitry within the brain and are likely to become essential investigative tools for deciphering the different neural networks controlling hormone secretion.
Collapse
Affiliation(s)
- Su Young Han
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Jenny Clarkson
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Richard Piet
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
37
|
Lyons DM, Buckmaster CL, Schatzberg AF. Learning to actively cope with stress in female mice. Psychoneuroendocrinology 2018; 96:78-83. [PMID: 29909293 DOI: 10.1016/j.psyneuen.2018.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/18/2018] [Accepted: 06/08/2018] [Indexed: 11/25/2022]
Abstract
Repeated exposure to a same-sex resident stranger enhances subsequent indications of active coping that generalize across multiple contexts in intruder male mice. Here we investigate female mice for comparable learning to cope training effects. Stress coping research focused on females is important because stress related mood and anxiety disorders are more prevalent in women than men. Female mice were monitored for coping behavior in open-field, object-exploration, and tail-suspension tests conducted after repeated exposure to a same-sex resident stranger. During repeated exposure sessions of training staged in the resident's home cage, behavioral measures of aggression and risk assessment were collected and plasma measures of the stress hormone corticosterone were obtained from separate samples of mice. Repeated exposure to a same-sex resident stranger subsequently enhanced active coping behavior exemplified by diminished freezing and increased center entries in the open-field, shorter object-exploration latencies, and a tendency toward decreased immobility on tail-suspension tests. Open-field locomotion considered as an index of non-specific activity was not increased by repeated sessions of exposure and did not correlate significantly with any measure of active coping. During repeated sessions of exposure to a same-sex resident stranger, risk assessment behavior and consistent but limited aggression occurred and corticosterone responses increased over repeated sessions. Exposure to a same-sex resident stranger is mildly stressful and promotes learning to actively cope in mice assessed in three different contexts.
Collapse
Affiliation(s)
- David M Lyons
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States.
| | - Christine L Buckmaster
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Alan F Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
38
|
Harris NA, Winder DG. Synaptic Plasticity in the Bed Nucleus of the Stria Terminalis: Underlying Mechanisms and Potential Ramifications for Reinstatement of Drug- and Alcohol-Seeking Behaviors. ACS Chem Neurosci 2018; 9:2173-2187. [PMID: 29851347 PMCID: PMC6146063 DOI: 10.1021/acschemneuro.8b00169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a component of the extended amygdala that shows significant changes in activity and plasticity through chronic exposure to drugs and stress. The region is critical for stress- and cue-induced reinstatement of drug-seeking behaviors and is thus a candidate region for the plastic changes that occur in abstinence that prime addicted patients for reinstatement behaviors. Here, we discuss the various forms of long-term potentiation (LTP) and long-term depression (LTD) in the rodent BNST and highlight the way that these changes in excitatory transmission interact with exposure to alcohol and other drugs of abuse, as well as other stressors. In addition, we highlight potential areas for future research in this area, including investigating input- and cell-specific bidirectional changes in activity. As we continue to accrue foundational knowledge in the mechanisms and effects of plasticity in the BNST, molecular targets and treatment strategies that are relevant to reinstatement behaviors will also begin to emerge. Here, we briefly discuss the effects of catecholamine receptor modulators on synaptic plasticity in the BNST due to the role of norepinephrine in LTD and dopamine on the short-term component of LTP as well as the role that signaling at these receptors plays in reinstatement of drug- and alcohol-seeking behaviors. We hope that insights gained on the specific changes in plasticity that occur within the BNST during abstinence from alcohol and other drugs of abuse will provide insight into the biological underpinnings of relapse behavior in human addicts and inform future treatment modalities for addiction that tackle this complex biological problem.
Collapse
Affiliation(s)
- Nicholas A. Harris
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology & Biophysics
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology & Biophysics
- Vanderbilt J.F. Kennedy Center for Research on Human Development
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
39
|
Glutamatergic and gabaergic ventral BNST neurons differ in their physiological properties and responsiveness to noradrenaline. Neuropsychopharmacology 2018; 43:2126-2133. [PMID: 29704000 PMCID: PMC6098041 DOI: 10.1038/s41386-018-0070-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) regulates defensive responses to threats and its anteroventral portion (BNST-AV) is involved. BNST-AV contains a minority of glutamatergic neurons scattered among a dominant population of GABAergic cells. There is evidence that these two cell types might exert opposite influences, the former promoting and the latter reducing anxiety. Although GABAergic cells greatly outnumber glutamatergic neurons in BNST-AV, in some circumstances the influence of glutamatergic cells appears to predominate. Related to this, BNST-AV receives a very strong noradrenaline (NA) input and negative emotional states are associated with a marked rise of NA concentration in BNST-AV. However, it is currently unclear whether NA differentially alters the excitability of glutamatergic and GABAergic BNST-AV neurons. Thus, to shed light on how BNST-AV regulates negative emotional states, the present study compared the physiological properties and NA responsiveness of glutamatergic and GABAergic BNST-AV neurons using whole-cell recordings in transgenic mice that express a fluorescent reporter in either cell group. We found that glutamatergic cells had a slightly more complex morphology than the GABAergic cells, a higher intrinsic excitability, and a different responsiveness to NA. Indeed, while NA inhibited EPSPs in both cell types through α1 and α2 adrenoreceptors, the EPSP reduction seen in glutamatergic cells had a lower amplitude and a shorter duration than in GABAergic cells. These differences were due to the presence of a β-receptor-mediated EPSP enhancement in the glutamatergic cells. Together, our results suggest that multiple properties contribute to the disproportionate influence of glutamatergic BNST-AV neurons.
Collapse
|
40
|
Chou D, Peng HY, Lin TB, Lai CY, Hsieh MC, Wen YC, Lee AS, Wang HH, Yang PS, Chen GD, Ho YC. (2R,6R)-hydroxynorketamine rescues chronic stress-induced depression-like behavior through its actions in the midbrain periaqueductal gray. Neuropharmacology 2018; 139:1-12. [DOI: 10.1016/j.neuropharm.2018.06.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/04/2018] [Accepted: 06/24/2018] [Indexed: 12/28/2022]
|
41
|
de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, Joëls M. Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front Neuroendocrinol 2018; 49:124-145. [PMID: 29428549 DOI: 10.1016/j.yfrne.2018.02.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 01/14/2023]
Abstract
Bruce McEwen's discovery of receptors for corticosterone in the rat hippocampus introduced higher brain circuits in the neuroendocrinology of stress. Subsequently, these receptors were identified as mineralocorticoid receptors (MRs) that are involved in appraisal processes, choice of coping style, encoding and retrieval. The MR-mediated actions on cognition are complemented by slower actions via glucocorticoid receptors (GRs) on contextualization, rationalization and memory storage of the experience. These sequential phases in cognitive performance depend on synaptic metaplasticity that is regulated by coordinate MR- and GR activation. The receptor activation includes recruitment of coregulators and transcription factors as determinants of context-dependent specificity in steroid action; they can be modulated by genetic variation and (early) experience. Interestingly, inflammatory responses to damage seem to be governed by a similarly balanced MR:GR-mediated action as the initiating, terminating and priming mechanisms involved in stress-adaptation. We conclude with five questions challenging the MR:GR balance hypothesis.
Collapse
Affiliation(s)
- E R de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - O C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - A F de Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina.
| | - R H de Rijk
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands & Department of Clinical Psychology, Leiden University, The Netherlands.
| | - M Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; University of Groningen, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
42
|
Anteroventral bed nuclei of the stria terminalis neurocircuitry: Towards an integration of HPA axis modulation with coping behaviors - Curt Richter Award Paper 2017. Psychoneuroendocrinology 2018; 89:239-249. [PMID: 29395488 PMCID: PMC5878723 DOI: 10.1016/j.psyneuen.2017.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/19/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
A network of interconnected cell groups in the limbic forebrain regulates hypothalamic-pituitary-adrenal (HPA) axis activation and behavioral responses to emotionally stressful experiences, and chronic disruption of these systems chronically is implicated in the pathogenesis of psychiatric illnesses. A significant challenge has been to unravel the circuitry and mechanisms providing for regulation of HPA activity, as these limbic forebrain regions do not provide any direct innervation of HPA effector cell groups in the paraventricular hypothalamus (PVH). Moreover, information regarding how endocrine and behavioral responses are integrated has remained obscure. Here we summarize work from our laboratory showing that anteroventral (av) bed nuclei of the stria terminalis (BST) acts as a point of convergence between the limbic forebrain and PVH, receiving and coordinating upstream influences, and restraining HPA axis output in response to inescapable stressors. Recent studies highlight a more expansive modulatory role for avBST as one that coordinates HPA-inhibitory influences while concurrently suppressing passive behavioral responses via divergent pathways. avBST is uniquely positioned to convey endocrine and behavioral alterations resulting from chronic stress exposure, such as HPA axis hyperactivity and increased passive coping strategies, that may result from synaptic reorganization in upstream limbic cortical regions. We discuss how these studies give new insights into understanding the systems-level organization of stress response circuitry, the neurobiology of coping styles, and BST circuit dysfunction in stress-related psychiatric disorders.
Collapse
|
43
|
Lin X, Itoga CA, Taha S, Li MH, Chen R, Sami K, Berton F, Francesconi W, Xu X. c-Fos mapping of brain regions activated by multi-modal and electric foot shock stress. Neurobiol Stress 2018; 8:92-102. [PMID: 29560385 PMCID: PMC5857493 DOI: 10.1016/j.ynstr.2018.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/17/2018] [Accepted: 02/01/2018] [Indexed: 12/29/2022] Open
Abstract
Real-world stressors are complex and multimodal, involving physical, psychological, and social dimensions. However, the brain networks that mediate stress responses to these stimuli need to be further studied. We used c-Fos mapping in mice to characterize brain circuits activated by exposure to a single episode of multimodal stress (MMS), and compared these to circuits activated by electric foot shocks (EFS). We focused on characterizing c-Fos activity in stress-relevant brain regions including the paraventricular nucleus (PVN) of the hypothalamus and the bed nucleus of the stria terminalis (BNST). We also assessed stress-induced activation of CRH-positive neurons in each of these structures. MMS and EFS activated an overlapping network of brain regions with a similar time course. c-Fos expression within the PVN and the BNST peaked 30–60 min after exposure to both MMS and EFS, and returned to baseline levels within 24 h. Quantification of c-Fos expression within BNST subregions revealed that while c-Fos expression peaked in all subregions 30–60 min after MMS and EFS exposure, the neuronal density of c-Fos expression was significantly higher in the dorsomedial and ventral BNST relative to the dorsolateral BNST. Our preliminary assessment indicated that a great majority of MMS or EFS-activated neurons in the PVN were CRH-positive (>87%); in contrast, about 6–35% of activated neurons in the BNST were CRH-positive. Our findings indicate that both MMS and EFS are effective at activating stress-relevant brain areas and support the use of MMS as an effective approach for studying multidimensional stress in animal models. The results also reveal that the PVN and BNST are part of a common neural circuit substrate involved in neural processing related to stress.
Collapse
Affiliation(s)
- Xiaoxiao Lin
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Christy A Itoga
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Sharif Taha
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112-5820, United States
| | - Ming H Li
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Ryan Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Kirolos Sami
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Fulvia Berton
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Walter Francesconi
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States.,Department of Biomedical Engineering, University of California, Irvine, CA 92697-2715, United States.,Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, United States
| |
Collapse
|
44
|
Nasanbuyan N, Yoshida M, Takayanagi Y, Inutsuka A, Nishimori K, Yamanaka A, Onaka T. Oxytocin-Oxytocin Receptor Systems Facilitate Social Defeat Posture in Male Mice. Endocrinology 2018; 159:763-775. [PMID: 29186377 DOI: 10.1210/en.2017-00606] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/14/2017] [Indexed: 11/19/2022]
Abstract
Social stress has deteriorating effects on various psychiatric diseases. In animal models, exposure to socially dominant conspecifics (i.e., social defeat stress) evokes a species-specific defeat posture via unknown mechanisms. Oxytocin neurons have been shown to be activated by stressful stimuli and to have prosocial and anxiolytic actions. The roles of oxytocin during social defeat stress remain unclear. Expression of c-Fos, a marker of neuronal activation, in oxytocin neurons and in oxytocin receptor‒expressing neurons was investigated in mice. The projection of oxytocin neurons was examined with an anterograde viral tracer, which induces selective expression of membrane-targeted palmitoylated green fluorescent protein in oxytocin neurons. Defensive behaviors during double exposure to social defeat stress in oxytocin receptor‒deficient mice were analyzed. After social defeat stress, expression of c-Fos protein was increased in oxytocin neurons of the bed nucleus of the stria terminalis, supraoptic nucleus, and paraventricular hypothalamic nucleus. Expression of c-Fos protein was also increased in oxytocin receptor‒expressing neurons of brain regions, including the ventrolateral part of the ventromedial hypothalamus and ventrolateral periaqueductal gray. Projecting fibers from paraventricular hypothalamic oxytocin neurons were found in the ventrolateral part of the ventromedial hypothalamus and in the ventrolateral periaqueductal gray. Oxytocin receptor‒deficient mice showed reduced defeat posture during the second social defeat stress. These findings suggest that social defeat stress activates oxytocin-oxytocin receptor systems, and the findings are consistent with the view that activation of the oxytocin receptor in brain regions, including the ventrolateral part of the ventromedial hypothalamus and the ventrolateral periaqueductal gray, facilitates social defeat posture.
Collapse
Affiliation(s)
- Naranbat Nasanbuyan
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Masahide Yoshida
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Yuki Takayanagi
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Ayumu Inutsuka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Katsuhiko Nishimori
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai-shi, Miyagi-ken, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| |
Collapse
|
45
|
Ho YC, Lin TB, Hsieh MC, Lai CY, Chou D, Chau YP, Chen GD, Peng HY. Periaqueductal Gray Glutamatergic Transmission Governs Chronic Stress-Induced Depression. Neuropsychopharmacology 2018; 43:302-312. [PMID: 28853438 PMCID: PMC5729570 DOI: 10.1038/npp.2017.199] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/19/2022]
Abstract
The mechanisms underlying chronic stress-induced dysfunction of glutamatergic transmission that contribute to helplessness-associated depressive disorder are unknown. We investigated the relationship of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and stress, and the neuroplastic changes of stress-induced depression-like behavior in the ventrolateral periaqueductal gray (vlPAG). We conducted whole-cell patch-clamp electrophysiological recordings in the vlPAG neurons. Depression-like behavior was assayed using tail suspension test and sucrose preference test. Surface and cytosolic glutamate receptor 1 (GluR1) AMPA receptor expression was analyzed using western blotting. Phosphorylated GluR1 expression was quantified using western blotting and immunohistochemical analysis. Unpredictable inescapable foot shock stress caused reduction in glutamatergic transmission originating from both presynaptic and postsynaptic loci in the vlPAG that was associated with behavioral despair and anhedonia in chronic stress-induced depression. Pharmacological inhibition of GluR1 function in the vlPAG caused depression-like behavior. Diminished glutamatergic transmission was due to reduced glutamate release presynaptically and enhanced GluR1-endocytosis from the cell surface postsynaptically. Chronic stress-induced neuroplastic changes and maladaptive behavior were reversed and mimicked by administration of glucocorticoid receptor (GR) antagonist and agonist, respectively. However, chronic stress did not affect γ-aminobutyric acid (GABA)-mediated inhibitory synaptic transmission in the vlPAG. These results demonstrate that depression-like behavior is associated with remarkable reduction in glutamatergic, but not GABAergic, transmission in the vlPAG. These neuroplastic changes and maladaptive behavior are attributed to GR-dependent mechanisms. As reduced GluR1-associated responses in the vlPAG contribute to chronic stress-induced neuroplastic changes, this cellular mechanism may be a critical component in the pathogenesis of stress-associated neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yu-Cheng Ho
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan,Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan,Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Dylan Chou
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yat-Pang Chau
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Gin-Den Chen
- Department of Obstetrics and Gynecology, Chung-Shan Medical University Hospital, Chung-Shan Medical University, Taichung, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan,Department of Medicine, Mackay Medical College, No. 46, Section 3, Zhongzheng Road, Sanzhi District, New Taipei, 25245, Taiwan, Tel: +886 2 2636 0303 ext 1239, Fax: +886 2 2636 1295, E-mail:
| |
Collapse
|
46
|
Leon-Mercado L, Herrera Moro Chao D, Basualdo MDC, Kawata M, Escobar C, Buijs RM. The Arcuate Nucleus: A Site of Fast Negative Feedback for Corticosterone Secretion in Male Rats. eNeuro 2017; 4:ENEURO.0350-16.2017. [PMID: 28275717 PMCID: PMC5334455 DOI: 10.1523/eneuro.0350-16.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 12/04/2022] Open
Abstract
Variations in circulating corticosterone (Cort) are driven by the paraventricular nucleus of the hypothalamus (PVN), mainly via the sympathetic autonomic nervous system (ANS) directly stimulating Cort release from the adrenal gland and via corticotropin-releasing hormone targeting the adenohypophysis to release adrenocorticotropic hormone (ACTH). Cort feeds back through glucocorticoid receptors (GRs). Here we show in male Wistar rats that PVN neurons projecting to the adrenal gland do not express GRs, leaving the question of how the ANS in the PVN gets information about circulating Cort levels to control the adrenal. Since the arcuate nucleus (ARC) shows a less restrictive blood-brain barrier, expresses GRs, and projects to the PVN, we investigated whether the ARC can detect and produce fast adjustments of circulating Cort. In low Cort conditions (morning), local microdialysis in the ARC with type I GR antagonist produced a fast and sustained increase of Cort. This was not observed with a type II antagonist. At the circadian peak levels of Cort (afternoon), a type II GR antagonist, but not a type I antagonist, increased Cort levels but not ACTH levels. Antagonist infusions in the PVN did not modify circulating Cort levels, demonstrating the specificity of the ARC to give Cort negative feedback. Furthermore, type I and II GR agonists in the ARC prevented the increase of Cort after stress, demonstrating the role of the ARC as sensor to modulate Cort release. Our findings show that the ARC may be essential to sense blood levels of Cort and adapt Cort secretion depending on such conditions as stress or time of day.
Collapse
Affiliation(s)
- Luis Leon-Mercado
- Departamento De Biología Celular y Fisiología, Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México, 04510 Mexico City, Mexico
| | - Daniela Herrera Moro Chao
- Department of Medical Biochemistry, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - María del Carmen Basualdo
- Departamento De Biología Celular y Fisiología, Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México, 04510 Mexico City, Mexico
| | - Mitsuhiro Kawata
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- School of Health Sciences, Bukkyo University, Kyoto 603-8301, Japan
| | - Carolina Escobar
- Departamento De Anatomía, Facultad De Medicina, Universidad Nacional Autónoma De México, 04510 Mexico City, Mexico
| | - Ruud M. Buijs
- Departamento De Biología Celular y Fisiología, Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México, 04510 Mexico City, Mexico
| |
Collapse
|