1
|
Sha R, Wu M, Wang P, Chen Z, Lei W, Wang S, Gong S, Liang G, Zhao R, Tao Y. Adolescent mice exposed to TBI developed PD-like pathology in middle age. Transl Psychiatry 2025; 15:27. [PMID: 39863574 PMCID: PMC11763066 DOI: 10.1038/s41398-025-03232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/08/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice. More than half of the mice exhibited PD-like behavior at 6 months post injury. PD-like behavioral dysfunction and pathological changes were aggravated with the injured time extension in chronic phase of TBI. The loss of tyrosine hydroxylase positive (TH+) neurons in the SN were partly associated with the accumulation of misfolded a-Synuclein and the cytoplasmic translocation of TDP-43 from nuclear. Moreover, the present of chronic inflammation was observed in SN of TBI mice, as evidenced by the enhancement of proinflammatory cytokines and reactive astrocytes and microgliosis post lesion. The enhanced phagocytosis of reactive microglia accounted for the reduction of dendrite spines. Our results revealed that chronic inflammation associated with the damage of TH+ neurons and the development of progressive PD-like pathology after chronic TBI in mice. Our study shed new light on the TBI-triggered molecular events on PD-like pathology. Additional research is required to have a deeper understanding of the molecular factors underlying the impairment of dopaminergic neurons following TBI.
Collapse
Affiliation(s)
- Rong Sha
- Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, China
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mingzhe Wu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, China
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Pengfei Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, China
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, China
| | - Ziyuan Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Wei Lei
- Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China
| | - Shimiao Wang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China
| | - Shun Gong
- Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China.
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China.
- China Medical University, Shenyang, Liaoning, China.
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, China.
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, China.
| | - Yingqun Tao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China.
- China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Morrison LM, Huang H, Handler HP, Fu M, Jones DM, Bushart DD, Pappas SS, Orr HT, Shakkottai VG. Increased intrinsic membrane excitability is associated with olivary hypertrophy in spinocerebellar ataxia type 1. Hum Mol Genet 2024; 33:2159-2176. [PMID: 39475127 PMCID: PMC11630738 DOI: 10.1093/hmg/ddae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
One of the characteristic regions of brainstem degeneration across multiple spinocerebellar ataxias (SCAs) is the inferior olive (IO), a medullary nucleus that plays a key role in motor learning. The vulnerability of IO neurons remains a poorly-understood area of SCA pathology. In this work, we address this by evaluating IO disease in SCA1, a prototypic inherited olivopontocerebellar atrophy, using the genetically-precise SCA1 knock-in (SCA1-KI) mouse. We find that these mice exhibit olivary hypertrophy, a phenotype reminiscent of a degenerative disorder known as hypertrophic olivary degeneration (HOD). Similar to early stages of HOD, SCA1-KI IO neurons display early dendritic lengthening and later somatic expansion without frank cell loss. Though HOD is known to be caused by brainstem lesions that disrupt IO inhibitory innervation, we observe no loss of inhibitory terminals in the SCA1-KI IO. Additionally, we find that a separate mouse model of SCA1 in which mutant ATXN1 is expressed solely in cerebellar Purkinje cells shows no evidence of olivary hypertrophy. Patch-clamp recordings from brainstem slices indicate that SCA1-KI IO neurons are hyperexcitable, generating spike trains in response to membrane depolarization. Transcriptome analysis further reveals reduced medullary expression of ion channels responsible for IO neuron spike afterhyperpolarization (AHP)-a result that appears to have a functional consequence, as SCA1-KI IO neuron spikes exhibit a diminished AHP. These findings suggest that expression of mutant ATXN1 in IO neurons results in an HOD-like olivary hypertrophy, in association with increased intrinsic membrane excitability and ion channel transcriptional dysregulation.
Collapse
Affiliation(s)
- Logan M Morrison
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, United States
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 6124 Harry Hines Blvd. Dallas, TX 75390, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, 5323 Harry Hines Blvd., TX 75390, United States
| | - Haoran Huang
- Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, United States
- College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Hillary P Handler
- Molecular Diagnostics Laboratory, University of Minnesota Fairview Medical Center, Minneapolis, MN 55455, United States
| | - Min Fu
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 6124 Harry Hines Blvd. Dallas, TX 75390, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, 5323 Harry Hines Blvd., TX 75390, United States
| | - Deborah M Jones
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, 5323 Harry Hines Blvd., TX 75390, United States
| | - David D Bushart
- College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Samuel S Pappas
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 6124 Harry Hines Blvd. Dallas, TX 75390, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, 5323 Harry Hines Blvd., TX 75390, United States
| | - Harry T Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, 420 Delaware Street SE, MN 55455, United States
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, United States
| | - Vikram G Shakkottai
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 6124 Harry Hines Blvd. Dallas, TX 75390, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, 5323 Harry Hines Blvd., TX 75390, United States
| |
Collapse
|
3
|
Hamel K, Moncada EL, Sheeler C, Rosa JG, Gilliat S, Zhang Y, Cvetanovic M. Cerebellar Heterogeneity and Selective vulnerability in Spinocerebellar Ataxia Type 1 (SCA1). Neurobiol Dis 2024; 197:106530. [PMID: 38750673 PMCID: PMC11184674 DOI: 10.1016/j.nbd.2024.106530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024] Open
Abstract
Heterogeneity is one of the key features of the healthy brain and selective vulnerability characterizes many, if not all, neurodegenerative diseases. While cerebellum contains majority of brain cells, neither its heterogeneity nor selective vulnerability in disease are well understood. Here we describe molecular, cellular and functional heterogeneity in the context of healthy cerebellum as well as in cerebellar disease Spinocerebellar Ataxia Type 1 (SCA1). We first compared disease pathology in cerebellar vermis and hemispheres across anterior to posterior axis in a knock-in SCA1 mouse model. Using immunohistochemistry, we demonstrated earlier and more severe pathology of PCs and glia in the posterior cerebellar vermis of SCA1 mice. We also demonstrate heterogeneity of Bergmann glia in the unaffected, wild-type mice. Then, using RNA sequencing, we found both shared, as well as, posterior cerebellum-specific molecular mechanisms of pathogenesis that include exacerbated gene dysregulation, increased number of altered signaling pathways, and decreased pathway activity scores in the posterior cerebellum of SCA1 mice. We demonstrated unexpectedly large differences in the gene expression between posterior and anterior cerebellar vermis of wild-type mice, indicative of robust intraregional heterogeneity of gene expression in the healthy cerebellum. Additionally, we found that SCA1 disease profoundly reduces intracerebellar heterogeneity of gene expression. Further, using fiber photometry, we found that population level PC calcium activity was altered in the posterior lobules in SCA1 mice during walking. We also identified regional differences in the population level activity of Purkinje cells (PCs) in unrestrained wild-type mice that were diminished in SCA1 mice.
Collapse
Affiliation(s)
| | | | | | - Juao-Guilherme Rosa
- Department of Neuroscience, University of Minnesota, USA; Current affiliation Graduate Program for Neuroscience, Boston University, 677 Beacon Street, Boston, MA 02215, USA
| | - Stephen Gilliat
- Department of Neuroscience, University of Minnesota, USA; Current affiliation Department of Neuroscience, Yale University, USA
| | - Ying Zhang
- Department of Neuroscience, University of Minnesota, USA; Minnesota Supercomputing Institute, University of Minnesota, USA; Institute for Translational Neuroscience, University of Minnesota, 2101 6(th) Street SE, Minneapolis, MN 55455, USA
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, USA; Institute for Translational Neuroscience, University of Minnesota, 2101 6(th) Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Sekerková G, Kilic S, Cheng YH, Fredrick N, Osmani A, Kim H, Opal P, Martina M. Phenotypical, genotypical and pathological characterization of the moonwalker mouse, a model of ataxia. Neurobiol Dis 2024; 195:106492. [PMID: 38575093 PMCID: PMC11089908 DOI: 10.1016/j.nbd.2024.106492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
We performed a comprehensive study of the morphological, functional, and genetic features of moonwalker (MWK) mice, a mouse model of spinocerebellar ataxia caused by a gain of function of the TRPC3 channel. These mice show numerous behavioral symptoms including tremor, altered gait, circling behavior, impaired motor coordination, impaired motor learning and decreased limb strength. Cerebellar pathology is characterized by early and almost complete loss of unipolar brush cells as well as slowly progressive, moderate loss of Purkinje cell (PCs). Structural damage also includes loss of synaptic contacts from parallel fibers, swollen ER structures, and degenerating axons. Interestingly, no obvious correlation was observed between PC loss and severity of the symptoms, as the phenotype stabilizes around 2 months of age, while the cerebellar pathology is progressive. This is probably due to the fact that PC function is severely impaired much earlier than the appearance of PC loss. Indeed, PC firing is already impaired in 3 weeks old mice. An interesting feature of the MWK pathology that still remains to be explained consists in a strong lobule selectivity of the PC loss, which is puzzling considering that TRPC is expressed in every PC. Intriguingly, genetic analysis of MWK cerebella shows, among other alterations, changes in the expression of both apoptosis inducing and resistance factors possibly suggesting that damaged PCs initiate specific cellular pathways that protect them from overt cell loss.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA.
| | - Sumeyra Kilic
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Yen-Hsin Cheng
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Natalie Fredrick
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Anne Osmani
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Haram Kim
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Puneet Opal
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Marco Martina
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Jaarsma D, Birkisdóttir MB, van Vossen R, Oomen DWGD, Akhiyat O, Vermeij WP, Koekkoek SKE, De Zeeuw CI, Bosman LWJ. Different Purkinje cell pathologies cause specific patterns of progressive gait ataxia in mice. Neurobiol Dis 2024; 192:106422. [PMID: 38286390 DOI: 10.1016/j.nbd.2024.106422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Gait ataxia is one of the most common and impactful consequences of cerebellar dysfunction. Purkinje cells, the sole output neurons of the cerebellar cortex, are often involved in the underlying pathology, but their specific functions during locomotor control in health and disease remain obfuscated. We aimed to describe the effect of gradual adult-onset Purkinje cell degeneration on gaiting patterns in mice, and to determine whether two different mechanisms that both lead to Purkinje cell degeneration cause different patterns in the development of gait ataxia. Using the ErasmusLadder together with a newly developed limb detection algorithm and machine learning-based classification, we subjected mice to a challenging locomotor task with detailed analysis of single limb parameters, intralimb coordination and whole-body movement. We tested two Purkinje cell-specific mouse models, one involving stochastic cell death due to impaired DNA repair mechanisms (Pcp2-Ercc1-/-), the other carrying the mutation that causes spinocerebellar ataxia type 1 (Pcp2-ATXN1[82Q]). Both mouse models showed progressive gaiting deficits, but the sequence with which gaiting parameters deteriorated was different between mouse lines. Our longitudinal approach revealed that gradual loss of Purkinje cell function can lead to a complex pattern of loss of function over time, and that this pattern depends on the specifics of the pathological mechanisms involved. We hypothesize that this variability will also be present in disease progression in patients, and that our findings will facilitate the study of therapeutic interventions in mice, as subtle changes in locomotor abilities can be quantified by our methods.
Collapse
Affiliation(s)
- Dick Jaarsma
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands.
| | - Maria B Birkisdóttir
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands
| | - Randy van Vossen
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands
| | - Demi W G D Oomen
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands
| | - Oussama Akhiyat
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands
| | - Wilbert P Vermeij
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands; Oncode Institute, 3521 AL, Utrecht, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Science, 1105 BA, Amsterdam, the Netherlands
| | - Laurens W J Bosman
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Orfali R, Alwatban AZ, Orfali RS, Lau L, Chea N, Alotaibi AM, Nam YW, Zhang M. Oxidative stress and ion channels in neurodegenerative diseases. Front Physiol 2024; 15:1320086. [PMID: 38348223 PMCID: PMC10859863 DOI: 10.3389/fphys.2024.1320086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Numerous neurodegenerative diseases result from altered ion channel function and mutations. The intracellular redox status can significantly alter the gating characteristics of ion channels. Abundant neurodegenerative diseases associated with oxidative stress have been documented, including Parkinson's, Alzheimer's, spinocerebellar ataxia, amyotrophic lateral sclerosis, and Huntington's disease. Reactive oxygen and nitrogen species compounds trigger posttranslational alterations that target specific sites within the subunits responsible for channel assembly. These alterations include the adjustment of cysteine residues through redox reactions induced by reactive oxygen species (ROS), nitration, and S-nitrosylation assisted by nitric oxide of tyrosine residues through peroxynitrite. Several ion channels have been directly investigated for their functional responses to oxidizing agents and oxidative stress. This review primarily explores the relationship and potential links between oxidative stress and ion channels in neurodegenerative conditions, such as cerebellar ataxias and Parkinson's disease. The potential correlation between oxidative stress and ion channels could hold promise for developing innovative therapies for common neurodegenerative diseases.
Collapse
Affiliation(s)
- Razan Orfali
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Adnan Z. Alwatban
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Liz Lau
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Noble Chea
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Abdullah M. Alotaibi
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| |
Collapse
|
7
|
Morrison LM, Huang H, Handler HP, Fu M, Bushart DD, Pappas SS, Orr HT, Shakkottai VG. Increased intrinsic membrane excitability is associated with hypertrophic olivary degeneration in spinocerebellar ataxia type 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563657. [PMID: 37961407 PMCID: PMC10634770 DOI: 10.1101/2023.10.23.563657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
One of the characteristic areas of brainstem degeneration across multiple spinocerebellar ataxias (SCAs) is the inferior olive (IO), a medullary nucleus that plays a key role in motor learning. In addition to its vulnerability in SCAs, the IO is also susceptible to a distinct pathology known as hypertrophic olivary degeneration (HOD). Clinically, HOD has been exclusively observed after lesions in the brainstem disrupt inhibitory afferents to the IO. Here, for the first time, we describe HOD in another context: spinocerebellar ataxia type 1 (SCA1). Using the genetically-precise SCA1 knock-in mouse model (SCA1-KI; both sexes used), we assessed SCA1-associated changes in IO neuron structure and function. Concurrent with degeneration, we found that SCA1-KI IO neurons are hypertrophic, exhibiting early dendrite lengthening and later somatic expansion. Unlike in previous descriptions of HOD, we observed no clear loss of IO inhibitory innervation; nevertheless, patch-clamp recordings from brainstem slices reveal that SCA1-KI IO neurons are hyperexcitable. Rather than synaptic disinhibition, we identify increases in intrinsic membrane excitability as the more likely mechanism underlying this novel SCA1 phenotype. Specifically, transcriptome analysis indicates that SCA1-KI IO hyperexcitability is associated with a reduced medullary expression of ion channels responsible for spike afterhyperpolarization (AHP) in IO neurons - a result that has a functional consequence, as SCA1-KI IO neuron spikes exhibit a diminished AHP. These results reveal membrane excitability as a potential link between disparate causes of IO degeneration, suggesting that HOD can result from any cause, intrinsic or extrinsic, that increases excitability of the IO neuron membrane.
Collapse
Affiliation(s)
- Logan M. Morrison
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haoran Huang
- Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210 USA
- College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Hillary P. Handler
- Molecular Diagnostics Laboratory, University of Minnesota Fairview Medical Center, Minneapolis, MN 55455, USA
| | - Min Fu
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David D. Bushart
- College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Samuel S. Pappas
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Harry T. Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vikram G. Shakkottai
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Nanclares C, Noriega-Prieto JA, Labrada-Moncada FE, Cvetanovic M, Araque A, Kofuji P. Altered calcium signaling in Bergmann glia contributes to spinocerebellar ataxia type-1 in a mouse model of SCA1. Neurobiol Dis 2023; 187:106318. [PMID: 37802154 PMCID: PMC10624966 DOI: 10.1016/j.nbd.2023.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by an abnormal expansion of glutamine (Q) encoding CAG repeats in the ATAXIN1 (ATXN1) gene and characterized by progressive cerebellar ataxia, dysarthria, and eventual deterioration of bulbar functions. SCA1 shows severe degeneration of cerebellar Purkinje cells (PCs) and activation of Bergmann glia (BG), a type of cerebellar astroglia closely associated with PCs. Combining electrophysiological recordings, calcium imaging techniques, and chemogenetic approaches, we have investigated the electrical intrinsic and synaptic properties of PCs and the physiological properties of BG in SCA1 mouse model expressing mutant ATXN1 only in PCs. PCs of SCA1 mice displayed lower spontaneous firing rate and larger slow afterhyperpolarization currents (sIAHP) than wildtype mice, whereas the properties of the synaptic inputs were unaffected. BG of SCA1 mice showed higher calcium hyperactivity and gliotransmission, manifested by higher frequency of NMDAR-mediated slow inward currents (SICs) in PC. Preventing the BG calcium hyperexcitability of SCA1 mice by loading BG with the calcium chelator BAPTA restored sIAHP and spontaneous firing rate of PCs to similar levels of wildtype mice. Moreover, mimicking the BG hyperactivity by activating BG expressing Gq-DREADDs in wildtype mice reproduced the SCA1 pathological phenotype of PCs, i.e., enhancement of sIAHP and decrease of spontaneous firing rate. These results indicate that the intrinsic electrical properties of PCs, but not their synaptic properties, were altered in SCA1 mice and that these alterations were associated with the hyperexcitability of BG. Moreover, preventing BG hyperexcitability in SCA1 mice and promoting BG hyperexcitability in wildtype mice prevented and mimicked, respectively, the pathological electrophysiological phenotype of PCs. Therefore, BG plays a relevant role in the dysfunction of the electrical intrinsic properties of PCs in SCA1 mice, suggesting that they may serve as potential targets for therapeutic approaches to treat the spinocerebellar ataxia type 1.
Collapse
Affiliation(s)
- Carmen Nanclares
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
9
|
Pilotto F, Douthwaite C, Diab R, Ye X, Al Qassab Z, Tietje C, Mounassir M, Odriozola A, Thapa A, Buijsen RAM, Lagache S, Uldry AC, Heller M, Müller S, van Roon-Mom WMC, Zuber B, Liebscher S, Saxena S. Early molecular layer interneuron hyperactivity triggers Purkinje neuron degeneration in SCA1. Neuron 2023; 111:2523-2543.e10. [PMID: 37321222 PMCID: PMC10431915 DOI: 10.1016/j.neuron.2023.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/17/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Toxic proteinaceous deposits and alterations in excitability and activity levels characterize vulnerable neuronal populations in neurodegenerative diseases. Using in vivo two-photon imaging in behaving spinocerebellar ataxia type 1 (Sca1) mice, wherein Purkinje neurons (PNs) degenerate, we identify an inhibitory circuit element (molecular layer interneurons [MLINs]) that becomes prematurely hyperexcitable, compromising sensorimotor signals in the cerebellum at early stages. Mutant MLINs express abnormally elevated parvalbumin, harbor high excitatory-to-inhibitory synaptic density, and display more numerous synaptic connections on PNs, indicating an excitation/inhibition imbalance. Chemogenetic inhibition of hyperexcitable MLINs normalizes parvalbumin expression and restores calcium signaling in Sca1 PNs. Chronic inhibition of mutant MLINs delayed PN degeneration, reduced pathology, and ameliorated motor deficits in Sca1 mice. Conserved proteomic signature of Sca1 MLINs, shared with human SCA1 interneurons, involved the higher expression of FRRS1L, implicated in AMPA receptor trafficking. We thus propose that circuit-level deficits upstream of PNs are one of the main disease triggers in SCA1.
Collapse
Affiliation(s)
- Federica Pilotto
- Department of Neurology, Inselspital University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Christopher Douthwaite
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Rim Diab
- Department of Neurology, Inselspital University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - XiaoQian Ye
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Zahraa Al Qassab
- Department of Neurology, Inselspital University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Christoph Tietje
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Meriem Mounassir
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, Martinsried, Germany
| | | | - Aishwarya Thapa
- Department of Neurology, Inselspital University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sophie Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Stefan Müller
- Flow Cytometry and Cell sorting, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; University Hospital Cologne, Deptartment of Neurology, Cologne, Germany.
| | - Smita Saxena
- Department of Neurology, Inselspital University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
10
|
Rahman MA, Chandrashekar DV, Nam YW, Syed B, Salehi D, Aliabadi HM, Zhang M, Mehvar R. Development and validation of an ultrahigh-performance liquid chromatography-tandem mass spectrometry method to investigate the plasma pharmacokinetics of a K Ca 2.2/K Ca 2.3 positive allosteric modulator in mice. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9537. [PMID: 37184249 PMCID: PMC10330529 DOI: 10.1002/rcm.9537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
RATIONALE There is currently no treatment for spinocerebellar ataxias (SCAs), which are a group of genetic disorders that often cause a lack of coordination, difficulty walking, slurred speech, tremors, and eventually death. Activation of KCa 2.2/KCa 2.3 channels reportedly exerts beneficial effects in SCAs. Here, we report the development and validation of an analytical method for quantitating a recently developed positive allosteric modulator of KCa 2.2/KCa 2.3 channels (compound 2q) in mouse plasma. METHODS Mouse plasma samples (10 μL) containing various concentrations of 2q were subjected to protein precipitation in the presence of a structurally similar internal standard (IS). Subsequently, the analytes were separated on a C18 ultrahigh-performance liquid chromatography column and detected by a tandem mass spectrometer. The method was validated using US Food and Drug Administration (FDA) guidelines. Finally, the validated assay was applied to the measurement of the plasma concentrations of 2q in plasma samples taken from mice after single intravenous doses of 2 mg/kg of 2q, and the pharmacokinetic parameters of 2q were determined. RESULTS The calibration standards were linear (r2 ≥ 0.99) in the range of 1.56-200 nM of 2q with intra- and inter-run accuracy and precision values within the FDA guidelines. The lower limit of quantitation of the assay was 1.56 nM (0.258 pg on the column). The recoveries of 2q and IS from plasma were >94%, with no appreciable matrix effect. The assay showed no significant carryover, and the plasma samples stored at -80°C or the processed samples stored in the autosampler at 10°C were stable for at least 3 weeks and 36 h, respectively. After intravenous injection, 2q showed a bi-exponential decline pattern in the mouse plasma, with a clearance of 30 mL/min/kg, a terminal volume of distribution of 1.93 mL/kg, and a terminal half-life of 45 min. CONCLUSIONS The developed assay is suitable for preclinical pharmacokinetic-pharmacodynamic studies of 2q as a potential drug candidate for ataxias.
Collapse
Affiliation(s)
- Mohammad Asikur Rahman
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California, USA
| | | | - Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California, USA
| | - Basir Syed
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California, USA
| | - David Salehi
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California, USA
| | - Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California, USA
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California, USA
| | - Reza Mehvar
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California, USA
| |
Collapse
|
11
|
Buijsen RAM, Hu M, Sáez-González M, Notopoulou S, Mina E, Koning W, Gardiner SL, van der Graaf LM, Daoutsali E, Pepers BA, Mei H, van Dis V, Frimat JP, van den Maagdenberg AMJM, Petrakis S, van Roon-Mom WMC. Spinocerebellar Ataxia Type 1 Characteristics in Patient-Derived Fibroblast and iPSC-Derived Neuronal Cultures. Mov Disord 2023; 38:1428-1442. [PMID: 37278528 DOI: 10.1002/mds.29446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/23/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by a polyglutamine expansion in the ataxin-1 protein resulting in neuropathology including mutant ataxin-1 protein aggregation, aberrant neurodevelopment, and mitochondrial dysfunction. OBJECTIVES Identify SCA1-relevant phenotypes in patient-specific fibroblasts and SCA1 induced pluripotent stem cells (iPSCs) neuronal cultures. METHODS SCA1 iPSCs were generated and differentiated into neuronal cultures. Protein aggregation and neuronal morphology were evaluated using fluorescent microscopy. Mitochondrial respiration was measured using the Seahorse Analyzer. The multi-electrode array (MEA) was used to identify network activity. Finally, gene expression changes were studied using RNA-seq to identify disease-specific mechanisms. RESULTS Bioenergetics deficits in patient-derived fibroblasts and SCA1 neuronal cultures showed altered oxygen consumption rate, suggesting involvement of mitochondrial dysfunction in SCA1. In SCA1 hiPSC-derived neuronal cells, nuclear and cytoplasmic aggregates were identified similar in localization as aggregates in SCA1 postmortem brain tissue. SCA1 hiPSC-derived neuronal cells showed reduced dendrite length and number of branching points while MEA recordings identified delayed development in network activity in SCA1 hiPSC-derived neuronal cells. Transcriptome analysis identified 1050 differentially expressed genes in SCA1 hiPSC-derived neuronal cells associated with synapse organization and neuron projection guidance, where a subgroup of 151 genes was highly associated with SCA1 phenotypes and linked to SCA1 relevant signaling pathways. CONCLUSIONS Patient-derived cells recapitulate key pathological features of SCA1 pathogenesis providing a valuable tool for the identification of novel disease-specific processes. This model can be used for high throughput screenings to identify compounds, which may prevent or rescue neurodegeneration in this devastating disease. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Michel Hu
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Maria Sáez-González
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Sofia Notopoulou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Eleni Mina
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Winette Koning
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Sarah L Gardiner
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Linda M van der Graaf
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Elena Daoutsali
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Barry A Pepers
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Vera van Dis
- Department of Pathology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Department of Pathology, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Jean-Philippe Frimat
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Spyros Petrakis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
12
|
Kapfhammer JP, Shimobayashi E. Viewpoint: spinocerebellar ataxias as diseases of Purkinje cell dysfunction rather than Purkinje cell loss. Front Mol Neurosci 2023; 16:1182431. [PMID: 37426070 PMCID: PMC10323145 DOI: 10.3389/fnmol.2023.1182431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of hereditary neurodegenerative diseases mostly affecting cerebellar Purkinje cells caused by a wide variety of different mutations. One subtype, SCA14, is caused by mutations of Protein Kinase C gamma (PKCγ), the dominant PKC isoform present in Purkinje cells. Mutations in the pathway in which PKCγ is active, i.e., in the regulation of calcium levels and calcium signaling in Purkinje cells, are the cause of several other variants of SCA. In SCA14, many of the observed mutations in the PKCγ gene were shown to increase the basal activity of PKCγ, raising the possibility that increased activity of PKCγ might be the cause of most forms of SCA14 and might also be involved in the pathogenesis of SCA in related subtypes. In this viewpoint and review article we will discuss the evidence for and against such a major role of PKCγ basal activity and will suggest a hypothesis of how PKCγ activity and the calcium signaling pathway may be involved in the pathogenesis of SCAs despite the different and sometimes opposing effects of mutations affecting these pathways. We will then widen the scope and propose a concept of SCA pathogenesis which is not primarily driven by cell death and loss of Purkinje cells but rather by dysfunction of Purkinje cells which are still present and alive in the cerebellum.
Collapse
|
13
|
Huang H, Shakkottai VG. Targeting Ion Channels and Purkinje Neuron Intrinsic Membrane Excitability as a Therapeutic Strategy for Cerebellar Ataxia. Life (Basel) 2023; 13:1350. [PMID: 37374132 DOI: 10.3390/life13061350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In degenerative neurological disorders such as Parkinson's disease, a convergence of widely varying insults results in a loss of dopaminergic neurons and, thus, the motor symptoms of the disease. Dopamine replacement therapy with agents such as levodopa is a mainstay of therapy. Cerebellar ataxias, a heterogeneous group of currently untreatable conditions, have not been identified to have a shared physiology that is a target of therapy. In this review, we propose that perturbations in cerebellar Purkinje neuron intrinsic membrane excitability, a result of ion channel dysregulation, is a common pathophysiologic mechanism that drives motor impairment and vulnerability to degeneration in cerebellar ataxias of widely differing genetic etiologies. We further propose that treatments aimed at restoring Purkinje neuron intrinsic membrane excitability have the potential to be a shared therapy in cerebellar ataxia akin to levodopa for Parkinson's disease.
Collapse
Affiliation(s)
- Haoran Huang
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Vikram G Shakkottai
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
14
|
Kerkhof LMC, van de Warrenburg BPC, van Roon-Mom WMC, Buijsen RAM. Therapeutic Strategies for Spinocerebellar Ataxia Type 1. Biomolecules 2023; 13:biom13050788. [PMID: 37238658 DOI: 10.3390/biom13050788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder that affects one or two individuals per 100,000. The disease is caused by an extended CAG repeat in exon 8 of the ATXN1 gene and is characterized mostly by a profound loss of cerebellar Purkinje cells, leading to disturbances in coordination, balance, and gait. At present, no curative treatment is available for SCA1. However, increasing knowledge on the cellular and molecular mechanisms of SCA1 has led the way towards several therapeutic strategies that can potentially slow disease progression. SCA1 therapeutics can be classified as genetic, pharmacological, and cell replacement therapies. These different therapeutic strategies target either the (mutant) ATXN1 RNA or the ataxin-1 protein, pathways that play an important role in downstream SCA1 disease mechanisms or which help restore cells that are lost due to SCA1 pathology. In this review, we will provide a summary of the different therapeutic strategies that are currently being investigated for SCA1.
Collapse
Affiliation(s)
- Laurie M C Kerkhof
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Dutch Center for RNA Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Dutch Center for RNA Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
15
|
Nam YW, Rahman MA, Yang G, Orfali R, Cui M, Zhang M. Loss-of-function K Ca2.2 mutations abolish channel activity. Am J Physiol Cell Physiol 2023; 324:C658-C664. [PMID: 36717104 PMCID: PMC10069973 DOI: 10.1152/ajpcell.00584.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
Small-conductance Ca2+-activated potassium channels subtype 2 (KCa2.2, also called SK2) are operated exclusively by a Ca2+-calmodulin gating mechanism. Heterozygous genetic mutations of KCa2.2 channels have been associated with autosomal dominant neurodevelopmental disorders including cerebellar ataxia and tremor in humans and rodents. Taking advantage of these pathogenic mutations, we performed structure-function studies of the rat KCa2.2 channel. No measurable current was detected from HEK293 cells heterologously expressing these pathogenic KCa2.2 mutants. When coexpressed with the KCa2.2_WT channel, mutations of the pore-lining amino acid residues (I360M, Y362C, G363S, and I389V) and two proline substitutions (L174P and L433P) dominant negatively suppressed and completely abolished the activity of the coexpressed KCa2.2_WT channel. Coexpression of the KCa2.2_I289N and the KCa2.2_WT channels reduced the apparent Ca2+ sensitivity compared with the KCa2.2_WT channel, which was rescued by a KCa2.2 positive modulator.
Collapse
Affiliation(s)
- Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States
| | - Mohammad Asikur Rahman
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States
| | - Grace Yang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States
| | - Razan Orfali
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, Massachusetts, United States
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States
| |
Collapse
|
16
|
Nam YW, Downey M, Rahman MA, Cui M, Zhang M. Channelopathy of small- and intermediate-conductance Ca 2+-activated K + channels. Acta Pharmacol Sin 2023; 44:259-267. [PMID: 35715699 PMCID: PMC9889811 DOI: 10.1038/s41401-022-00935-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Small- and intermediate-conductance Ca2+-activated K+ (KCa2.x/KCa3.1 also called SK/IK) channels are gated exclusively by intracellular Ca2+. The Ca2+ binding protein calmodulin confers sub-micromolar Ca2+ sensitivity to the channel-calmodulin complex. The calmodulin C-lobe is constitutively associated with the proximal C-terminus of the channel. Interactions between calmodulin N-lobe and the channel S4-S5 linker are Ca2+-dependent, which subsequently trigger conformational changes in the channel pore and open the gate. KCNN genes encode four subtypes, including KCNN1 for KCa2.1 (SK1), KCNN2 for KCa2.2 (SK2), KCNN3 for KCa2.3 (SK3), and KCNN4 for KCa3.1 (IK). The three KCa2.x channel subtypes are expressed in the central nervous system and the heart. The KCa3.1 subtype is expressed in the erythrocytes and the lymphocytes, among other peripheral tissues. The impact of dysfunctional KCa2.x/KCa3.1 channels on human health has not been well documented. Human loss-of-function KCa2.2 mutations have been linked with neurodevelopmental disorders. Human gain-of-function mutations that increase the apparent Ca2+ sensitivity of KCa2.3 and KCa3.1 channels have been associated with Zimmermann-Laband syndrome and hereditary xerocytosis, respectively. This review article discusses the physiological significance of KCa2.x/KCa3.1 channels, the pathophysiology of the diseases linked with KCa2.x/KCa3.1 mutations, the structure-function relationship of the mutant KCa2.x/KCa3.1 channels, and potential pharmacological therapeutics for the KCa2.x/KCa3.1 channelopathy.
Collapse
Affiliation(s)
- Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Myles Downey
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Mohammad Asikur Rahman
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, MA, 02115, USA
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA.
| |
Collapse
|
17
|
Srinivasan SR. Targeting Circuit Abnormalities in Neurodegenerative Disease. Mol Pharmacol 2023; 103:38-44. [PMID: 36310030 DOI: 10.1124/molpharm.122.000563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 02/03/2023] Open
Abstract
Despite significant improvement in our ability to diagnose both common and rare neurodegenerative diseases and understand their underlying biologic mechanisms, there remains a disproportionate lack of effective treatments, reflecting the complexity of these disorders. Successfully advancing novel treatments for neurodegenerative disorders will require reconsideration of traditional approaches, which to date have focused largely on specific disease proteins or cells of origin. This article proposes reframing these diseases as conditions of dysfunctional circuitry as a complement to ongoing efforts. Specifically reviewed is how aberrant spiking is a common downstream mechanism in numerous neurodegenerative diseases, often driven by dysfunction in specific ion channels. Surgical modification of this electrical activity via deep brain stimulation is already an approved modality for many of these disorders. Therefore, restoring proper electrical activity by targeting these channels pharmacologically represents a viable strategy for intervention, not only for symptomatic management but also as a potential disease-modifying therapy. Such an approach is likely to be a promising route to treating these devastating disorders, either as monotherapy or in conjunction with current drugs. SIGNIFICANCE STATEMENT: Despite extensive research and improved understanding of the biology driving neurodegenerative disease, there has not been a concomitant increase in approved therapies. Accordingly, it is time to shift our perspective and recognize these diseases also as disorders of circuitry to further yield novel drug targets and new interventions. An approach focused on treating dysfunctional circuitry has the potential to reduce or reverse patient symptoms and potentially modify disease course.
Collapse
|
18
|
Borgenheimer E, Hamel K, Sheeler C, Moncada FL, Sbrocco K, Zhang Y, Cvetanovic M. Single nuclei RNA sequencing investigation of the Purkinje cell and glial changes in the cerebellum of transgenic Spinocerebellar ataxia type 1 mice. Front Cell Neurosci 2022; 16:998408. [PMID: 36457352 PMCID: PMC9706545 DOI: 10.3389/fncel.2022.998408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Glial cells constitute half the population of the human brain and are essential for normal brain function. Most, if not all, brain diseases are characterized by reactive gliosis, a process by which glial cells respond and contribute to neuronal pathology. Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease characterized by a severe degeneration of cerebellar Purkinje cells (PCs) and cerebellar gliosis. SCA1 is caused by an abnormal expansion of CAG repeats in the gene Ataxin1 (ATXN1). While several studies reported the effects of mutant ATXN1 in Purkinje cells, it remains unclear how cerebellar glia respond to dysfunctional Purkinje cells in SCA1. To address this question, we performed single nuclei RNA sequencing (snRNA seq) on cerebella of early stage Pcp2-ATXN1[82Q] mice, a transgenic SCA1 mouse model expressing mutant ATXN1 only in Purkinje cells. We found no changes in neuronal and glial proportions in the SCA1 cerebellum at this early disease stage compared to wild-type controls. Importantly, we observed profound non-cell autonomous and potentially neuroprotective reactive gene and pathway alterations in Bergmann glia, velate astrocytes, and oligodendrocytes in response to Purkinje cell dysfunction.
Collapse
Affiliation(s)
- Ella Borgenheimer
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Katherine Hamel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Carrie Sheeler
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | - Kaelin Sbrocco
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ying Zhang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, United States
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
19
|
Egorova PA, Bezprozvanny IB. Electrophysiological Studies Support Utility of Positive Modulators of SK Channels for the Treatment of Spinocerebellar Ataxia Type 2. CEREBELLUM (LONDON, ENGLAND) 2022; 21:742-749. [PMID: 34978024 DOI: 10.1007/s12311-021-01349-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an incurable hereditary disorder accompanied by cerebellar degeneration following ataxic symptoms. The causative gene for SCA2 is ATXN2. The ataxin-2 protein is involved in RNA metabolism; the polyQ expansion may interrupt ataxin-2 interaction with its molecular targets, thus representing a loss-of-function mutation. However, mutant ataxin-2 protein also displays the features of gain-of-function mutation since it forms the aggregates in SCA2 cells and also enhances the IP3-induced calcium release in affected neurons. The cerebellar Purkinje cells (PCs) are primarily affected in SCA2. Their tonic pacemaker activity is crucial for the proper cerebellar functioning. Disturbances in PC pacemaking are observed in many ataxic disorders. The abnormal intrinsic pacemaking was reported in mouse models of episodic ataxia type 2 (EA2), SCA1, SCA2, SCA3, SCA6, Huntington's disease (HD), and in some other murine models of the disorders associated with the cerebellar degeneration. In our studies using SCA2-58Q transgenic mice via cerebellar slice recording and in vivo recording from urethane-anesthetized mice and awake head-fixed mice, we have demonstrated the impaired firing frequency and irregularity of PCs in these mice. PC pacemaker activity is regulated by SK channels. The pharmacological activation of SK channels has demonstrated some promising results in the electrophysiological experiments on EA2, SCA1, SCA2, SCA3, SCA6, HD mice, and also on mutant CACNA1A mice. In our studies, we have reported that the SK activators CyPPA and NS309 converted bursting activity into tonic, while oral treatment with CyPPA and NS13001 significantly improved motor performance and PC morphology in SCA2 mice. The i.p. injections of chlorzoxazone (CHZ) during in vivo recording sessions converted bursting cells into tonic in anesthetized SCA2 mice. And, finally, long-term injections of CHZ recovered the precision of PC pacemaking activity in awake SCA2 mice and alleviated their motor decline. Thus, the SK activation can be used as a potential way to treat SCA2 and other diseases accompanied by cerebellar degeneration.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Srinivasan SR, Huang H, Chang WC, Nasburg JA, Nguyen HM, Strassmaier T, Wulff H, Shakkottai VG. Discovery of Novel Activators of Large-Conductance Calcium-Activated Potassium Channels for the Treatment of Cerebellar Ataxia. Mol Pharmacol 2022; 102:438-449. [PMID: 35489717 PMCID: PMC9341255 DOI: 10.1124/molpharm.121.000478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/07/2022] [Indexed: 01/11/2023] Open
Abstract
Impaired cerebellar Purkinje neuron firing resulting from reduced expression of large-conductance calcium-activated potassium (BK) channels is a consistent feature in models of inherited neurodegenerative spinocerebellar ataxia (SCA). Restoring BK channel expression improves motor function and delays cerebellar degeneration, indicating that BK channels are an attractive therapeutic target. Current BK channel activators lack specificity and potency and are therefore poor templates for future drug development. We implemented an automated patch clamp platform for high-throughput drug discovery of BK channel activators using the Nanion SyncroPatch 384PE system. We screened over 15,000 compounds for their ability to increase BK channel current amplitude under conditions of lower intracellular calcium that is present in disease. We identified several novel BK channel activators that were then retested on the SyncroPatch 384PE to generate concentration-response curves (CRCs). Compounds with favorable CRCs were subsequently tested for their ability to improve irregular cerebellar Purkinje neuron spiking, characteristic of BK channel dysfunction in SCA1 mice. We identified a novel BK channel activator, 4-chloro-N-(5-chloro-2-cyanophenyl)-3-(trifluoromethyl)benzene-1-sulfonamide (herein renamed BK-20), that exhibited a more potent half-maximal activation of BK current (pAC50 = 4.64) than NS-1619 (pAC50 = 3.7) at a free internal calcium concentration of 270 nM in a heterologous expression system and improved spiking regularity in SCA1 Purkinje neurons. BK-20 had no activity on small-conductance calcium-activated potassium (SK)1-3 channels but interestingly was a potent blocker of the T-type calcium channel, Cav3.1 (IC50 = 1.05 μM). Our work describes both a novel compound for further drug development in disorders with irregular Purkinje spiking and a unique platform for drug discovery in degenerative ataxias. SIGNIFICANCE STATEMENT: Motor impairment associated with altered Purkinje cell spiking due to dysregulation of large-conductance calcium-activated potassium (BK) channel expression and function is a shared feature of disease in many degenerative ataxias. BK channel activators represent an outstanding therapeutic agent for ataxia. We have developed a high-throughput platform to screen for BK channel activators and identified a novel compound that can serve as a template for future drug development for the treatment of these disabling disorders.
Collapse
Affiliation(s)
- Sharan R Srinivasan
- Brigham and Women's Hospital, Department of Neurology, Boston, Massachusetts (S.R.S.); University of Texas Southwestern Medical Center, Department of Neurology, Dallas, Texas (H.H., V.G.S.); University of Michigan, Department of Neurology, Ann Arbor, Michigan (S.R.S., W.-C.C.); University of California, Davis, Department of Pharmacology, Davis, California (J.A.N., H.M.N., H.W.); and Nanion Technologies, Munich, Germany (T.S.)
| | - Haoran Huang
- Brigham and Women's Hospital, Department of Neurology, Boston, Massachusetts (S.R.S.); University of Texas Southwestern Medical Center, Department of Neurology, Dallas, Texas (H.H., V.G.S.); University of Michigan, Department of Neurology, Ann Arbor, Michigan (S.R.S., W.-C.C.); University of California, Davis, Department of Pharmacology, Davis, California (J.A.N., H.M.N., H.W.); and Nanion Technologies, Munich, Germany (T.S.)
| | - Wei-Chih Chang
- Brigham and Women's Hospital, Department of Neurology, Boston, Massachusetts (S.R.S.); University of Texas Southwestern Medical Center, Department of Neurology, Dallas, Texas (H.H., V.G.S.); University of Michigan, Department of Neurology, Ann Arbor, Michigan (S.R.S., W.-C.C.); University of California, Davis, Department of Pharmacology, Davis, California (J.A.N., H.M.N., H.W.); and Nanion Technologies, Munich, Germany (T.S.)
| | - Joshua A Nasburg
- Brigham and Women's Hospital, Department of Neurology, Boston, Massachusetts (S.R.S.); University of Texas Southwestern Medical Center, Department of Neurology, Dallas, Texas (H.H., V.G.S.); University of Michigan, Department of Neurology, Ann Arbor, Michigan (S.R.S., W.-C.C.); University of California, Davis, Department of Pharmacology, Davis, California (J.A.N., H.M.N., H.W.); and Nanion Technologies, Munich, Germany (T.S.)
| | - Hai M Nguyen
- Brigham and Women's Hospital, Department of Neurology, Boston, Massachusetts (S.R.S.); University of Texas Southwestern Medical Center, Department of Neurology, Dallas, Texas (H.H., V.G.S.); University of Michigan, Department of Neurology, Ann Arbor, Michigan (S.R.S., W.-C.C.); University of California, Davis, Department of Pharmacology, Davis, California (J.A.N., H.M.N., H.W.); and Nanion Technologies, Munich, Germany (T.S.)
| | - Tim Strassmaier
- Brigham and Women's Hospital, Department of Neurology, Boston, Massachusetts (S.R.S.); University of Texas Southwestern Medical Center, Department of Neurology, Dallas, Texas (H.H., V.G.S.); University of Michigan, Department of Neurology, Ann Arbor, Michigan (S.R.S., W.-C.C.); University of California, Davis, Department of Pharmacology, Davis, California (J.A.N., H.M.N., H.W.); and Nanion Technologies, Munich, Germany (T.S.)
| | - Heike Wulff
- Brigham and Women's Hospital, Department of Neurology, Boston, Massachusetts (S.R.S.); University of Texas Southwestern Medical Center, Department of Neurology, Dallas, Texas (H.H., V.G.S.); University of Michigan, Department of Neurology, Ann Arbor, Michigan (S.R.S., W.-C.C.); University of California, Davis, Department of Pharmacology, Davis, California (J.A.N., H.M.N., H.W.); and Nanion Technologies, Munich, Germany (T.S.)
| | - Vikram G Shakkottai
- Brigham and Women's Hospital, Department of Neurology, Boston, Massachusetts (S.R.S.); University of Texas Southwestern Medical Center, Department of Neurology, Dallas, Texas (H.H., V.G.S.); University of Michigan, Department of Neurology, Ann Arbor, Michigan (S.R.S., W.-C.C.); University of California, Davis, Department of Pharmacology, Davis, California (J.A.N., H.M.N., H.W.); and Nanion Technologies, Munich, Germany (T.S.)
| |
Collapse
|
21
|
Bushart DD, Shakkottai VG. Vulnerability of Human Cerebellar Neurons to Degeneration in Ataxia-Causing Channelopathies. Front Syst Neurosci 2022; 16:908569. [PMID: 35757096 PMCID: PMC9219590 DOI: 10.3389/fnsys.2022.908569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in ion channel genes underlie a number of human neurological diseases. Historically, human mutations in ion channel genes, the so-called channelopathies, have been identified to cause episodic disorders. In the last decade, however, mutations in ion channel genes have been demonstrated to result in progressive neurodegenerative and neurodevelopmental disorders in humans, particularly with ion channels that are enriched in the cerebellum. This was unexpected given prior rodent ion channel knock-out models that almost never display neurodegeneration. Human ataxia-causing channelopathies that result in even haploinsufficiency can result in cerebellar atrophy and cerebellar Purkinje neuron loss. Rodent neurons with ion channel loss-of-function appear to, therefore, be significantly more resistant to neurodegeneration compared to human neurons. Fundamental differences in susceptibility of human and rodent cerebellar neurons in ataxia-causing channelopathies must therefore be present. In this review, we explore the properties of human neurons that may contribute to their vulnerability to cerebellar degeneration secondary to ion channel loss-of-function mutations. We present a model taking into account the known allometric scaling of neuronal ion channel density in humans and other mammals that may explain the preferential vulnerability of human cerebellar neurons to degeneration in ataxia-causing channelopathies. We also speculate on the vulnerability of cerebellar neurons to degeneration in mouse models of spinocerebellar ataxia (SCA) where ion channel transcript dysregulation has recently been implicated in disease pathogenesis.
Collapse
Affiliation(s)
- David D. Bushart
- Ohio State University College of Medicine, Columbus, OH, United States
| | - Vikram G. Shakkottai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States,*Correspondence: Vikram G. Shakkottai,
| |
Collapse
|
22
|
Cendelin J, Cvetanovic M, Gandelman M, Hirai H, Orr HT, Pulst SM, Strupp M, Tichanek F, Tuma J, Manto M. Consensus Paper: Strengths and Weaknesses of Animal Models of Spinocerebellar Ataxias and Their Clinical Implications. CEREBELLUM (LONDON, ENGLAND) 2022; 21:452-481. [PMID: 34378174 PMCID: PMC9098367 DOI: 10.1007/s12311-021-01311-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Spinocerebellar ataxias (SCAs) represent a large group of hereditary degenerative diseases of the nervous system, in particular the cerebellum, and other systems that manifest with a variety of progressive motor, cognitive, and behavioral deficits with the leading symptom of cerebellar ataxia. SCAs often lead to severe impairments of the patient's functioning, quality of life, and life expectancy. For SCAs, there are no proven effective pharmacotherapies that improve the symptoms or substantially delay disease progress, i.e., disease-modifying therapies. To study SCA pathogenesis and potential therapies, animal models have been widely used and are an essential part of pre-clinical research. They mainly include mice, but also other vertebrates and invertebrates. Each animal model has its strengths and weaknesses arising from model animal species, type of genetic manipulation, and similarity to human diseases. The types of murine and non-murine models of SCAs, their contribution to the investigation of SCA pathogenesis, pathological phenotype, and therapeutic approaches including their advantages and disadvantages are reviewed in this paper. There is a consensus among the panel of experts that (1) animal models represent valuable tools to improve our understanding of SCAs and discover and assess novel therapies for this group of neurological disorders characterized by diverse mechanisms and differential degenerative progressions, (2) thorough phenotypic assessment of individual animal models is required for studies addressing therapeutic approaches, (3) comparative studies are needed to bring pre-clinical research closer to clinical trials, and (4) mouse models complement cellular and invertebrate models which remain limited in terms of clinical translation for complex neurological disorders such as SCAs.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8511, Japan
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig-Maximilians University, Munich, Campus Grosshadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Filip Tichanek
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7843, San Antonio, TX, 78229, USA
| | - Mario Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, UMons, Mons, Belgium
| |
Collapse
|
23
|
The GM2 gangliosidoses: Unlocking the mysteries of pathogenesis and treatment. Neurosci Lett 2021; 764:136195. [PMID: 34450229 PMCID: PMC8572160 DOI: 10.1016/j.neulet.2021.136195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022]
|
24
|
Perez H, Abdallah MF, Chavira JI, Norris AS, Egeland MT, Vo KL, Buechsenschuetz CL, Sanghez V, Kim JL, Pind M, Nakamura K, Hicks GG, Gatti RA, Madrenas J, Iacovino M, McKinnon PJ, Mathews PJ. A novel, ataxic mouse model of ataxia telangiectasia caused by a clinically relevant nonsense mutation. eLife 2021; 10:e64695. [PMID: 34723800 PMCID: PMC8601662 DOI: 10.7554/elife.64695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
Ataxia Telangiectasia (A-T) and Ataxia with Ocular Apraxia Type 1 (AOA1) are devastating neurological disorders caused by null mutations in the genome stability genes, A-T mutated (ATM) and Aprataxin (APTX), respectively. Our mechanistic understanding and therapeutic repertoire for treating these disorders are severely lacking, in large part due to the failure of prior animal models with similar null mutations to recapitulate the characteristic loss of motor coordination (i.e., ataxia) and associated cerebellar defects. By increasing genotoxic stress through the insertion of null mutations in both the Atm (nonsense) and Aptx (knockout) genes in the same animal, we have generated a novel mouse model that for the first time develops a progressively severe ataxic phenotype associated with atrophy of the cerebellar molecular layer. We find biophysical properties of cerebellar Purkinje neurons (PNs) are significantly perturbed (e.g., reduced membrane capacitance, lower action potential [AP] thresholds, etc.), while properties of synaptic inputs remain largely unchanged. These perturbations significantly alter PN neural activity, including a progressive reduction in spontaneous AP firing frequency that correlates with both cerebellar atrophy and ataxia over the animal's first year of life. Double mutant mice also exhibit a high predisposition to developing cancer (thymomas) and immune abnormalities (impaired early thymocyte development and T-cell maturation), symptoms characteristic of A-T. Finally, by inserting a clinically relevant nonsense-type null mutation in Atm, we demonstrate that Small Molecule Read-Through (SMRT) compounds can restore ATM production, indicating their potential as a future A-T therapeutic.
Collapse
Affiliation(s)
- Harvey Perez
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - May F Abdallah
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Jose I Chavira
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Angelina S Norris
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Martin T Egeland
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Karen L Vo
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Callan L Buechsenschuetz
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Valentina Sanghez
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Jeannie L Kim
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Molly Pind
- Department of Biochemistry and Medical Genetics,Max Rady College of Medicine, University of ManitobaManitobaCanada
| | - Kotoka Nakamura
- Department of Pathology & Laboratory Medicine, David Geffen School of MedicineLos AngelesUnited States
| | - Geoffrey G Hicks
- Department of Biochemistry and Medical Genetics,Max Rady College of Medicine, University of ManitobaManitobaCanada
| | - Richard A Gatti
- Department of Pathology & Laboratory Medicine, David Geffen School of MedicineLos AngelesUnited States
| | - Joaquin Madrenas
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Medicine, Harbor-UCLA Medical CenterTorranceUnited States
| | - Michelina Iacovino
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Pediatrics, Harbor-UCLA Medical CenterTorranceUnited States
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, St. Jude Children’s Research HospitalMemphisUnited States
| | - Paul J Mathews
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Neurology, Harbor-UCLA Medical CenterTorranceUnited States
| |
Collapse
|
25
|
Carpenter JC, Männikkö R, Heffner C, Heneine J, Sampedro‐Castañeda M, Lignani G, Schorge S. Progressive myoclonus epilepsy KCNC1 variant causes a developmental dendritopathy. Epilepsia 2021; 62:1256-1267. [PMID: 33735526 PMCID: PMC8436768 DOI: 10.1111/epi.16867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Mutations in KCNC1 can cause severe neurological dysfunction, including intellectual disability, epilepsy, and ataxia. The Arg320His variant, which occurs in the voltage-sensing domain of the channel, causes a highly penetrant and specific form of progressive myoclonus epilepsy with severe ataxia, designated myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK). KCNC1 encodes the voltage-gated potassium channel KV 3.1, a channel that is important for enabling high-frequency firing in interneurons, raising the possibility that MEAK is associated with reduced interneuronal function. METHODS To determine how this variant triggers MEAK, we expressed KV 3.1bR320H in cortical interneurons in vitro and investigated the effects on neuronal function and morphology. We also performed electrophysiological recordings of oocytes expressing KV 3.1b to determine whether the mutation introduces gating pore currents. RESULTS Expression of the KV 3.1bR320H variant profoundly reduced excitability of mature cortical interneurons, and cells expressing these channels were unable to support high-frequency firing. The mutant channel also had an unexpected effect on morphology, severely impairing neurite development and interneuron viability, an effect that could not be rescued by blocking KV 3 channels. Oocyte recordings confirmed that in the adult KV 3.1b isoform, R320H confers a dominant negative loss-of-function effect by slowing channel activation, but does not introduce potentially toxic gating pore currents. SIGNIFICANCE Overall, our data suggest that, in addition to the regulation of high-frequency firing, KV 3.1 channels play a hitherto unrecognized role in neuronal development. MEAK may be described as a developmental dendritopathy.
Collapse
Affiliation(s)
- Jenna C. Carpenter
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Roope Männikkö
- Department of Neuromuscular DiseasesUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Catherine Heffner
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Jana Heneine
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Marisol Sampedro‐Castañeda
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Gabriele Lignani
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Stephanie Schorge
- Department of PharmacologyUniversity College London School of PharmacyLondonUK
| |
Collapse
|
26
|
White JJ, Bosman LWJ, Blot FGC, Osório C, Kuppens BW, Krijnen WHJJ, Andriessen C, De Zeeuw CI, Jaarsma D, Schonewille M. Region-specific preservation of Purkinje cell morphology and motor behavior in the ATXN1[82Q] mouse model of spinocerebellar ataxia 1. Brain Pathol 2021; 31:e12946. [PMID: 33724582 PMCID: PMC8412070 DOI: 10.1111/bpa.12946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/27/2021] [Accepted: 02/16/2021] [Indexed: 01/09/2023] Open
Abstract
Purkinje cells are the primary processing units of the cerebellar cortex and display molecular heterogeneity that aligns with differences in physiological properties, projection patterns, and susceptibility to disease. In particular, multiple mouse models that feature Purkinje cell degeneration are characterized by incomplete and patterned Purkinje cell degeneration, suggestive of relative sparing of Purkinje cell subpopulations, such as those expressing Aldolase C/zebrinII (AldoC) or residing in the vestibulo‐cerebellum. Here, we investigated a well‐characterized Purkinje cell‐specific mouse model for spinocerebellar ataxia type 1 (SCA1) that expresses human ATXN1 with a polyQ expansion (82Q). Our pathological analysis confirms previous findings that Purkinje cells of the vestibulo‐cerebellum, i.e., the flocculonodular lobes, and crus I are relatively spared from key pathological hallmarks: somatodendritic atrophy, and the appearance of p62/SQSTM1‐positive inclusions. However, immunohistological analysis of transgene expression revealed that spared Purkinje cells do not express mutant ATXN1 protein, indicating the sparing of Purkinje cells can be explained by an absence of transgene expression. Additionally, we found that Purkinje cells in other cerebellar lobules that typically express AldoC, not only display severe pathology but also show loss of AldoC expression. The relatively preserved flocculonodular lobes and crus I showed a substantial fraction of Purkinje cells that expressed the mutant protein and displayed pathology as well as loss of AldoC expression. Despite considerable pathology in these lobules, behavioral analyses demonstrated a relative sparing of related functions, suggestive of sufficient functional cerebellar reserve. Together, the data indicate that mutant ATXN1 affects both AldoC‐positive and AldoC‐negative Purkinje cells and disrupts normal parasagittal AldoC expression in Purkinje cells. Our results show that, in a mouse model otherwise characterized by widespread Purkinje cell degeneration, sparing of specific subpopulations is sufficient to maintain normal performance of specific behaviors within the context of the functional, modular map of the cerebellum.
Collapse
Affiliation(s)
- Joshua J White
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Catarina Osório
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Bram W Kuppens
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Dick Jaarsma
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
27
|
Bushart DD, Zalon AJ, Zhang H, Morrison LM, Guan Y, Paulson HL, Shakkottai VG, McLoughlin HS. Antisense Oligonucleotide Therapy Targeted Against ATXN3 Improves Potassium Channel-Mediated Purkinje Neuron Dysfunction in Spinocerebellar Ataxia Type 3. CEREBELLUM (LONDON, ENGLAND) 2021; 20:41-53. [PMID: 32789747 PMCID: PMC7930886 DOI: 10.1007/s12311-020-01179-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is the second-most common CAG repeat disease, caused by a glutamine-encoding expansion in the ATXN3 protein. SCA3 is characterized by spinocerebellar degeneration leading to progressive motor incoordination and early death. Previous studies suggest that potassium channel dysfunction underlies early abnormalities in cerebellar cortical Purkinje neuron firing in SCA3. However, cerebellar cortical degeneration is often modest both in the human disease and mouse models of SCA3, raising uncertainty about the role of cerebellar dysfunction in SCA3. Here, we address this question by investigating Purkinje neuron excitability in SCA3. In early-stage SCA3 mice, we confirm a previously identified increase in excitability of cerebellar Purkinje neurons and associate this excitability with reduced transcripts of two voltage-gated potassium (KV) channels, Kcna6 and Kcnc3, as well as motor impairment. Intracerebroventricular delivery of antisense oligonucleotides (ASO) to reduce mutant ATXN3 restores normal excitability to SCA3 Purkinje neurons and rescues transcript levels of Kcna6 and Kcnc3. Interestingly, while an even broader range of KV channel transcripts shows reduced levels in late-stage SCA3 mice, cerebellar Purkinje neuron physiology was not further altered despite continued worsening of motor impairment. These results suggest the progressive motor phenotype observed in SCA3 may not reflect ongoing changes in the cerebellar cortex but instead dysfunction of other neuronal structures within and beyond the cerebellum. Nevertheless, the early rescue of both KV channel expression and neuronal excitability by ASO treatment suggests that cerebellar cortical dysfunction contributes meaningfully to motor dysfunction in SCA3.
Collapse
Affiliation(s)
- David D. Bushart
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - Annie J. Zalon
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - Hongjiu Zhang
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109,Microsoft, Inc. Bellevue, WA 98004
| | - Logan M. Morrison
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Yuanfang Guan
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Henry L. Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - Vikram G. Shakkottai
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109,Address correspondence to: Vikram G. Shakkottai, 4009 BSRB, 109 Zina Pitcher Pl., Ann Arbor, MI 48109, ; Hayley S. McLoughlin, 4017 BSRB, 109 Zina Pitcher Pl., Ann Arbor, MI 48109,
| | - Hayley S. McLoughlin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109,Address correspondence to: Vikram G. Shakkottai, 4009 BSRB, 109 Zina Pitcher Pl., Ann Arbor, MI 48109, ; Hayley S. McLoughlin, 4017 BSRB, 109 Zina Pitcher Pl., Ann Arbor, MI 48109,
| |
Collapse
|
28
|
Chopra R, Bushart DD, Cooper JP, Yellajoshyula D, Morrison LM, Huang H, Handler HP, Man LJ, Dansithong W, Scoles DR, Pulst SM, Orr HT, Shakkottai VG. Altered Capicua expression drives regional Purkinje neuron vulnerability through ion channel gene dysregulation in spinocerebellar ataxia type 1. Hum Mol Genet 2020; 29:3249-3265. [PMID: 32964235 PMCID: PMC7689299 DOI: 10.1093/hmg/ddaa212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/19/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Selective neuronal vulnerability in neurodegenerative disease is poorly understood. Using the ATXN1[82Q] model of spinocerebellar ataxia type 1 (SCA1), we explored the hypothesis that regional differences in Purkinje neuron degeneration could provide novel insights into selective vulnerability. ATXN1[82Q] Purkinje neurons from the anterior cerebellum were found to degenerate earlier than those from the nodular zone, and this early degeneration was associated with selective dysregulation of ion channel transcripts and altered Purkinje neuron spiking. Efforts to understand the basis for selective dysregulation of channel transcripts revealed modestly increased expression of the ATXN1 co-repressor Capicua (Cic) in anterior cerebellar Purkinje neurons. Importantly, disrupting the association between ATXN1 and Cic rescued the levels of these ion channel transcripts, and lentiviral overexpression of Cic in the nodular zone accelerated both aberrant Purkinje neuron spiking and neurodegeneration. These findings reinforce the central role for Cic in SCA1 cerebellar pathophysiology and suggest that only modest reductions in Cic are needed to have profound therapeutic impact in SCA1.
Collapse
Affiliation(s)
- Ravi Chopra
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - David D Bushart
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - John P Cooper
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Logan M Morrison
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Haoran Huang
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hillary P Handler
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luke J Man
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Warunee Dansithong
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
In vivo analysis of the spontaneous firing of cerebellar Purkinje cells in awake transgenic mice that model spinocerebellar ataxia type 2. Cell Calcium 2020; 93:102319. [PMID: 33248384 DOI: 10.1016/j.ceca.2020.102319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Cerebellar Purkinje cells (PCs) fire spontaneously in a tonic mode, although the precision of this pacemaking activity is disturbed in many abnormal conditions involving cerebellar atrophy, such as many spinocerebellar ataxias (SCAs). In our previous studies we used the single-unit extracellular recording method to analyze spontaneous PC firing in vivo in the anesthetized SCA2-58Q transgenic mice. We realized that PCs from aging SCA2-58Q mice fire much less regularly compared to PCs from their wild type (WT) littermates and this abnormal activity can be reversed with an intraperitoneal (i. p.) injection of SK channel-positive modulator chlorzoxazone (CHZ). Here we used the same single-unit extracellular recording method to analyze the spontaneous firing in vivo in awake SCA2-58Q transgenic mice. For this purpose, we used the Mobile HomeCage (Neurotar, Finland) floating platform to immobilize the experimental animal's head during the recording sessions. We discovered that generally PCs from awake animals fired much more frequently and much less regularly than previously observed PCs from anesthetized animals. In vivo recordings from awake SCA2/WT mice revealed that complex spikes, which are generated by PCs in reply to the excitation coming by climbing fibers, as well as simple spikes, were much less frequent in SCA2 mice compared to their WT littermates. To test the effect of the SK channel positive modulation on the PCs firing activity in awake SCA2 mice and also the effect on their motor coordination, we started the CHZ trial in these mice. We discovered that the long-term i. p. injections of CHZ did not affect the spike generation in SCA2-58Q mice, however, they did recover the precision of this spontaneous pacemaking activity. Furthermore, we also showed that treatment with CHZ alleviated the age-dependent motor impairment in SCA2-58Q mice. We propose that the lack of precision in PC spike generation might be a key cause for the progression of ataxic symptoms in different SCAs and that the activation of calcium-activated potassium channels, including SK channels, can be used as a potential way to treat SCAs on the physiological level of the disease.
Collapse
|
30
|
Bushart DD, Huang H, Man LJ, Morrison LM, Shakkottai VG. A Chlorzoxazone-Baclofen Combination Improves Cerebellar Impairment in Spinocerebellar Ataxia Type 1. Mov Disord 2020; 36:622-631. [PMID: 33151010 DOI: 10.1002/mds.28355] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A combination of central muscle relaxants, chlorzoxazone and baclofen (chlorzoxazone-baclofen), has been proposed for treatment of cerebellar symptoms in human spinocerebellar ataxia. However, central muscle relaxants can worsen balance. The optimal dose for target engagement without toxicity remains unknown. Using the genetically precise Atxn1154Q/2Q model of spinocerebellar ataxia type 1, we aimed to determine the role of cerebellar dysfunction in motor impairment. We also aimed to identify appropriate concentrations of chlorzoxazone-baclofen needed for target engagement without toxicity to plan for human clinical trials. METHODS We use patch clamp electrophysiology in acute cerebellar slices and immunostaining to identify the specific ion channels targeted by chlorzoxazone-baclofen. Behavioral assays for coordination and grip strength are used to determine specificity of chlorzoxazone-baclofen for improving cerebellar dysfunction without off-target effects in Atxn1154Q/2Q mice. RESULTS We identify irregular Purkinje neuron firing in association with reduced expression of ion channels Kcnma1 and Cacna1g in Atxn1154Q/2Q mice. Using in vitro electrophysiology in brain slices, we identified concentrations of chlorzoxazone-baclofen that improve Purkinje neuron spike regularity without reducing firing frequency. At a disease stage in Atxn1154Q/2Q mice when motor impairment is due to cerebellar dysfunction, orally administered chlorzoxazone-baclofen improves motor performance without affecting muscle strength. CONCLUSION We identify a tight relationship between baclofen-chlorzoxazone concentrations needed to engage target and levels above which cerebellar function will be compromised. We propose to use this information for a novel clinical trial design, using sequential dose escalation within each subject, to identify dose levels that are likely to improve ataxia symptoms while minimizing toxicity. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David D Bushart
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.,Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Haoran Huang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Luke J Man
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Logan M Morrison
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
31
|
Neves-Carvalho A, Duarte-Silva S, Teixeira-Castro A, Maciel P. Polyglutamine spinocerebellar ataxias: emerging therapeutic targets. Expert Opin Ther Targets 2020; 24:1099-1119. [PMID: 32962458 DOI: 10.1080/14728222.2020.1827394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Six of the most frequent dominantly inherited spinocerebellar ataxias (SCAs) worldwide - SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 - are caused by an expansion of a polyglutamine (polyQ) tract in the corresponding proteins. While the identification of the causative mutation has advanced knowledge on the pathogenesis of polyQ SCAs, effective therapeutics able to mitigate the severe clinical manifestation of these highly incapacitating disorders are not yet available. AREAS COVERED This review provides a comprehensive and critical perspective on well-established and emerging therapeutic targets for polyQ SCAs; it aims to inspire prospective drug discovery efforts. EXPERT OPINION The landscape of polyQ SCAs therapeutic targets and strategies includes (1) the mutant genes and proteins themselves, (2) enhancement of endogenous protein quality control responses, (3) abnormal protein-protein interactions of the mutant proteins, (4) disturbed neuronal function, (5) mitochondrial function, energy availability and oxidative stress, and (6) glial dysfunction, growth factor or hormone imbalances. Challenges include gaining a clearer definition of therapeutic targets for the drugs in clinical development, the discovery of novel drug-like molecules for challenging key targets, and the attainment of a stronger translation of preclinical findings to the clinic.
Collapse
Affiliation(s)
- Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| |
Collapse
|
32
|
Chung CG, Park SS, Park JH, Lee SB. Dysregulated Plasma Membrane Turnover Underlying Dendritic Pathology in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:556461. [PMID: 33192307 PMCID: PMC7580253 DOI: 10.3389/fncel.2020.556461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Due to their enormous surface area compared to other cell types, neurons face unique challenges in properly handling supply and retrieval of the plasma membrane (PM)-a process termed PM turnover-in their distal areas. Because of the length and extensiveness of dendritic branches in neurons, the transport of materials needed for PM turnover from soma to distal dendrites will be inefficient and quite burdensome for somatic organelles. To meet local demands, PM turnover in dendrites most likely requires local cellular machinery, such as dendritic endocytic and secretory systems, dysregulation of which may result in dendritic pathology observed in various neurodegenerative diseases (NDs). Supporting this notion, a growing body of literature provides evidence to suggest the pathogenic contribution of dysregulated PM turnover to dendritic pathology in certain NDs. In this article, we present our perspective view that impaired dendritic endocytic and secretory systems may contribute to dendritic pathology by encumbering PM turnover in NDs.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Soon Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Jeong Hyang Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
33
|
Activity-dependent compensation of cell size is vulnerable to targeted deletion of ion channels. Sci Rep 2020; 10:15989. [PMID: 32994529 PMCID: PMC7524806 DOI: 10.1038/s41598-020-72977-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/25/2020] [Indexed: 01/13/2023] Open
Abstract
In many species, excitable cells preserve their physiological properties despite significant variation in physical size across time and in a population. For example, neurons in crustacean central pattern generators generate similar firing patterns despite several-fold increases in size between juveniles and adults. This presents a biophysical problem because the electrical properties of cells are highly sensitive to membrane area and channel density. It is not known whether specific mechanisms exist to sense membrane area and adjust channel expression to keep a consistent channel density, or whether regulation mechanisms that sense activity alone are capable of compensating cell size. We show that destabilising effects of growth can be specifically compensated by feedback mechanism that senses average calcium influx and jointly regulate multiple conductances. However, we further show that this class of growth-compensating regulation schemes is necessarily sensitive to perturbations that alter the expression of subsets of ion channel types. Targeted perturbations of specific ion channels can trigger a pathological response of the regulation mechanism and a failure of homeostasis. Our findings suggest that physiological regulation mechanisms that confer robustness to growth may be specifically vulnerable to deletions or mutations that affect subsets of ion channels.
Collapse
|
34
|
Robinson KJ, Watchon M, Laird AS. Aberrant Cerebellar Circuitry in the Spinocerebellar Ataxias. Front Neurosci 2020; 14:707. [PMID: 32765211 PMCID: PMC7378801 DOI: 10.3389/fnins.2020.00707] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative diseases that share convergent disease features. A common symptom of these diseases is development of ataxia, involving impaired balance and motor coordination, usually stemming from cerebellar dysfunction and neurodegeneration. For most spinocerebellar ataxias, pathology can be attributed to an underlying gene mutation and the impaired function of the encoded protein through loss or gain-of-function effects. Strikingly, despite vast heterogeneity in the structure and function of disease-causing genes across the SCAs and the cellular processes affected, the downstream effects have considerable overlap, including alterations in cerebellar circuitry. Interestingly, aberrant function and degeneration of Purkinje cells, the major output neuronal population present within the cerebellum, precedes abnormalities in other neuronal populations within many SCAs, suggesting that Purkinje cells have increased vulnerability to cellular perturbations. Factors that are known to contribute to perturbed Purkinje cell function in spinocerebellar ataxias include altered gene expression resulting in altered expression or functionality of proteins and channels that modulate membrane potential, downstream impairments in intracellular calcium homeostasis and changes in glutamatergic input received from synapsing climbing or parallel fibers. This review will explore this enhanced vulnerability and the aberrant cerebellar circuitry linked with it in many forms of SCA. It is critical to understand why Purkinje cells are vulnerable to such insults and what overlapping pathogenic mechanisms are occurring across multiple SCAs, despite different underlying genetic mutations. Enhanced understanding of disease mechanisms will facilitate the development of treatments to prevent or slow progression of the underlying neurodegenerative processes, cerebellar atrophy and ataxic symptoms.
Collapse
Affiliation(s)
| | | | - Angela S. Laird
- Centre for Motor Neuron Disease Research, Department of Biomedical Science, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
35
|
Cook AA, Fields E, Watt AJ. Losing the Beat: Contribution of Purkinje Cell Firing Dysfunction to Disease, and Its Reversal. Neuroscience 2020; 462:247-261. [PMID: 32554108 DOI: 10.1016/j.neuroscience.2020.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
The cerebellum is a brain structure that is highly interconnected with other brain regions. There are many contributing factors to cerebellar-related brain disease, such as altered afferent input, local connectivity, and/or cerebellar output. Purkinje cells (PC) are the principle cells of the cerebellar cortex, and fire intrinsically; that is, they fire spontaneous action potentials at high frequencies. This review paper focuses on PC intrinsic firing activity, which is altered in multiple neurological diseases, including ataxia, Huntington Disease (HD) and autism spectrum disorder (ASD). Notably, there are several cases where interventions that restore or rescue PC intrinsic activity also improve impaired behavior in these mouse models of disease. These findings suggest that rescuing PC firing deficits themselves may be sufficient to improve impairment in cerebellar-related behavior in disease. We propose that restoring PC intrinsic firing represents a good target for drug development that might be of therapeutic use for several disorders.
Collapse
Affiliation(s)
- Anna A Cook
- Department of Biology, McGill University, Montreal, Canada
| | - Eviatar Fields
- Department of Biology, McGill University, Montreal, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, Canada.
| |
Collapse
|
36
|
Egorova PA, Gavrilova AV, Bezprozvanny IB. Ataxic Symptoms in Huntington's Disease Transgenic Mouse Model Are Alleviated by Chlorzoxazone. Front Neurosci 2020; 14:279. [PMID: 32317916 PMCID: PMC7147686 DOI: 10.3389/fnins.2020.00279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease (HD) is a hereditary neurodegenerative disease caused by a polyglutamine expansion in the huntingtin protein, Striatum atrophy in HD leads to a progressive disturbance of psychiatric, motor, and cognitive function. Recent studies of HD patients revealed that the degeneration of cerebellum is also observed independently from the striatal atrophy during early HD stage and may contribute to the motor impairment and ataxia observed in HD. Cerebellar Purkinje cells (PCs) are responsible for the proper cerebellar pathways functioning and motor control. Recent studies on mouse models of HD have shown that the abnormality of the biochemical functions of PCs are observed in HD, suggesting the contribution of PC dysfunction and death to the impaired movement coordination observed in HD. To investigate ataxic symptoms in HD we performed a series of experiments with the yeast artificial chromosome transgenic mouse model of HD (YAC128). Using extracellular single-unit recording method we found that the portion of the cerebellar PCs with bursting and irregular patterns of spontaneous activity drastically rises in aged YAC128 HD mice when compared with wild type littermates. Previous studies demonstrated that SK channels are responsible for the cerebellar PC pacemaker activity and that positive modulation of SK channel activity exerted beneficial effects in different ataxic mouse models. Here we studied effects of the SK channels modulator chlorzoxazone (CHZ) on the motor behavior of YAC128 HD mice and also on the electrophysiological activity and neuroanatomy of the cerebellar PCs from these mice. We determined that the long-term intraperitoneal injections of CHZ alleviated the progressive impairment in the firing pattern of YAC128 PCs. We also demonstrated that treatment with CHZ rescued age-dependent motor incoordination and improved the cerebellar morphology in YAC128 mice. We propose that abnormal changes in the PC firing patterns might be a one of the possible causes of ataxic symptoms in HD and in other polyglutamine disorders and that the pharmacological activation of SK channels may serve as a potential way to improve the activity of cerebellar PCs and relieve the ataxic phenotype in HD patients.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Aleksandra V Gavrilova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
37
|
Binda F, Pernaci C, Saxena S. Cerebellar Development and Circuit Maturation: A Common Framework for Spinocerebellar Ataxias. Front Neurosci 2020; 14:293. [PMID: 32300292 PMCID: PMC7145357 DOI: 10.3389/fnins.2020.00293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/13/2020] [Indexed: 01/24/2023] Open
Abstract
Spinocerebellar ataxias (SCAs) affect the cerebellum and its afferent and efferent systems that degenerate during disease progression. In the cerebellum, Purkinje cells (PCs) are the most vulnerable and their prominent loss in the late phase of the pathology is the main characteristic of these neurodegenerative diseases. Despite the constant advancement in the discovery of affected molecules and cellular pathways, a comprehensive description of the events leading to the development of motor impairment and degeneration is still lacking. However, in the last years the possible causal role for altered cerebellar development and neuronal circuit wiring in SCAs has been emerging. Not only wiring and synaptic transmission deficits are a common trait of SCAs, but also preventing the expression of the mutant protein during cerebellar development seems to exert a protective role. By discussing this tight relationship between cerebellar development and SCAs, in this review, we aim to highlight the importance of cerebellar circuitry for the investigation of SCAs.
Collapse
Affiliation(s)
- Francesca Binda
- Department of Neurology, Center for Experimental Neurology, University Hospital of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Carla Pernaci
- Department of Neurology, Center for Experimental Neurology, University Hospital of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, University Hospital of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
38
|
Loss-of-function BK channel mutation causes impaired mitochondria and progressive cerebellar ataxia. Proc Natl Acad Sci U S A 2020; 117:6023-6034. [PMID: 32132200 DOI: 10.1073/pnas.1920008117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Despite a growing number of ion channel genes implicated in hereditary ataxia, it remains unclear how ion channel mutations lead to loss-of-function or death of cerebellar neurons. Mutations in the gene KCNMA1, encoding the α-subunit of the BK channel have emerged as responsible for a variety of neurological phenotypes. We describe a mutation (BKG354S) in KCNMA1, in a child with congenital and progressive cerebellar ataxia with cognitive impairment. The mutation in the BK channel selectivity filter dramatically reduced single-channel conductance and ion selectivity. The BKG354S channel trafficked normally to plasma, nuclear, and mitochondrial membranes, but caused reduced neurite outgrowth, cell viability, and mitochondrial content. Small interfering RNA (siRNA) knockdown of endogenous BK channels had similar effects. The BK activator, NS1619, rescued BKG354S cells but not siRNA-treated cells, by selectively blocking the mutant channels. When expressed in cerebellum via adenoassociated virus (AAV) viral transfection in mice, the mutant BKG354S channel, but not the BKWT channel, caused progressive impairment of several gait parameters consistent with cerebellar dysfunction from 40- to 80-d-old mice. Finally, treatment of the patient with chlorzoxazone, a BK/SK channel activator, partially improved motor function, but ataxia continued to progress. These studies indicate that a loss-of-function BK channel mutation causes ataxia and acts by reducing mitochondrial and subsequently cellular viability.
Collapse
|
39
|
Bowie E, Goetz SC. TTBK2 and primary cilia are essential for the connectivity and survival of cerebellar Purkinje neurons. eLife 2020; 9:51166. [PMID: 31934864 PMCID: PMC7028366 DOI: 10.7554/elife.51166] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Primary cilia are vital signaling organelles that extend from most types of cells, including neurons and glia. These structures are essential for development of many tissues and organs; however, their function in adult tissues, particularly neurons in the brain, remains largely unknown. Tau tubulin kinase 2 (TTBK2) is a critical regulator of ciliogenesis, and is also mutated in a hereditary neurodegenerative disorder, spinocerebellar ataxia type 11 (SCA11). Here, we show that conditional knockout of Ttbk2 in adult mice results in degenerative cerebellar phenotypes that recapitulate aspects of SCA11 including motor coordination deficits and defects to Purkinje cell (PC) integrity. We also find that the Ttbk2 conditional mutant mice quickly lose cilia throughout the brain. We show that conditional knockout of the key ciliary trafficking gene Ift88 in adult mice results in nearly identical cerebellar phenotypes to those of the Ttbk2 knockout, indicating that disruption of ciliary signaling is a key driver of these phenotypes. Our data suggest that primary cilia play an integral role in maintaining the function of PCs in the adult cerebellum and reveal novel insights into mechanisms involved in neurodegeneration.
Collapse
Affiliation(s)
- Emily Bowie
- University Program in Genetics and Genomics, Duke University, Durham, United States
| | - Sarah C Goetz
- Department of Pharmacology and Cancer Biology, Duke University, Durham, United States
| |
Collapse
|
40
|
Nicotinamide Pathway-Dependent Sirt1 Activation Restores Calcium Homeostasis to Achieve Neuroprotection in Spinocerebellar Ataxia Type 7. Neuron 2019; 105:630-644.e9. [PMID: 31859031 DOI: 10.1016/j.neuron.2019.11.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 09/18/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
Sirtuin 1 (Sirt1) is a NAD+-dependent deacetylase capable of countering age-related neurodegeneration, but the basis of Sirt1 neuroprotection remains elusive. Spinocerebellar ataxia type 7 (SCA7) is an inherited CAG-polyglutamine repeat disorder. Transcriptome analysis of SCA7 mice revealed downregulation of calcium flux genes accompanied by abnormal calcium-dependent cerebellar membrane excitability. Transcription-factor binding-site analysis of downregulated genes yielded Sirt1 target sites, and we observed reduced Sirt1 activity in the SCA7 mouse cerebellum with NAD+ depletion. SCA7 patients displayed increased poly(ADP-ribose) in cerebellar neurons, supporting poly(ADP-ribose) polymerase-1 upregulation. We crossed Sirt1-overexpressing mice with SCA7 mice and noted rescue of neurodegeneration and calcium flux defects. NAD+ repletion via nicotinamide riboside ameliorated disease phenotypes in SCA7 mice and patient stem cell-derived neurons. Sirt1 thus achieves neuroprotection by promoting calcium regulation, and NAD+ dysregulation underlies Sirt1 dysfunction in SCA7, indicating that cerebellar ataxias exhibit altered calcium homeostasis because of metabolic dysregulation, suggesting shared therapy targets.
Collapse
|
41
|
Egorova PA, Bezprozvanny IB. Molecular Mechanisms and Therapeutics for Spinocerebellar Ataxia Type 2. Neurotherapeutics 2019; 16:1050-1073. [PMID: 31435879 PMCID: PMC6985344 DOI: 10.1007/s13311-019-00777-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The effective therapeutic treatment and the disease-modifying therapy for spinocerebellar ataxia type 2 (SCA2) (a progressive hereditary disease caused by an expansion of polyglutamine in the ataxin-2 protein) is not available yet. At present, only symptomatic treatment and methods of palliative care are prescribed to the patients. Many attempts were made to study the physiological, molecular, and biochemical changes in SCA2 patients and in a variety of the model systems to find new therapeutic targets for SCA2 treatment. A better understanding of the uncovered molecular mechanisms of the disease allowed the scientific community to develop strategies of potential therapy and helped to create some promising therapeutic approaches for SCA2 treatment. Recent progress in this field will be discussed in this review article.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, 195251, Russia.
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, ND12.200, Dallas, Texas, 75390, USA.
| |
Collapse
|
42
|
Srinivasan SR, Shakkottai VG. Moving Towards Therapy in SCA1: Insights from Molecular Mechanisms, Identification of Novel Targets, and Planning for Human Trials. Neurotherapeutics 2019; 16:999-1008. [PMID: 31338702 PMCID: PMC6985354 DOI: 10.1007/s13311-019-00763-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a group of neurodegenerative disorders inherited in an autosomal dominant fashion. The SCAs result in progressive gait imbalance, incoordination of the limbs, speech changes, and oculomotor dysfunction, among other symptoms. Over the past few decades, significant strides have been made in understanding the pathogenic mechanisms underlying these diseases. Although multiple efforts using a combination of genetics and pharmacology with small molecules have been made towards developing new therapeutics, no FDA approved treatment currently exists. In this review, we focus on SCA1, a common SCA subtype, in which some of the greatest advances have been made in understanding disease biology, and consequently potential therapeutic targets. Understanding of the underlying basic biology and targets of therapy in SCA1 is likely to give insight into treatment strategies in other SCAs. The diversity of the biology in the SCAs, and insight from SCA1 suggests, however, that both shared treatment strategies and specific approaches tailored to treat distinct genetic causes of SCA are likely needed for this group of devastating neurological disorders.
Collapse
Affiliation(s)
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, 4009 BSRB, 109 Zina Pitcher Place, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
43
|
Hu YS, Do J, Edamakanti CR, Kini AR, Martina M, Stupp SI, Opal P. Self-assembling vascular endothelial growth factor nanoparticles improve function in spinocerebellar ataxia type 1. Brain 2019; 142:312-321. [PMID: 30649233 DOI: 10.1093/brain/awy328] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/21/2018] [Indexed: 12/17/2022] Open
Abstract
There is increasing appreciation for the role of the neurovascular unit in neurodegenerative diseases. We showed previously that the angiogenic and neurotrophic cytokine, vascular endothelial growth factor (VEGF), is suppressed to abnormally low levels in spinocerebellar ataxia type 1 (SCA1), and that replenishing VEGF reverses the cerebellar pathology in SCA1 mice. In that study, however, we used a recombinant VEGF, which is extremely costly to manufacture and biologically unstable as well as immunogenic. To develop a more viable therapy, here we test a synthetic VEGF peptide amphiphile that self-assembles into nanoparticles. We show that this nano-VEGF has potent neurotrophic and angiogenic properties, is well-tolerated, and leads to functional improvement in SCA1 mice even when administered at advanced stages of the disease. This approach can be generalized to other neurotrophic factors or molecules that act in a paracrine manner, offering a novel therapeutic strategy for neurodegenerative conditions.
Collapse
Affiliation(s)
- Yuan-Shih Hu
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jeehaeh Do
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Ameet R Kini
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Marco Martina
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Samuel I Stupp
- Departments of Materials and Science and Engineering, Chemistry, Medicine, and Biomedical Engineering, Northwestern University, Evanston, IL USA.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine Chicago, Illinois, USA
| |
Collapse
|
44
|
Combs MD, Edwards SH, Scherpenhuizen JM, Narayan EJ, Kessell AE, Ramsay J, Piltz J, Raidal SR, Quinn JC. Treatment with potassium bromide mitigates ataxia and reduces tremor in lambs with perennial ryegrass toxicosis. N Z Vet J 2019; 67:287-294. [PMID: 31248334 DOI: 10.1080/00480169.2019.1637300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aims: To assess the use of potassium bromide (KBr) as a therapeutic intervention for perennial ryegrass toxicosis (PRGT) in lambs fed ryegrass seed containing lolitrem B. Methods: Male lambs aged 10-12 months (n = 43) were assigned to receive ryegrass seed containing lolitrem B, at a dose of 0.16 mg/kg/day (Groups 2, 3 and 4), or lucerne chaff and molasses (Groups 1 and 5). Lambs in Groups 2 and 3 were observed for clinical signs and gait changes until defined signs of PGRT were observed, when they were transferred, with lambs in Group 1, to the Testing phase of the trial. Lambs in Group 3 were then treated with a single oral dose of 300 mg/kg bromide. Lambs in Groups 4 and 5 received KBr daily from the start of the trial (540 mg/kg bromide over 3 days then 20 mg/kg daily) and were transferred to the Testing phase after 18 days. Clinical examination and gait assessment, and surface electromyography of the triceps muscle, measuring root-mean-square (RMS) voltages, were carried out on Days 0, 1 and 2 of the Testing phase followed by necropsy, histopathology, measurement of concentrations of bromide in serum and CSF and faecal cortisol metabolites (FCM). Results: In Group 3 lambs, mean composite gait scores decreased between Testing phase Day 0 and Days 1 and 2 (p < 0.001), but increased in lambs in Group 2 between Day 0 and Day 2 (p = 0.015). Scores for lambs in Group 3 on Day 2 were lower than for lambs in Group 2 (p < 0.001). Mean RMS voltages on Day 2 were higher in lambs in Group 2 than Group 3 (p = 0.045). Mean concentrations of bromide in serum were >800 µg/mL in lambs in Groups 3 and 4 on Day 2. Concentrations of FCM were higher in lambs from Group 2 than in Groups 1 or 5, but were similar in Groups 2, 3 and 4. Histopathological findings in the cerebellum of lambs from Groups 2, 3 and 4 were similar, showing pyknosis of neurons within the granular layer of the cerebellum and Purkinje neuron proximal axonal spheroid formation. Conclusions and clinical relevance: A single oral dose of 300 mg/kg bromide in lambs with neurological signs of PRGT resulted in reduced composite gait scores and reduced RMS voltages, indicating a significant improvement in clinical signs of ataxia, movement disorder and muscle tremor associated with the neurotoxic effects of lolitrem B.
Collapse
Affiliation(s)
- M D Combs
- School of Animal and Veterinary Sciences, Charles Sturt University , Wagga Wagga , Australia
| | - S H Edwards
- School of Animal and Veterinary Sciences, Charles Sturt University , Wagga Wagga , Australia
| | - J M Scherpenhuizen
- School of Animal and Veterinary Sciences, Charles Sturt University , Wagga Wagga , Australia
| | - E J Narayan
- School of Science and Health, Western Sydney University , Penrith , Australia
| | - A E Kessell
- Veterinary Diagnostic Laboratory, City University of Hong Kong , Hong Kong
| | - J Ramsay
- School of Animal and Veterinary Sciences, Charles Sturt University , Wagga Wagga , Australia
| | - J Piltz
- New South Wales Department of Primary Industries , Wagga Wagga , Australia
| | - S R Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University , Wagga Wagga , Australia
| | - J C Quinn
- School of Animal and Veterinary Sciences, Charles Sturt University , Wagga Wagga , Australia
| |
Collapse
|
45
|
Masi A, Narducci R, Mannaioni G. Harnessing ionic mechanisms to achieve disease modification in neurodegenerative disorders. Pharmacol Res 2019; 147:104343. [PMID: 31279830 DOI: 10.1016/j.phrs.2019.104343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
Abstract
Progressive neuronal death is the key pathogenic event leading to clinical symptoms in neurodegenerative disorders (NDDs). Neuroprotective treatments are virtually unavailable, partly because of the marked internal heterogeneity of the mechanisms underlying pathology. Targeted neuroprotection would require deep mechanistic knowledge across the entire aetiological spectrum of each NDD and the development of tailored treatments. Although ideal, this strategy appears challenging, as it would require a degree of characterization of both the disease and the patient that is currently unavailable. The alternate strategy is to search for commonalities across molecularly distinct NDD forms and exploit these for the development of drugs with broad-spectrum efficacy. In this view, mounting evidence points to ionic mechanisms (IMs) as targets with potential therapeutic efficacy across distinct NDD subtypes. The scope of this review is to present clinical and preclinical evidence supporting the link between disruption of IMs and neuronal death in specific NDDs and to critically revise past and ongoing attempts of harnessing IMs for the development of neuroprotective treatments.
Collapse
Affiliation(s)
- A Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy; School of Pharmacy, University of Camerino, Camerino, Italy.
| | - R Narducci
- Italian Institute of Technology (IIT), Department of Neuroscience and Brain Technologies, Genova, Italy
| | - G Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy; Toxicology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|
46
|
In Vivo Analysis of the Climbing Fiber-Purkinje Cell Circuit in SCA2-58Q Transgenic Mouse Model. THE CEREBELLUM 2019; 17:590-600. [PMID: 29876801 DOI: 10.1007/s12311-018-0951-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cerebellar Purkinje cells (PCs) and cerebellar pathways are primarily affected in many autosomal dominant cerebellar ataxias. PCs generate complex spikes (CS) in vivo when activated by climbing fiber (CF) which rise from the inferior olive. In this study, we investigated the functional state of the CF-PC circuitry in the transgenic mouse model of spinocerebellar ataxia type 2 (SCA2), a polyglutamine neurodegenerative genetic disease. In our experiments, we used an extracellular single-unit recording method to compare the PC activity pattern and the CS shape in age-matched wild-type mice and SCA2-58Q transgenic mice. We discovered no alterations in the CS properties of PCs in aging SCA2 mice. To examine the integrity of the olivocerebellar pathway, we applied harmaline, an alkaloid that acts directly on the inferior olive neurons. The pharmacological stimulation of olivocerebellar circuit by harmaline uncovered disturbances in SCA2-58Q PC activity pattern and in the complex spike shape when compared with age-matched wild-type cells. The abnormalities in the CF-PC circuitry were aggravated with age. We propose that alterations in CF-PC circuitry represent one of potential causes of ataxic symptoms in SCA2 and in other SCAs.
Collapse
|
47
|
Larivière R, Sgarioto N, Márquez BT, Gaudet R, Choquet K, McKinney RA, Watt AJ, Brais B. Sacs R272C missense homozygous mice develop an ataxia phenotype. Mol Brain 2019; 12:19. [PMID: 30866998 PMCID: PMC6416858 DOI: 10.1186/s13041-019-0438-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/25/2019] [Indexed: 12/29/2022] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS [MIM 270550]) is an early-onset neurodegenerative disorder caused by mutations in the SACS gene. Over 200 SACS mutations have been identified. Most mutations lead to a complete loss of a sacsin, a large 520 kD protein, although some missense mutations are associated with low levels of sacsin expression. We previously showed that Sacs knock-out mice demonstrate early-onset ataxic phenotype with neurofilament bundling in many neuronal populations. To determine if the preservation of some mutated sacsin protein resulted in the same cellular and behavioral alterations, we generated mice expressing an R272C missense mutation, a homozygote mutation found in some affected patients. Though SacsR272C mice express 21% of wild type brain sacsin and sacsin is found in many neurons, they display similar abnormalities to Sacs knock-out mice, including the development of an ataxic phenotype, reduced Purkinje cell firing rates, and somatodendritic neurofilament bundles in Purkinje cells and other neurons. Together our results support that Sacs missense mutation largely lead to loss of sacsin function.
Collapse
Affiliation(s)
- Roxanne Larivière
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Room 622, 3801, University Street, Montreal, Québec, H3A 2B4, Canada
| | - Nicolas Sgarioto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Room 622, 3801, University Street, Montreal, Québec, H3A 2B4, Canada
| | | | - Rébecca Gaudet
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Room 622, 3801, University Street, Montreal, Québec, H3A 2B4, Canada
| | - Karine Choquet
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Qc, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Qc, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, Qc, Canada
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Room 622, 3801, University Street, Montreal, Québec, H3A 2B4, Canada.
| |
Collapse
|
48
|
Chopra R, Wasserman AH, Pulst SM, De Zeeuw CI, Shakkottai VG. Protein kinase C activity is a protective modifier of Purkinje neuron degeneration in cerebellar ataxia. Hum Mol Genet 2019; 27:1396-1410. [PMID: 29432535 DOI: 10.1093/hmg/ddy050] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/05/2018] [Indexed: 11/13/2022] Open
Abstract
Among the many types of neurons expressing protein kinase C (PKC) enzymes, cerebellar Purkinje neurons are particularly reliant on appropriate PKC activity for maintaining homeostasis. The importance of PKC enzymes in Purkinje neuron health is apparent as mutations in PRKCG (encoding PKCγ) cause cerebellar ataxia. PRKCG has also been identified as an important node in ataxia gene networks more broadly, but the functional role of PKC in other forms of ataxia remains unexplored, and the mechanisms by which PKC isozymes regulate Purkinje neuron health are not well understood. Here, we investigated how PKC activity influences neurodegeneration in inherited ataxia. Using mouse models of spinocerebellar ataxia type 1 (SCA1) and 2 (SCA2) we identify an increase in PKC-mediated substrate phosphorylation in two different forms of inherited cerebellar ataxia. Normalizing PKC substrate phosphorylation in SCA1 and SCA2 mice accelerates degeneration, suggesting that the increased activity observed in these models is neuroprotective. We also find that increased phosphorylation of PKC targets limits Purkinje neuron membrane excitability, suggesting that PKC activity may support Purkinje neuron health by moderating excitability. These data suggest a functional role for PKC enzymes in ataxia gene networks, and demonstrate that increased PKC activity is a protective modifier of degeneration in inherited cerebellar ataxia.
Collapse
Affiliation(s)
- Ravi Chopra
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Aaron H Wasserman
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Amsterdam 1105 CA, The Netherlands.,Department of Neuroscience, Erasmus MC, Rotterdam 3015 GE, The Netherlands
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
49
|
Mellesmoen A, Sheeler C, Ferro A, Rainwater O, Cvetanovic M. Brain Derived Neurotrophic Factor (BDNF) Delays Onset of Pathogenesis in Transgenic Mouse Model of Spinocerebellar Ataxia Type 1 (SCA1). Front Cell Neurosci 2019; 12:509. [PMID: 30718999 PMCID: PMC6348256 DOI: 10.3389/fncel.2018.00509] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by an abnormal expansion of CAG repeats in the Ataxin-1 (ATXN1) gene and characterized by motor deficits and cerebellar neurodegeneration. Even though mutant ATXN1 is expressed from an early age, disease onset usually occurs in patient’s mid-thirties, indicating the presence of compensatory factors that limit the toxic effects of mutant ATXN1 early in disease. Brain derived neurotrophic factor (BDNF) is a growth factor known to be important for the survival and function of cerebellar neurons. Using gene expression analysis, we observed altered BDNF expression in the cerebella of Purkinje neuron specific transgenic mouse model of SCA1, ATXN1[82Q] mice, with increased expression during the early stage and decreased expression in the late stage of disease. We therefore investigated the potentially protective role of BDNF in early stage SCA1 through intraventricular delivery of BDNF via ALZET osmotic pumps. Extrinsic BDNF delivery delayed onset of motor deficits and Purkinje neuron pathology in ATXN1[82Q] mice supporting its use as a novel therapeutic for SCA1.
Collapse
Affiliation(s)
- Aaron Mellesmoen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Carrie Sheeler
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Austin Ferro
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Orion Rainwater
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
50
|
MTSS1/Src family kinase dysregulation underlies multiple inherited ataxias. Proc Natl Acad Sci U S A 2018; 115:E12407-E12416. [PMID: 30530649 DOI: 10.1073/pnas.1816177115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The genetically heterogeneous spinocerebellar ataxias (SCAs) are caused by Purkinje neuron dysfunction and degeneration, but their underlying pathological mechanisms remain elusive. The Src family of nonreceptor tyrosine kinases (SFK) are essential for nervous system homeostasis and are increasingly implicated in degenerative disease. Here we reveal that the SFK suppressor Missing-in-metastasis (MTSS1) is an ataxia locus that links multiple SCAs. MTSS1 loss results in increased SFK activity, reduced Purkinje neuron arborization, and low basal firing rates, followed by cell death. Surprisingly, mouse models for SCA1, SCA2, and SCA5 show elevated SFK activity, with SCA1 and SCA2 displaying dramatically reduced MTSS1 protein levels through reduced gene expression and protein translation, respectively. Treatment of each SCA model with a clinically approved Src inhibitor corrects Purkinje neuron basal firing and delays ataxia progression in MTSS1 mutants. Our results identify a common SCA therapeutic target and demonstrate a key role for MTSS1/SFK in Purkinje neuron survival and ataxia progression.
Collapse
|