1
|
Valente R, Cordeiro M, Pinto B, Machado A, Alves F, Sousa-Pinto I, Ruivo R, Castro LFC. Alterations of pleiotropic neuropeptide-receptor gene couples in Cetacea. BMC Biol 2024; 22:186. [PMID: 39218857 PMCID: PMC11367936 DOI: 10.1186/s12915-024-01984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Habitat transitions have considerable consequences in organism homeostasis, as they require the adjustment of several concurrent physiological compartments to maintain stability and adapt to a changing environment. Within the range of molecules with a crucial role in the regulation of different physiological processes, neuropeptides are key agents. Here, we examined the coding status of several neuropeptides and their receptors with pleiotropic activity in Cetacea. RESULTS Analysis of 202 mammalian genomes, including 41 species of Cetacea, exposed an intricate mutational landscape compatible with gene sequence modification and loss. Specifically for Cetacea, in the 12 genes analysed we have determined patterns of loss ranging from species-specific disruptive mutations (e.g. neuropeptide FF-amide peptide precursor; NPFF) to complete erosion of the gene across the cetacean stem lineage (e.g. somatostatin receptor 4; SSTR4). CONCLUSIONS Impairment of some of these neuromodulators may have contributed to the unique energetic metabolism, circadian rhythmicity and diving response displayed by this group of iconic mammals.
Collapse
Affiliation(s)
- Raul Valente
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Miguel Cordeiro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
| | - Bernardo Pinto
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - André Machado
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Filipe Alves
- MARE - Marine and Environmental Sciences Centre, Funchal, Madeira, Portugal
- ARNET - Aquatic Research Network, ARDITI, Funchal, Madeira, Portugal
| | - Isabel Sousa-Pinto
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal.
| |
Collapse
|
2
|
Xia GQ, Xu M, Sun C, Zhang ZL, Li XQ. Elevated microRNA-214-3p level ameliorates neuroinflammation after spinal cord ischemia-reperfusion injury by inhibiting Nmb/Cav3.2 pathway. Int Immunopharmacol 2024; 133:112031. [PMID: 38631219 DOI: 10.1016/j.intimp.2024.112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Neuromedin B (Nmb) plays a pivotal role in the transmission of neuroinflammation, particularly during spinal cord ischemia-reperfusion injury (SCII). However, the detailed molecular mechanisms underlying this process remain elusive. METHODS The SCII model was established by clamping the abdominal aorta of male Sprague-Dawley (SD) rats for 60 min. The protein expression levels of Nmb, Cav3.2, and IL-1β were detected by Western blotting, while miR-214-3p expression was quantified by qRT-PCR. The targeted regulation between miR-214-3p and Nmb was investigated using a dual-luciferase reporter gene assay. The cellular localization of Nmb and Cav3.2 with cell-specific markers was visualized by immunofluorescence staining. The specific roles of miR-214-3p on the Nmb/Cav3.2 interactions in SCII-injured rats were explored by intrathecal injection of Cav3.2-siRNA, PD168368 (a specific NmbR inhibitor) and synthetic miR-214-3p agomir and antagomir in separate experiments. Additionally, hind-limb motor function was evaluated using the modified Tarlov scores. RESULTS Compared to the Sham group, the protein expression levels of Nmb, Cav3.2, and the proinflammatory factor Interleukin(IL)-1β were significantly elevated at 24 h post-SCII. Intrathecal injection of PD168368 and Cav3.2-siRNA significantly suppressed the expression of Cav3.2 and IL-1β compared to the SCII group. The miRDB database and dual-luciferase reporter gene assay identified Nmb as a direct target of miR-214-3p. As expected, in vivo overexpression of miR-214-3p by agomir-214-3p pretreatment significantly inhibited the increases in Nmb, Cav3.2 and IL-1β expression and improved lower limb motor function in SCII-injured rats, while antagomiR-214-3p pretreatment reversed these effects. CONCLUSIONS Nmb protein levels positively correlated with Cav3.2 expression in SCII rats. Upregulating miR-214-3p ameliorated hind-limb motor function and protected against neuroinflammation via inhibiting the aberrant Nmb/Cav3.2 interactions and downstream IL-1β release. These findings provide novel therapeutic targets for clinical prevention and treatment of SCII.
Collapse
Affiliation(s)
- Guo-Qiang Xia
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Miao Xu
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Cong Sun
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Zai-Li Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| | - Xiao-Qian Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| |
Collapse
|
3
|
Serafin P, Kleczkowska P. Bombesins: A New Frontier in Hybrid Compound Development. Pharmaceutics 2023; 15:2597. [PMID: 38004575 PMCID: PMC10674911 DOI: 10.3390/pharmaceutics15112597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Recently, bombesin (BN) and its analogs have attracted much attention as excellent anticancer agents because they interact with specific receptors widely distributed on the surface of various cancer cells. However, their biological properties proceed far beyond this, given a broad spectrum of activity. Bombesin receptor ligands are effective drugs for the treatment of rheumatoid arthritis or gastrointestinal diseases. However, most diseases are complex, and the use of polytherapy may lead to pharmacokinetic and pharmacodynamic drug-drug interactions, resulting in side effects. Therefore, there is a need to develop effective compounds that also contain BN or its analogs, which are combined with other structural entities, thus generating a so-called hybrid drug. Hybrid drugs that contain bombesin pharmacophore(s) may be proposed as a solution to the problem of polytherapy or the lack of an effective cure. Such structures have now demonstrated the desired efficacy, though information on these aforementioned compounds is relatively scarce. Therefore, our paper aims to encourage researchers to focus on bombesins. Herein, we indicate that the hybrid approach should also be firmly applied to bombesins and the BN receptor family. This paper's structure is divided into two main sections demonstrating bombesins and their properties, as well as recent data on bombesin-based hybrid compounds and their potential usefulness in medicine. Overall, it refers to the discovery and synthesis of modified bombesin-based hybrid compounds.
Collapse
Affiliation(s)
- Pawel Serafin
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland;
| | - Patrycja Kleczkowska
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland;
- Maria Sklodowska-Curie, Medical Academy in Warsaw, Solidarnosci 12 Str., 03-411 Warsaw, Poland
| |
Collapse
|
4
|
Alkon N, Assen FP, Arnoldner T, Bauer WM, Medjimorec MA, Shaw LE, Rindler K, Holzer G, Weber P, Weninger W, Freystätter C, Chennareddy S, Kinaciyan T, Farlik M, Jonak C, Griss J, Bangert C, Brunner PM. Single-cell RNA sequencing defines disease-specific differences between chronic nodular prurigo and atopic dermatitis. J Allergy Clin Immunol 2023; 152:420-435. [PMID: 37210042 DOI: 10.1016/j.jaci.2023.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/12/2023] [Accepted: 04/19/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Chronic nodular prurigo (CNPG) is an inflammatory skin disease that is maintained by a chronic itch-scratch cycle likely rooted in neuroimmunological dysregulation. This condition may be associated with atopy in some patients, and there are now promising therapeutic results from blocking type 2 cytokines such as IL-4, IL-13, and IL-31. OBJECTIVES This study aimed to improve the understanding of pathomechanisms underlying CNPG as well as molecular relationships between CNPG and atopic dermatitis (AD). METHODS We profiled skin lesions from patients with CNPG in comparison with AD and healthy control individuals using single-cell RNA sequencing combined with T-cell receptor sequencing. RESULTS We found type 2 immune skewing in both CNPG and AD, as evidenced by CD4+ helper T cells expressing IL13. However, only AD harbored an additional, oligoclonally expanded CD8A+IL9R+IL13+ cytotoxic T-cell population, and immune activation pathways were highly upregulated in AD, but less so in CNPG. Conversely, CNPG showed signatures of extracellular matrix organization, collagen synthesis, and fibrosis, including a unique population of CXCL14-IL24+ secretory papillary fibroblasts. Besides known itch mediators such as IL31 and oncostatin M, we also detected increased levels of neuromedin B in fibroblasts of CNPG lesions compared with AD and HC, with neuromedin B receptors detectable on some nerve endings. CONCLUSIONS These data show that CNPG does not harbor the strong disease-specific immune activation pathways that are typically found in AD but is rather characterized by upregulated stromal remodeling mechanisms that might have a direct impact on itch fibers.
Collapse
Affiliation(s)
- Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Frank P Assen
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Tamara Arnoldner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marco A Medjimorec
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Lisa E Shaw
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Gregor Holzer
- Department of Dermatology, Klinik Donaustadt, Vienna, Austria
| | - Philipp Weber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christian Freystätter
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tamar Kinaciyan
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
5
|
Pandey M, Zhang JH, Adikaram PR, Kittock C, Lue N, Awe A, Degner K, Jacob N, Staples J, Thomas R, Kohnen AB, Ganesan S, Kabat J, Chen CK, Simonds WF. Specific regulation of mechanical nociception by Gβ5 involves GABA-B receptors. JCI Insight 2023; 8:e134685. [PMID: 37219953 PMCID: PMC10371342 DOI: 10.1172/jci.insight.134685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/19/2023] [Indexed: 05/24/2023] Open
Abstract
Mechanical, thermal, and chemical pain sensation is conveyed by primary nociceptors, a subset of sensory afferent neurons. The intracellular regulation of the primary nociceptive signal is an area of active study. We report here the discovery of a Gβ5-dependent regulatory pathway within mechanical nociceptors that restrains antinociceptive input from metabotropic GABA-B receptors. In mice with conditional knockout (cKO) of the gene that encodes Gβ5 (Gnb5) targeted to peripheral sensory neurons, we demonstrate the impairment of mechanical, thermal, and chemical nociception. We further report the specific loss of mechanical nociception in Rgs7-Cre+/- Gnb5fl/fl mice but not in Rgs9-Cre+/- Gnb5fl/fl mice, suggesting that Gβ5 might specifically regulate mechanical pain in regulator of G protein signaling 7-positive (Rgs7+) cells. Additionally, Gβ5-dependent and Rgs7-associated mechanical nociception is dependent upon GABA-B receptor signaling since both were abolished by treatment with a GABA-B receptor antagonist and since cKO of Gβ5 from sensory cells or from Rgs7+ cells potentiated the analgesic effects of GABA-B agonists. Following activation by the G protein-coupled receptor Mrgprd agonist β-alanine, enhanced sensitivity to inhibition by baclofen was observed in primary cultures of Rgs7+ sensory neurons harvested from Rgs7-Cre+/- Gnb5fl/fl mice. Taken together, these results suggest that the targeted inhibition of Gβ5 function in Rgs7+ sensory neurons might provide specific relief for mechanical allodynia, including that contributing to chronic neuropathic pain, without reliance on exogenous opioids.
Collapse
Affiliation(s)
- Mritunjay Pandey
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jian-Hua Zhang
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Poorni R. Adikaram
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Claire Kittock
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Nicole Lue
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Adam Awe
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Katherine Degner
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Nirmal Jacob
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jenna Staples
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Rachel Thomas
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Allison B. Kohnen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sundar Ganesan
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Juraj Kabat
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Ching-Kang Chen
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
6
|
Tmem45b is essential for inflammation- and tissue injury-induced mechanical pain hypersensitivity. Proc Natl Acad Sci U S A 2022; 119:e2121989119. [PMID: 36322717 PMCID: PMC9659417 DOI: 10.1073/pnas.2121989119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Persistent mechanical pain hypersensitivity associated with peripheral inflammation, surgery, trauma, and nerve injury impairs patients' quality of life and daily activity. However, the molecular mechanism and treatment are not yet fully understood. Herein, we show that chemical ablation of isolectin B4-binding (IB4+) afferents by IB4-saporin injection into sciatic nerves completely and selectively inhibited inflammation- and tissue injury-induced mechanical pain hypersensitivity while thermal and mechanical pain hypersensitivities were normal following nerve injury. To determine the molecular mechanism involving the specific types of mechanical pain hypersensitivity, we compared gene expression profiles between IB4+ neuron-ablated and control dorsal root ganglion (DRG) neurons. We identified Tmem45b as one of 12 candidate genes that were specific to somatosensory ganglia and down-regulated by IB4+ neuronal ablation. Indeed, Tmem45b was expressed predominantly in IB4+ DRG neurons, where it was selectively localized in the trans Golgi apparatus of DRG neurons but not detectable in the peripheral and central branches of DRG axons. Tmem45b expression was barely detected in the spinal cord and brain. Although Tmem45b-knockout mice showed normal responses to noxious heat and noxious mechanical stimuli under normal conditions, mechanical pain hypersensitivity was selectively impaired after inflammation and tissue incision, reproducing the pain phenotype of IB4+ sensory neuron-ablated mice. Furthermore, acute knockdown by intrathecal injection of Tmem45b small interfering RNA, either before or after inflammation induction, successfully reduced mechanical pain hypersensitivity. Thus, our study demonstrates that Tmem45b is essential for inflammation- and tissue injury-induced mechanical pain hypersensitivity and highlights Tmem45b as a therapeutic target for future treatment.
Collapse
|
7
|
Cikes D, Atanes P, Cronin SJF, Hagelkrüys A, Huang GC, Persaud SJ, Penninger JM. Neuropeptide Neuromedin B does not alter body weight and glucose homeostasis nor does it act as an insulin-releasing peptide. Sci Rep 2022; 12:9383. [PMID: 35672347 PMCID: PMC9174263 DOI: 10.1038/s41598-022-13060-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 04/15/2022] [Indexed: 11/30/2022] Open
Abstract
Neuromedin B (NMB) is a member of the neuromedin family of neuropeptides with a high level of region-specific expression in the brain. Several GWAS studies on non-obese and obese patients suggested that polymorphisms in NMB predispose to obesity by affecting appetite control and feeding preference. Furthermore, several studies proposed that NMB can act as an insulin releasing peptide. Since the functional study has never been done, the in vivo role of NMB as modulator of weight gain or glucose metabolism remains unclear. Here, we generated Nmb conditional mice and nervous system deficient NmB mice. We then performed olfactory and food preference analysis, as well as metabolic analysis under standard and high fat diet. Additionally, in direct islet studies we evaluated the role of NMB on basal and glucose-stimulated insulin secretion in mouse and humans.
Collapse
|
8
|
Inclan-Rico JM, Rossi HL, Herbert DR. "Every cell is an immune cell; contributions of non-hematopoietic cells to anti-helminth immunity". Mucosal Immunol 2022; 15:1199-1211. [PMID: 35538230 PMCID: PMC9646929 DOI: 10.1038/s41385-022-00518-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023]
Abstract
Helminths are remarkably successful parasites that can invade various mammalian hosts and establish chronic infections that can go unnoticed for years despite causing severe tissue damage. To complete their life cycles, helminths migrate through multiple barrier sites that are densely populated by a complex array of hematopoietic and non-hematopoietic cells. While it is clear that type 2 cytokine responses elicited by immune cells promote worm clearance and tissue healing, the actions of non-hematopoietic cells are increasingly recognized as initiators, effectors and regulators of anti-helminth immunity. This review will highlight the collective actions of specialized epithelial cells, stromal niches, stem, muscle and neuroendocrine cells as well as peripheral neurons in the detection and elimination of helminths at mucosal sites. Studies dissecting the interactions between immune and non-hematopoietic cells will truly provide a better understanding of the mechanisms that ensure homeostasis in the context of helminth infections.
Collapse
Affiliation(s)
- Juan M Inclan-Rico
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather L Rossi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Yano H, Artis D. Neuronal regulation of innate lymphoid cell responses. Curr Opin Immunol 2022; 76:102205. [DOI: 10.1016/j.coi.2022.102205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
10
|
Southey BR, Rodriguez-Zas SL. Alternative Splicing of Neuropeptide Prohormone and Receptor Genes Associated with Pain Sensitivity Was Detected with Zero-Inflated Models. Biomedicines 2022; 10:biomedicines10040877. [PMID: 35453627 PMCID: PMC9031102 DOI: 10.3390/biomedicines10040877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Migraine is often accompanied by exacerbated sensitivity to stimuli and pain associated with alternative splicing of genes in signaling pathways. Complementary analyses of alternative splicing of neuropeptide prohormone and receptor genes involved in cell–cell communication in the trigeminal ganglia and nucleus accumbens regions of mice presenting nitroglycerin-elicited hypersensitivity and control mice were conducted. De novo sequence assembly detected 540 isoforms from 168 neuropeptide prohormone and receptor genes. A zero-inflated negative binomial model that accommodates for potential excess of zero isoform counts enabled the detection of 27, 202, and 12 differentially expressed isoforms associated with hypersensitivity, regions, and the interaction between hypersensitivity and regions, respectively. Skipped exons and alternative 3′ splice sites were the most frequent splicing events detected in the genes studied. Significant differential splicing associated with hypersensitivity was identified in CALCA and VGF neuropeptide prohormone genes and ADCYAP1R1, CRHR2, and IGF1R neuropeptide receptor genes. The prevalent region effect on differential isoform levels (202 isoforms) and alternative splicing (82 events) were consistent with the distinct splicing known to differentiate central nervous structures. Our findings highlight the changes in alternative splicing in neuropeptide prohormone and receptor genes associated with hypersensitivity to pain and the necessity to target isoform profiles for enhanced understanding and treatment of associated disorders such as migraine.
Collapse
Affiliation(s)
- Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Correspondence:
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Kiguchi N, Ding H, Park SH, Mabry KM, Kishioka S, Shiozawa Y, Alfonso Romero-Sandoval E, Peters CM, Ko MC. Functional roles of neuromedin B and gastrin-releasing peptide in regulating itch and pain in the spinal cord of non-human primates. Biochem Pharmacol 2022; 198:114972. [PMID: 35189108 PMCID: PMC10980179 DOI: 10.1016/j.bcp.2022.114972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/15/2022]
Abstract
Despite accumulating evidence in rodents, the functional role of neuromedin B (NMB) in regulating somatosensory systems in primate spinal cord is unknown. We aimed to compare the expression patterns of NMB and its receptor (NMBR) and the behavioral effects of intrathecal (i.t.) NMB with gastrin-releasing peptide (GRP) on itch or pain in non-human primates (NHPs). We used six adult rhesus monkeys. The mRNA or protein expressions of NMB, GRP, and their receptors were evaluated by quantitative reverse transcription polymerase chain reaction, immunohistochemistry, or in situ hybridization. We determined the behavioral effects of NMB or GRP via acute thermal nociception, capsaicin-induced thermal allodynia, and itch scratching response assays. NMB expression levels were greater than those of GRP in the dorsal root ganglia and spinal dorsal horn. Conversely, NMBR expression was significantly lower than GRP receptor (GRPR). I.t. NMB elicited only mild scratching responses, whereas GRP caused robust scratching responses. GRP- and NMB-elicited scratching responses were attenuated by GRPR (RC-3095) and NMBR (PD168368) antagonists, respectively. Moreover, i.t. NMB and GRP did not induce thermal hypersensitivity and GRPR and NMBR antagonists did not affect peripherally elicited thermal allodynia. Consistently, NMBR expression was low in both itch- and pain-responsive neurons in the spinal dorsal horn. Spinal NMB-NMBR system plays a minimal functional role in the neurotransmission of itch and pain in primates. Unlike the functional significance of the GRP-GRPR system in itch, drugs targeting the spinal NMB-NMBR system may not effectively alleviate non-NMBR-mediated itch.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama City, Wakayama 640-8156, Japan.
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Sun H Park
- Department of Cancer Biology and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Kelsey M Mabry
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Shiroh Kishioka
- Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health Care, Wakayama City, Wakayama 640-8392, Japan
| | - Yusuke Shiozawa
- Department of Cancer Biology and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | | - Christopher M Peters
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
12
|
Glutamate in primary afferents is required for itch transmission. Neuron 2022; 110:809-823.e5. [PMID: 34986325 PMCID: PMC8898340 DOI: 10.1016/j.neuron.2021.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/21/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
Whether glutamate or itch-selective neurotransmitters are used to confer itch specificity is still under debate. We focused on an itch-selective population of primary afferents expressing MRGPRA3, which highly expresses Vglut2 and the neuropeptide neuromedin B (Nmb), to investigate this question. Optogenetic stimulation of MRGPRA3+ afferents triggers scratching and other itch-related avoidance behaviors. Using a combination of optogenetics, spinal cord slice recordings, Vglut2 conditional knockout mice, and behavior assays, we showed that glutamate is essential for MRGPRA3+ afferents to transmit itch. We further demonstrated that MRGPRA3+ afferents form monosynaptic connections with both NMBR+ and NMBR- neurons and that NMB and glutamate together can enhance the activity of NMBR+ spinal DH neurons. Moreover, Nmb in MRGPRA3+ afferents and NMBR+ DH neurons are required for chloroquine-induced scratching. Together, our results establish a new model in which glutamate is an essential neurotransmitter in primary afferents for itch transmission, whereas NMB signaling enhances its activities.
Collapse
|
13
|
Abstract
Itch is one of the most primal sensations, being both ubiquitous and important for the well-being of animals. For more than a century, a desire to understand how itch is encoded by the nervous system has prompted the advancement of many theories. Within the past 15 years, our understanding of the molecular and neural mechanisms of itch has undergone a major transformation, and this remarkable progress continues today without any sign of abating. Here I describe accumulating evidence that indicates that itch is distinguished from pain through the actions of itch-specific neuropeptides that relay itch information to the spinal cord. According to this model, classical neurotransmitters transmit, inhibit and modulate itch information in a context-, space- and time-dependent manner but do not encode itch specificity. Gastrin-releasing peptide (GRP) is proposed to be a key itch-specific neuropeptide, with spinal neurons expressing GRP receptor (GRPR) functioning as a key part of a convergent circuit for the conveyance of peripheral itch information to the brain.
Collapse
|
14
|
Zhang Y, Qian Z, Jiang D, Sun Y, Gao S, Jiang X, Wang H, Tao J. Neuromedin B receptor stimulation of Cav3.2 T-type Ca 2+ channels in primary sensory neurons mediates peripheral pain hypersensitivity. Theranostics 2021; 11:9342-9357. [PMID: 34646374 PMCID: PMC8490515 DOI: 10.7150/thno.62255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023] Open
Abstract
Background: Neuromedin B (Nmb) is implicated in the regulation of nociception of sensory neurons. However, the underlying cellular and molecular mechanisms remain unknown. Methods: Using patch clamp recording, western blot analysis, immunofluorescent labelling, enzyme-linked immunosorbent assays, adenovirus-mediated shRNA knockdown and animal behaviour tests, we studied the effects of Nmb on the sensory neuronal excitability and peripheral pain sensitivity mediated by Cav3.2 T-type channels. Results: Nmb reversibly and concentration-dependently increased T-type channel currents (IT) in small-sized trigeminal ganglion (TG) neurons through the activation of neuromedin B receptor (NmbR). This NmbR-mediated IT response was Gq protein-coupled, but independent of protein kinase C activity. Either intracellular application of the QEHA peptide or shRNA-mediated knockdown of Gβ abolished the NmbR-induced IT response. Inhibition of protein kinase A (PKA) or AMP-activated protein kinase (AMPK) completely abolished the Nmb-induced IT response. Analysis of phospho-AMPK (p-AMPK) revealed that Nmb significantly activated AMPK, while AMPK inhibition prevented the Nmb-induced increase in PKA activity. In a heterologous expression system, activation of NmbR significantly enhanced the Cav3.2 channel currents, while the Cav3.1 and Cav3.3 channel currents remained unaffected. Nmb induced TG neuronal hyperexcitability and concomitantly induced mechanical and thermal hypersensitivity, both of which were attenuated by T-type channel blockade. Moreover, blockade of NmbR signalling prevented mechanical hypersensitivity in a mouse model of complete Freund's adjuvant-induced inflammatory pain, and this effect was attenuated by siRNA knockdown of Cav3.2. Conclusions: Our study reveals a novel mechanism by which NmbR stimulates Cav3.2 channels through a Gβγ-dependent AMPK/PKA pathway. In mouse models, this mechanism appears to drive the hyperexcitability of TG neurons and induce pain hypersensitivity.
Collapse
|
15
|
Wercberger R, Braz JM, Weinrich JA, Basbaum AI. Pain and itch processing by subpopulations of molecularly diverse spinal and trigeminal projection neurons. Proc Natl Acad Sci U S A 2021; 118:e2105732118. [PMID: 34234018 PMCID: PMC8285968 DOI: 10.1073/pnas.2105732118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A remarkable molecular and functional heterogeneity of the primary sensory neurons and dorsal horn interneurons transmits pain- and or itch-relevant information, but the molecular signature of the projection neurons that convey the messages to the brain is unclear. Here, using retro-TRAP (translating ribosome affinity purification) and RNA sequencing, we reveal extensive molecular diversity of spino- and trigeminoparabrachial projection neurons. Among the many genes identified, we highlight distinct subsets of Cck+ -, Nptx2+ -, Nmb+ -, and Crh+ -expressing projection neurons. By combining in situ hybridization of retrogradely labeled neurons with Fos-based assays, we also demonstrate significant functional heterogeneity, including both convergence and segregation of pain- and itch-provoking inputs into molecularly diverse subsets of NK1R- and non-NK1R-expressing projection neurons.
Collapse
Affiliation(s)
- Racheli Wercberger
- Department of Anatomy, University of California, San Francisco, CA 94158
| | - Joao M Braz
- Department of Anatomy, University of California, San Francisco, CA 94158
| | - Jarret A Weinrich
- Department of Anatomy, University of California, San Francisco, CA 94158
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, CA 94158
| |
Collapse
|
16
|
Li F, Jiang H, Shen X, Yang W, Guo C, Wang Z, Xiao M, Cui L, Luo W, Kim BS, Chen Z, Huang AJW, Liu Q. Sneezing reflex is mediated by a peptidergic pathway from nose to brainstem. Cell 2021; 184:3762-3773.e10. [PMID: 34133943 PMCID: PMC8396370 DOI: 10.1016/j.cell.2021.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022]
Abstract
Sneezing is a vital respiratory reflex frequently associated with allergic rhinitis and viral respiratory infections. However, its neural circuit remains largely unknown. A sneeze-evoking region was discovered in both cat and human brainstems, corresponding anatomically to the central recipient zone of nasal sensory neurons. Therefore, we hypothesized that a neuronal population postsynaptic to nasal sensory neurons mediates sneezing in this region. By screening major presynaptic neurotransmitters/neuropeptides released by nasal sensory neurons, we found that neuromedin B (NMB) peptide is essential for signaling sneezing. Ablation of NMB-sensitive postsynaptic neurons in the sneeze-evoking region or deficiency in NMB receptor abolished the sneezing reflex. Remarkably, NMB-sensitive neurons further project to the caudal ventral respiratory group (cVRG). Chemical activation of NMB-sensitive neurons elicits action potentials in cVRG neurons and leads to sneezing behavior. Our study delineates a peptidergic pathway mediating sneezing, providing molecular insights into the sneezing reflex arc.
Collapse
Affiliation(s)
- Fengxian Li
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Haowu Jiang
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaolei Shen
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Weishan Yang
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Changxiong Guo
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhiyao Wang
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maolei Xiao
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lian Cui
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian S Kim
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhoufeng Chen
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew J W Huang
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Qin Liu
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Solinski HJ, Dranchak P, Oliphant E, Gu X, Earnest TW, Braisted J, Inglese J, Hoon MA. Inhibition of natriuretic peptide receptor 1 reduces itch in mice. Sci Transl Med 2020; 11:11/500/eaav5464. [PMID: 31292265 DOI: 10.1126/scitranslmed.aav5464] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/19/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
Abstract
There is a major clinical need for new therapies for the treatment of chronic itch. Many of the molecular components involved in itch neurotransmission are known, including the neuropeptide NPPB, a transmitter required for normal itch responses to multiple pruritogens in mice. Here, we investigated the potential for a novel strategy for the treatment of itch that involves the inhibition of the NPPB receptor NPR1 (natriuretic peptide receptor 1). Because there are no available effective human NPR1 (hNPR1) antagonists, we performed a high-throughput cell-based screen and identified 15 small-molecule hNPR1 inhibitors. Using in vitro assays, we demonstrated that these compounds specifically inhibit hNPR1 and murine NPR1 (mNPR1). In vivo, NPR1 antagonism attenuated behavioral responses to both acute itch- and chronic itch-challenged mice. Together, our results suggest that inhibiting NPR1 might be an effective strategy for treating acute and chronic itch.
Collapse
Affiliation(s)
- Hans Jürgen Solinski
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, 35 Convent Drive, Bethesda, MD 20892, USA
| | - Patricia Dranchak
- Division of Pre-Clinical Investigation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Erin Oliphant
- Division of Pre-Clinical Investigation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Xinglong Gu
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, 35 Convent Drive, Bethesda, MD 20892, USA
| | - Thomas W Earnest
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, 35 Convent Drive, Bethesda, MD 20892, USA
| | - John Braisted
- Division of Pre-Clinical Investigation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - James Inglese
- Division of Pre-Clinical Investigation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Mark A Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, 35 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Meng J, Chen W, Wang J. Interventions in the B-type natriuretic peptide signalling pathway as a means of controlling chronic itch. Br J Pharmacol 2020; 177:1025-1040. [PMID: 31877230 DOI: 10.1111/bph.14952] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Chronic itch poses major health care and economic burdens worldwide. In 2013, B-type natriuretic peptide (BNP) was identified as an itch-selective neuropeptide and shown to be both necessary and sufficient to produce itch behaviour in mice. Since then, mechanistic studies of itch have increased, not only at central levels of the spinal relay of itch signalling but also in the periphery and skin. In this review, we have critically analysed recent findings from complementary pharmacological and physiological approaches, combined with genetic strategies to examine the role of BNP in itch transduction and modulation of other pruritic proteins. Additionally, potential targets and possible strategies against BNP signalling are discussed for developing novel therapeutics in itch. Overall, we aim to provide insights into drug development by altering BNP signalling to modulate disease symptoms in chronic itch, including conditions for which no approved treatment exists.
Collapse
Affiliation(s)
- Jianghui Meng
- School of Life Sciences, Henan University, Henan, China.,National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.,School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Weiwei Chen
- School of Life Sciences, Henan University, Henan, China
| | - Jiafu Wang
- School of Life Sciences, Henan University, Henan, China.,School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|
19
|
Identification of a Spinal Circuit for Mechanical and Persistent Spontaneous Itch. Neuron 2019; 103:1135-1149.e6. [PMID: 31324538 DOI: 10.1016/j.neuron.2019.06.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/17/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022]
Abstract
Lightly stroking the lips or gently poking some skin regions can evoke mechanical itch in healthy human subjects. Sensitization of mechanical itch and persistent spontaneous itch are intractable symptoms in chronic itch patients. However, the underlying neural circuits are not well defined. We identified a subpopulation of excitatory interneurons expressing Urocortin 3::Cre (Ucn3+) in the dorsal spinal cord as a central node in the pathway that transmits acute mechanical itch and mechanical itch sensitization as well as persistent spontaneous itch under chronic itch conditions. This population receives peripheral inputs from Toll-like receptor 5-positive (TLR5+) Aβ low-threshold mechanoreceptors and is directly innervated by inhibitory interneurons expressing neuropeptide Y::Cre (NPY+) in the dorsal spinal cord. Reduced synaptic inhibition and increased intrinsic excitability of Ucn3+ neurons lead to chronic itch sensitization. Our study sheds new light on the neural basis of chronic itch and unveils novel avenues for developing mechanism-specific therapeutic advancements.
Collapse
|
20
|
EHLING S, FUKUYAMA T, KO MC, OLIVRY T, BÄUMER W. Neuromedin B Induces Acute Itch in Mice via the Activation of Peripheral Sensory Neurons. Acta Derm Venereol 2019; 99:587-893. [PMID: 30734045 PMCID: PMC9083373 DOI: 10.2340/00015555-3143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neuromedin B is expressed in nociceptive and itch-sensitive dorsal root ganglia neurons, but its peripheral pruritogenic potential is not well described. The potential of neuromedin B as a pruritogen and pro-inflammatory peptide in the skin was tested in vivo in an acute model in mice and monkeys as well as an allergic dermatitis model in mice. To identify the underlying mechanisms in vitro real time PCR analysis for neuromedin B and its receptor expression in murine mast cells and dorsal root ganglia as well as functional calcium imaging in the ganglia was applied. Neuromedin B induces itch when injected intradermally, and the peripheral signal is likely transmitted through the activation of dorsal root ganglia. Thus, neuromedin B could be an interesting new therapeutic target for peripheral processing of itch at the level of sensory neurons.
Collapse
Affiliation(s)
- Sarah EHLING
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, North Carolina, USA,,Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Tomoki FUKUYAMA
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, North Carolina, USA
| | - Mei-Chuan KO
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Thierry OLIVRY
- Department of Clinical Sciences, College of Veterinary Medicine,,Comparative Medicine Institute, North Carolina State University, North Carolina, USA
| | - Wolfgang BÄUMER
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, North Carolina, USA,,Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany
| |
Collapse
|
21
|
Ray P, Torck A, Quigley L, Wangzhou A, Neiman M, Rao C, Lam T, Kim JY, Kim TH, Zhang MQ, Dussor G, Price TJ. Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq-based resource for pain and sensory neuroscience research. Pain 2019; 159:1325-1345. [PMID: 29561359 DOI: 10.1097/j.pain.0000000000001217] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecular neurobiological insight into human nervous tissues is needed to generate next-generation therapeutics for neurological disorders such as chronic pain. We obtained human dorsal root ganglia (hDRG) samples from organ donors and performed RNA-sequencing (RNA-seq) to study the hDRG transcriptional landscape, systematically comparing it with publicly available data from a variety of human and orthologous mouse tissues, including mouse DRG (mDRG). We characterized the hDRG transcriptional profile in terms of tissue-restricted gene coexpression patterns and putative transcriptional regulators, and formulated an information-theoretic framework to quantify DRG enrichment. Relevant gene families and pathways were also analyzed, including transcription factors, G-protein-coupled receptors, and ion channels. Our analyses reveal an hDRG-enriched protein-coding gene set (∼140), some of which have not been described in the context of DRG or pain signaling. Most of these show conserved enrichment in mDRG and were mined for known drug-gene product interactions. Conserved enrichment of the vast majority of transcription factors suggests that the mDRG is a faithful model system for studying hDRG, because of evolutionarily conserved regulatory programs. Comparison of hDRG and tibial nerve transcriptomes suggests trafficking of neuronal mRNA to axons in adult hDRG, and are consistent with studies of axonal transport in rodent sensory neurons. We present our work as an online, searchable repository (https://www.utdallas.edu/bbs/painneurosciencelab/sensoryomics/drgtxome), creating a valuable resource for the community. Our analyses provide insight into DRG biology for guiding development of novel therapeutics and a blueprint for cross-species transcriptomic analyses.
Collapse
Affiliation(s)
- Pradipta Ray
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Andrew Torck
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Lilyana Quigley
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Andi Wangzhou
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Matthew Neiman
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Chandranshu Rao
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tiffany Lam
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Ji-Young Kim
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tae Hoon Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Michael Q Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
22
|
Gao ZR, Chen WZ, Liu MZ, Chen XJ, Wan L, Zhang XY, Yuan L, Lin JK, Wang M, Zhou L, Xu XH, Sun YG. Tac1-Expressing Neurons in the Periaqueductal Gray Facilitate the Itch-Scratching Cycle via Descending Regulation. Neuron 2019; 101:45-59.e9. [PMID: 30554781 DOI: 10.1016/j.neuron.2018.11.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/07/2018] [Accepted: 11/05/2018] [Indexed: 02/02/2023]
|
23
|
Anatomical and functional dichotomy of ocular itch and pain. Nat Med 2018; 24:1268-1276. [PMID: 29988128 PMCID: PMC6093777 DOI: 10.1038/s41591-018-0083-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
Itch and pain are refractory symptoms of many ocular conditions. Ocular itch is generated mainly in the conjunctiva, and is absent from the cornea. In contrast, most ocular pain arises from the cornea. However, the underlying mechanisms remain unknown. Using genetic axonal tracing approaches, we discovered distinct sensory innervation patterns between the conjunctiva and cornea. Further genetic and functional analyses in rodent models demonstrate that a subset of conjunctival-selective sensory fibers marked by MrgprA3 expression, rather than corneal sensory fibers, mediates ocular itch. Importantly, the actions of both histamine and non-histamine pruritogens converge onto this unique subset of conjunctiva sensory fibers, and enable them to play a key role in mediating itch associated with allergic conjunctivitis. This is distinct from skin itch in which discrete populations of sensory neurons co-operate to carry itch. Finally, we provide a proof-of-concept that selective silencing of conjunctiva itch-sensing fibers by pruritogen-mediated entry of sodium channel blocker QX-314 is a feasible therapeutic strategy to treat ocular itch in mice. Itch-sensing fibers also innervate the human conjunctiva,and allow pharmacological silence using QX-314.Our results cast new light on the neural mechanisms of ocular itch and open a new avenue for developing therapeutic strategies.
Collapse
|
24
|
Huang J, Polgár E, Solinski HJ, Mishra SK, Tseng PY, Iwagaki N, Boyle KA, Dickie AC, Kriegbaum MC, Wildner H, Zeilhofer HU, Watanabe M, Riddell JS, Todd AJ, Hoon MA. Circuit dissection of the role of somatostatin in itch and pain. Nat Neurosci 2018; 21:707-716. [PMID: 29556030 PMCID: PMC5923877 DOI: 10.1038/s41593-018-0119-z] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/25/2018] [Indexed: 11/09/2022]
Abstract
Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+ neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide.
Collapse
Affiliation(s)
- Jing Huang
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, PR China
| | - Erika Polgár
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hans Jürgen Solinski
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
| | - Santosh K Mishra
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University; and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Pang-Yen Tseng
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
| | - Noboru Iwagaki
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kieran A Boyle
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Allen C Dickie
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mette C Kriegbaum
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich; and Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich; and Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - John S Riddell
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Mark A Hoon
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA.
| |
Collapse
|
25
|
Wan L, Jin H, Liu XY, Jeffry J, Barry DM, Shen KF, Peng JH, Liu XT, Jin JH, Sun Y, Kim R, Meng QT, Mo P, Yin J, Tao A, Bardoni R, Chen ZF. Distinct roles of NMB and GRP in itch transmission. Sci Rep 2017; 7:15466. [PMID: 29133874 PMCID: PMC5684337 DOI: 10.1038/s41598-017-15756-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/01/2017] [Indexed: 01/12/2023] Open
Abstract
A key question in our understanding of itch coding mechanisms is whether itch is relayed by dedicated molecular and neuronal pathways. Previous studies suggested that gastrin-releasing peptide (GRP) is an itch-specific neurotransmitter. Neuromedin B (NMB) is a mammalian member of the bombesin family of peptides closely related to GRP, but its role in itch is unclear. Here, we show that itch deficits in mice lacking NMB or GRP are non-redundant and Nmb/Grp double KO (DKO) mice displayed additive deficits. Furthermore, both Nmb/Grp and Nmbr/Grpr DKO mice responded normally to a wide array of noxious stimuli. Ablation of NMBR neurons partially attenuated peripherally induced itch without compromising nociceptive processing. Importantly, electrophysiological studies suggested that GRPR neurons receive glutamatergic input from NMBR neurons. Thus, we propose that NMB and GRP may transmit discrete itch information and NMBR neurons are an integral part of neural circuits for itch in the spinal cord.
Collapse
Affiliation(s)
- Li Wan
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pain Medicine, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangdong, 510260, P.R. China
| | - Hua Jin
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, The First Hospital of Yunnan Province, Kunming, Yunnan, 650031, P.R. China
| | - Xian-Yu Liu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joseph Jeffry
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Devin M Barry
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kai-Feng Shen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China
| | - Jia-Hang Peng
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xue-Ting Liu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
| | - Jin-Hua Jin
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, P.R. China
| | - Yu Sun
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P.R. China
| | - Ray Kim
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qing-Tao Meng
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Ping Mo
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, the Affiliated Nanhai Hospital of Southern Medical University, Foshan, Guangdong, 528000, P.R. China
| | - Jun Yin
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ailin Tao
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
| | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Zhou-Feng Chen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
26
|
Abstract
Peripheral itch stimuli are transmitted by sensory neurons to the spinal cord dorsal horn, which then transmits the information to the brain. The molecular and cellular mechanisms within the dorsal horn for itch transmission have only been investigated and identified during the past ten years. This review covers the progress that has been made in identifying the peptide families in sensory neurons and the receptor families in dorsal horn neurons as putative itch transmitters, with a focus on gastrin-releasing peptide (GRP)-GRP receptor signaling. Also discussed are the signaling mechanisms, including opioids, by which various types of itch are transmitted and modulated, as well as the many conflicting results arising from recent studies.
Collapse
|
27
|
Ramos-Álvarez I, Moreno P, Mantey SA, Nakamura T, Nuche-Berenguer B, Moody TW, Coy DH, Jensen RT. Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides 2015; 72:128-44. [PMID: 25976083 PMCID: PMC4641779 DOI: 10.1016/j.peptides.2015.04.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022]
Abstract
This following article is written for Prof. Abba Kastin's Festschrift, to add to the tribute to his important role in the advancement of the role of peptides in physiological, as well as pathophysiological processes. There have been many advances during the 35 years of his prominent role in the Peptide field, not only as editor of the journal Peptides, but also as a scientific investigator and editor of two volumes of the Handbook of Biological Active Peptides [146,147]. Similar to the advances with many different peptides, during this 35 year period, there have been much progress made in the understanding of the pharmacology, cell biology and the role of (bombesin) Bn receptors and their ligands in various disease states, since the original isolation of bombesin from skin of the European frog Bombina bombina in 1970 [76]. This paper will briefly review some of these advances over the time period of Prof. Kastin 35 years in the peptide field concentrating on the advances since 2007 when many of the results from earlier studies were summarized [128,129]. It is appropriate to do this because there have been 280 articles published in Peptides during this time on bombesin-related peptides and it accounts for almost 5% of all publications. Furthermore, 22 Bn publications we have been involved in have been published in either Peptides [14,39,55,58,81,92,93,119,152,216,225,226,231,280,302,309,355,361,362] or in Prof. Kastin's Handbook of Biological Active Peptides [137,138,331].
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Samuel A Mantey
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Taichi Nakamura
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Bernardo Nuche-Berenguer
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Terry W Moody
- Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, United States
| | - Robert T Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States.
| |
Collapse
|
28
|
Luo J, Feng J, Liu S, Walters ET, Hu H. Molecular and cellular mechanisms that initiate pain and itch. Cell Mol Life Sci 2015; 72:3201-23. [PMID: 25894692 PMCID: PMC4534341 DOI: 10.1007/s00018-015-1904-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/20/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022]
Abstract
Somatosensory neurons mediate our sense of touch. They are critically involved in transducing pain and itch sensations under physiological and pathological conditions, along with other skin-resident cells. Tissue damage and inflammation can produce a localized or systemic sensitization of our senses of pain and itch, which can facilitate our detection of threats in the environment. Although acute pain and itch protect us from further damage, persistent pain and itch are debilitating. Recent exciting discoveries have significantly advanced our knowledge of the roles of membrane-bound G protein-coupled receptors and ion channels in the encoding of information leading to pain and itch sensations. This review focuses on molecular and cellular events that are important in early stages of the biological processing that culminates in our senses of pain and itch.
Collapse
Affiliation(s)
- Jialie Luo
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | | | | | | | | |
Collapse
|
29
|
Nishimatsu H, Suzuki E, Saito Y, Niimi A, Nomiya A, Yamada D, Homma Y. Neuromedin B Restores Erectile Function by Protecting the Cavernous Body and the Nitrergic Nerves from Injury in a Diabetic Rat Model. PLoS One 2015. [PMID: 26207818 PMCID: PMC4514746 DOI: 10.1371/journal.pone.0133874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Erectile dysfunction (ED) is a major health problem worldwide and affects approximately 75% of diabetic patients, likely due to severely damaged cavernous body. While screening for cytokines produced by adipose tissue-derived stem cells, we detected neuromedin B (NMB). To explore a potential treatment option for ED, we examined whether NMB was capable of restoring erectile function. We also examined the potential mechanism by which NMB could restore erectile function. Male Wistar rats were injected with streptozotocin (STZ) to induce diabetes. An adenovirus expressing NMB (AdNMB) was injected into the penis 6 weeks after STZ administration. Four weeks after the injection of AdNMB, erectile function, penile histology, and protein expression were analyzed. As assessed by the measurement of intracavernous pressure, AdNMB injection significantly restored erectile function compared with the injection of an adenovirus expressing green fluorescent protein. This restoration was associated with conservation of the cavernous body structure and neural nitric oxide synthase (nNOS)-expressing nerves, together with recovery of α-smooth muscle actin, vascular endothelial-cadherin, and nNOS expression. Furthermore, NMB significantly stimulated the survival of SH-SY5Y cells derived from human neuroblastoma tissue with characteristics similar to neurons. Collectively, these results suggested that NMB restored erectile function via protection of the cavernous body from injury and stimulation of the survival of the associated nerves. NMB may be useful to treat ED patients with a severely damaged cavernous body.
Collapse
Affiliation(s)
- Hiroaki Nishimatsu
- The Department of Urology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–8655, Japan
| | - Etsu Suzuki
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, 216–8512, Japan
- * E-mail:
| | - Yasuho Saito
- The Department of Urology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–8655, Japan
| | - Aya Niimi
- The Department of Urology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–8655, Japan
| | - Akira Nomiya
- The Department of Urology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–8655, Japan
| | - Daisuke Yamada
- The Department of Urology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–8655, Japan
| | - Yukio Homma
- The Department of Urology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–8655, Japan
| |
Collapse
|
30
|
Primary afferent and spinal cord expression of gastrin-releasing peptide: message, protein, and antibody concerns. J Neurosci 2015; 35:648-57. [PMID: 25589759 DOI: 10.1523/jneurosci.2955-14.2015] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
There is continuing controversy relating to the primary afferent neurotransmitter that conveys itch signals to the spinal cord. Here, we investigated the DRG and spinal cord expression of the putative primary afferent-derived "itch" neurotransmitter, gastrin-releasing peptide (GRP). Using ISH, qPCR, and immunohistochemistry, we conclude that GRP is expressed abundantly in spinal cord, but not in DRG neurons. Titration of the most commonly used GRP antiserum in tissues from wild-type and GRP mutant mice indicates that the antiserum is only selective for GRP at high dilutions. Paralleling these observations, we found that a GRPeGFP transgenic reporter mouse has abundant expression in superficial dorsal horn neurons, but not in the DRG. In contrast to previous studies, neither dorsal rhizotomy nor an intrathecal injection of capsaicin, which completely eliminated spinal cord TRPV1-immunoreactive terminals, altered dorsal horn GRP immunoreactivity. Unexpectedly, however, peripheral nerve injury induced significant GRP expression in a heterogeneous population of DRG neurons. Finally, dual labeling and retrograde tracing studies showed that GRP-expressing neurons of the superficial dorsal horn are predominantly interneurons, that a small number coexpress protein kinase C gamma (PKCγ), but that none coexpress the GRP receptor (GRPR). Our studies support the view that pruritogens engage spinal cord "itch" circuits via excitatory superficial dorsal horn interneurons that express GRP and that likely target GRPR-expressing interneurons. The fact that peripheral nerve injury induced de novo GRP expression in DRG neurons points to a novel contribution of this peptide to pruritoceptive processing in neuropathic itch conditions.
Collapse
|
31
|
Abstract
In this chapter we discuss the many recent discoveries of the mechanisms by which itch is transmitted: the neurotransmitters and the responses they trigger, the mechanisms by which specific neuronal targets are activated, and the specificity of the pathways. Current data reveal that DRG neurons and spinal cord cells use a remarkably selective set of transmitters to convey pruritic information from the periphery to the brain: glutamate and Nppb are released from primary itch-sensory cells; these molecules activate secondary spinal cord pruriceptive-specific neurons, which in turn utilize Grp to activate tertiary pruriceptive-selective neurons. Intersecting this basic linear excitatory pathway, inhibitory input from dynorphin and neurons that express the somatostatin receptor modify itch sensation. Cumulatively, these studies paint an elegantly simple picture of how itch signals are transformed and integrated in the spinal cord and open new avenues for research efforts aimed at understanding and better treating itch.
Collapse
|
32
|
Isensee J, Wenzel C, Buschow R, Weissmann R, Kuss AW, Hucho T. Subgroup-elimination transcriptomics identifies signaling proteins that define subclasses of TRPV1-positive neurons and a novel paracrine circuit. PLoS One 2014; 9:e115731. [PMID: 25551770 PMCID: PMC4281118 DOI: 10.1371/journal.pone.0115731] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/29/2014] [Indexed: 12/24/2022] Open
Abstract
Normal and painful stimuli are detected by specialized subgroups of peripheral sensory neurons. The understanding of the functional differences of each neuronal subgroup would be strongly enhanced by knowledge of the respective subgroup transcriptome. The separation of the subgroup of interest, however, has proven challenging as they can hardly be enriched. Instead of enriching, we now rapidly eliminated the subgroup of neurons expressing the heat-gated cation channel TRPV1 from dissociated rat sensory ganglia. Elimination was accomplished by brief treatment with TRPV1 agonists followed by the removal of compromised TRPV1(+) neurons using density centrifugation. By differential microarray and sequencing (RNA-Seq) based expression profiling we compared the transcriptome of all cells within sensory ganglia versus the same cells lacking TRPV1 expressing neurons, which revealed 240 differentially expressed genes (adj. p<0.05, fold-change>1.5). Corroborating the specificity of the approach, many of these genes have been reported to be involved in noxious heat or pain sensitization. Beyond the expected enrichment of ion channels, we found the TRPV1 transcriptome to be enriched for GPCRs and other signaling proteins involved in adenosine, calcium, and phosphatidylinositol signaling. Quantitative population analysis using a recent High Content Screening (HCS) microscopy approach identified substantial heterogeneity of expressed target proteins even within TRPV1-positive neurons. Signaling components defined distinct further subgroups within the population of TRPV1-positive neurons. Analysis of one such signaling system showed that the pain sensitizing prostaglandin PGD2 activates DP1 receptors expressed predominantly on TRPV1(+) neurons. In contrast, we found the PGD2 producing prostaglandin D synthase to be expressed exclusively in myelinated large-diameter neurons lacking TRPV1, which suggests a novel paracrine neuron-neuron communication. Thus, subgroup analysis based on the elimination rather than enrichment of the subgroup of interest revealed proteins that define subclasses of TRPV1-positive neurons and suggests a novel paracrine circuit.
Collapse
Affiliation(s)
- Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Cologne, Germany
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail:
| | - Carsten Wenzel
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Rene Buschow
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Robert Weissmann
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Andreas W. Kuss
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Cologne, Germany
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
33
|
Gutierrez-Mecinas M, Watanabe M, Todd AJ. Expression of gastrin-releasing peptide by excitatory interneurons in the mouse superficial dorsal horn. Mol Pain 2014; 10:79. [PMID: 25496164 PMCID: PMC4320531 DOI: 10.1186/1744-8069-10-79] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/02/2014] [Indexed: 01/31/2023] Open
Abstract
Background Gastrin-releasing peptide (GRP) and its receptor have been shown to play an important role in the sensation of itch. However, although GRP immunoreactivity has been detected in the spinal dorsal horn, there is debate about whether this originates from primary afferents or local excitatory interneurons. We therefore examined the relation of GRP immunoreactivity to that seen with antibodies that label primary afferent or excitatory interneuron terminals. We tested the specificity of the GRP antibody by preincubating with peptides with which it could potentially cross-react. We also examined tissue from a mouse line in which enhanced green fluorescent protein (EGFP) is expressed under control of the GRP promoter. Results GRP immunoreactivity was seen in both primary afferent and non-primary glutamatergic axon terminals in the superficial dorsal horn. However, immunostaining was blocked by pre-incubation of the antibody with substance P, which is present at high levels in many nociceptive primary afferents. EGFP+ cells in the GRP-EGFP mouse did not express Pax2, and their axons contained the vesicular glutamate transporter 2 (VGLUT2), indicating that they are excitatory interneurons. In most cases, their axons were also GRP-immunoreactive. Multiple-labelling immunocytochemical studies indicated that these cells did not express either of the preprotachykinin peptides, and that they generally lacked protein kinase Cγ, which is expressed by a subset of the excitatory interneurons in this region. Conclusions These results show that GRP is expressed by a distinct population of excitatory interneurons in laminae I-II that are likely to be involved in the itch pathway. They also suggest that the GRP immunoreactivity seen in primary afferents in previous studies may have resulted from cross-reaction of the GRP antibody with substance P or the closely related peptide neurokinin A.
Collapse
Affiliation(s)
| | | | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
34
|
Zhao ZQ, Wan L, Liu XY, Huo FQ, Li H, Barry DM, Krieger S, Kim S, Liu ZC, Xu J, Rogers BE, Li YQ, Chen ZF. Cross-inhibition of NMBR and GRPR signaling maintains normal histaminergic itch transmission. J Neurosci 2014; 34:12402-14. [PMID: 25209280 PMCID: PMC4160775 DOI: 10.1523/jneurosci.1709-14.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 12/11/2022] Open
Abstract
We previously showed that gastrin-releasing peptide receptor (GRPR) in the spinal cord is important for mediating nonhistaminergic itch. Neuromedin B receptor (NMBR), the second member of the mammalian bombesin receptor family, is expressed in a largely nonoverlapping pattern with GRPR in the superficial spinal cord, and its role in itch transmission remains unclear. Here, we report that Nmbr knock-out (KO) mice exhibited normal scratching behavior in response to intradermal injection of pruritogens. However, mice lacking both Nmbr and Grpr (DKO mice) showed significant deficits in histaminergic itch. In contrast, the chloroquine (CQ)-evoked scratching behavior of DKO mice is not further reduced compared with Grpr KO mice. These results suggest that NMBR and GRPR could compensate for the loss of each other to maintain normal histamine-evoked itch, whereas GRPR is exclusively required for CQ-evoked scratching behavior. Interestingly, GRPR activity is enhanced in Nmbr KO mice despite the lack of upregulation of Grpr expression; so is NMBR in Grpr KO mice. We found that NMB acts exclusively through NMBR for itch transmission, whereas GRP can signal through both receptors, albeit to NMBR to a much lesser extent. Although NMBR and NMBR(+) neurons are dispensable for histaminergic itch, GRPR(+) neurons are likely to act downstream of NMBR(+) neurons to integrate NMB-NMBR-encoded histaminergic itch information in normal physiological conditions. Together, we define the respective function of NMBR and GRPR in itch transmission, and reveal an unexpected relationship not only between the two receptors but also between the two populations of interneurons in itch signaling.
Collapse
Affiliation(s)
- Zhong-Qiu Zhao
- Center for the Study of Itch, and Departments of Anesthesiology
| | - Li Wan
- Center for the Study of Itch, and Departments of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, People's Republic of China, and
| | - Xian-Yu Liu
- Center for the Study of Itch, and Departments of Anesthesiology
| | - Fu-Quan Huo
- Center for the Study of Itch, and Departments of Anesthesiology
| | - Hui Li
- Center for the Study of Itch, and Departments of Anesthesiology, Department of Anatomy, Histology and Embryology, and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Devin M Barry
- Center for the Study of Itch, and Departments of Anesthesiology
| | | | - Seungil Kim
- Center for the Study of Itch, and Departments of Anesthesiology
| | - Zhong-Chun Liu
- Center for the Study of Itch, and Departments of Anesthesiology
| | - Jinbin Xu
- Radiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Zhou-Feng Chen
- Center for the Study of Itch, and Departments of Anesthesiology, Psychiatry, Developmental Biology,
| |
Collapse
|
35
|
Goswami SC, Thierry-Mieg D, Thierry-Mieg J, Mishra S, Hoon MA, Mannes AJ, Iadarola MJ. Itch-associated peptides: RNA-Seq and bioinformatic analysis of natriuretic precursor peptide B and gastrin releasing peptide in dorsal root and trigeminal ganglia, and the spinal cord. Mol Pain 2014; 10:44. [PMID: 25123163 PMCID: PMC4132360 DOI: 10.1186/1744-8069-10-44] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/25/2014] [Indexed: 02/08/2023] Open
Abstract
Background Three neuropeptides, gastrin releasing peptide (GRP), natriuritic precursor peptide B (NPPB), and neuromedin B (NMB) have been proposed to play roles in itch sensation. However, the tissues in which these peptides are expressed and their positions in the itch circuit has recently become the subject of debate. Here we used next-gen RNA-Seq to examine the expression of transcripts coding for GRP, NPPB, NMB, and other peptides in DRG, trigeminal ganglion, and the spinal cord as well as expression levels for their cognate receptors in these tissues. Results RNA-Seq demonstrates that GRP is not transcribed in mouse, rat, or human sensory ganglia. NPPB, which activates natriuretic peptide receptor 1 (NPR1), is well expressed in mouse DRG and less so in rat and human, whereas NPPA, which also acts on the NPR1 receptor, is expressed in all three species. Analysis of transcripts expressed in the spinal cord of mouse, rat, and human reveals no expression of Nppb, but unambiguously detects expression of Grp and the GRP-receptor (Grpr). The transcripts coding for NMB and tachykinin peptides are among the most highly expressed in DRG. Bioinformatics comparisons using the sequence of the peptides used to produce GRP-antibodies with proteome databases revealed that the C-terminal primary sequence of NMB and Substance P can potentially account for results from previous studies which showed GRP-immunostaining in the DRG. Conclusions RNA-Seq corroborates a primary itch afferent role for NPPB in mouse and potentially NPPB and NPPA in rats and humans, but does not support GRP as a primary itch neurotransmitter in mouse, rat, or humans. As such, our results are at odds with the initial proposal of Sun and Chen (2007) that GRP is expressed in DRG. By contrast, our data strongly support an itch pathway where the itch-inducing actions of GRP are exerted through its release from spinal cord neurons.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael J Iadarola
- Department of Perioperative Medicine, Building 10, Room 2C401, MSC 1510, Clinical Center, NIH, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Su J, Sandor K, Sköld K, Hökfelt T, Svensson CI, Kultima K. Identification and quantification of neuropeptides in naïve mouse spinal cord using mass spectrometry reveals [des-Ser1]-cerebellin as a novel modulator of nociception. J Neurochem 2014; 130:199-214. [DOI: 10.1111/jnc.12730] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/13/2014] [Accepted: 04/01/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Jie Su
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - Karl Sköld
- Research and Development; Denator AB; Uppsala Sweden
- Department of Medical Sciences; Cancer Pharmacology and Computational Medicine; Uppsala University; Uppsala Sweden
| | - Tomas Hökfelt
- Department of Neuroscience; Karolinska Institutet; Stockholm Sweden
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - Kim Kultima
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
- Department of Medical Sciences; Cancer Pharmacology and Computational Medicine; Uppsala University; Uppsala Sweden
| |
Collapse
|
37
|
BB2 bombesin receptor-expressing spinal neurons transmit herpes-associated itch by BB2 receptor-independent signaling. Neuroreport 2014; 24:652-6. [PMID: 23778077 DOI: 10.1097/wnr.0b013e32836352d8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although spinal neurons expressing BB2 bombesin receptors are suggested to be involved in itch transmission, their role in pathological itch remains unknown. Because itch is often observed in patients with herpes zoster, we examined the role of BB2 receptor-expressing spinal neurons in herpes-associated itch in mice. Transdermal inoculation of human herpes virus 1 on the midflank produced herpes zoster-like skin lesions and caused the mice to scratch (itch-related behavior) and lick (pain-related behavior) the affected skin. Ablation of BB2 receptor-expressing spinal neurons by intrathecal treatment with a bombesin-saporin conjugate decreased the scratching but not the licking. Intrathecal administration of the BB2 receptor antagonist Leu13-ψ-(CH2NH)Leu14-bombesin decreased BB2 receptor agonist GRP(18-27)-induced scratching in naive mice but not herpes-associated scratching. The present results suggest that BB2 receptor-expressing spinal neurons transmit herpes-associated itch by BB2 receptor-independent signaling.
Collapse
|
38
|
Bautista DM, Wilson SR, Hoon MA. Why we scratch an itch: the molecules, cells and circuits of itch. Nat Neurosci 2014; 17:175-82. [PMID: 24473265 PMCID: PMC4364402 DOI: 10.1038/nn.3619] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/03/2013] [Indexed: 12/17/2022]
Abstract
Itch is described as an irritating sensation that triggers a desire to scratch. However, this definition hardly seems fitting for the millions of people who suffer from intractable itch. Indeed, the Buddhist philosopher Nāgārjuna more aptly stated, "There is pleasure when an itch is scratched. But to be without an itch is more pleasurable still." Chronic itch is widespread and very difficult to treat. In this review we focus on the molecules, cells and circuits in the peripheral and central nervous systems that drive acute and chronic itch transmission. Understanding the itch circuitry is critical to developing new therapies for this intractable disease.
Collapse
Affiliation(s)
- Diana M Bautista
- 1] Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA. [2] Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Sarah R Wilson
- 1] Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA. [2] Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Mark A Hoon
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research/NIH, Bethesda, Maryland, USA
| |
Collapse
|
39
|
Abstract
Spatial and temporal cues govern the genesis of a diverse array of neurons located in the dorsal spinal cord, including dI1-dI6, dIL(A), and dIL(B) subtypes, but their physiological functions are poorly understood. Here we generated a new line of conditional knock-out (CKO) mice, in which the homeobox gene Tlx3 was removed in dI5 and dIL(B) cells. In these CKO mice, development of a subset of excitatory neurons located in laminae I and II was impaired, including itch-related GRPR-expressing neurons, PKCγ-expressing neurons, and neurons expressing three neuropeptide genes: somatostatin, preprotachykinin 1, and the gastrin-releasing peptide. These CKO mice displayed marked deficits in generating nocifensive motor behaviors evoked by a range of pain-related or itch-related stimuli. The mutants also failed to exhibit escape response evoked by dynamic mechanical stimuli but retained the ability to sense innocuous cooling and/or warm. Thus, our studies provide new insight into the ontogeny of spinal neurons processing distinct sensory modalities.
Collapse
|
40
|
Abstract
While considerable effort has been made to investigate the neural mechanisms of pain, much less effort has been devoted to itch, at least until recently. However, itch is now gaining increasing recognition as a widespread and costly medical and socioeconomic issue. This is accompanied by increasing interest in the underlying neural mechanisms of itch, which has become a vibrant and rapidly-advancing field of research. The goal of the present forefront review is to describe the recent progress that has been made in our understanding of itch mechanisms.
Collapse
Affiliation(s)
- Tasuku Akiyama
- University of California, Davis, Department of Neurobiology, Physiology & Behavior, 1 Shields Avenue, Davis, CA 95616, United States
| | | |
Collapse
|
41
|
Wang X, Zhang J, Eberhart D, Urban R, Meda K, Solorzano C, Yamanaka H, Rice D, Basbaum AI. Excitatory superficial dorsal horn interneurons are functionally heterogeneous and required for the full behavioral expression of pain and itch. Neuron 2013; 78:312-24. [PMID: 23622066 DOI: 10.1016/j.neuron.2013.03.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2013] [Indexed: 10/26/2022]
Abstract
To what extent dorsal horn interneurons contribute to the modality specific processing of pain and itch messages is not known. Here, we report that loxp/cre-mediated CNS deletion of TR4, a testicular orphan nuclear receptor, results in loss of many excitatory interneurons in the superficial dorsal horn but preservation of primary afferents and spinal projection neurons. The interneuron loss is associated with a near complete absence of supraspinally integrated pain and itch behaviors, elevated mechanical withdrawal thresholds and loss of nerve injury-induced mechanical hypersensitivity, but reflex responsiveness to noxious heat, nerve injury-induced heat hypersensitivity, and tissue injury-induced heat and mechanical hypersensitivity are intact. We conclude that different subsets of dorsal horn excitatory interneurons contribute to tissue and nerve injury-induced heat and mechanical pain and that the full expression of supraspinally mediated pain and itch behaviors cannot be generated solely by nociceptor and pruritoceptor activation of projection neurons; concurrent activation of excitatory interneurons is essential.
Collapse
Affiliation(s)
- Xidao Wang
- Departments of Anatomy and Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Iadarola MJ, Gonnella GL. Resiniferatoxin for Pain Treatment: An Interventional Approach to Personalized Pain Medicine. ACTA ACUST UNITED AC 2013; 6:95-107. [PMID: 26779292 PMCID: PMC4711370 DOI: 10.2174/1876386301306010095] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review examines existing preclinical and clinical studies related to resiniferatoxin (RTX) and its potential uses in pain treatment. Like capsaicin, RTX is a vanilloid receptor (TRPV1) agonist, only more potent. This increased potency confers both quantitative and qualitative advantages in terms of drug action on the TRPV1 containing nerve terminal, which result in an increased efficacy and a long duration of action. RTX can be delivered by a central route of administration through injection into the subarachnoid space around the lumbosacral spinal cord. It can also be administered peripherally into a region of skin or deep tissue where primary afferents nerves terminate, or directly into a nerve trunk or a dorsal root ganglion. The central route is currently being evaluated as a treatment for intractable pain in patients with advanced cancer. Peripheral administration offers the possibility to treat a wide diversity of pain problems because of the ability to bring the treatment to the site of the pain (the peripheral generator). While not all pain disorders are appropriate for RTX, tailoring treatment to an individual patient's needs via a selective and local intervention that chemically targets a specific population of nerve terminals provides a new capability for pain therapy and a simplified and effective approach to personalized pain medicine.
Collapse
Affiliation(s)
- Michael J Iadarola
- Neurobiology and Pain Therapeutics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, NIH; Building 49 Room 1C20, 49 Convent Drive MSC 4410, Bethesda MD 20892-4410, USA
| | - Gian Luigi Gonnella
- Neurobiology and Pain Therapeutics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, NIH; Department of Anesthesiology and Intensive Care Medicine, Catholic University School of Medicine, Rome, Italy
| |
Collapse
|