1
|
Pulido-Saavedra A, Oliva HNP, Prudente TP, Kitaneh R, Nunes EJ, Fogg C, Funaro MC, Weleff J, Nia AB, Angarita GA. Effects of psychedelics on opioid use disorder: a scoping review of preclinical studies. Cell Mol Life Sci 2025; 82:49. [PMID: 39833376 DOI: 10.1007/s00018-024-05519-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 01/22/2025]
Abstract
The current opioid crisis has had an unprecedented public health impact. Approved medications for opioid use disorder (OUD) exist, yet their limitations indicate a need for innovative treatments. Limited preliminary clinical studies suggest specific psychedelics might aid OUD treatment, though most clinical evidence remains observational, with few controlled trials. This review aims to bridge the gap between preclinical findings and potential clinical applications, following PRISMA-ScR guidelines. Searches included MEDLINE, Embase, Scopus, and Web of Science, focusing on preclinical in vivo studies involving opioids and psychedelics in animals, excluding pain studies and those lacking control groups. Forty studies met criteria, covering both classic and non-classic psychedelics. Most studies showed that 18-methoxycoronaridine (18-MC), ibogaine, noribogaine, and ketamine could reduce opioid self-administration, alleviate withdrawal symptoms, and change conditioned place preference. However, seven studies (two on 2,5-dimethoxy-4-methylamphetamine (DOM), three on ibogaine, one on 18-MC, and one on ketamine) showed no improvement over controls. A methodological quality assessment rated most of the studies as having unclear quality. Interestingly, most preclinical studies are limited to iboga derivatives, which were effective, but these agents may have higher cardiovascular risk than other psychedelics under-explored to date. This review strengthens support for translational studies testing psychedelics as potential innovative targets for OUD. It also suggests clinical studies need to include a broader range of agents beyond iboga derivatives but can also explore several ongoing questions in the field, such as the mechanism of action behind the potential therapeutic effect, safety profiles, doses, and frequency of administrations needed.
Collapse
Affiliation(s)
- Alejandra Pulido-Saavedra
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, Room 359, 34 Park Street, New Haven, CT, 06519, USA
| | - Henrique Nunes Pereira Oliva
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, Room 359, 34 Park Street, New Haven, CT, 06519, USA
| | - Tiago Paiva Prudente
- Faculdade de Medicina, Universidade Federal de Goiás, 235 Street, Goiânia, Brasil
| | - Razi Kitaneh
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, Room 359, 34 Park Street, New Haven, CT, 06519, USA
| | - Eric J Nunes
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
- Yale Tobacco Center of Regulatory Science, Yale University School of Medicine, New Haven, CT, USA
| | - Colleen Fogg
- Pharmacy Department, Yale-New Haven Health, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06515, USA
| | - Melissa C Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Jeremy Weleff
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Anahita Bassir Nia
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, Room 359, 34 Park Street, New Haven, CT, 06519, USA
| | - Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA.
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, Room 359, 34 Park Street, New Haven, CT, 06519, USA.
| |
Collapse
|
2
|
Ricci V, De Berardis D, Shoib S, Martinotti G, Maina G. Psychotic-Like Experiences in Young Recreational Users of Ketamine: A Case Study. J Psychoactive Drugs 2025:1-10. [PMID: 39780457 DOI: 10.1080/02791072.2025.2449909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
This study explores the psychotic-like experiences (PLEs) associated with recreational ketamine use among young adults. Ketamine, initially introduced as an anesthetic, is now widely used recreationally for its dissociative effects, raising concerns about its impact on mental health. Ten participants aged 18-24, who used ketamine recreationally multiple times a week, were assessed using the Community Assessment of Psychic Experiences (CAPE-42). Results showed a significant positive correlation between the frequency of ketamine use and PLEs, with no significant impact from other substances like THC, MDMA, and alcohol. These findings confirm ketamine's potential to induce psychotic-like symptoms by antagonizing NMDA receptors, similar to schizophrenia. The study underscores the need for preventive measures and targeted interventions to address the mental health risks of frequent ketamine use, particularly among young adults. However, limitations such as the small sample size and reliance on self-reported data suggest that further research is needed to establish causality and examine long-term effects. Overall, this study highlights the significant association between recreational ketamine use and increased PLEs, emphasizing the importance of early detection and intervention strategies.
Collapse
Affiliation(s)
- Valerio Ricci
- Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, San Luigi Gonzaga Hospital, University of Turin, Turin, Orbassano, Italy
| | - Domenico De Berardis
- NHS, Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, Teramo, Italy
| | - Sheikh Shoib
- Department of Psychiatry, DH Pulwama, Kashmir, India
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio Chieti-Pescara, Chieti, Italy
| | - Giuseppe Maina
- Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, San Luigi Gonzaga Hospital, University of Turin, Turin, Orbassano, Italy
- Department of Neurosciences "Rita Levi Montalcini",University of Turin,Turin,Italy
| |
Collapse
|
3
|
Tadesse MA, Alimawu AA, Kebede FS, Alemu EA, Matrisch L, Waktasu DO. Effectiveness of preoperative ketamine gargle to reduce postoperative sore throat in adult patients undergoing surgery with endotracheal tube; systematic review and meta-analysis of randomized control trials. BMC Anesthesiol 2024; 24:449. [PMID: 39643910 PMCID: PMC11622668 DOI: 10.1186/s12871-024-02837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Postoperative sore throat is a frequent and distressing complication caused by airway instrumentation during general anesthesia. The discomfort can lead to immediate distress, delayed recovery and reduce patient satisfaction. The objective of this study was to determine the effectiveness of preoperative ketamine gargle on the occurrence of postoperative sore throat among adult patients who underwent surgery under general anesthesia with endotracheal tube. METHOD PubMed, Cochrane Library, Google Scholar, and World Clinical Trial Registry were searched to find the eligible randomized control trials comparing the effect of preoperative ketamine gargle and placebo gargle on the occurrence of postoperative sore throat after surgery with endotracheal tube in adult patients. We utilized Review Manager Version 5.4 to perform statistical analyses. Cochrane risk of bias tool for randomized control trials was used to assess the risk of bias of included studies. We explored heterogeneity using the I2 test. In addition to this, subgroup analysis, and sensitivity analysis was conducted to confirm the robustness of findings. The risk of publication bias was tested using funnel plot Pooled risk ratio along with 95% confidence interval (CI) was used to analyze the outcome. RESULT In the present systematic review and metanalysis, seventeen [17] randomized controlled trials (RCTs) with 1552 participants were included. Compared with placebo, preoperative ketamine gargle is effective to reduce postoperative sore throat (RR = 0.48; 95%CI [0.45, 0.52] in adult patients undergoing surgery under general anesthesia with endotracheal tube. CONCLUSION Preoperative ketamine gargle before induction of general anesthesia is effective to reduce the occurrence of postoperative sore throat in adult patients undergoing surgery under general anesthesia with an endotracheal tube. Further studies with large sample size, better study quality and optimal reporting could be conducted to determine the long-term efficacy and safety of ketamine gargle in different surgical populations.
Collapse
Affiliation(s)
| | | | | | | | - Ludwig Matrisch
- Medical Clinic 1, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | | |
Collapse
|
4
|
Pavlovič A. Touch, light, wounding: how anaesthetics affect plant sensing abilities. PLANT CELL REPORTS 2024; 43:293. [PMID: 39580775 PMCID: PMC11586303 DOI: 10.1007/s00299-024-03369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
KEY MESSAGE Anaesthetics affect not only humans and animals but also plants. Plants exposed to certain anaesthetics lose their ability to respond adequately to various stimuli such as touch, injury or light. Available results indicate that anaesthetics modulate ion channel activities in plants, e.g. Ca2+ influx. The word anaesthesia means loss of sensation. Plants, as all living creatures, can also sense their environment and they are susceptible to anaesthesia. Although some anaesthetics are often known as drugs with well-defined target to their animal/human receptors, some other are promiscuous in their binding. Both have effects on plants. Application of general volatile anaesthetics (GVAs) inhibits plant responses to different stimuli but also induces strong cellular response. Of particular interest is the ability of GVAs inhibit long-distance electrical and Ca2+ signalling probably through inhibition of GLUTAMATE RECEPTOR-LIKE proteins (GLRs), the effect which is surprisingly very similar to inhibition of nerve impulse transmission in animals or human. However, GVAs act also as a stressor for plants and can induce their own Ca2+ signature, which strongly reprograms gene expression . Down-regulation of genes encoding enzymes of chlorophyll biosynthesis and pigment-protein complexes are responsible for inhibited de-etiolation and photomorphogenesis. Vesicle trafficking, germination, and circumnutation movement of climbing plants are also strongly inhibited. On the other hand, other cellular processes can be upregulated, for example, heat shock response and generation of reactive oxygen species (ROS). Upregulation of stress response by GVAs results in preconditioning/priming and can be helpful to withstand abiotic stresses in plants. Thus, anaesthetic drugs may become a useful tool for scientists studying plant responses to environmental stimuli.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic.
| |
Collapse
|
5
|
Izumi Y, Reiersen AM, Lenze EJ, Mennerick SJ, Zorumski CF. Sertraline modulates hippocampal plasticity via sigma 1 receptors, cellular stress and neurosteroids. Transl Psychiatry 2024; 14:474. [PMID: 39572523 PMCID: PMC11582653 DOI: 10.1038/s41398-024-03185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
In addition to modulating serotonin transport, selective serotonin reuptake inhibitors (SSRIs) have multiple other mechanisms that may contribute to clinical effects, and some of these latter actions prompt repurposing of SSRIs for non-psychiatric indications. In a recent study of the SSRIs fluvoxamine, fluoxetine and sertraline we found that, unlike the other two SSRIs, sertraline acutely inhibited LTP at a low micromolar concentration through inverse agonism of sigma 1 receptors (S1Rs). In the present studies, we pursued mechanisms contributing to sertraline modulation of LTP in rat hippocampal slices. We found that sertraline partially inhibits synaptic responses mediated by N-methyl-D-aspartate receptors (NMDARs) via effects on NMDARs that contain GluN2B subunits. A selective S1R antagonist (NE-100), but not an S1R agonist (PRE-084) blocked effects on NMDARs, even though both S1R ligands were previously shown to prevent LTP inhibition. Both NE-100 and PRE-084, however, prevented adverse effects of sertraline on one-trial learning. Because of the important role that S1Rs play in modulating endoplasmic reticulum stress, we examined whether inhibitors of cellular stress alter effects of sertraline. We found that two stress inhibitors, ISRIB and quercetin, prevented LTP inhibition, as did inhibitors of the synthesis of endogenous neurosteroids, which are homeostatic regulators of cellular stress. These studies highlight complex effects of sertraline, S1Rs and neurosteroids on hippocampal function and have relevance for understanding therapeutic and adverse drug actions.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Angela M Reiersen
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric J Lenze
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven J Mennerick
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Sato T, Fukutomi A, Kawamura T, Kawakami K, Sato T, Kamo Y, Suzuki T, Hagiya S, Tanaka R. Low-dose add-on methadone for cancer pain management: a retrospective analysis of 102 Japanese patients. Jpn J Clin Oncol 2024:hyae156. [PMID: 39498764 DOI: 10.1093/jjco/hyae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Methadone was introduced in 2013 for the treatment of intractable cancer pain in Japan and is indicated for patients receiving opioid doses ≧60 mg/day as an oral morphine equivalent. Low-dose (≦10 mg/day) add-on methadone to prior opioids has been reported from European countries to successfully relieve various types of intractable cancer pain; however, there are few reports of such use in Japan. The aim of this study was to analyze more than a hundred cases with low-dose add-on methadone to treat intractable pain in Japanese cancer patients. METHODS All cases in which 5 or 10 mg/day of methadone was added to prior opioids by the Palliative Care Team or Division of Palliative Medicine in our hospital during the period between April 2016 and September 2023 were extracted and analyzed retrospectively on electrical medical charts. RESULTS AND CONCLUSIONS A total of 102 cases were extracted with a male-to-female ratio of 60:42, and the age (mean ± SD) was 62.8 ± 14.7 years old. Methadone was introduced in an inpatient setting to 86 patients. The major pathologies that caused intractable pain were spinal metastases in 48, pelvis or pelvic floor lesions in 29 and pleural and/or chest wall lesions in 16. The most common mechanism of pain was the mixture of somatic and neuropathic components. The major opioids administered prior to methadone included tapentadol in 46 patients, hydromorphone in 36 and oxycodone in 19. The dose of the prior opioids [median, (interquartile range: IQR)] was 97, (62.8-167.3) (range: 15-1313) mg/day of oral morphine equivalent. Radiotherapy, chemotherapy and nerve blocks were performed as concomitant therapies in 48, 22 and 11 patients, respectively (with some overlap). The number of rescue doses [median (IQR)] was significantly decreased from three (two to five) on the day before methadone to one (zero to four) after seven days from methadone initiation. The side effects leading to discontinuation of methadone were drowsiness in three cases, nausea in three cases and dizziness in one case (with some overlap). Compared with complete switching from other opioids, low-dose add-on methadone can reduce the possibility of major dose discrepancies and can be quickly adjusted by combined opioid reduction/increase. Low-dose add-on methadone can be an effective and safe method for intractable cancer pain.
Collapse
Affiliation(s)
- Tetsumi Sato
- Division of Palliative Medicine, Shizuoka Cancer Center, Nagaizumi-cho, Shiuzoka, Japan
- Palliative Care Team, Shizuoka Cancer Center, Nagaizumi-cho, Shizuoka, Japan
| | - Akira Fukutomi
- Division of Palliative Medicine, Shizuoka Cancer Center, Nagaizumi-cho, Shiuzoka, Japan
- Palliative Care Team, Shizuoka Cancer Center, Nagaizumi-cho, Shizuoka, Japan
| | - Taiichi Kawamura
- Division of Palliative Medicine, Shizuoka Cancer Center, Nagaizumi-cho, Shiuzoka, Japan
- Palliative Care Team, Shizuoka Cancer Center, Nagaizumi-cho, Shizuoka, Japan
| | - Kyohei Kawakami
- Division of Palliative Medicine, Shizuoka Cancer Center, Nagaizumi-cho, Shiuzoka, Japan
- Palliative Care Team, Shizuoka Cancer Center, Nagaizumi-cho, Shizuoka, Japan
| | - Tetsu Sato
- Palliative Care Team, Shizuoka Cancer Center, Nagaizumi-cho, Shizuoka, Japan
- Department of Pharmacy, Shizuoka Cancer Center, Nagaizumi-cho, Japan
| | - Yoshiko Kamo
- Palliative Care Team, Shizuoka Cancer Center, Nagaizumi-cho, Shizuoka, Japan
- Department of Pharmacy, Shizuoka Cancer Center, Nagaizumi-cho, Japan
| | - Tomomi Suzuki
- Palliative Care Team, Shizuoka Cancer Center, Nagaizumi-cho, Shizuoka, Japan
- Patient and Family Support Center, Shizuoka Cancer Center, Nagaizuim-cho, Japan
| | - Shota Hagiya
- Palliative Care Team, Shizuoka Cancer Center, Nagaizumi-cho, Shizuoka, Japan
- Patient and Family Support Center, Shizuoka Cancer Center, Nagaizuim-cho, Japan
| | - Rei Tanaka
- Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Yokohama, Japan
| |
Collapse
|
7
|
Tan Y, Hashimoto K. Therapeutic potential of ketamine in management of epilepsy: Clinical implications and mechanistic insights. Asian J Psychiatr 2024; 101:104246. [PMID: 39366036 DOI: 10.1016/j.ajp.2024.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 10/06/2024]
Abstract
Epilepsy, a widespread neurological disorder, affects approximately 50 million people worldwide. This disorder is typified by recurring seizures due to abnormal neuron communication in the brain. The seizures can lead to severe ischemia and hypoxia, potentially threatening patients' lives. However, with proper diagnosis and treatment, up to 70 % of patients can live without seizures. The causes of epilepsy are complex and multifactorial, encompassing genetic abnormalities, structural brain anomalies, ion channel dysfunctions, neurotransmitter imbalances, neuroinflammation, and immune system involvement. These factors collectively disrupt the crucial balance between excitation and inhibition within the brain, leading to epileptic seizures. The management of treatment-resistant epilepsy remains a considerable challenge, necessitating innovative therapeutic approaches. Among emerging potential treatments, ketamine-a drug traditionally employed for anesthesia and depression-has demonstrated efficacy in reducing seizures. It is noteworthy that, independent of its anti-epileptic effects, ketamine has been found to improve the balance between excitatory and inhibitory (E/I) activities in the brain. The balance is crucial for maintaining normal neural function, and its disruption is widely considered a key driver of epileptic seizures. By acting on N-methyl-D-aspartate (NMDA) receptors and other potential mechanisms, ketamine may regulate neuronal excitability, reduce excessive synchronized neural activity, and counteract epileptic seizures. This positive impact on E/I balance reinforces the potential of ketamine as a promising drug for treating epilepsy, especially in patients who are insensitive to traditional anti-epileptic drugs. This review aims to consolidate the current understanding of ketamine's therapeutic role in epilepsy. It will focus its impact on neuronal excitability and synaptic plasticity, its neuroprotective qualities, and elucidate the drug's potential mechanisms of action in treating epilepsy. By scrutinizing ketamine's impact and mechanisms in various types of epilepsy, we aspire to contribute to a more comprehensive and holistic approach to epilepsy management.
Collapse
Affiliation(s)
- Yunfei Tan
- Center for Rehabilitation Medicine, Department of Psychiatry, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba 260-8677, Japan.
| |
Collapse
|
8
|
Lacroix E, Fatur K, Hay P, Touyz S, Keshen A. Psychedelics and the treatment of eating disorders: considerations for future research and practice. J Eat Disord 2024; 12:165. [PMID: 39438992 PMCID: PMC11495088 DOI: 10.1186/s40337-024-01125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Recent trials have shown promising results for the use of psychedelic-assisted therapies in treating severe refractory psychiatric illnesses, and there has been growing interest in examining the effectiveness of these therapies in treating eating disorders. To move forward in a safe, ethically sound, and scientifically rigorous manner, the field must address critical considerations. In this Comment article, we outline important risks and ethical considerations, along with methodological aspects that require careful consideration in the design of psychedelic-assisted therapy trials. We conclude by providing provisional guidelines for clinical research trials to help shape the future of this work, with the aim of investigating and employing the use of psychedelics for treating eating disorders in a manner that protects clients and research participants while maximizing methodological rigour.
Collapse
Affiliation(s)
- Emilie Lacroix
- Department of Psychology, University of New Brunswick, 38 Dineen Drive, Fredericton, NB, Canada.
| | - Karsten Fatur
- Department of Psychology, University of New Brunswick, 38 Dineen Drive, Fredericton, NB, Canada
| | - Phillipa Hay
- Translational Health Research Institute, School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Stephen Touyz
- Inside Out Institute, University of Sydney, and Sydney Local Health District, Sydney, NSW, Australia
| | - Aaron Keshen
- Department of Psychiatry, Dalhousie University, 5909 Veterans Memorial Lane, Halifax, NS, Canada
| |
Collapse
|
9
|
Gomes I, Gupta A, Margolis EB, Fricker LD, Devi LA. Ketamine and Major Ketamine Metabolites Function as Allosteric Modulators of Opioid Receptors. Mol Pharmacol 2024; 106:240-252. [PMID: 39187388 PMCID: PMC11493337 DOI: 10.1124/molpharm.124.000947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
Ketamine is a glutamate receptor antagonist that was developed over 50 years ago as an anesthetic agent. At subanesthetic doses, ketamine and some metabolites are analgesics and fast-acting antidepressants, presumably through targets other than glutamate receptors. We tested ketamine and its metabolites for activity as allosteric modulators of opioid receptors expressed as recombinant receptors in heterologous systems and with native receptors in rodent brain; signaling was examined by measuring GTP binding, β-arrestin recruitment, MAPK activation, and neurotransmitter release. Although micromolar concentrations of ketamine alone had weak agonist activity at μ opioid receptors, the combination of submicromolar concentrations of ketamine with endogenous opioid peptides produced robust synergistic responses with statistically significant increases in efficacies. All three opioid receptors (μ, δ, and κ) showed synergism with submicromolar concentrations of ketamine and either methionine-enkephalin (Met-enk), leucine-enkephalin (Leu-enk), and/or dynorphin A17 (Dyn A17), albeit the extent of synergy was variable between receptors and peptides. S-ketamine exhibited higher modulatory effects compared with R-ketamine or racemic ketamine, with ∼100% increase in efficacy. Importantly, the ketamine metabolite 6-hydroxynorketamine showed robust allosteric modulatory activity at μ opioid receptors; this metabolite is known to have analgesic and antidepressant activity but does not bind to glutamate receptors. Ketamine enhanced potency and efficacy of Met-enkephalin signaling both in mouse midbrain membranes and in rat ventral tegmental area neurons as determined by electrophysiology recordings in brain slices. Taken together, these findings support the hypothesis that some of the therapeutic effects of ketamine and its metabolites are mediated by directly engaging the endogenous opioid system. SIGNIFICANCE STATEMENT: This study found that ketamine and its major biologically active metabolites function as potent allosteric modulators of μ, δ, and κ opioid receptors, with submicromolar concentrations of these compounds synergizing with endogenous opioid peptides, such as enkephalin and dynorphin. This allosteric activity may contribute to ketamine's therapeutic effectiveness for treating acute and chronic pain and as a fast-acting antidepressant drug.
Collapse
Affiliation(s)
- Ivone Gomes
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Achla Gupta
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Elyssa B Margolis
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Lloyd D Fricker
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Lakshmi A Devi
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| |
Collapse
|
10
|
Zheng YB, Jin X. Evidence for the Contribution of the miR-206/BDNF Pathway in the Pathophysiology of Depression. Int J Neuropsychopharmacol 2024; 27:pyae039. [PMID: 39219169 PMCID: PMC11461769 DOI: 10.1093/ijnp/pyae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024] Open
Abstract
Depression is a complex disorder with substantial impacts on individual health and has major public health implications. Depression results from complex interactions between genetic and environmental factors. Epigenetic mechanisms, including DNA methylation, microRNAs (miRNAs), and histone modifications, can produce heritable phenotypic changes without a change in DNA sequence and recently were proven to mediate lasting increases in the risk of depression following exposure to adverse life events. Of these, miRNAs are gaining attention for their role in the pathogenesis of many stress-associated mental disorders, including depression. One such miRNA is microRNA-206 (miR-206), which is a critical candidate for increasing the susceptibility to stress. Although miR-206 is thought to be a typical muscle-specific miRNA, it is expressed throughout the brain, particularly in the hippocampus and prefrontal cortex. Until now, only a few studies have been conducted on rodents to understand the role of miR-206 in stress-related abnormalities in neurogenesis. However, the precise underlying molecular mechanism of miR-206-mediated depression-like behaviors remains largely unknown. Here, we reviewed recent advances in the field of biomedical and clinical research on the role of miR-206 in the pathogenesis of depression from studies using different tissues and various experimental designs and described how abnormalities in miR-206 expression in these tissues can affect neuronal functions. Moreover, we focused on studies investigating the brain-derived neurotrophic factor (BDNF) as a functional target of miR-206, where miR-206 has been implicated in the pathogenesis of depression by suppressing the expression of the BDNF. In summary, these studies confirm the existence of a tight correlation between the pathogenesis of depression and the miR-206/BDNF pathway.
Collapse
Affiliation(s)
- Ya-Bin Zheng
- Department of Neurology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Jin
- Department of Pharmacy, The Second People’s Hospital of Nantong, Nantong, China
| |
Collapse
|
11
|
Das K, Sen J, Borode AS. Ketamine and α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) Receptor Potentiation in the Somatosensory Cortex: A Comprehensive Review. Cureus 2024; 16:e69261. [PMID: 39398836 PMCID: PMC11470829 DOI: 10.7759/cureus.69261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Ketamine, a dissociative anesthetic primarily recognized for its antagonism of N-methyl-D-aspartate (NMDA) receptors, has gained significant attention for its rapid antidepressant effects and potential in treating mood disorders. However, recent research indicates that ketamine's influence extends beyond NMDA receptor inhibition, affecting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and sensory processing. This review delves into ketamine's role in enhancing AMPA receptor function and its implications for sensory processing within the somatosensory cortex. AMPA receptors, essential for fast excitatory neurotransmission and synaptic plasticity, play a key role in sensory perception and integration. By examining preclinical and clinical studies, this review sheds light on how ketamine's modulation of AMPA receptors may improve sensory processing and contribute to its therapeutic effects. Additionally, the review explores the potential for ketamine-based therapies to treat sensory processing disorders and refine current treatment strategies. A deeper understanding of ketamine's complex effects on AMPA receptors and sensory processing could provide valuable insights for developing targeted interventions and advancing clinical applications.
Collapse
Affiliation(s)
- Kaustuv Das
- Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Jayshree Sen
- Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aishwarya S Borode
- Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
12
|
Guo F, Zhang B, Shen F, Li Q, Song Y, Li T, Zhang Y, Du W, Li Y, Liu W, Cao H, Zhou X, Zheng Y, Zhu S, Li Y, Liu Z. Sevoflurane acts as an antidepressant by suppression of GluN2D-containing NMDA receptors on interneurons. Br J Pharmacol 2024; 181:3483-3502. [PMID: 38779864 DOI: 10.1111/bph.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Sevoflurane, a commonly used inhaled anaesthetic known for its favourable safety profile and rapid onset and offset, has not been thoroughly investigated as a potential treatment for depression. In this study, we reveal the mechanism through which sevoflurane delivers enduring antidepressant effects. EXPERIMENTAL APPROACH To assess the antidepressant effects of sevoflurane, behavioural tests were conducted, along with in vitro and ex vivo whole-cell patch-clamp recordings, to examine the effects on GluN1-GluN2 incorporated N-methyl-d-aspartate (NMDA) receptors (NMDARs) and neuronal circuitry in the medial prefrontal cortex (mPFC). Multiple-channel electrophysiology in freely moving mice was performed to evaluate sevoflurane's effects on neuronal activity, and GluN2D knockout (grin2d-/-) mice were used to confirm the requirement of GluN2D for the antidepressant effects. KEY RESULTS Repeated exposure to subanaesthetic doses of sevoflurane produced sustained antidepressant effects lasting up to 2 weeks. Sevoflurane preferentially inhibited GluN2C- and GluN2D-containing NMDARs, causing a reduction in interneuron activity. In contrast, sevoflurane increased action potentials (AP) firing and decreased spontaneous inhibitory postsynaptic current (sIPSC) in mPFC pyramidal neurons, demonstrating a disinhibitory effect. These effects were absent in grin2d-/- mice, and both pharmacological blockade and genetic knockout of GluN2D abolished sevoflurane's antidepressant actions, suggesting that GluN2D is essential for its antidepressant effect. CONCLUSION AND IMPLICATIONS Sevoflurane directly targets GluN2D, leading to a specific decrease in interneuron activity and subsequent disinhibition of pyramidal neurons, which may underpin its antidepressant effects. Targeting the GluN2D subunit could hold promise as a potential therapeutic strategy for treating depression.
Collapse
Affiliation(s)
- Fei Guo
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fuyi Shen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingcai Song
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyu Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongmei Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Weijia Du
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanxi Li
- Institute for Cognitive Neurodynamics, East China University of Science and Technology, Shanghai, China
| | - Wei Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hang Cao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xianjin Zhou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yinli Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yang Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhiqiang Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- Anesthesia and Brain Function Research Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Dasari LNSS, Ninave S. A Narrative Review of the Efficacy and Safety of Oral Ketamine in Pediatric Sedation: A Critical Analysis of Current Evidence. Cureus 2024; 16:e67550. [PMID: 39310522 PMCID: PMC11416828 DOI: 10.7759/cureus.67550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Sedation in pediatric patients presents unique challenges due to their developmental and physiological differences compared to adults. Oral ketamine, a dissociative anesthetic, has emerged as a promising alternative to traditional sedatives, offering a non-invasive method for achieving sedation in children. This comprehensive review evaluates the efficacy and safety of oral ketamine for pediatric sedation, consolidating evidence from recent studies and clinical trials. The review details the pharmacological properties of oral ketamine, including its mechanism of action and its role in achieving effective sedation. It examines dosing guidelines, clinical applications, and the outcomes of sedation procedures utilizing oral ketamine. Additionally, the review addresses the safety profile of oral ketamine, including standard and serious adverse effects, and provides recommendations for monitoring and managing potential risks. Comparative analyses with other sedation methods highlight the advantages and limitations of oral ketamine, including its effectiveness and ease of administration compared to intravenous (IV) and inhaled sedatives. The review also identifies gaps in the current literature and suggests areas for future research, including long-term safety and potential developmental impacts. In conclusion, oral ketamine represents a valuable option for pediatric sedation, offering a balance of efficacy and ease of use. This review aims to guide clinicians in making informed decisions regarding the use of oral ketamine, contributing to safer and more effective sedation practices in pediatric care.
Collapse
Affiliation(s)
- Lakshmi Naga Sai Sivani Dasari
- Anesthesia and Critical Care, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sanjot Ninave
- Anesthesia and Critical Care, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
14
|
Chiriboga N, Spentzas T, Abu-Sawwa R. A systematic review and meta-analysis of ketamine in pediatric status epilepticus. Epilepsia 2024; 65:2200-2212. [PMID: 38881333 DOI: 10.1111/epi.18035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVE Status epilepticus (SE) is a common neurological medical emergency in the pediatric population, with 10%-40% of cases progressing to refractory SE (RSE), requiring treatment with anesthetic infusions. We present a systematic review and meta-analysis of the use of ketamine for the treatment of pediatric SE and its potential advantages over other anesthetic infusions. METHODS This review follows the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement. Electronic databases, including PubMed, Cochrane Library, Ovid, Embase, and Google Scholar, were searched with the keywords "pediatrics," "status epilepticus," and "ketamine treatment." Randomized trials, prospective and retrospective cohort studies, and case reports were considered for inclusion. RESULTS Eighteen publications met the initial inclusion criteria. The 18 publications comprise 11 case reports, one nonconclusive clinical trial, two case series, and four retrospective cohorts. After excluding the case reports because of reporting bias, only the six case series and cohorts were included in the final analysis. There were 172 patients in the six included studies. The weighted age was 9.93 (SD = 10.29) years. The weighted maximum dose was 7.44 (SD = 9.39) mg/kg/h. SE cessation was attained in 51% (95% confidence interval = 43-59) of cases with the addition of ketamine. The heterogeneity was I2 = 0%, t2 = 0, χ2 (5) = 3.39 (p = .64). SIGNIFICANCE Pediatric RSE is difficult to treat, resulting in increased morbidity and mortality. Without strong recommendations and evidence regarding preferred agents, this review provides evidence that ketamine may be considered in managing SE in the pediatric population.
Collapse
Affiliation(s)
- Nicolas Chiriboga
- Pediatric Intensive Care Unit Le Bonheur Children's Hospital, Memphis, Tennessee, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Thomas Spentzas
- Pediatric Intensive Care Unit Le Bonheur Children's Hospital, Memphis, Tennessee, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Renad Abu-Sawwa
- Department of Anatomy and Cell Biology, Rush Medical College, Chicago, Illinois, USA
- Department of Pediatric Neurology, Rush University Children's Hospital, Chicago, Illinois, USA
| |
Collapse
|
15
|
Brenna CTA, Goldstein BI, Zarate CA, Orser BA. Repurposing General Anesthetic Drugs to Treat Depression: A New Frontier for Anesthesiologists in Neuropsychiatric Care. Anesthesiology 2024; 141:222-237. [PMID: 38856663 DOI: 10.1097/aln.0000000000005037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
During the last 100 years, the role of anesthesiologists in psychiatry has focused primarily on facilitating electroconvulsive therapy and mitigating postoperative delirium and other perioperative neurocognitive disorders. The discovery of the rapid and sustained antidepressant properties of ketamine, and early results suggesting that other general anesthetic drugs (including nitrous oxide, propofol, and isoflurane) have antidepressant properties, has positioned anesthesiologists at a new frontier in the treatment of neuropsychiatric disorders. Moreover, shared interest in understanding the biologic underpinnings of anesthetic drugs as psychotropic agents is eroding traditional academic boundaries between anesthesiology and psychiatry. This article presents a brief overview of anesthetic drugs as novel antidepressants and identifies promising future candidates for the treatment of depression. The authors issue a call to action and outline strategies to foster collaborations between anesthesiologists and psychiatrists as they work toward the common goals of repurposing anesthetic drugs as antidepressants and addressing mood disorders in surgical patients.
Collapse
Affiliation(s)
- Connor T A Brenna
- Department of Anesthesiology & Pain Medicine and Department of Physiology, University of Toronto, Toronto, Canada; Perioperative Brain Health Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry and Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Beverley A Orser
- Department of Anesthesiology & Pain Medicine and Department of Physiology, University of Toronto, Toronto, Canada; Perioperative Brain Health Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|
16
|
Redinbaugh MJ, Saalmann YB. Contributions of Basal Ganglia Circuits to Perception, Attention, and Consciousness. J Cogn Neurosci 2024; 36:1620-1642. [PMID: 38695762 PMCID: PMC11223727 DOI: 10.1162/jocn_a_02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Research into ascending sensory pathways and cortical networks has generated detailed models of perception. These same cortical regions are strongly connected to subcortical structures, such as the basal ganglia (BG), which have been conceptualized as playing key roles in reinforcement learning and action selection. However, because the BG amasses experiential evidence from higher and lower levels of cortical hierarchies, as well as higher-order thalamus, it is well positioned to dynamically influence perception. Here, we review anatomical, functional, and clinical evidence to demonstrate how the BG can influence perceptual processing and conscious states. This depends on the integrative relationship between cortex, BG, and thalamus, which allows contributions to sensory gating, predictive processing, selective attention, and representation of the temporal structure of events.
Collapse
Affiliation(s)
| | - Yuri B Saalmann
- University of Wisconsin-Madison
- Wisconsin National Primate Research Center
| |
Collapse
|
17
|
Nicosia N, Giovenzana M, Misztak P, Mingardi J, Musazzi L. Glutamate-Mediated Excitotoxicity in the Pathogenesis and Treatment of Neurodevelopmental and Adult Mental Disorders. Int J Mol Sci 2024; 25:6521. [PMID: 38928227 PMCID: PMC11203689 DOI: 10.3390/ijms25126521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the brain wherein it controls cognitive functional domains and mood. Indeed, brain areas involved in memory formation and consolidation as well as in fear and emotional processing, such as the hippocampus, prefrontal cortex, and amygdala, are predominantly glutamatergic. To ensure the physiological activity of the brain, glutamatergic transmission is finely tuned at synaptic sites. Disruption of the mechanisms responsible for glutamate homeostasis may result in the accumulation of excessive glutamate levels, which in turn leads to increased calcium levels, mitochondrial abnormalities, oxidative stress, and eventually cell atrophy and death. This condition is known as glutamate-induced excitotoxicity and is considered as a pathogenic mechanism in several diseases of the central nervous system, including neurodevelopmental, substance abuse, and psychiatric disorders. On the other hand, these disorders share neuroplasticity impairments in glutamatergic brain areas, which are accompanied by structural remodeling of glutamatergic neurons. In the current narrative review, we will summarize the role of glutamate-induced excitotoxicity in both the pathophysiology and therapeutic interventions of neurodevelopmental and adult mental diseases with a focus on autism spectrum disorders, substance abuse, and psychiatric disorders. Indeed, glutamatergic drugs are under preclinical and clinical development for the treatment of different mental diseases that share glutamatergic neuroplasticity dysfunctions. Although clinical evidence is still limited and more studies are required, the regulation of glutamate homeostasis is attracting attention as a potential crucial target for the control of brain diseases.
Collapse
Affiliation(s)
- Noemi Nicosia
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Mattia Giovenzana
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Paulina Misztak
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
| | - Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
18
|
Glavonic E, Dragic M, Mitic M, Aleksic M, Lukic I, Ivkovic S, Adzic M. Ketamine's Amelioration of Fear Extinction in Adolescent Male Mice Is Associated with the Activation of the Hippocampal Akt-mTOR-GluA1 Pathway. Pharmaceuticals (Basel) 2024; 17:669. [PMID: 38931336 PMCID: PMC11206546 DOI: 10.3390/ph17060669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Fear-related disorders, including post-traumatic stress disorder (PTSD), and anxiety disorders are pervasive psychiatric conditions marked by persistent fear, stemming from its dysregulated acquisition and extinction. The primary treatment for these disorders, exposure therapy (ET), relies heavily on fear extinction (FE) principles. Adolescence, a vulnerable period for developing psychiatric disorders, is characterized by neurobiological changes in the fear circuitry, leading to impaired FE and increased susceptibility to relapse following ET. Ketamine, known for relieving anxiety and reducing PTSD symptoms, influences fear-related learning processes and synaptic plasticity across the fear circuitry. Our study aimed to investigate the effects of ketamine (10 mg/kg) on FE in adolescent male C57 BL/6 mice at the behavioral and molecular levels. We analyzed the protein and gene expression of synaptic plasticity markers in the hippocampus (HPC) and prefrontal cortex (PFC) and sought to identify neural correlates associated with ketamine's effects on adolescent extinction learning. Ketamine ameliorated FE in the adolescent males, likely affecting the consolidation and/or recall of extinction memory. Ketamine also increased the Akt and mTOR activity and the GluA1 and GluN2A levels in the HPC and upregulated BDNF exon IV mRNA expression in the HPC and PFC of the fear-extinguished mice. Furthermore, ketamine increased the c-Fos expression in specific brain regions, including the ventral HPC (vHPC) and the left infralimbic ventromedial PFC (IL vmPFC). Providing a comprehensive exploration of ketamine's mechanisms in adolescent FE, our study suggests that ketamine's effects on FE in adolescent males are associated with the activation of hippocampal Akt-mTOR-GluA1 signaling, with the vHPC and the left IL vmPFC as the proposed neural correlates.
Collapse
Affiliation(s)
- Emilija Glavonic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (E.G.); (M.D.); (M.M.); (M.A.); (I.L.); (S.I.)
| | - Milorad Dragic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (E.G.); (M.D.); (M.M.); (M.A.); (I.L.); (S.I.)
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11158 Belgrade, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (E.G.); (M.D.); (M.M.); (M.A.); (I.L.); (S.I.)
| | - Minja Aleksic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (E.G.); (M.D.); (M.M.); (M.A.); (I.L.); (S.I.)
| | - Iva Lukic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (E.G.); (M.D.); (M.M.); (M.A.); (I.L.); (S.I.)
| | - Sanja Ivkovic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (E.G.); (M.D.); (M.M.); (M.A.); (I.L.); (S.I.)
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (E.G.); (M.D.); (M.M.); (M.A.); (I.L.); (S.I.)
| |
Collapse
|
19
|
Kronenberg G, Schoretsanitis G, Seifritz E, Olbrich S. The boon and bane of nitrous oxide. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01801-3. [PMID: 38613686 DOI: 10.1007/s00406-024-01801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 04/15/2024]
Abstract
Nitrous oxide (N2O) has been known since the end of the eighteenth century. Today, N2O plays a huge role as a greenhouse gas and an ozone-depleting stratospheric molecule. The main sources of anthropogenic N2O emissions are agriculture, fuel combustion, wastewater treatment, and various industrial processes. By contrast, the contribution of medical N2O to the greenhouse effect appears to be small. The recreational and medical uses of N2O gradually diverged over time. N2O has analgesic and anesthetic effects, making it widely used in modern dentistry and surgery. New research has also begun studying N2O's antidepressant actions. N-methyl-D-aspartate (NMDA) antagonism and opioid effects are believed to be the main underlying biochemical mechanisms. At this point, numerous questions remain open and, in particular, the conduct of larger clinical trials will be essential to confirm N2O's use as a rapid-acting antidepressant. The N2O concentration delivered, the duration of a single inhalation, as well as the number of inhalations ultimately required, deserve to be better understood. Finally, the non-medical use of N2O has gained significant attention in recent years. Sudden deaths directly attributed to N2O are primarily due to asphyxia. Heavy, chronic N2O use may result in vitamin B12 deficiency, which, among other things, may cause megaloblastic anemia, venous thrombosis, myeloneuropathy, and skin pigmentation. Helpful biochemical tests include homocysteine and methylmalonic acid. The centerpiece of treatment is complete cessation of N2O use together with parenteral administration of vitamin B12.
Collapse
Affiliation(s)
- Golo Kronenberg
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zürich, Lenggstrasse 31, P.O. Box 363, 8032, Zurich, Switzerland.
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zürich, Lenggstrasse 31, P.O. Box 363, 8032, Zurich, Switzerland
- Department of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Northwell/Hofstra University, Hempstead, New York, USA
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zürich, Lenggstrasse 31, P.O. Box 363, 8032, Zurich, Switzerland
| | - Sebastian Olbrich
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zürich, Lenggstrasse 31, P.O. Box 363, 8032, Zurich, Switzerland
| |
Collapse
|
20
|
Mansvelder FJ, Bossers SM, Loer SA, Bloemers FW, Van Lieshout EMM, Den Hartog D, Hoogerwerf N, van der Naalt J, Absalom AR, Peerdeman SM, Bulte CSE, Schwarte LA, Schober P. Etomidate versus Ketamine as Prehospital Induction Agent in Patients with Suspected Severe Traumatic Brain Injury. Anesthesiology 2024; 140:742-751. [PMID: 38190220 DOI: 10.1097/aln.0000000000004894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND Severe traumatic brain injury is a leading cause of morbidity and mortality among young people around the world. Prehospital care focuses on the prevention and treatment of secondary brain injury and commonly includes tracheal intubation after induction of general anesthesia. The choice of induction agent in this setting is controversial. This study therefore investigated the association between the chosen induction medication etomidate versus S(+)-ketamine and the 30-day mortality in patients with severe traumatic brain injury who received prehospital airway management in the Netherlands. METHODS This study is a retrospective analysis of the prospectively collected observational data of the Brain Injury: Prehospital Registry of Outcomes, Treatments and Epidemiology of Cerebral Trauma (BRAIN-PROTECT) cohort study. Patients with suspected severe traumatic brain injury who were transported to a participating trauma center and who received etomidate or S(+)-ketamine for prehospital induction of anesthesia for advanced airway management were included. Statistical analyses were performed with multivariable logistic regression and inverse probability of treatment weighting analysis. RESULTS In total, 1,457 patients were eligible for analysis. No significant association between the administered induction medication and 30-day mortality was observed in unadjusted analyses (32.9% mortality for etomidate versus 33.8% mortality for S(+)-ketamine; P = 0.716; odds ratio, 1.04; 95% CI, 0.83 to 1.32; P = 0.711), as well as after adjustment for potential confounders (odds ratio, 1.08; 95% CI, 0.67 to 1.73; P = 0.765; and risk difference 0.017; 95% CI, -0.051 to 0.084; P = 0.686). Likewise, in planned subgroup analyses for patients with confirmed traumatic brain injury and patients with isolated traumatic brain injury, no significant differences were found. Consistent results were found after multiple imputations of missing data. CONCLUSIONS The analysis found no evidence for an association between the use of etomidate or S(+)-ketamine as an anesthetic agent for intubation in patients with traumatic brain injury and mortality after 30 days in the prehospital setting, suggesting that the choice of induction agent may not influence the patient mortality rate in this population. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Floor J Mansvelder
- Department of Anesthesiology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sebastiaan M Bossers
- Department of Anesthesiology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Stephan A Loer
- Department of Anesthesiology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank W Bloemers
- Department of Surgery, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Esther M M Van Lieshout
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dennis Den Hartog
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nico Hoogerwerf
- Department of Anesthesiology, Radboud University Medical Center, Nijmegen, The Netherlands; and Helicopter Emergency Medical Service Lifeliner 3, Volkel, The Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| | - Anthony R Absalom
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Saskia M Peerdeman
- Department of Neurosurgery, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, The Netherlands
| | - Carolien S E Bulte
- Department of Anesthesiology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; and Helicopter Emergency Medical Service Lifeliner 1, Amsterdam, The Netherlands
| | - Lothar A Schwarte
- Department of Anesthesiology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; and Helicopter Emergency Medical Service Lifeliner 1, Amsterdam, The Netherlands
| | - Patrick Schober
- Department of Anesthesiology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Helicopter Emergency Medical Service Lifeliner 1, Amsterdam, The Netherlands; and Department of Neurosurgery, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
21
|
Pavlovič A, Ševčíková L, Hřivňacký M, Rác M. Effect of the General Anaesthetic Ketamine on Electrical and Ca 2+ Signal Propagation in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:894. [PMID: 38592882 PMCID: PMC10975207 DOI: 10.3390/plants13060894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
The systemic electrical signal propagation in plants (i.e., from leaf to leaf) is dependent on GLUTAMATE RECEPTOR-LIKE proteins (GLRs). The GLR receptors are the homologous proteins to the animal ionotropic glutamate receptors (iGluRs) which are ligand-gated non-selective cation channels that mediate neurotransmission in the animal's nervous system. In this study, we investigated the effect of the general anaesthetic ketamine, a well-known non-competitive channel blocker of human iGluRs, on systemic electrical signal propagation in Arabidopsis thaliana. We monitored the electrical signal propagation, intracellular calcium level [Ca2+]cyt and expression of jasmonate (JA)-responsive genes in response to heat wounding. Although ketamine affected the shape and the parameters of the electrical signals (amplitude and half-time, t1/2) mainly in systemic leaves, it was not able to block a systemic response. Increased [Ca2+]cyt and the expression of jasmonate-responsive genes were detected in local as well as in systemic leaves in response to heat wounding in ketamine-treated plants. This is in contrast with the effect of the volatile general anaesthetic diethyl ether which completely blocked the systemic response. This low potency of ketamine in plants is probably caused by the fact that the critical amino acid residues needed for ketamine binding in human iGluRs are not conserved in plants' GLRs.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (L.Š.); (M.H.); (M.R.)
| | | | | | | |
Collapse
|
22
|
Yue Y, Ji H, Wang S, Cheng H, Wang R, Qu H, Li J. Evaluation of Analgesic Drug Therapy for Postoperative Pain Management in Cardiovascular Surgery. CURRENT THERAPEUTIC RESEARCH 2024; 100:100744. [PMID: 38803585 PMCID: PMC11128826 DOI: 10.1016/j.curtheres.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/14/2024] [Indexed: 05/29/2024]
Abstract
Background Cardiovascular surgery is usually associated with higher degree of postoperative pain that influences a patient's physical recovery. Multiple clinical measures have been taken to avoid overuse of opioid agents for postoperative pain management, which led to the development of clinical pathways for analgesic drug treatment using a multimodal approach. Objective To evaluate the effectiveness and safety of a multimodal postoperative analgesic drug pathway (ADP) for pain management following cardiovascular surgery. Methods This retrospective, controlled, nonrandomized study evaluated a postoperative ADP in patients undergoing cardiovascular surgery in a tertiary general hospital in Qingdao, China. Effectiveness and safety outcomes were compared before and after the implementation of the ADP. Outcome indicators included postoperative pain scores, consumption of opioids in analgesic pumps, and incidence of adverse events. Results Patients who underwent cardiovascular surgery from September to November 2021 before the implementation of the ADP (n = 193) and from September to November 2022 after the implementation of the ADP (n = 218) were enrolled. Pain scores were reduced on day 1, 3, and 5 after surgery and the reduction was most significant in mild pain (P < .001). Opioids in analgesic pumps consumption was also significantly reduced and there was decreased incidence of adverse events such as nausea and vomiting (P = .026), respiratory inhibition (P = .027), and dizziness and headache (P = .028) in cardiovascular surgery patients after implementation of the ADP. Conclusions Improved effectiveness and safety were observed following the implementation of the ADP. Multimodal analgesic ADP methodology can be effectively used for postoperative pain management in patients undergoing cardiovascular surgery.
Collapse
Affiliation(s)
- Yue Yue
- School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Hongyan Ji
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shizhong Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Huawei Cheng
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Rongmei Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haijun Qu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
23
|
Marashli S, Janz P, Redondo RL. Auditory brainstem responses are resistant to pharmacological modulation in Sprague Dawley wild-type and Neurexin1α knockout rats. BMC Neurosci 2024; 25:18. [PMID: 38491350 PMCID: PMC10941391 DOI: 10.1186/s12868-024-00861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Sensory processing in the auditory brainstem can be studied with auditory brainstem responses (ABRs) across species. There is, however, a limited understanding of ABRs as tools to assess the effect of pharmacological interventions. Therefore, we set out to understand how pharmacological agents that target key transmitter systems of the auditory brainstem circuitry affect ABRs in rats. Given previous studies, demonstrating that Nrxn1α KO Sprague Dawley rats show substantial auditory processing deficits and altered sensitivity to GABAergic modulators, we used both Nrxn1α KO and wild-type littermates in our study. First, we probed how different commonly used anesthetics (isoflurane, ketamine/xylazine, medetomidine) affect ABRs. In the next step, we assessed the effects of different pharmacological compounds (diazepam, gaboxadol, retigabine, nicotine, baclofen, and bitopertin) either under isoflurane or medetomidine anesthesia. We found that under our experimental conditions, ABRs are largely unaffected by diverse pharmacological modulation. Significant modulation was observed with (i) nicotine, affecting the late ABRs components at 90 dB stimulus intensity under isoflurane anesthesia in both genotypes and (ii) retigabine, showing a slight decrease in late ABRs deflections at 80 dB stimulus intensity, mainly in isoflurane anesthetized Nrxn1α KO rats. Our study suggests that ABRs in anesthetized rats are resistant to a wide range of pharmacological modulators, which has important implications for the applicability of ABRs to study auditory brainstem physiology.
Collapse
Affiliation(s)
- Samuel Marashli
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
24
|
Li J, Temizer R, Chen YW, Aoki C. Ketamine ameliorates activity-based anorexia of adolescent female mice through changes in GluN2B-containing NMDA receptors at postsynaptic cytoplasmic locations of pyramidal neurons and interneurons of medial prefrontal cortex. Brain Struct Funct 2024; 229:323-348. [PMID: 38170266 DOI: 10.1007/s00429-023-02740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Anorexia nervosa (AN) is a mental illness with high rates of mortality and relapse, and no approved pharmacotherapy. Using the activity-based anorexia (ABA) model of AN, we previously showed that a single sub-anesthetic intraperitoneal injection of ketamine (30 mg/kg-KET, but not 3 mg/kg-KET), has an immediate and long-lasting effect of reducing anorexia-like behavior among adolescent female mice. We also showed previously that excitatory outflow from medial prefrontal cortex (mPFC) engages hunger-evoked hyperactivity, leading to the ABA condition of severe weight loss. Ketamine is known to target GluN2B-containing NMDARs (NR2B). Might synaptic plasticity involving NR2B in mPFC contribute to ketamine's ameliorative effects? We addressed this question through electron microscopic immunocytochemical quantification of GluN2B at excitatory synapses of pyramidal neurons (PN) and GABAergic interneurons (IN) in mPFC layer 1 of animals that underwent recovery from a second ABA induction (ABA2), 22 days after ketamine injection during the first ABA induction. The 30 mg/kg-KET evoked synaptic plasticity that differed for PN and IN, with changes revolving the cytoplasmic reserve pool of NR2B more than the postsynaptic membrane pool. Those individuals that suppressed hunger-evoked wheel running the most and increased food consumption during recovery from ABA2 the most showed the greatest increase of NR2B at PN and IN excitatory synapses. We hypothesize that 30 mg/kg-KET promotes long-lasting changes in the reserve cytoplasmic pool of NR2B that enables activity-dependent rapid strengthening of mPFC circuits underlying the more adaptive behavior of suppressed running and enhanced food consumption, in turn supporting better weight restoration.
Collapse
Affiliation(s)
- Jennifer Li
- Center for Neural Science, New York University, New York, NY, USA
| | - Rose Temizer
- Center for Neural Science, New York University, New York, NY, USA
| | - Yi-Wen Chen
- Center for Neural Science, New York University, New York, NY, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
25
|
Hashimoto K. Are "mystical experiences" essential for antidepressant actions of ketamine and the classic psychedelics? Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01770-7. [PMID: 38411629 DOI: 10.1007/s00406-024-01770-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024]
Abstract
The growing interest in the rapid and sustained antidepressant effects of the dissociative anesthetic ketamine and classic psychedelics, such as psilocybin, is remarkable. However, both ketamine and psychedelics are known to induce acute mystical experiences; ketamine can cause dissociative symptoms such as out-of-body experience, while psychedelics typically bring about hallucinogenic experiences, like a profound sense of unity with the universe or nature. The role of these mystical experiences in enhancing the antidepressant outcomes for patients with depression is currently an area of ongoing investigation and debate. Clinical studies have shown that the dissociative symptoms following the administration of ketamine or (S)-ketamine (esketamine) are not directly linked to their antidepressant properties. In contrast, the antidepressant potential of (R)-ketamine (arketamine), thought to lack dissociative side effects, has yet to be conclusively proven in large-scale clinical trials. Moreover, although the activation of the serotonin 5-HT2A receptor is crucial for the hallucinogenic effects of psychedelics in humans, its precise role in their antidepressant action is still under discussion. This article explores the importance of mystical experiences in enhancing the antidepressant efficacy of both ketamine and classic psychedelics.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan.
| |
Collapse
|
26
|
Curpan AS, Savuca A, Hritcu LD, Solcan C, Nicoara MN, Luca AC, Ciobica AS. A new approach to explore the correlation between declarative memory and anxiety in animal models of schizophrenia and microplastic pollution. Behav Brain Res 2024; 458:114742. [PMID: 37939886 DOI: 10.1016/j.bbr.2023.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
The discovery of new detrimental effects associated with microplastic pollution is ever-growing and reaching alarming rates worldwide, as it is linked to numerous disorders such as lung diseases, gastrointestinal problems, and cancer. However, a less explored issue is their impact on mental health, more precisely schizophrenia, even though several studies have shown the presence of microplastics in air, water, soil, and even food, thus making them a significant part of our daily dietary intake. It is also well known that declarative memory and anxiety levels are impaired in schizophrenia. However, apart from the novel object recognition test, the possibilities for testing memory in zebrafish are quite limited. For these reasons, we designed a novel memory test based on rewards, a learning period, and zebrafish's natural preference for certain colors. Among the results, our fish preferred the color yellow over red, and we illustrated that ketamine and its combination with methionine provide a robust model that seems to better represent the aspects of schizophrenia in animal models. Moreover, surprisingly, we observed that microplastics (more precisely, polypropylene fibers) ingested by animals through the diet seem to act as a buffer against ketamine toxicity and as an enhancer for methionine exposure. Moreover, according to our results, groups with higher anxiety levels seem to perform better on the memory test.
Collapse
Affiliation(s)
- Alexandrina-Stefania Curpan
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bd., 20A, 700505 Iasi, Romania
| | - Alexandra Savuca
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bd., 20A, 700505 Iasi, Romania; Doctoral School of Geosciences, Faculty of Geography and Geology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bd., 20A, 700505 Iasi, Romania.
| | - Luminita Diana Hritcu
- Internal Medicine Clinic, "Ion Ionescu de la Brad" University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania.
| | - Carmen Solcan
- Department of Molecular Biology, Histology and Embryology, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
| | - Mircea Nicusor Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bd., 20A, 700505 Iasi, Romania; Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bd., 20A, 700505 Iasi, Romania
| | - Alina-Costina Luca
- Department of Pediatrics, Faculty of Medicine, Gr. T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin-Stelian Ciobica
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bd., 20A, 700505 Iasi, Romania; Academy of Romanian Scientists, Splaiul Independentei no. 54, sector 5, 050094 Bucharest, Romania; Center of Biomedical Research, Romanian Academy, Carol I Bd., No 8, 010071 Iasi, Romania
| |
Collapse
|
27
|
Bhatt S, Anitha K, Chellappan DK, Mukherjee D, Shilpi S, Suttee A, Gupta G, Singh TG, Dua K. Targeting inflammatory signaling in obsessive compulsive disorder: a promising approach. Metab Brain Dis 2024; 39:335-346. [PMID: 37950815 DOI: 10.1007/s11011-023-01314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/23/2023] [Indexed: 11/13/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder. Approximately, around 2% to 3% percent of the general population experience symptoms of OCD over the course of their lifetime. OCD can lead to economic burden, poor quality of life, and disability. The characteristic features exhibited generally in OCD are continuous intrusive thoughts and periodic ritualized behaviours. Variations in genes, pathological function of Cortico-Striato-Thalamo-Cortical (CSTC) circuits and dysregulation in the synaptic conduction have been the major factors involved in the pathological progression of OCD. However, the basic mechanisms still largely unknown. Current therapies for OCD largely target monoaminergic neurotransmitters (NTs) in specific dopaminergic and serotonergic circuits. However, such therapies have limited efficacy and tolerability. Drug resistance has been one of the important reasons reported to critically influence the effectiveness of the available drugs. Inflammation has been a crucial factor which is believed to have a significant importance in OCD progression. A significant number of proinflammatory cytokines have been reportedly amplified in patients with OCD. Mechanisms of drug treatment involve attenuation of the symptoms via modulation of inflammatory signalling pathways, modification in brain structure, and synaptic plasticity. Hence, targeting inflammatory signaling may be considered as a suitable approach in the treatment of OCD. The present review focuses mainly on the significant findings from the animal and human studies conducted in this area, that targets inflammatory signaling in neurological conditions. In addition, it also focusses on the therapeutic approaches that target OCD via modification of the inflammatory signaling pathways.
Collapse
Affiliation(s)
- Shvetank Bhatt
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, 411038, India.
| | - Kuttiappan Anitha
- Department of Pharmacology, School of Pharmacy & Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, 425405, Maharashtra, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Dhrubojyoti Mukherjee
- Department of Pharmaceutics, School of Pharmacy & Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, Maharashtra, 425405, India
| | - Satish Shilpi
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Kanchipuram - Chennai Rd, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
28
|
Izumi Y, Reiersen AM, Lenze EJ, Mennerick SJ, Zorumski CF. Sertraline modulates hippocampal plasticity and learning via sigma 1 receptors, cellular stress and neurosteroids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576911. [PMID: 38328198 PMCID: PMC10849579 DOI: 10.1101/2024.01.23.576911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
In addition to modulating serotonin transport, selective serotonin reuptake inhibitors (SSRIs) have multiple other effects that may contribute to clinical effects, and some of these latter actions prompt repurposing of SSRIs for non-psychiatric indications. We recently observed that the SSRIs fluvoxamine and fluoxetine prevent the acute adverse effects of pro-inflammatory stimulation on long-term potentiation (LTP) in the CA1 hippocampal region. Sertraline showed markedly different effects, acutely inhibiting LTP at a low micromolar concentration through inverse agonism of sigma 1 receptors (S1Rs). In the present studies, we pursued mechanisms contributing to sertraline modulation of LTP in rat hippocampal slices. We found that sertraline partially inhibits synaptic responses mediated by N-methyl-D-aspartate receptors (NMDARs) via effects on NMDARs that express GluN2B subunits. A selective S1R antagonist (NE-100), but not an S1R agonist (PRE-084) blocked effects on NMDARs, despite the fact that both S1R ligands were previously shown to prevent LTP inhibition. Both NE-100 and PRE-084, however, prevented adverse effects of sertraline on one-trial learning. Because of the important role that S1Rs play in modulating endoplasmic reticulum stress, we examined whether inhibitors of cellular stress alter effects of sertraline. We found that two stress inhibitors, ISRIB and quercetin, prevented LTP inhibition, as did inhibitors of the synthesis of endogenous neurosteroids, which are homeostatic regulators of cellular stress. These studies highlight complex effects of sertraline, S1Rs and neurosteroids on hippocampal function and have relevance for understanding therapeutic and adverse drug actions.
Collapse
|
29
|
Adraoui FW, Hettak K, Viardot G, Alix M, Guiffard S, Meot B, L’Hostis P, Maurin A, Delpy E, Drieu La Rochelle C, Carvalho K. Differential Effects of Aripiprazole on Electroencephalography-Recorded Gamma-Band Auditory Steady-State Response, Spontaneous Gamma Oscillations and Behavior in a Schizophrenia Rat Model. Int J Mol Sci 2024; 25:1035. [PMID: 38256109 PMCID: PMC10815955 DOI: 10.3390/ijms25021035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The available antipsychotics for schizophrenia (SZ) only reduce positive symptoms and do not significantly modify SZ neurobiology. This has raised the question of the robustness and translational value of methods employed during drug development. Electroencephalography (EEG)-based measures like evoked and spontaneous gamma oscillations are considered robust translational biomarkers as they can be recorded in both patients and animal models to probe a key mechanism underlying all SZ symptoms: the excitation/inhibition imbalance mediated by N-methyl-D-aspartate receptor (NMDAr) hypofunction. Understanding the effects of commercialized atypical antipsychotics on such measures could therefore contribute to developing better therapies for SZ. Yet, the effects of such drugs on these EEG readouts are unknown. Here, we studied the effect of the atypical antipsychotic aripiprazole on the gamma-band auditory steady-state response (ASSR), spontaneous gamma oscillations and behavioral features in a SZ rat model induced by the NMDAr antagonist MK-801. Interestingly, we found that aripiprazole could not normalize MK-801-induced abnormalities in ASSR, spontaneous gamma oscillations or social interaction while it still improved MK-801-induced hyperactivity. Suggesting that aripiprazole is unable to normalize electrophysiological features underlying SZ symptoms, our results might explain aripiprazole's inefficacy towards the social interaction deficit in our model but also its limited efficacy against social symptoms in patients.
Collapse
Affiliation(s)
- Florian W. Adraoui
- Biotrial, Non-Clinical Pharmacology Department, 7-9 Rue Jean-Louis Bertrand, 35000 Rennes, France; (F.W.A.)
| | - Kenza Hettak
- Biotrial, Non-Clinical Pharmacology Department, 7-9 Rue Jean-Louis Bertrand, 35000 Rennes, France; (F.W.A.)
| | - Geoffrey Viardot
- Biotrial, Neuroscience Department, 6 Avenue de Bruxelles, 68350 Brunstatt-Didenheim, France
| | - Magali Alix
- Biotrial, Non-Clinical Pharmacology Department, 7-9 Rue Jean-Louis Bertrand, 35000 Rennes, France; (F.W.A.)
| | - Sabrina Guiffard
- Biotrial, Non-Clinical Pharmacology Department, 7-9 Rue Jean-Louis Bertrand, 35000 Rennes, France; (F.W.A.)
| | - Benoît Meot
- Biotrial, Non-Clinical Pharmacology Department, 7-9 Rue Jean-Louis Bertrand, 35000 Rennes, France; (F.W.A.)
| | - Philippe L’Hostis
- Biotrial, Neuroscience Department, 7-9 Rue Jean-Louis Bertrand, 35000 Rennes, France
| | - Anne Maurin
- Biotrial, Non-Clinical Pharmacology Department, 7-9 Rue Jean-Louis Bertrand, 35000 Rennes, France; (F.W.A.)
| | - Eric Delpy
- Biotrial, Non-Clinical Pharmacology Department, 7-9 Rue Jean-Louis Bertrand, 35000 Rennes, France; (F.W.A.)
| | | | - Kevin Carvalho
- Biotrial, Non-Clinical Pharmacology Department, 7-9 Rue Jean-Louis Bertrand, 35000 Rennes, France; (F.W.A.)
| |
Collapse
|
30
|
Freidel N, Kreuder L, Rabinovitch BS, Chen FY, Huang RST, Lewis EC. Psychedelics, epilepsy, and seizures: a review. Front Pharmacol 2024; 14:1326815. [PMID: 38283836 PMCID: PMC10811552 DOI: 10.3389/fphar.2023.1326815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024] Open
Abstract
Psychedelic compounds have been utilized by humans for centuries for medicinal, religious, and tribal purposes. Clinical trial data starting from the early 2000s and continuing today indicates that psychedelics are a clinically efficacious treatment for a variety of neurological and psychiatric disorders. However, all clinical trials examining these substances have excluded any individual with a past or current history of seizures, leaving a large cohort of epilepsy and non-epilepsy chronic seizure disorder patients without anywhere to turn for psychedelic-assisted therapy. These exclusions were made despite any significant evidence that clinically supervised psychedelic use causes or exacerbates seizures in this population. To date, no clinical trial or preclinical seizure model has demonstrated that psychedelics induce seizures. This review highlights several cases of individuals experiencing seizures or seizure remission following psychedelic use, with the overall trend being that psychedelics are safe for use in a controlled, supervised clinical setting. We also suggest future research directions for this field.
Collapse
Affiliation(s)
- Ninon Freidel
- Department of Clinical Research, Numinus Toronto, Toronto, ON, Canada
- Department of Neuroscience, University of British Columbia Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada
| | - Liliane Kreuder
- Department of Clinical Research, Numinus Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto Temerty Faculty of Medicine, Toronto, ON, Canada
| | - Brenden Samuel Rabinovitch
- Department of Clinical Research, Numinus Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto Temerty Faculty of Medicine, Toronto, ON, Canada
| | - Frank Yizhao Chen
- Department of Clinical Research, Numinus Toronto, Toronto, ON, Canada
- Department of Research, Jamaican Medical Cannabis Corporation, Toronto, ON, Canada
| | - Ryan S. T. Huang
- Department of Clinical Research, Numinus Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto Temerty Faculty of Medicine, Toronto, ON, Canada
| | - Evan Cole Lewis
- Department of Clinical Research, Numinus Toronto, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto Temerty Faculty of Medicine, Toronto, ON, Canada
| |
Collapse
|
31
|
Zaretsky TG, Jagodnik KM, Barsic R, Antonio JH, Bonanno PA, MacLeod C, Pierce C, Carney H, Morrison MT, Saylor C, Danias G, Lepow L, Yehuda R. The Psychedelic Future of Post-Traumatic Stress Disorder Treatment. Curr Neuropharmacol 2024; 22:636-735. [PMID: 38284341 PMCID: PMC10845102 DOI: 10.2174/1570159x22666231027111147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 01/30/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental health condition that can occur following exposure to a traumatic experience. An estimated 12 million U.S. adults are presently affected by this disorder. Current treatments include psychological therapies (e.g., exposure-based interventions) and pharmacological treatments (e.g., selective serotonin reuptake inhibitors (SSRIs)). However, a significant proportion of patients receiving standard-of-care therapies for PTSD remain symptomatic, and new approaches for this and other trauma-related mental health conditions are greatly needed. Psychedelic compounds that alter cognition, perception, and mood are currently being examined for their efficacy in treating PTSD despite their current status as Drug Enforcement Administration (DEA)- scheduled substances. Initial clinical trials have demonstrated the potential value of psychedelicassisted therapy to treat PTSD and other psychiatric disorders. In this comprehensive review, we summarize the state of the science of PTSD clinical care, including current treatments and their shortcomings. We review clinical studies of psychedelic interventions to treat PTSD, trauma-related disorders, and common comorbidities. The classic psychedelics psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltryptamine (DMT) and DMT-containing ayahuasca, as well as the entactogen 3,4-methylenedioxymethamphetamine (MDMA) and the dissociative anesthetic ketamine, are reviewed. For each drug, we present the history of use, psychological and somatic effects, pharmacology, and safety profile. The rationale and proposed mechanisms for use in treating PTSD and traumarelated disorders are discussed. This review concludes with an in-depth consideration of future directions for the psychiatric applications of psychedelics to maximize therapeutic benefit and minimize risk in individuals and communities impacted by trauma-related conditions.
Collapse
Affiliation(s)
- Tamar Glatman Zaretsky
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathleen M. Jagodnik
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Barsic
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Josimar Hernandez Antonio
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip A. Bonanno
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn MacLeod
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charlotte Pierce
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hunter Carney
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgan T. Morrison
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Saylor
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Danias
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren Lepow
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Yehuda
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
32
|
Savić Vujović K, Jotić A, Medić B, Srebro D, Vujović A, Žujović J, Opanković A, Vučković S. Ketamine, an Old-New Drug: Uses and Abuses. Pharmaceuticals (Basel) 2023; 17:16. [PMID: 38276001 PMCID: PMC10820504 DOI: 10.3390/ph17010016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
Ketamine as an old-new drug has a variety of clinical implications. In the last 30 years, ketamine has become popular for acute use in humans. Ketamine in standard doses is principally utilized for the induction and maintenance of surgical procedures. Besides its use in anesthesia and analgesia, recent studies have shown that ketamine has found a place in the treatment of asthma, epilepsy, depression, bipolar affective disorders, alcohol and heroin addiction. Ketamine primarily functions as a noncompetitive antagonist targeting the N-methyl-D-aspartate (NMDA) receptor, but its mechanism of action is complex. It is generally regarded as safe, with low doses and short-term use typically not leading to significant adverse effects. Also, ketamine is known as a powerful psychostimulant. During the past decade, ketamine has been one of the commonly abused drugs.
Collapse
Affiliation(s)
- Katarina Savić Vujović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (B.M.); (D.S.); (S.V.)
| | - Ana Jotić
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
| | - Branislava Medić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (B.M.); (D.S.); (S.V.)
| | - Dragana Srebro
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (B.M.); (D.S.); (S.V.)
| | | | - Janko Žujović
- Clinical Centre of Montenegro, Centre for Abdominal Surgery, 81000 Podgorica, Montenegro;
| | - Ana Opanković
- Clinical Centre of Serbia, Clinic for Psychiatry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sonja Vučković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (B.M.); (D.S.); (S.V.)
| |
Collapse
|
33
|
Wojtas A. The possible place for psychedelics in pharmacotherapy of mental disorders. Pharmacol Rep 2023; 75:1313-1325. [PMID: 37934320 PMCID: PMC10661751 DOI: 10.1007/s43440-023-00550-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Since its emergence in the 1960s, the serotonergic theory of depression bore fruit in the discovery of a plethora of antidepressant drugs affecting the lives of millions of patients. While crucial in the history of drug development, recent studies undermine the effectiveness of currently used antidepressant drugs in comparison to placebo, emphasizing the long time it takes to initiate the therapeutic response and numerous adverse effects. Thus, the scope of contemporary pharmacological research shifts from drugs affecting the serotonin system to rapid-acting antidepressant drugs. The prototypical representative of the aforementioned class is ketamine, an NMDA receptor antagonist capable of alleviating the symptoms of depression shortly after the drug administration. This discovery led to a paradigm shift, focusing on amino-acidic neurotransmitters and growth factors. Alas, the drug is not perfect, as its therapeutic effect diminishes circa 2 weeks after administration. Furthermore, it is not devoid of some severe side effects. However, there seems to be another, more efficient, and safer way to target the glutamatergic system. Hallucinogenic agonists of the 5-HT2A receptor, commonly known as psychedelics, are nowadays being reconsidered in clinical practice, shedding their infamous 1970s stigma. More and more clinical studies prove their clinical efficacy and rapid onset after a single administration while bearing fewer side effects. This review focuses on the current state-of-the-art literature and most recent clinical studies concerning the use of psychedelic drugs in the treatment of mental disorders. Specifically, the antidepressant potential of LSD, psilocybin, DMT, and 5-MeO-DMT will be discussed, together with a brief summary of other possible applications.
Collapse
Affiliation(s)
- Adam Wojtas
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
34
|
Weiss F, Caruso V, De Rosa U, Beatino MF, Barbuti M, Nicoletti F, Perugi G. The role of NMDA receptors in bipolar disorder: A systematic review. Bipolar Disord 2023; 25:624-636. [PMID: 37208966 DOI: 10.1111/bdi.13335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
OBJECTIVES Glutamatergic transmission and N-methyl-D-aspartate receptors (NMDARs) have been implicated in the pathophysiology schizophrenic spectrum and major depressive disorders. Less is known about the role of NMDARs in bipolar disorder (BD). The present systematic review aimed to investigate the role of NMDARs in BD, along with its possible neurobiological and clinical implications. METHODS We performed a computerized literature research on PubMed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, using the following string: (("Bipolar Disorder"[Mesh]) OR (manic-depressive disorder[Mesh]) OR ("BD") OR ("MDD")) AND ((NMDA [Mesh]) OR (N-methyl-D-aspartate) OR (NMDAR[Mesh]) OR (N-methyl-D-aspartate receptor)). RESULTS Genetic studies yield conflicting results, and the most studied candidate for an association with BD is the GRIN2B gene. Postmortem expression studies (in situ hybridization and autoradiographic and immunological studies) are also contradictory but suggest a reduced activity of NMDARs in the prefrontal, superior temporal cortex, anterior cingulate cortex, and hippocampus. CONCLUSIONS Glutamatergic transmission and NMDARs do not appear to be primarily involved in the pathophysiology of BD, but they might be linked to the severity and chronicity of the disorder. Disease progression could be associated with a long phase of enhanced glutamatergic transmission, with ensuing excitotoxicity and neuronal damage, resulting into a reduced density of functional NMDARs.
Collapse
Affiliation(s)
- Francesco Weiss
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Valerio Caruso
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Ugo De Rosa
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Maria Francesca Beatino
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Margherita Barbuti
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University Sapienza of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Giulio Perugi
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
35
|
Vecera CM, C. Courtes A, Jones G, Soares JC, Machado-Vieira R. Pharmacotherapies Targeting GABA-Glutamate Neurotransmission for Treatment-Resistant Depression. Pharmaceuticals (Basel) 2023; 16:1572. [PMID: 38004437 PMCID: PMC10675154 DOI: 10.3390/ph16111572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Treatment-resistant depression (TRD) is a term used to describe a particular type of major depressive disorder (MDD). There is no consensus about what defines TRD, with various studies describing between 1 and 4 failures of antidepressant therapies, with or without electroconvulsive therapy (ECT). That is why TRD is such a growing concern among clinicians and researchers, and it explains the necessity for investigating novel therapeutic targets beyond conventional monoamine pathways. An imbalance between two primary central nervous system (CNS) neurotransmitters, L-glutamate and γ-aminobutyric acid (GABA), has emerged as having a key role in the pathophysiology of TRD. In this review, we provide an evaluation and comprehensive review of investigational antidepressants targeting these two systems, accessing their levels of available evidence, mechanisms of action, and safety profiles. N-methyl-D-aspartate (NMDA) receptor antagonism has shown the most promise amongst the glutamatergic targets, with ketamine and esketamine (Spravato) robustly generating responses across trials. Two specific NMDA-glycine site modulators, D-cycloserine (DCS) and apimostinel, have also generated promising initial safety and efficacy profiles, warranting further investigation. Combination dextromethorphan-bupropion (AXS-05/Auvelity) displays a unique mechanism of action and demonstrated positive results in particular applicability in subpopulations with cognitive dysfunction. Currently, the most promising GABA modulators appear to be synthetic neurosteroid analogs with positive GABAA receptor modulation (such as brexanolone). Overall, advances in the last decade provide exciting perspectives for those who do not improve with conventional therapies. Of the compounds reviewed here, three are approved by the Food and Drug Administration (FDA): esketamine (Spravato) for TRD, Auvelity (dextromethorphan-bupropion) for major depressive disorder (MDD), and brexanolone (Zulresso) for post-partum depression (PPD). Notably, some concerns have arisen with esketamine and brexanolone, which will be detailed in this study.
Collapse
Affiliation(s)
- Courtney M. Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Alan C. Courtes
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Gregory Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Rodrigo Machado-Vieira
- John S. Dunn Behavioral Sciences Center at UTHealth Houston, 5615 H.Mark Crosswell Jr St, Houston, TX 77021, USA
| |
Collapse
|
36
|
Ommati MM, Mobasheri A, Niknahad H, Rezaei M, Alidaee S, Arjmand A, Mazloomi S, Abdoli N, Sadeghian I, Sabouri S, Saeed M, Mousavi K, Najibi A, Heidari R. Low-dose ketamine improves animals' locomotor activity and decreases brain oxidative stress and inflammation in ammonia-induced neurotoxicity. J Biochem Mol Toxicol 2023; 37:e23468. [PMID: 37491939 DOI: 10.1002/jbt.23468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 06/10/2023] [Accepted: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Ammonium ion (NH4 + ) is the major suspected molecule responsible for neurological complications of hepatic encephalopathy (HE). No specific pharmacological action for NH4 + -induced brain injury exists so far. Excitotoxicity is a well-known phenomenon in the brain of hyperammonemic cases. The hyperactivation of the N-Methyl- d-aspartate (NMDA) receptors by agents such as glutamate, an NH4 + metabolite, could cause excitotoxicity. Excitotoxicity is connected with events such as oxidative stress and neuroinflammation. Hence, utilizing NMDA receptor antagonists could prevent neurological complications of NH4 + neurotoxicity. In the current study, C57BL6/J mice received acetaminophen (APAP; 800 mg/kg, i.p) to induce HE. Hyperammonemic animals were treated with ketamine (0.25, 0.5, and 1 mg/kg, s.c) as an NMDA receptor antagonist. Animals' brain and plasma levels of NH4 + were dramatically high, and animals' locomotor activities were disturbed. Moreover, several markers of oxidative stress were significantly increased in the brain. A significant increase in brain tissue levels of TNF-α, IL-6, and IL-1β was also detected in hyperammonemic animals. It was found that ketamine significantly normalized animals' locomotor activity, improved biomarkers of oxidative stress, and decreased proinflammatory cytokines. The effects of ketamine on oxidative stress biomarkers and inflammation seem to play a key role in its neuroprotective mechanisms in the current study.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics, and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Alidaee
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdollah Arjmand
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahra Mazloomi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Abdoli
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sabouri
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Mohsen Saeed
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
37
|
Bottemanne H, Berkovitch L, Gauld C, Balcerac A, Schmidt L, Mouchabac S, Fossati P. Storm on predictive brain: A neurocomputational account of ketamine antidepressant effect. Neurosci Biobehav Rev 2023; 154:105410. [PMID: 37793581 DOI: 10.1016/j.neubiorev.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
For the past decade, ketamine, an N-methyl-D-aspartate receptor (NMDAr) antagonist, has been considered a promising treatment for major depressive disorder (MDD). Unlike the delayed effect of monoaminergic treatment, ketamine may produce fast-acting antidepressant effects hours after a single administration at subanesthetic dose. Along with these antidepressant effects, it may also induce transient dissociative (disturbing of the sense of self and reality) symptoms during acute administration which resolve within hours. To understand ketamine's rapid-acting antidepressant effect, several biological hypotheses have been explored, but despite these promising avenues, there is a lack of model to understand the timeframe of antidepressant and dissociative effects of ketamine. In this article, we propose a neurocomputational account of ketamine's antidepressant and dissociative effects based on the Predictive Processing (PP) theory, a framework for cognitive and sensory processing. PP theory suggests that the brain produces top-down predictions to process incoming sensory signals, and generates bottom-up prediction errors (PEs) which are then used to update predictions. This iterative dynamic neural process would relies on N-methyl-D-aspartate (NMDAr) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic receptors (AMPAr), two major component of the glutamatergic signaling. Furthermore, it has been suggested that MDD is characterized by over-rigid predictions which cannot be updated by the PEs, leading to miscalibration of hierarchical inference and self-reinforcing negative feedback loops. Based on former empirical studies using behavioral paradigms, neurophysiological recordings, and computational modeling, we suggest that ketamine impairs top-down predictions by blocking NMDA receptors, and enhances presynaptic glutamate release and PEs, producing transient dissociative symptoms and fast-acting antidepressant effect in hours following acute administration. Moreover, we present data showing that ketamine may enhance a delayed neural plasticity pathways through AMPAr potentiation, triggering a prolonged antidepressant effect up to seven days for unique administration. Taken together, the two sides of antidepressant effects with distinct timeframe could constitute the keystone of antidepressant properties of ketamine. These PP disturbances may also participate to a ketamine-induced time window of mental flexibility, which can be used to improve the psychotherapeutic process. Finally, these proposals could be used as a theoretical framework for future research into fast-acting antidepressants, and combination with existing antidepressant and psychotherapy.
Collapse
Affiliation(s)
- Hugo Bottemanne
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France; Sorbonne University, Department of Psychiatry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Lucie Berkovitch
- Saclay CEA Centre, Neurospin, Gif-Sur-Yvette Cedex, France; Department of Psychiatry, GHU Paris Psychiatrie et Neurosciences, Service Hospitalo-Universitaire, Paris, France
| | - Christophe Gauld
- Department of Child Psychiatry, CHU de Lyon, F-69000 Lyon, France; Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS & Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Alexander Balcerac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Liane Schmidt
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France
| | - Stephane Mouchabac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Psychiatry, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Fossati
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France
| |
Collapse
|
38
|
Li S, Rosen MC, Chang S, David S, Freedman DJ. Alterations of neural activity in the prefrontal cortex associated with deficits in working memory performance. Front Behav Neurosci 2023; 17:1213435. [PMID: 37915531 PMCID: PMC10616307 DOI: 10.3389/fnbeh.2023.1213435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/31/2023] [Indexed: 11/03/2023] Open
Abstract
Working memory (WM), a core cognitive function, enables the temporary holding and manipulation of information in mind to support ongoing behavior. Neurophysiological recordings conducted in nonhuman primates have revealed neural correlates of this process in a network of higher-order cortical regions, particularly the prefrontal cortex (PFC). Here, we review the circuit mechanisms and functional importance of WM-related activity in these areas. Recent neurophysiological data indicates that the absence of these neural correlates at different stages of WM is accompanied by distinct behavioral deficits, which are characteristic of various disease states/normal aging and which we review here. Finally, we discuss emerging evidence of electrical stimulation ameliorating these WM deficits in both humans and non-human primates. These results are important for a basic understanding of the neural mechanisms supporting WM, as well as for translational efforts to developing therapies capable of enhancing healthy WM ability or restoring WM from dysfunction.
Collapse
Affiliation(s)
- Sihai Li
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Matthew C. Rosen
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Suha Chang
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Samuel David
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - David J. Freedman
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
- Neuroscience Institute, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
39
|
Palanca BJA, Conway CR, Zeffiro T, Gott BM, Nguyen T, Janski A, Jain N, Komen H, Burke BA, Zorumski CF, Nagele P. Persistent Brain Connectivity Changes in Healthy Volunteers Following Nitrous Oxide Inhalation. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:698-704. [PMID: 37881568 PMCID: PMC10593877 DOI: 10.1016/j.bpsgos.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/15/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Background Nitrous oxide holds promise in the treatment of major depressive disorder. Its psychotropic effects and NMDA receptor antagonism have led to comparisons with ketamine. Despite longstanding use, persistent effects of nitrous oxide on the brain have not been characterized. Methods Sixteen healthy volunteers were recruited in a double-blind crossover study. In randomized order, individuals underwent a 1-hour inhalation of either 50% nitrous oxide/oxygen or air/oxygen mixtures. At least two 7.5-minute echo-planar resting-state functional magnetic resonance imaging scans were obtained before and at 2 and 24 hours after each inhalation (average 130 min/participant). Using the time series of preprocessed, motion artifact-scrubbed, and nuisance covariate-regressed imaging data, interregional signal correlations were measured and converted to T scores. Hierarchical clustering and linear mixed-effects models were employed. Results Nitrous oxide inhalation produced changes in global brain connectivity that persisted in the occipital cortex at 2 and 24 hours postinhalation (p < .05, false discovery rate-corrected). Analysis of resting-state networks demonstrated robust strengthening of connectivity between regions of the visual network and those of the dorsal attention network, across 2 and 24 hours after inhalation (p < .05, false discovery rate-corrected). Weaker changes in connectivity were found between the visual cortex and regions of the frontoparietal and default mode networks. Parallel analyses following air/oxygen inhalation yielded no significant changes in functional connectivity. Conclusions Nitrous oxide inhalation in healthy volunteers revealed persistent increases in global connectivity between regions of primary visual cortex and dorsal attention network. These findings suggest that nitrous oxide inhalation induces neurophysiological cortical changes that persist for at least 24 hours.
Collapse
Affiliation(s)
- Ben Julian A. Palanca
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
- Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Neuroimaging Labs Research Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Charles R. Conway
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Neuroimaging Labs Research Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Thomas Zeffiro
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Britt M. Gott
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Neuroimaging Labs Research Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Thomas Nguyen
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Alvin Janski
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Nisha Jain
- Department of Anesthesia and Critical Care, University of Chicago Medicine, Chicago, Illinois
| | - Helga Komen
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Broc A. Burke
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Charles F. Zorumski
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Peter Nagele
- Department of Anesthesia and Critical Care, University of Chicago Medicine, Chicago, Illinois
| |
Collapse
|
40
|
Kalkman HO. Activation of σ1-Receptors by R-Ketamine May Enhance the Antidepressant Effect of S-Ketamine. Biomedicines 2023; 11:2664. [PMID: 37893038 PMCID: PMC10604479 DOI: 10.3390/biomedicines11102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Ketamine is a racemic mixture composed of two enantiomers, S-ketamine and R-ketamine. In preclinical studies, both enantiomers have exhibited antidepressant effects, but these effects are attributed to distinct pharmacological activities. The S-enantiomer acts as an NMDA-channel blocker and as an opioid μ-receptor agonist, whereas the R-enantiomer binds to σ1-receptors and is believed to act as an agonist. As racemate, ketamine potentially triggers four biochemical pathways involving the AGC-kinases, PKA, Akt (PKB), PKC and RSK that ultimately lead to inhibitory phosphorylation of GSK3β in microglia. In patients with major depressive disorder, S-ketamine administered as a nasal spray has shown clear antidepressant activity. However, when compared to intravenously infused racemic ketamine, the response rate, duration of action and anti-suicidal activity of S-ketamine appear to be less pronounced. The σ1-protein interacts with μ-opioid and TrkB-receptors, whereas in preclinical experiments σ1-agonists reduce μ-receptor desensitization and improve TrkB signal transduction. TrkB activation occurs as a response to NMDA blockade. So, the σ1-activity of R-ketamine may not only enhance two pathways via which S-ketamine produces an antidepressant response, but it furthermore provides an antidepressant activity in its own right. These two factors could explain the apparently superior antidepressant effect observed with racemic ketamine compared to S-ketamine alone.
Collapse
Affiliation(s)
- Hans O Kalkman
- Retired Pharmacologist, Gänsbühlgartenweg 7, 4132 Muttenz, Switzerland
| |
Collapse
|
41
|
Dickinson JE, Inzunza JAD, Perez-Villa L, Millar TG, Pushparaj AP. Case report: Ibogaine reduced severe neuropathic pain associated with a case of brachial plexus nerve root avulsion. FRONTIERS IN PAIN RESEARCH 2023; 4:1256396. [PMID: 37720911 PMCID: PMC10502345 DOI: 10.3389/fpain.2023.1256396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Brachial plexus nerve root avulsion results from complete separation of the nerve root from the spinal cord and is one of the most challenging types of neuropathic pain, coinciding with motor, sensory and autonomic deficits. The severe pain and typical impossibility of root reattachment often leads to requests for amputation. Ibogaine is an indole alkaloid producing psychoactive effects through reported actions upon multiple neurotransmitter systems, including NMDA, κ- and µ-opioid receptors and σ2 receptor sites, along with stimulation of neurotrophic factors GDNF and BDNF. In this case report we describe a 53-year-old male with two decades of severe intractable pain due to brachial plexus nerve root avulsion from vehicular trauma who was successfully treated with both high dose inpatient and low dose outpatient administrations of ibogaine. Though promising for future study, the adverse effects of high dose ibogaine administrations may limit tolerability of this saturation protocol to the most refractory cases.
Collapse
Affiliation(s)
| | | | | | | | - Abhiram P. Pushparaj
- Scientific Advisory, Ambio Life Sciences, Vancouver, BC, Canada
- Consulting Department, +ROI Regulatory Advisory, Toronto, ON, Canada
| |
Collapse
|
42
|
Kuo J, Block T, Nicklay M, Lau B, Green M. Interventional Mental Health: A Transdisciplinary Approach to Novel Psychiatric Care Delivery. Cureus 2023; 15:e43533. [PMID: 37719598 PMCID: PMC10501497 DOI: 10.7759/cureus.43533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Mental health disorders are among the most common health conditions in the United States. Traditional clinical treatments rely on psychiatric counseling and, in many cases, prescription medications. We propose an innovative model, Interventional Mental Health, which employs a combination of modalities through a multifaceted approach to treat conditions that have exhibited limited responsiveness to traditional methods and individuals afflicted with multiple comorbidities simultaneously. We hypothesize that creating a unique treatment algorithm combining current therapeutic modalities such as Stellate Ganglion Blocks (SGB), Transcranial Magnetic Stimulation (TMS) therapy, and ketamine therapy, within a consolidated timeframe, will yield synergistic outcomes among patients presenting with comorbid post-traumatic stress disorder (PTSD), depression, and/or anxiety.
Collapse
Affiliation(s)
- Jonathann Kuo
- Regenerative and Anti-Aging Medicine, Hudson Health, New York, USA
| | | | | | | | | |
Collapse
|
43
|
Zhang D, Liang P, Xia B, Zhang X, Hu X. Efficacy and Safety of Ketamine Versus Opiates in the Treatment of Patients with Renal Colic: A Systematic Review and Meta-analysis. Pain Ther 2023; 12:1079-1093. [PMID: 37284927 PMCID: PMC10289999 DOI: 10.1007/s40122-023-00530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
INTRODUCTION Renal colic is one of the most common urological emergencies, and is usually caused by ureteral colic spasms. Pain management in renal colic remains the central focus of emergency treatment. The purpose of this meta-analysis is to identify the efficacy and safety of ketamine versus opioids in the treatment of patients with renal colic. METHODS We searched PubMed, EMBASE, Cochrane Library, and Web of Science databases for published randomized controlled trials (RCTs) that referred to the use of ketamine and opioids for patients with renal colic. The methodology was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The mean difference (MD) or odds ratio (OR) with a 95% confidence interval (CI) was used to analyze the data. The results were pooled using a fixed-effects model or random-effects model. The primary outcome measure was patient-reported pain scores 5, 15, 30, and 60 min after drug administration. The secondary outcome measure was side effects. RESULTS The data analysis revealed that ketamine was similar to opioids in pain intensity at the time of 5 min post-dose (MD = - 0.40, 95% CI - 1.82 to 1.01, P = 0.57), 15 min post-dose (MD = - 0.15, 95% CI - 0.82 to 0.52, P = 0.67), 30 min post-dose (MD = 0.38, 95% CI - 0.25 to 1.01, P = 0.24). Also, the pain score of ketamine was better than that of opioids at 60 min after administration (MD = - 0.12, 95% CI - 0.22 to - 0.02, P = 0.02). As for safety, the ketamine group was linked to a significant decrease in the incidence of hypotensive (OR = 0.08, 95% CI 0.01-0.65, P = 0.02). The two groups did not statistically differ in the incidence of nausea, vomiting, and dizziness. CONCLUSIONS Compared with opioids, ketamine showed a longer duration of analgesia in renal colic, with satisfactory safety. TRIAL REGISTRATION The PROSPERO registration number is CRD42022355246.
Collapse
Affiliation(s)
- Dongxu Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Pu Liang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Bowen Xia
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongti South Road, Beijing, China.
- Institute of Urology, Capital Medical University, Beijing, China.
| |
Collapse
|
44
|
Altê GA, Rodrigues ALS. Exploring the Molecular Targets for the Antidepressant and Antisuicidal Effects of Ketamine Enantiomers by Using Network Pharmacology and Molecular Docking. Pharmaceuticals (Basel) 2023; 16:1013. [PMID: 37513925 PMCID: PMC10383558 DOI: 10.3390/ph16071013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Ketamine, a racemic mixture of esketamine (S-ketamine) and arketamine (R-ketamine), has received particular attention for its rapid antidepressant and antisuicidal effects. NMDA receptor inhibition has been indicated as one of the main mechanisms of action of the racemic mixture, but other pharmacological targets have also been proposed. This study aimed to explore the possible multiple targets of ketamine enantiomers related to their antidepressant and antisuicidal effects. To this end, targets were predicted using Swiss Target Prediction software for each ketamine enantiomer. Targets related to depression and suicide were collected by the Gene Cards database. The intersections of targets were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Network pharmacology analysis was performed using Gene Mania and Cytoscape software. Molecular docking was used to predict the main targets of the network. The results indicated that esketamine and arketamine share some biological targets, particularly NMDA receptor and phosphodiesterases 3A, 7A, and 5A but have specific molecular targets. While esketamine is predicted to interact with the GABAergic system, arketamine may interact with macrophage migration inhibitory factor (MIF). Both ketamine enantiomers activate neuroplasticity-related signaling pathways and show addiction potential. Our results identified novel, poorly explored molecular targets that may be related to the beneficial effects of esketamine and arketamine against depression and suicide.
Collapse
Affiliation(s)
- Glorister A Altê
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis 88037-000, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis 88037-000, SC, Brazil
| |
Collapse
|
45
|
Zorumski CF, Mennerick SJ. The Taylor Family Institute at Washington University: Novel Treatments in Psychiatry. MISSOURI MEDICINE 2023; 120:299-305. [PMID: 37609459 PMCID: PMC10441266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Efforts to develop more effective treatments for psychiatric illnesses will require innovative approaches that address changes in brain networks underlying cognition, emotion and motivation, cardinal symptoms that cut across all psychiatric disorders. This effort will include new molecular entities that modulate neuronal excitability, synapses, cellular stress and inflammation. Other opportunities will come from repurposing existing treatments. This overview highlights current and future goals in treatment development in the Taylor Family Institute for Innovative Psychiatric Research at Washington University.
Collapse
Affiliation(s)
- Charles F Zorumski
- Professor, Department of Psychiatry, and the Taylor Family Institute for Innovative Psychiatric Research and Silvio O. Conte Neuroscience Center at Washington University School of Medicine, St. Louis, Missouri
| | - Steven J Mennerick
- Professor, Department of Psychiatry, and the Taylor Family Institute for Innovative Psychiatric Research and Silvio O. Conte Neuroscience Center at Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
46
|
Zhou L, Sun X, Duan J. NMDARs regulate the excitatory-inhibitory balance within neural circuits. BRAIN SCIENCE ADVANCES 2023. [DOI: 10.26599/bsa.2022.9050020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Excitatory-inhibitory (E/I) balance is essential for normal neural development, behavior and cognition. E/I imbalance leads to a variety of neurological disorders, such as autism and schizophrenia. NMDA receptors (NMDARs) regulate AMPAR-mediated excitatory and GABAAR-mediated inhibitory synaptic transmission, suggesting that NMDARs play an important role in the establishment and maintenance of the E/I balance. In this review, we briefly introduced NMDARs, AMPARs and GABAARs, summarized the current studies on E/I balance mediated by NMDARs, and discussed the current advances in NMDAR-mediated AMPAR and GABAAR development. Specifically, we analyzed the role of NMDAR subunits in the establishment and maintenance of E/I balance, which may provide new therapeutic strategies for the recovery of E/I imbalance in neurological disorders.
Collapse
Affiliation(s)
- Liang Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaohui Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jingjing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| |
Collapse
|
47
|
Chakraborty P, Dey A, Gopalakrishnan AV, Swati K, Ojha S, Prakash A, Kumar D, Ambasta RK, Jha NK, Jha SK, Dewanjee S. Glutamatergic neurotransmission: A potential pharmacotherapeutic target for the treatment of cognitive disorders. Ageing Res Rev 2023; 85:101838. [PMID: 36610558 DOI: 10.1016/j.arr.2022.101838] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
In the mammalian brain, glutamate is regarded to be the primary excitatory neurotransmitter due to its widespread distribution and wide range of metabolic functions. Glutamate plays key roles in regulating neurogenesis, synaptogenesis, neurite outgrowth, and neuron survival in the brain. Ionotropic and metabotropic glutamate receptors, neurotransmitters, neurotensin, neurosteroids, and others co-ordinately formulate a complex glutamatergic network in the brain that maintains optimal excitatory neurotransmission. Cognitive activities are potentially synchronized by the glutamatergic activities in the brain via restoring synaptic plasticity. Dysfunctional glutamate receptors and other glutamatergic components are responsible for the aberrant glutamatergic activity in the brain that cause cognitive impairments, loss of synaptic plasticity, and neuronal damage. Thus, controlling the brain's glutamatergic transmission and modifying glutamate receptor function could be a potential therapeutic strategy for cognitive disorders. Certain drugs that regulate glutamate receptor activities have shown therapeutic promise in improving cognitive functions in preclinical and clinical studies. However, several issues regarding precise functional information of glutamatergic activity are yet to be comprehensively understood. The present article discusses the scope of developing glutamatergic systems as prospective pharmacotherapeutic targets to treat cognitive disorders. Special attention has been given to recent developments, challenges, and future prospects.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kumari Swati
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Anand Prakash
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand 248007, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, UP, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, UP, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
48
|
Buratti S, Giacheri E, Palmieri A, Tibaldi J, Brisca G, Riva A, Striano P, Mancardi MM, Nobili L, Moscatelli A. Ketamine as advanced second-line treatment in benzodiazepine-refractory convulsive status epilepticus in children. Epilepsia 2023; 64:797-810. [PMID: 36792542 DOI: 10.1111/epi.17550] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Status epilepticus (SE) is one of the most common neurological emergencies in children. To date, there is no definitive evidence to guide treatment of SE refractory to benzodiazepines. The main objectives of treatment protocols are to expedite therapeutic decisions and to use fast- and short-acting medications without significant adverse effects. Protocols differ among institutions, and most frequently valproate, phenytoin, and levetiracetam are used as second-line treatment. After failure of first- and second-line medications, admission to the intensive care unit and continuous infusion of anesthetics are usually indicated. Ketamine is a noncompetitive N-methyl-D-aspartate receptor antagonist that has been safely used for the treatment of refractory SE in adults and children. In animal models of SE, ketamine demonstrated antiepileptic and neuroprotective properties and synergistic effects with other antiseizure medications. We reviewed the literature to demonstrate the potential role of ketamine as an advanced second-line agent in the treatment of SE. Pharmacological targets, pathophysiology of SE, and the receptor trafficking hypothesis are reviewed and presented. The pharmacology of ketamine is outlined with related properties, advantages, and side effects. We summarize the most recent and relevant publications on experimental and clinical studies on ketamine in SE. Key expert opinion is also reported. Considering the current knowledge on SE pathophysiology, early sequential polytherapy should include ketamine for its wide range of positive assets. Future research and clinical trials on SE pharmacotherapy should focus on the role of ketamine as second-line medication.
Collapse
Affiliation(s)
- Silvia Buratti
- Neonatal and Pediatric Intensive Care Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Emanuele Giacheri
- Intermediate Care Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonella Palmieri
- Emergency Medicine Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Jessica Tibaldi
- Emergency Medicine Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giacomo Brisca
- Intermediate Care Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonella Riva
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Pasquale Striano
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Pediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Lino Nobili
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Moscatelli
- Neonatal and Pediatric Intensive Care Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
49
|
Li J, Chen YW, Aoki C. Ketamine ameliorates activity-based anorexia of adolescent female mice through changes in the prevalence of NR2B-containing NMDA receptors at excitatory synapses that are in opposite directions for of pyramidal neurons versus GABA interneurons In medial prefrontal cortex. RESEARCH SQUARE 2023:rs.3.rs-2514157. [PMID: 36778429 PMCID: PMC9915778 DOI: 10.21203/rs.3.rs-2514157/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A previous study showed that a single sub-anesthetic dose of ketamine (30 mg/kg-KET, IP) has an immediate and long-lasting (>20 days) effect of reducing maladaptive behaviors associated with activity-based anorexia (ABA) among adolescent female mice. This study sought to determine whether synaptic plasticity involving NR2B-containing NMDA receptors (NR2B) at excitatory synapses in the prelimbic region of medial prefrontal cortex (mPFC) contributes to this ameliorative effect. To this end, quantitative electron microscopic analyses of NR2B-subunit immunoreactivity at excitatory synapses of pyramidal neurons (PN) and GABAergic interneurons (GABA-IN) were conducted upon layer 1 of mPFC of the above-described mice that received a single efficacious 30 mg/kg-KET (N=8) versus an inefficacious 3 mg/kg-KET (N=8) dose during the food-restricted day of the first ABA induction (ABA1). Brain tissue was collected after these animals underwent recovery from ABA1, then of recovery from a second ABA induction (ABA2), 22 days after the ketamine injection. For all three parameters used to quantify ABA resilience (increased food consumption, reduced wheel running, body weight gain), 30 mg/kg-KET evoked synaptic plasticity in opposite directions for PN and GABA-IN, with changes at excitatory synapses on GABA-IN dominating the adaptive behaviors more than on PN. The synaptic changes were in directions consistent with changes in the excitatory outflow from mPFC that weaken food consumption-suppression, strengthen wheel running suppression and enhance food consumption. We hypothesize that 30 mg/kg-KET promotes these long-lasting changes in the excitatory outflow from mPFC after acutely blocking the hunger and wheel-access activated synaptic circuits underlying maladaptive behaviors during ABA.
Collapse
|
50
|
Temizer R, Chen YW, Aoki C. Individual differences in the positive outcome from adolescent ketamine treatment in a female mouse model of anorexia nervosa involve drebrin A at excitatory synapses of the medial prefrontal cortex. Synapse 2023; 77:e22253. [PMID: 36121749 PMCID: PMC9691557 DOI: 10.1002/syn.22253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/16/2022] [Accepted: 09/04/2022] [Indexed: 01/29/2023]
Abstract
Anorexia nervosa (AN) is a mental illness with the highest rates of mortality and relapse, and no approved pharmacological treatment. Using an animal model of AN, called activity-based anorexia (ABA), we showed earlier that a single intraperitoneal injection of ketamine at a dose of 30 mg/kg (30mgKET), but not 3 mg/kg (3mgKET), has a long-lasting effect upon adolescent females of ameliorating anorexia-like symptoms through the following changes: enhanced food consumption and body weight; reduced running and anxiety-like behavior. However, there were also individual differences in the drug's efficacy. We hypothesized that individual differences in ketamine's ameliorative effects involve drebrin A, an F-actin-binding protein known to be required for the activity-dependent trafficking of NMDA receptors (NMDARs). We tested this hypothesis by electron microscopic quantifications of drebrin A immunoreactivity at excitatory synapses of pyramidal neurons (PN) and GABAergic interneurons (GABA-IN) in deep layer 1 of prefrontal cortex (PFC) of these mice. Results reveal that (1) the areal density of excitatory synapses on GABA-IN is greater for the 30mgKET group than the 3mgKET group; (2) the proportion of drebrin A+ excitatory synapses is greater for both PN and GABA-IN of 30mgKET than 3mgKET group. Correlation analyses with behavioral measurements revealed that (3) 30mgKET's protection is associated with reduced levels of drebrin A in the cytoplasm of GABA-IN and higher levels at extrasynaptic membranous sites of PN and GABA-IN; (5) altogether pointing to 30mgKET-induced homeostatic plasticity that engages drebrin A at excitatory synapses of both PN and GABA-IN.
Collapse
Affiliation(s)
- Rose Temizer
- Center for Neural Science, New York University, New York City, New York, USA
| | - Yi-Wen Chen
- Center for Neural Science, New York University, New York City, New York, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, New York City, New York, USA
| |
Collapse
|