1
|
Piras G, Cadoni C, Caria F, Pintori N, Spano E, Vanejevs M, Ture A, Tocco G, Simola N, De Luca MA. Characterization of the Neurochemical and Behavioral Effects of the Phenethylamine 2-Cl-4,5-MDMA in Adolescent and Adult Male Rats. Int J Neuropsychopharmacol 2024; 27:pyae016. [PMID: 38546531 PMCID: PMC11120233 DOI: 10.1093/ijnp/pyae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/26/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The proliferation of novel psychoactive substances (NPS) in the drug market raises concerns about uncertainty on their pharmacological profile and the health hazard linked to their use. Within the category of synthetic stimulant NPS, the phenethylamine 2-Cl-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA) has been linked to severe intoxication requiring hospitalization. Thereby, the characterization of its pharmacological profile is urgently warranted. METHODS By in vivo brain microdialysis in adolescent and adult male rats we investigated the effects of 2-Cl-4,5-MDMA on dopamine (DA) and serotonin (5-HT) neurotransmission in two brain areas critical for the motivational and rewarding properties of drugs, the nucleus accumbens (NAc) shell and the medial prefrontal cortex (mPFC). Moreover, we evaluated the locomotor and stereotyped activity induced by 2-Cl-4,5-MDMA and the emission of 50-kHz ultrasonic vocalizations (USVs) to characterize its affective properties. RESULTS 2-Cl-4,5-MDMA increased dialysate DA and 5-HT in a dose-, brain area-, and age-dependent manner. Notably, 2-Cl-4,5-MDMA more markedly increased dialysate DA in the NAc shell and mPFC of adult than adolescent rats, while the opposite was observed on dialysate 5-HT in the NAc shell, with adolescent rats being more responsive. Furthermore, 2-Cl-4,5-MDMA stimulated locomotion and stereotyped activity in both adolescent and adult rats, although to a greater extent in adolescents. Finally, 2-Cl-4,5-MDMA did not stimulate the emission of 50-kHz USVs. CONCLUSIONS This is the first pharmacological characterization of 2-Cl-4,5-MDMA demonstrating that its neurochemical and behavioral effects may differ between adolescence and adulthood. These preclinical data could help understanding the central effects of 2-Cl-4,5-MDMA by increasing awareness on possible health damage in users.
Collapse
Affiliation(s)
- Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Cristina Cadoni
- Institute of Neuroscience, National Research Council of Italy, Cagliari, Italy
| | - Francesca Caria
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Enrica Spano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | | | - Graziella Tocco
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
2
|
Nomiya H, Sakurai K, Miyamoto Y, Oka M, Yoneda Y, Hikida T, Yamada M. A Kpna1-deficient psychotropic drug-induced schizophrenia model mouse for studying gene-environment interactions. Sci Rep 2024; 14:3376. [PMID: 38336912 PMCID: PMC10858057 DOI: 10.1038/s41598-024-53237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
KPNA1 is a mediator of nucleocytoplasmic transport that is abundantly expressed in the mammalian brain and regulates neuronal differentiation and synaptic function. De novo mutations in Kpna1 have been identified using genome-wide association studies in humans with schizophrenia; however, it remains unclear how KPNA1 contributes to schizophrenia pathogenesis. Recent studies have suggested a complex combination of genetic and environmental factors that are closely related to psychiatric disorders. Here, we found that subchronic administration of phencyclidine, a psychotropic drug, induced vulnerability and behavioral abnormalities consistent with the symptoms of schizophrenia in Kpna1-deficient mice. Microarray assessment revealed that the expression levels of dopamine d1/d2 receptors, an RNA editing enzyme, and a cytoplasmic dynein component were significantly altered in the nucleus accumbens brain region in a gene-environment (G × E) interaction-dependent manner. Our findings demonstrate that Kpna1-deficient mice may be useful as a G × E interaction mouse model for psychiatric disorders and for further investigation into the pathogenesis of such diseases and disorders.
Collapse
Affiliation(s)
- Hirotaka Nomiya
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yoshihiro Yoneda
- The Research Foundation for Microbial Diseases Osaka University, Integrated Life Science Building, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8397, Japan.
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
- Life Science Innovation Center, University of Fukui, 3-9-1, Bunkyo, Fukui-City, Fukui, 910-8507, Japan.
| |
Collapse
|
3
|
Hsiao YC, Lee MY, Chan MH, Chen HH. NMDA Receptor Glycine Binding Site Modulators for Prevention and Treatment of Ketamine Use Disorder. Pharmaceuticals (Basel) 2023; 16:812. [PMID: 37375760 DOI: 10.3390/ph16060812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Ketamine offers a fast-acting approach to relieving treatment-resistant depression, but its abuse potential is an issue of concern. As ketamine is a noncompetitive N-methyl-D-aspartate receptor (NMDAR) ion channel blocker, modulation of NMDAR might be an effective strategy to counteract the abuse liability of ketamine and even to treat ketamine use disorder. This study evaluated whether NMDAR modulators that act on glycine binding sites can decrease motivation to obtain ketamine and reduce reinstatement to ketamine-seeking behavior. Two NMDAR modulators, D-serine and sarcosine were examined. Male Sprague-Dawley rats underwent training to acquire the ability to self-administer ketamine. The motivation to self-administer ketamine or sucrose pellets was examined under a progressive ratio (PR) schedule. The reinstatement of ketamine-seeking and sucrose pellet-seeking behaviors were assessed after extinction. The results showed that both D-serine and sarcosine significantly decreased the breakpoints for ketamine and prevented reinstatement of ketamine seeking. However, these modulators did not alter motivated behavior for sucrose pellets, the ability of the cue and sucrose pellets to reinstate sucrose-seeking behavior or spontaneous locomotor activity. These findings indicate that two NMDAR modulators can specifically reduce the measures of motivation and relapse for ketamine in rats, suggesting that targeting the glycine binding site of the NMDAR is a promising approach for preventing and treating ketamine use disorder.
Collapse
Affiliation(s)
- Yu-Chin Hsiao
- Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | - Mei-Yi Lee
- Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi University, 64, Sec. 2, ZhiNan Road, Wenshan District, Taipei City 11605, Taiwan
- Research Center for Mind, Brain, and Learning, National Chengchi University, 64, Sec. 2, ZhiNan Road, Wenshan District, Taipei City 11605, Taiwan
| | - Hwei-Hsien Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Institute of Neuroscience, National Chengchi University, 64, Sec. 2, ZhiNan Road, Wenshan District, Taipei City 11605, Taiwan
| |
Collapse
|
4
|
Adolescent nicotine potentiates the inhibitory effect of raclopride, a D2R antagonist, on phencyclidine-sensitized psychotic-like behavior in mice. Toxicol Appl Pharmacol 2022; 456:116282. [DOI: 10.1016/j.taap.2022.116282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 01/01/2023]
|
5
|
Abelardo Robles Aguirre F, Hernández González M, Pérez Hernández M, del Carmen Rodríguez Flores T, Ángel Guevara M. Inquiry of the orbitofrontal cortex role in incentive learning: An artificial neural networks simulation. COGN SYST RES 2022. [DOI: 10.1016/j.cogsys.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Millard SJ, Bearden CE, Karlsgodt KH, Sharpe MJ. The prediction-error hypothesis of schizophrenia: new data point to circuit-specific changes in dopamine activity. Neuropsychopharmacology 2022; 47:628-640. [PMID: 34588607 PMCID: PMC8782867 DOI: 10.1038/s41386-021-01188-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a severe psychiatric disorder affecting 21 million people worldwide. People with schizophrenia suffer from symptoms including psychosis and delusions, apathy, anhedonia, and cognitive deficits. Strikingly, schizophrenia is characterised by a learning paradox involving difficulties learning from rewarding events, whilst simultaneously 'overlearning' about irrelevant or neutral information. While dysfunction in dopaminergic signalling has long been linked to the pathophysiology of schizophrenia, a cohesive framework that accounts for this learning paradox remains elusive. Recently, there has been an explosion of new research investigating how dopamine contributes to reinforcement learning, which illustrates that midbrain dopamine contributes in complex ways to reinforcement learning, not previously envisioned. This new data brings new possibilities for how dopamine signalling contributes to the symptomatology of schizophrenia. Building on recent work, we present a new neural framework for how we might envision specific dopamine circuits contributing to this learning paradox in schizophrenia in the context of models of reinforcement learning. Further, we discuss avenues of preclinical research with the use of cutting-edge neuroscience techniques where aspects of this model may be tested. Ultimately, it is hoped that this review will spur to action more research utilising specific reinforcement learning paradigms in preclinical models of schizophrenia, to reconcile seemingly disparate symptomatology and develop more efficient therapeutics.
Collapse
Affiliation(s)
- Samuel J. Millard
- grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California, Los Angeles, CA 90095 USA
| | - Carrie E. Bearden
- grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California, Los Angeles, CA 90095 USA ,grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095 USA
| | - Katherine H. Karlsgodt
- grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California, Los Angeles, CA 90095 USA ,grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095 USA
| | - Melissa J. Sharpe
- grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
7
|
Boggess T, Williamson JC, Niebergall EB, Sexton H, Mazur A, Egleton RD, Grover LM, Risher WC. Alterations in Excitatory and Inhibitory Synaptic Development Within the Mesolimbic Dopamine Pathway in a Mouse Model of Prenatal Drug Exposure. Front Pediatr 2021; 9:794544. [PMID: 34966707 PMCID: PMC8710665 DOI: 10.3389/fped.2021.794544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
The rise in rates of opioid abuse in recent years in the United States has led to a dramatic increase in the incidence of neonatal abstinence syndrome (NAS). Despite improved understanding of NAS and its acute symptoms, there remains a paucity of information regarding the long-term effects of prenatal exposure to drugs of abuse on neurological development. The primary goal of this study was to investigate the effects of prenatal drug exposure on synaptic connectivity within brain regions associated with the mesolimbic dopamine pathway, the primary reward pathway associated with drug abuse and addiction, in a mouse model. Our secondary goal was to examine the role of the Ca+2 channel subunit α2δ-1, known to be involved in key developmental synaptogenic pathways, in mediating these effects. Pregnant mouse dams were treated orally with either the opioid drug buprenorphine (commonly used in medication-assisted treatment for substance use patients), gabapentin (neuropathic pain drug that binds to α2δ-1 and has been increasingly co-abused with opioids), a combination of both drugs, or vehicle daily from gestational day 6 until postnatal day 11. Confocal fluorescence immunohistochemistry (IHC) imaging of the brains of the resulting wild-type (WT) pups at postnatal day 21 revealed a number of significant alterations in excitatory and inhibitory synaptic populations within the anterior cingulate cortex (ACC), nucleus accumbens (NAC), and medial prefrontal cortex (PFC), particularly in the buprenorphine or combinatorial buprenorphine/gabapentin groups. Furthermore, we observed several drug- and region-specific differences in synaptic connectivity between WT and α2δ-1 haploinsufficient mice, indicating that critical α2δ-1-associated synaptogenic pathways are disrupted with early life drug exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - W. Christopher Risher
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
8
|
McCullough KM, Missig G, Robbie MA, Foilb AR, Wells AM, Hartmann J, Anderson KJ, Neve RL, Nestler EJ, Ressler KJ, Carlezon WA. Nucleus Accumbens Medium Spiny Neuron Subtypes Differentially Regulate Stress-Associated Alterations in Sleep Architecture. Biol Psychiatry 2021; 89:1138-1149. [PMID: 33715826 PMCID: PMC8178228 DOI: 10.1016/j.biopsych.2020.12.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Stress is implicated in the pathophysiology of major depression and posttraumatic stress disorder. These conditions share core features, including motivational deficits, heighted anxiety, and sleep dysregulation. Chronic stress produces these same features in rodents, with some individuals being susceptible or resilient, as seen in humans. While stress-induced neuroadaptations within the nucleus accumbens are implicated in susceptibility-related dysregulation of motivational and emotional behaviors, their effects on sleep are unclear. METHODS We used chemogenetics (DREADDs [designer receptors exclusively activated by designer drugs]) to examine the effects of selective alterations in activity of nucleus accumbens medium spiny neurons expressing dopamine D1 receptors (D1-MSNs) or dopamine D2 receptors (D2-MSNs) on sleep-related end points. Mice were implanted with wireless transmitters enabling continuous collection of data to quantify vigilance states over a 20-day test period. Parallel cohorts were examined in behavioral tests assessing stress susceptibility. RESULTS D1- and D2-MSNs play dissociable roles in sleep regulation. Stimulation of inhibitory or excitatory DREADDs expressed in D1-MSNs exclusively affects rapid eye movement sleep, whereas targeting D2-MSNs affects slow wave sleep. The combined effects of D1-MSN inhibition and D2-MSN activation on sleep resemble those of chronic social defeat stress. Alterations in D1-MSN function also affect stress susceptibility in social behavior tests. Elevation of CREB (cAMP response element-binding protein) within D1-MSNs is sufficient to produce stress-like effects on rapid eye movement sleep. CONCLUSIONS In addition to regulation of motivational and emotional behaviors, the nucleus accumbens also influences sleep, an end point with high translational relevance. These findings provide a neural basis for comorbidity in key features of stress-related illness.
Collapse
Affiliation(s)
- Kenneth M. McCullough
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Galen Missig
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Mykel A. Robbie
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Allison R. Foilb
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Audrey M. Wells
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Jakob Hartmann
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Kasey J. Anderson
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Rachael L. Neve
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai. New York, NY 10029, USA
| | - Kerry J. Ressler
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - William A. Carlezon
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA,Corresponding Author: William A. Carlezon, Jr., Ph.D., Department of Psychiatry, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA,
| |
Collapse
|
9
|
Fisher ML, Pauly JR, Froeliger B, Turner JR. Translational Research in Nicotine Addiction. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039776. [PMID: 32513669 DOI: 10.1101/cshperspect.a039776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While commendable strides have been made in reducing smoking initiation and improving smoking cessation rates, current available smoking cessation treatment options are still only mildly efficacious and show substantial interindividual variability in their therapeutic responses. Therefore, the primary goal of preclinical research has been to further the understanding of the neural substrates and genetic influences involved in nicotine's effects and reassess potential drug targets. Pronounced advances have been made by investing in new translational approaches and placing more emphasis on bridging the gap between human and rodent models of dependence. Functional neuroimaging studies have identified key brain structures involved with nicotine-dependence phenotypes such as craving, impulsivity, withdrawal symptoms, and smoking cessation outcomes. Following up with these findings, rodent-modeling techniques have made it possible to dissect the neural circuits involved in these motivated behaviors and ascertain mechanisms underlying nicotine's interactive effects on brain structure and function. Likewise, translational studies investigating single-nucleotide polymorphisms (SNPs) within the cholinergic, dopaminergic, and opioid systems have found high levels of involvement of these neurotransmitter systems in regulating the reinforcing aspects of nicotine in both humans and mouse models. These findings and coordinated efforts between human and rodent studies pave the way for future work determining gene by drug interactions and tailoring treatment options to each individual smoker.
Collapse
Affiliation(s)
- Miranda L Fisher
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| | - James R Pauly
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| | - Brett Froeliger
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| |
Collapse
|
10
|
Abiero A, Perez Custodio RJ, Botanas CJ, Ortiz DM, Sayson LV, Kim M, Lee HJ, Yoon S, Lee YS, Cheong JH, Kim HJ. 1-Phenylcyclohexan-1-amine hydrochloride (PCA HCl) alters mesolimbic dopamine system accompanied by neuroplastic changes: A neuropsychopharmacological evaluation in rodents. Neurochem Int 2021; 144:104962. [PMID: 33460722 DOI: 10.1016/j.neuint.2021.104962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/21/2022]
Abstract
The recreational use of N-methyl-D-aspartate (NMDA) antagonist phencyclidine (PCP) and ketamine have grown rapidly due to their psychotomimetic properties. These compounds induce both non-fatal and fatal adverse effects and despite the enhanced regulation, they are continuously synthesized and are being sold in the illegal drug market, including 1-phenylcyclohexan-1-amine hydrochloride (PCA). Therefore, we evaluated its abuse potential through the conditioned-place preference (CPP), self-administration, and locomotor sensitization paradigms. Pretreatment with SCH 2 3390 and haloperidol was also performed during a CPP test. We used ELISA to measure dopamine (DA) levels and western blotting to determine effects on the DA-related proteins as well as on phosphorylated CREB, deltaFosB, and brain-derived neurotrophic factor (BDNF) in the ventral tegmental area (VTA) and nucleus accumbens (NAc). Finally, we examined the effects on brain wave activity using electroencephalography (EEG). PCA induced CPP in mice and was self-administered by rats, suggesting that PCA has rewarding and reinforcing properties. PCA increased locomotor of mice on the first treatment and challenge days. SCH 23390 and haloperidol blocked the CPP. PCA altered the DA, tyrosine hydroxylase, dopamine D1 and D2 receptors as well as p-CREB and deltaFosB. Also, PCA altered the delta and gamma waves in the brain, which were then normalized by SCH 2 3390 and haloperidol. The present findings indicate that PCA may induce abuse potential through the dopaminergic system and probably accompanied with alterations in brain wave activity which is similar to that of other psychotomimetic NMDA antagonists. We advocate thorough monitoring of PCP analogs as they pose potential harm to public health.
Collapse
Affiliation(s)
- Arvie Abiero
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea; Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, New South Wales, 2007, Australia
| | - Raly James Perez Custodio
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Darlene Mae Ortiz
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Mikyung Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea; Department of Chemistry & Life Science, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Seolmin Yoon
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea; School of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea.
| |
Collapse
|
11
|
Yavas E, Young AM. Repeated phencyclidine disrupts nicotinic acetylcholine regulation of dopamine release in nucleus accumbens: Implications for models of schizophrenia. Neurochem Int 2020; 140:104836. [DOI: 10.1016/j.neuint.2020.104836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023]
|
12
|
Ike KG, de Boer SF, Buwalda B, Kas MJ. Social withdrawal: An initially adaptive behavior that becomes maladaptive when expressed excessively. Neurosci Biobehav Rev 2020; 116:251-267. [DOI: 10.1016/j.neubiorev.2020.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/28/2020] [Accepted: 06/24/2020] [Indexed: 12/29/2022]
|
13
|
Liang H, Tang WK, Chu WCW, Ernst T, Chen R, Chang L. Striatal and white matter volumes in chronic ketamine users with or without recent regular stimulant use. Drug Alcohol Depend 2020; 213:108063. [PMID: 32498030 PMCID: PMC7686125 DOI: 10.1016/j.drugalcdep.2020.108063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Previous studies found enlarged striatum and white matter in those with stimulants use disorders. Whether primarily ketamine users (Primarily-K) and ketamine users who co-used stimulants and other substances (K+PolyS) have abnormal brain volumes is unknown. This study aims to evaluate possible brain structural abnormalities, cognitive function and depressive symptoms, between Primarily-K and K+PolyS users. METHODS Striatal and white matter volumes were automatically segmented in 39 Primarily-K users, 41 K+PolyS users and 46 non-drug users (ND). Cognitive performance in 7 neurocognitive domains and depressive symptoms were also evaluated. RESULTS Ketamine users had larger caudates than ND-controls (Right: 1-way-ANCOVA-p=0.035; K+PolyS vs. ND, p=0.030; Linear trend for K+PolyS>Primarily-K>ND, p=0.011; Left: 1-way-ANCOVA-p=0.047, Primarily-K vs. ND p=0.051) and larger total white matter (1-way ANCOVA-p=0.009, Poly+K vs. Primarily-K, p=0.05; Poly+K vs. ND p=0.011; Linear trend for K+PolyS>Primarily-K >ND, p=0.004). Across all ketamine users, they performed poorer on Arithmetic, learning and memory tasks, and were more depressed than Non-users (p<0.001 to p=0.001). Greater lifetime ketamine usage correlated with more depressive symptoms (r=0.27, p=0.008). Larger white matter correlated with better learning across all participants (r=0.21, p=0.019), while larger right caudate correlated with lower depression scores in ketamine users (r=-0.28, p=0.013). CONCLUSION Ketamine users had larger caudates and total white matter than ND-controls. The even larger white matter in K+PolyS users suggests additive effects from co-use of ketamine and stimulants. However, across the ketamine users, since greater volumes were associated with better learning and less depressive symptom, the enlarged caudates and white matter might represent a compensatory response.
Collapse
Affiliation(s)
- Huajun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Wai Kwong Tang
- Department of Psychiatry, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Winnie CW Chu
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Thomas Ernst
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201 USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21201 USA
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine,University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21201, USA; Department of Neurology University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
14
|
Sadat-Shirazi MS, Vousooghi N, Alizadeh B, Makki SM, Zarei SZ, Nazari S, Zarrindast MR. Expression of NMDA receptor subunits in human blood lymphocytes: A peripheral biomarker in online computer game addiction. J Behav Addict 2018; 7:260-268. [PMID: 29788757 PMCID: PMC6174581 DOI: 10.1556/2006.7.2018.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background and aims Repeated performance of some behaviors such as playing computer games could result in addiction. The NMDA receptor is critically involved in the development of behavioral and drug addictions. It has been claimed that the expression level of neurotransmitter receptors in the brain may be reflected in peripheral blood lymphocytes (PBLs). Methods Here, using a real-time PCR method, we have investigated the mRNA expression of GluN2A, GluN2D, GluN3A, and GluN3B subunits of the NMDA receptor in PBLs of male online computer game addicts (n = 25) in comparison with normal subjects (n = 26). Results Expression levels of GluN2A, GluN2D, and GluN3B subunits were not statistically different between game addicts and the control group. However, the mRNA expression of the GluN3A subunit was downregulated in PBLs of game addicts. Discussion and conclusions Transcriptional levels of GluN2A and GluN2D subunits in online computer game addicts are similar to our previously reported data of opioid addiction and are not different from the control group. However, unlike our earlier finding of drug addiction, the mRNA expression levels of GluN3A and GluN3B subunits in PBLs of game addicts are reduced and unchanged, respectively, compared with control subjects. It seems that the downregulated state of the GluN3A subunit of NMDA receptor in online computer game addicts is a finding that deserves more studies in the future to see whether it can serve as a peripheral biomarker in addiction studies, where the researcher wants to rule out the confusing effects of abused drugs.
Collapse
Affiliation(s)
- Mitra-Sadat Sadat-Shirazi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran,Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran,Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran,Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Nasim Vousooghi, Pharm D, PhD; Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, PO Box 1417755469, Tehran, Iran; Phone: +98 21 8899 1118; Fax: +98 21 8899 1117; E-mail:
| | - Bentolhoda Alizadeh
- Department of Biology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Mohammad Makki
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrzad Nazari
- Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran,Institute for Cognitive Science Studies, Tehran, Iran
| |
Collapse
|
15
|
Frontal cortex dysfunction as a target for remediation in opiate use disorder: Role in cognitive dysfunction and disordered reward systems. PROGRESS IN BRAIN RESEARCH 2018; 239:179-227. [DOI: 10.1016/bs.pbr.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Beloate LN, Coolen LM. Influences of social reward experience on behavioral responses to drugs of abuse: Review of shared and divergent neural plasticity mechanisms for sexual reward and drugs of abuse. Neurosci Biobehav Rev 2017; 83:356-372. [DOI: 10.1016/j.neubiorev.2017.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 10/25/2022]
|
17
|
Berquist MD, Hyatt WS, Bauer-Erickson J, Gannon BM, Norwood AP, Fantegrossi WE. Phencyclidine-like in vivo effects of methoxetamine in mice and rats. Neuropharmacology 2017; 134:158-166. [PMID: 28830759 DOI: 10.1016/j.neuropharm.2017.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/13/2017] [Accepted: 08/17/2017] [Indexed: 11/16/2022]
Abstract
Methoxetamine (MXE) is a novel drug of abuse that is structurally similar to phencyclidine (PCP). In the present study, rats were trained to discriminate PCP from saline and substitution tests were performed with arylcyclohexylamines PCP, eticyclidine (PCE), tenocyclidine (TCP), and MXE. PCP and PCE engendered PCP-lever selection in all subjects, whereas MXE and TCP produced PCP-lever selection in animals that did not display behavioral disruption. Last, the substituted tryptamine dipropyltryptamine (DPT) produced moderate PCP-lever selection and elicited behavioral disruption in all subjects at the highest dose tested. Immediately following the final substitution test in the drug discrimination experiment, the same rats and a separate group of experimentally-naïve rats were implanted with osmotic mini-pumps delivering continuous PCP infusions for 11 days. Consistent with PCP withdrawal, disruption of food-maintained operant responding was observed when the pumps were removed, but cumulative MXE administration dose-dependently reversed this effect. A third group of rats self-administered several unit doses of PCP and MXE. Results of the self-administration tests revealed that MXE was a less effective reinforcer than PCP. Lastly, mice were implanted with radiotelemetry probes to simultaneously monitor thermoregulatory and locomotor responses following injections of PCP, PCE, or MXE. All three arylcyclohexylamines elicited dose-dependent hypothermic effects, but only PCP produced increases in locomotor activity. Together, these findings indicate that MXE elicits PCP-like interoceptive effects, but reduced reinforcing and locomotor stimulant effects in vivo. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.'
Collapse
Affiliation(s)
- Michael D Berquist
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - William S Hyatt
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Brenda M Gannon
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Andrew P Norwood
- Interdisciplinary Biomedical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Interdisciplinary Biomedical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
18
|
Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith ACW, Roberts-Wolfe D, Kalivas PW. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol Rev 2017; 68:816-71. [PMID: 27363441 DOI: 10.1124/pr.116.012484] [Citation(s) in RCA: 403] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances.
Collapse
Affiliation(s)
- M D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - J A Heinsbroek
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - C D Gipson
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - Y M Kupchik
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - S Spencer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - A C W Smith
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - D Roberts-Wolfe
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - P W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| |
Collapse
|
19
|
Krystal JH, Petrakis IL, O’Malley S, Krishnan-Sarin S, Pearlson G, Yoon G. NMDA Glutamate Receptor Antagonism and the Heritable Risk for Alcoholism: New Insights from a Study of Nitrous Oxide. Int J Neuropsychopharmacol 2017; 20:351-353. [PMID: 28158462 PMCID: PMC5409033 DOI: 10.1093/ijnp/pyw118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/21/2016] [Accepted: 01/16/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- John H Krystal
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, Connecticut (Drs Krystal, Petrakis, O’Malley, Krishnan-Sarin, Pearlson, and Yoon); Psychiatry Services, VA Connecticut Healthcare System, West Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Behavioral Health Services, Yale-New Haven Hospital, New Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Olin Center for Neuropsychiatry Research, Institute of Living, Hartford, Connecticut (Dr Pearlson)
| | - Ismene L Petrakis
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, Connecticut (Drs Krystal, Petrakis, O’Malley, Krishnan-Sarin, Pearlson, and Yoon); Psychiatry Services, VA Connecticut Healthcare System, West Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Behavioral Health Services, Yale-New Haven Hospital, New Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Olin Center for Neuropsychiatry Research, Institute of Living, Hartford, Connecticut (Dr Pearlson)
| | - Stephanie O’Malley
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, Connecticut (Drs Krystal, Petrakis, O’Malley, Krishnan-Sarin, Pearlson, and Yoon); Psychiatry Services, VA Connecticut Healthcare System, West Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Behavioral Health Services, Yale-New Haven Hospital, New Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Olin Center for Neuropsychiatry Research, Institute of Living, Hartford, Connecticut (Dr Pearlson)
| | - Suchitra Krishnan-Sarin
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, Connecticut (Drs Krystal, Petrakis, O’Malley, Krishnan-Sarin, Pearlson, and Yoon); Psychiatry Services, VA Connecticut Healthcare System, West Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Behavioral Health Services, Yale-New Haven Hospital, New Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Olin Center for Neuropsychiatry Research, Institute of Living, Hartford, Connecticut (Dr Pearlson)
| | - Godfrey Pearlson
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, Connecticut (Drs Krystal, Petrakis, O’Malley, Krishnan-Sarin, Pearlson, and Yoon); Psychiatry Services, VA Connecticut Healthcare System, West Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Behavioral Health Services, Yale-New Haven Hospital, New Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Olin Center for Neuropsychiatry Research, Institute of Living, Hartford, Connecticut (Dr Pearlson)
| | - Gihyun Yoon
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, Connecticut (Drs Krystal, Petrakis, O’Malley, Krishnan-Sarin, Pearlson, and Yoon); Psychiatry Services, VA Connecticut Healthcare System, West Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Behavioral Health Services, Yale-New Haven Hospital, New Haven, Connecticut (Drs Krystal, Petrakis, and Yoon); Olin Center for Neuropsychiatry Research, Institute of Living, Hartford, Connecticut (Dr Pearlson)
| |
Collapse
|
20
|
Hopf FW. Do specific NMDA receptor subunits act as gateways for addictive behaviors? GENES BRAIN AND BEHAVIOR 2016; 16:118-138. [PMID: 27706932 DOI: 10.1111/gbb.12348] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 12/19/2022]
Abstract
Addiction to alcohol and drugs is a major social and economic problem, and there is considerable interest in understanding the molecular mechanisms that promote addictive drives. A number of proteins have been identified that contribute to expression of addictive behaviors. NMDA receptors (NMDARs), a subclass of ionotropic glutamate receptors, have been of particular interest because their physiological properties make them an attractive candidate for gating induction of synaptic plasticity, a molecular change thought to mediate learning and memory. NMDARs are generally inactive at the hyperpolarized resting potentials of many neurons. However, given sufficient depolarization, NMDARs are activated and exhibit long-lasting currents with significant calcium permeability. Also, in addition to stimulating neurons by direct depolarization, NMDARs and their calcium signaling can allow strong and/or synchronized inputs to produce long-term changes in other molecules (such as AMPA-type glutamate receptors) which can last from days to years, binding internal and external stimuli in a long-term memory trace. Such memories could allow salient drug-related stimuli to exert strong control over future behaviors and thus promote addictive drives. Finally, NMDARs may themselves undergo plasticity, which can alter subsequent neuronal stimulation and/or the ability to induce plasticity. This review will address recent and past findings suggesting that NMDAR activity promotes drug- and alcohol-related behaviors, with a particular focus on GluN2B subunits as possible central regulators of many addictive behaviors, as well as newer studies examining the importance of non-canonical NMDAR subunits and endogenous NMDAR cofactors.
Collapse
Affiliation(s)
- F W Hopf
- Alcohol and Addiction Research Group, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
21
|
Luo YX, Han H, Shao J, Gao Y, Yin X, Zhu WL, Han Y, Shi HS. mTOR signalling in the nucleus accumbens shell is critical for augmented effect of TFF3 on behavioural response to cocaine. Sci Rep 2016; 6:27895. [PMID: 27282818 PMCID: PMC4901260 DOI: 10.1038/srep27895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/26/2016] [Indexed: 12/25/2022] Open
Abstract
Neuropeptides play important roles in modulating the rewarding value of abused drugs. Trefoil factor 3 (TFF3) was recently reported to modulate withdrawal syndrome of morphine, but the effects of TFF3 on the cocaine-induced behavioral changes are still elusive. In the present study, cocaine-induced hyperlocomotion and conditioned place preference (CPP) rat paradigms were provided to investigate the role of TFF3 in the reward response to cocaine. High-performance liquid chromatography (HPLC) analysis was used to analyse the dopamine concentration. The results showed that systemic TFF3 administration (0.1 mg/kg i.p.) significantly augmented cocaine- induced hyperlocomotion and CPP formation, without any effects on locomotor activity and aversive or rewarding effects per se. TFF3 significantly augmented the increment of the dopamine concentration in the NAc and the activity of the mTOR signalling pathway induced by acute cocaine exposure (10 mg/kg, i.p.) in the NAc shell, but not the core. The Intra-NAc shell infusion of rapamycin blocked TFF3-induced hyperactivity in cocaine-treatment rats. These findings indicated that TFF3 could potentiate behavioural response to cocaine, which may be associated with regulating dopamine concentration. Furthermore, the findings indicated that mTOR signalling pathway in the NAc shell is important for TFF3-induced enhancement on the cocaine-induced behavioral changes.
Collapse
Affiliation(s)
- Yi-Xiao Luo
- Department of Pharmacology, Medical School of Hunan Normal University, Changsha 410013, China
| | - Hua Han
- Department of gynecology and obstetrics, Hebei General Hospital, Shijiazhuang 050051, China
| | - Juan Shao
- Department of Senile Disease, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yuan Gao
- Department of Biochemistry and Molecular Biology, College of basic medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Xi Yin
- Department of Functional region of Diagnosis, Hebei Medical University Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Wei-Li Zhu
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Ying Han
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Hai-Shui Shi
- Department of Biochemistry and Molecular Biology, College of basic medicine, Hebei Medical University, Shijiazhuang 050017, China.,National Institute on Drug Dependence, Peking University, Beijing 100191, China
| |
Collapse
|
22
|
D'Souza MS. Glutamatergic transmission in drug reward: implications for drug addiction. Front Neurosci 2015; 9:404. [PMID: 26594139 PMCID: PMC4633516 DOI: 10.3389/fnins.2015.00404] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022] Open
Abstract
Individuals addicted to drugs of abuse such as alcohol, nicotine, cocaine, and heroin are a significant burden on healthcare systems all over the world. The positive reinforcing (rewarding) effects of the above mentioned drugs play a major role in the initiation and maintenance of the drug-taking habit. Thus, understanding the neurochemical mechanisms underlying the reinforcing effects of drugs of abuse is critical to reducing the burden of drug addiction in society. Over the last two decades, there has been an increasing focus on the role of the excitatory neurotransmitter glutamate in drug addiction. In this review, pharmacological and genetic evidence supporting the role of glutamate in mediating the rewarding effects of the above described drugs of abuse will be discussed. Further, the review will discuss the role of glutamate transmission in two complex heterogeneous brain regions, namely the nucleus accumbens (NAcc) and the ventral tegmental area (VTA), which mediate the rewarding effects of drugs of abuse. In addition, several medications approved by the Food and Drug Administration that act by blocking glutamate transmission will be discussed in the context of drug reward. Finally, this review will discuss future studies needed to address currently unanswered gaps in knowledge, which will further elucidate the role of glutamate in the rewarding effects of drugs of abuse.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University Ada, OH, USA
| |
Collapse
|
23
|
Abstract
Biobehavioral features associated with binge-eating disorder (BED) have been investigated; however, few systematic reviews to date have described neuroimaging findings from studies of BED. Emerging functional and structural studies support BED as having unique and overlapping neural features as compared with other disorders. Neuroimaging studies provide evidence linking heightened responses to palatable food cues with prefrontal areas, particularly the orbitofrontal cortex (OFC), with specific relationships to hunger and reward-sensitivity measures. While few studies to date have investigated non-food-cue responses; these suggest a generalized hypofunctioning in frontostriatal areas during reward and inhibitory control processes. Early studies applying neuroimaging to treatment efforts suggest that targeting neural function underlying motivational processes may prove important in the treatment of BED.
Collapse
|
24
|
Kai N, Nishizawa K, Tsutsui Y, Ueda S, Kobayashi K. Differential roles of dopamine D1 and D2 receptor-containing neurons of the nucleus accumbens shell in behavioral sensitization. J Neurochem 2015; 135:1232-41. [PMID: 26442961 DOI: 10.1111/jnc.13380] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/02/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022]
Abstract
The nucleus accumbens (Nac) mediates the reinforcing and motor stimulating properties of psychostimulants. It receives dopaminergic afferents from the ventral midbrain and is divided into two distinct subregions: shell and core. Each of these contains two subtypes of medium spiny neurons, which express either dopamine D1 (D1R) or D2 (D2R) receptors. However, functional dissociation between the two subtypes in psychostimulant response remains to be elucidated. We performed selective ablation of each subtype in the Nac shell in mice, using immunotoxin-mediated cell targeting, and examined the behavioral sensitization evoked by repeated administration of methamphetamine. The D1R cell-ablated mice exhibited delayed induction of sensitized locomotion compared to control mice, whereas the D2R cell-ablated mice showed a mildly enhanced rate of induction of sensitization. In vivo microdialysis revealed a marked blockade of the increase in extracellular dopamine in the Nac of the D1R cell-ablated animals in response to methamphetamine, indicating that the observed delay in behavioral sensitization in these mice involves an impairment in accumbal dopamine release. Our results reveal differential roles of D1R- and D2R-containing accumbal shell neurons in the development of behavioral sensitization to psychostimulants. Behavioral sensitization, enhanced motility by repetitive psychostimulant administration, is a model of drug addiction. Here, we show that the nucleus accumbens (Nac) shell neurons containing dopamine D1 receptor (D1R) or D2 receptor (D2R) play distinct roles in behavioral sensitization triggered by methamphetamine, and that D1R-containing neurons enhance the induction of behavioral sensitization at the early phase, whereas D2R-containing neurons act to suppress the rate of development of the behavior.
Collapse
Affiliation(s)
- Nobuyuki Kai
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan.,Department of Histology & Neurobiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kayo Nishizawa
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuji Tsutsui
- Faculty of Symbiotic Systems Science, Fukushima University, Fukushima, Japan
| | - Shuichi Ueda
- Department of Histology & Neurobiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
25
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
26
|
Hillhouse TM, Porter JH, Negus SS. Comparison of antidepressant-like and abuse-related effects of phencyclidine in rats. Drug Dev Res 2014; 75:479-88. [PMID: 25315690 DOI: 10.1002/ddr.21228] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/06/2014] [Indexed: 01/23/2023]
Abstract
Preclinical Research N-methyl-D-aspartate (NMDA) receptor antagonists, such as ketamine, have emerged as novel candidate treatments for major depressive disorder, but abuse potential of these agents is a concern. The NMDA antagonist phencyclidine has known abuse liability but undefined efficacy as an antidepressant. To further evaluate the relationship between antidepressant-like and abuse-related effects of NMDA antagonists, this study evaluated the effects of phencyclidine (1.0-10.0 mg/kg) in male Sprague-Dawley rats responding under two procedures that have been used to assess antidepressant-like effects (differential-reinforcement-of-low-rate [DRL] 72 s schedule of food reinforcement; n = 9) and abuse-related drug effects (intracranial self-stimulation [ICSS]; n = 6). Under the DRL 72 s schedule, phencyclidine (10.0 mg/kg) increased reinforcers and decreased responses without shifting the peak location of the interresponse time (IRT) distribution. Ketamine (10.0 mg/kg) also increased reinforcers and decreased responses, but unlike phencyclidine, it produced a rightward shift in the peak location of the IRT distribution. The 10.0 mg/kg phencyclidine dose that decreased DRL 72 s responding also decreased rates of ICSS for 50 min after its administration; however, abuse-related ICSS facilitation was observed at later times (100-300 min) or after a lower phencyclidine dose (3.2 mg/kg). These results suggest that phencyclidine produces weaker antidepressant-like effects, but stronger abuse-related effects than ketamine in these procedures.
Collapse
Affiliation(s)
- Todd M Hillhouse
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | |
Collapse
|
27
|
Haber SN, Behrens TEJ. The neural network underlying incentive-based learning: implications for interpreting circuit disruptions in psychiatric disorders. Neuron 2014; 83:1019-39. [PMID: 25189208 PMCID: PMC4255982 DOI: 10.1016/j.neuron.2014.08.031] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2014] [Indexed: 02/03/2023]
Abstract
Coupling stimuli and actions with positive or negative outcomes facilitates the selection of appropriate actions. Several brain regions are involved in the development of goal-directed behaviors and habit formation during incentive-based learning. This Review focuses on higher cognitive control of decision making and the cortical and subcortical structures and connections that attribute value to stimuli, associate that value with choices, and select an action plan. Delineating the connectivity between these areas is fundamental for understanding how brain regions work together to evaluate stimuli, develop actions plans, and modify behavior, as well as for elucidating the pathophysiology of psychiatric diseases.
Collapse
Affiliation(s)
- Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Timothy E J Behrens
- FMRIB Centre, University of Oxford, Oxford, OX3 9DU, UK; Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK
| |
Collapse
|
28
|
Gorini A, Lucchiari C, Russell-Edu W, Pravettoni G. Modulation of risky choices in recently abstinent dependent cocaine users: a transcranial direct-current stimulation study. Front Hum Neurosci 2014; 8:661. [PMID: 25221496 PMCID: PMC4145470 DOI: 10.3389/fnhum.2014.00661] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/08/2014] [Indexed: 01/12/2023] Open
Abstract
Previous neurobiological and neuropsychological investigations have shown that risk-taking behaviors and addictions share many structural and functional aspects. In particular, both are characterized by an irresistible need to obtain immediate rewards and by specific alterations in brain circuits responsible for such behaviors. In this study, we used transcranial direct-current stimulation over the dorsolateral prefrontal cortex (DLPFC) of two samples of subjects (18 dependent cocaine users and 18 control subjects) to investigate the effects of left and right cortical excitability on two risk tasks: (1) the balloon analog risk task (BART) and (2) the game of dice task (GDT). All subjects randomly received a left anodal/right cathodal stimulation (LAn+), a right anodal/left cathodal stimulation (RAn+), and a sham (placebo) stimulation each run at least 48 h apart. Participants were asked to perform the BART and the GDT immediately before and after each stimulation. Our results reveal that the activation of the DLPFC (left and right) results in a reduction of risky behaviors at the BART task both in controls subjects and cocaine dependent users. The effect of tDCS on GDT, instead, is more complex. Cocaine users increased safe behavior after right DLPFC anodal stimulation, while risk-taking behavior increased after left DLPFC anodal stimulation. Control subjects’ performance was only affected by the anodal stimulation of the right DLPFC, resulting in an increase of safe bets. These results support the hypothesis that excessive risk propensity in dependent cocaine users might be due to a hypoactivation of the right DLPFC and an unbalance interhemispheric interaction. In conclusion, since risky decision-making seems to be, at least in part, responsible for maintenance and relapse of addiction, we argue that a neuromodulation-based approach could represent a valuable adjunct in the clinical treatment of addiction.
Collapse
Affiliation(s)
- Alessandra Gorini
- Department of Health Sciences, University of Milan , Milan , Italy ; Applied Research Unit for Cognitive and Psychological Science, European Institute of Oncology , Milan , Italy
| | - Claudio Lucchiari
- Department of Health Sciences, University of Milan , Milan , Italy ; Applied Research Unit for Cognitive and Psychological Science, European Institute of Oncology , Milan , Italy
| | | | - Gabriella Pravettoni
- Department of Health Sciences, University of Milan , Milan , Italy ; Applied Research Unit for Cognitive and Psychological Science, European Institute of Oncology , Milan , Italy
| |
Collapse
|
29
|
Hillhouse TM, Porter JH, Negus SS. Dissociable effects of the noncompetitive NMDA receptor antagonists ketamine and MK-801 on intracranial self-stimulation in rats. Psychopharmacology (Berl) 2014; 231:2705-16. [PMID: 24522331 PMCID: PMC4058412 DOI: 10.1007/s00213-014-3451-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/31/2013] [Indexed: 11/27/2022]
Abstract
RATIONALE The noncompetitive NMDA antagonist ketamine produces rapid antidepressant effects in treatment-resistant patients suffering from major depressive and bipolar disorders. However, abuse liability is a concern. OBJECTIVES This study examined abuse-related effects of ketamine using intracranial self-stimulation (ICSS) in rats. The higher-affinity NMDA antagonist MK-801 and the monoamine reuptake inhibitor cocaine were examined for comparison. METHODS Male Sprague Dawley rats were implanted with electrodes targeting the medial forebrain bundle and trained to respond to brain stimulation under a frequency-rate ICSS procedure. The first experiment compared the potency and time course of ketamine (3.2-10.0 mg/kg) and MK-801 (0.032-0.32 mg/kg). The second experiment examined effects of repeated dosing with ketamine (3.2-20.0 mg/kg/day) and acute cocaine (10.0 mg/kg). RESULTS Following acute administration, ketamine (3.2-10 mg/kg) produced only dose- and time-dependent depressions of ICSS and failed to produce an abuse-related facilitation of ICSS at any dose or pretreatment time. In contrast, MK-801 (0.032-0.32 mg/kg) produced a mixed profile of rate-increasing and rate-decreasing effects; ICSS facilitation was especially prominent at an intermediate dose of 0.18 mg/kg. Repeated dosing with ketamine produced dose-dependent tolerance to the rate-decreasing effects of ketamine (10.0 and 18.0 mg/kg) but failed to unmask expression of ICSS facilitation. Termination of ketamine treatment failed to produce withdrawal-associated decreases in ICSS. As reported previously, 10.0 mg/kg cocaine facilitated ICSS. CONCLUSIONS The dissociable effects of ketamine and MK-801 suggest differences in the pharmacology of these nominally similar NMDA antagonists. Failure of ketamine to facilitate ICSS contrasts with other evidence for the abuse liability of ketamine.
Collapse
Affiliation(s)
- Todd M. Hillhouse
- Department of Psychology, Virginia Commonwealth University, PO Box 842018, 806 West Franklin Street, Richmond 23284, VA, USA
| | - Joseph H. Porter
- Department of Psychology, Virginia Commonwealth University, PO Box 842018, 806 West Franklin Street, Richmond 23284, VA, USA
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond VA 23298, USA
| |
Collapse
|
30
|
Chartoff EH, Connery HS. It's MORe exciting than mu: crosstalk between mu opioid receptors and glutamatergic transmission in the mesolimbic dopamine system. Front Pharmacol 2014; 5:116. [PMID: 24904419 PMCID: PMC4034717 DOI: 10.3389/fphar.2014.00116] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/30/2014] [Indexed: 12/15/2022] Open
Abstract
Opioids selective for the G protein-coupled mu opioid receptor (MOR) produce potent analgesia and euphoria. Heroin, a synthetic opioid, is considered one of the most addictive substances, and the recent exponential rise in opioid addiction and overdose deaths has made treatment development a national public health priority. Existing medications (methadone, buprenorphine, and naltrexone), when combined with psychosocial therapies, have proven efficacy in reducing aspects of opioid addiction. Unfortunately, these medications have critical limitations including those associated with opioid agonist therapies (e.g., sustained physiological dependence and opioid withdrawal leading to high relapse rates upon discontinuation), non-adherence to daily dosing, and non-renewal of monthly injection with extended-release naltrexone. Furthermore, current medications fail to ameliorate key aspects of addiction such as powerful conditioned associations that trigger relapse (e.g., cues, stress, the drug itself). Thus, there is a need for developing novel treatments that target neural processes corrupted with chronic opioid use. This requires a basic understanding of molecular and cellular mechanisms underlying effects of opioids on synaptic transmission and plasticity within reward-related neural circuits. The focus of this review is to discuss how crosstalk between MOR-associated G protein signaling and glutamatergic neurotransmission leads to immediate and long-term effects on emotional states (e.g., euphoria, depression) and motivated behavior (e.g., drug-seeking, relapse). Our goal is to integrate findings on how opioids modulate synaptic release of glutamate and postsynaptic transmission via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors in the nucleus accumbens and ventral tegmental area with the clinical (neurobehavioral) progression of opioid dependence, as well as to identify gaps in knowledge that can be addressed in future studies.
Collapse
Affiliation(s)
- Elena H Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital Belmont, MA, USA
| | - Hilary S Connery
- Department of Psychiatry, Harvard Medical School, McLean Hospital Belmont, MA, USA
| |
Collapse
|
31
|
Differential effects of propranolol on conditioned hyperactivity and locomotor sensitization induced by morphine in rats. Sci Rep 2014; 4:3786. [PMID: 24445603 PMCID: PMC3896908 DOI: 10.1038/srep03786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/02/2014] [Indexed: 12/02/2022] Open
Abstract
According to memory reconsolidation theory, when long-term memory is reactivated by relevant clues, the memory traces become labile, which can be altered by pharmacological manipulations. Accumulating evidence reveals that memory related to drug abuse can be erased by disrupting reconsolidation process. We used an animal model that could simultaneously measure conditioned hyperactivity and locomotor sensitization induced by morphine. β-adrenoceptor antagonist propranolol or saline were administered following conditioned stimuli (CS) or a small dose of morphine reactivation. The results showed that the conditioned hyperactivity could be disrupted by propranolol treatment following CS reactivation. However, the expression of locomotor sensitization could not be disrupted by propranolol administration following CS or morphine reactivation. Furthermore, morphine injection and propranolol intervention enhanced the locomotor sensitization effect. These data suggest that blocking the reconsolidation process can disrupt the conditioned hyperactivity induced by environmental cues associated with morphine treatment, but not morphine-induced locomotor sensitization.
Collapse
|
32
|
Richard JM, Castro DC, Difeliceantonio AG, Robinson MJF, Berridge KC. Mapping brain circuits of reward and motivation: in the footsteps of Ann Kelley. Neurosci Biobehav Rev 2013; 37:1919-31. [PMID: 23261404 PMCID: PMC3706488 DOI: 10.1016/j.neubiorev.2012.12.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/27/2012] [Accepted: 12/10/2012] [Indexed: 11/24/2022]
Abstract
Ann Kelley was a scientific pioneer in reward neuroscience. Her many notable discoveries included demonstrations of accumbens/striatal circuitry roles in eating behavior and in food reward, explorations of limbic interactions with hypothalamic regulatory circuits, and additional interactions of motivation circuits with learning functions. Ann Kelley's accomplishments inspired other researchers to follow in her footsteps, including our own laboratory group. Here we describe results from several lines of our research that sprang in part from earlier findings by Kelley and colleagues. We describe hedonic hotspots for generating intense pleasure 'liking', separate identities of 'wanting' versus 'liking' systems, a novel role for dorsal neostriatum in generating motivation to eat, a limbic keyboard mechanism in nucleus accumbens for generating intense desire versus intense dread, and dynamic limbic transformations of learned memories into motivation. We describe how origins for each of these themes can be traced to fundamental contributions by Ann Kelley.
Collapse
Affiliation(s)
- Jocelyn M Richard
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043, USA.
| | | | | | | | | |
Collapse
|
33
|
Davis-MacNevin PL, Dekraker J, LaDouceur L, Holahan MR. Comparison of the MK-801-induced increase in non-rewarded appetitive responding with dopamine agonists and locomotor activity in rats. J Psychopharmacol 2013; 27:854-64. [PMID: 23761388 DOI: 10.1177/0269881113492029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Systemic administration of the noncompetitive N-methyl-D-aspartate (NMDA)- receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. Evidence has shown that MK-801 increases the probability of operant responding during extinction, possibly modeling perseveration, as would be seen in patients with schizophrenia. This MK-801-induced behavioral perseveration is reversed by dopamine receptor antagonism. To further explore the role of dopamine in this behavioral change, the current study sought to determine if the MK-801-induced increase in non-rewarded operant responding could be mimicked by dopamine agonism and determine how it was related to locomotor activity. Male Long Evans rats were treated systemically with MK-801, cocaine, GBR12909 or apomorphine (APO) and given a single trial operant extinction session, followed by a separate assessment of locomotor activity. Both MK-801 (0.05 mg/kg) and cocaine (10 mg/kg) significantly increased responding during the extinction session and both increased horizontal locomotor activity. No dose of GBR-12909 (5, 10 or 20 mg/kg) was found to effect non-rewarded operant responding or locomotor activity. APO (0.05, 0.5, 2 or 5 mg/kg) treatment produced a dose-dependent decrease in both operant responding and locomotor activity. These results suggest the possibility that, rather than a primary influence of increased dopamine concentration on elevating bar-pressing responses during extinction, other neurotransmitter systems may be involved.
Collapse
|
34
|
de Guglielmo G, Cippitelli A, Somaini L, Gerra G, Li H, Stopponi S, Ubaldi M, Kallupi M, Ciccocioppo R. Pregabalin reduces cocaine self-administration and relapse to cocaine seeking in the rat. Addict Biol 2013; 18:644-53. [PMID: 22734646 DOI: 10.1111/j.1369-1600.2012.00468.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pregabalin (Lyrica™) is a structural analog of γ-aminobutyric acid (GABA) and is approved by the FDA for partial epilepsy, neuropathic pain and generalized anxiety disorders. Pregabalin also reduces excitatory neurotransmitter release and post-synaptic excitability. Recently, we demonstrated that pregabalin reduced alcohol intake and prevented relapse to the alcohol seeking elicited by stress or environmental stimuli associated with alcohol availability. Here, we sought to extend these findings by examining the effect of pregabalin on cocaine self-administration (0.25 mg/infusion) and on cocaine seeking elicited by both conditioned stimuli and stress, as generated by administration of yohimbine (1.25 mg/kg). The results showed that oral administration of pregabalin (0, 10 or 30 mg/kg) reduced self-administration of cocaine over an extended period (6 hours), whereas it did not modify self-administration of food. In cocaine reinstatement studies, pregabalin (10 and 30 mg/kg) abolished the cocaine seeking elicited by both the pharmacological stressor yohimbine and the cues predictive of cocaine availability. Overall, these results demonstrate that pregabalin may have potential in the treatment of some aspects of cocaine addiction.
Collapse
Affiliation(s)
- Giordano de Guglielmo
- Pharmacology Unit; School of Pharmacy; University of Camerino, Via Madonna delle Carceri; Camerino; Italy
| | - Andrea Cippitelli
- Pharmacology Unit; School of Pharmacy; University of Camerino, Via Madonna delle Carceri; Camerino; Italy
| | - Lorenzo Somaini
- Addiction Treatment Centre; Health Local Unit; Biella; Italy
| | - Gilberto Gerra
- Drug Prevention and Health Branch; Division for Operations; United Nations Office on Drugs and Crime; Vienna; Austria
| | - Hongwu Li
- Pharmacology Unit; School of Pharmacy; University of Camerino, Via Madonna delle Carceri; Camerino; Italy
| | - Serena Stopponi
- Pharmacology Unit; School of Pharmacy; University of Camerino, Via Madonna delle Carceri; Camerino; Italy
| | - Massimo Ubaldi
- Pharmacology Unit; School of Pharmacy; University of Camerino, Via Madonna delle Carceri; Camerino; Italy
| | - Marsida Kallupi
- Pharmacology Unit; School of Pharmacy; University of Camerino, Via Madonna delle Carceri; Camerino; Italy
| | - Roberto Ciccocioppo
- Pharmacology Unit; School of Pharmacy; University of Camerino, Via Madonna delle Carceri; Camerino; Italy
| |
Collapse
|
35
|
Duchesne V, Boye SM. Differential contribution of mesoaccumbens and mesohabenular dopamine to intracranial self-stimulation. Neuropharmacology 2013; 70:43-50. [DOI: 10.1016/j.neuropharm.2013.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 12/16/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
|
36
|
Root DH, Ma S, Barker DJ, Megehee L, Striano BM, Ralston CM, Fabbricatore AT, West MO. Differential roles of ventral pallidum subregions during cocaine self-administration behaviors. J Comp Neurol 2013; 521:558-88. [PMID: 22806483 DOI: 10.1002/cne.23191] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/30/2012] [Accepted: 07/09/2012] [Indexed: 12/11/2022]
Abstract
The ventral pallidum (VP) is necessary for drug-seeking behavior. VP contains ventromedial (VPvm) and dorsolateral (VPdl) subregions, which receive projections from the nucleus accumbens shell and core, respectively. To date no study has investigated the behavioral functions of the VPdl and VPvm subregions. To address this issue, we investigated whether changes in firing rate (FR) differed between VP subregions during four events: approaching toward, responding on, or retreating away from a cocaine-reinforced operandum and a cocaine-associated cue. Baseline FR and waveform characteristics did not differ between subregions. VPdl neurons exhibited a greater change in FR compared with VPvm neurons during approaches toward, as well as responses on, the cocaine-reinforced operandum. VPdl neurons were more likely to exhibit a similar change in FR (direction and magnitude) during approach and response than VPvm neurons. In contrast, VPvm firing patterns were heterogeneous, changing FRs during approach or response alone, or both. VP neurons did not discriminate cued behaviors from uncued behaviors. No differences were found between subregions during the retreat, and no VP neurons exhibited patterned changes in FR in response to the cocaine-associated cue. The stronger, sustained FR changes of VPdl neurons during approach and response may implicate VPdl in the processing of drug-seeking and drug-taking behavior via projections to subthalamic nucleus and substantia nigra pars reticulata. In contrast, the heterogeneous firing patterns of VPvm neurons may implicate VPvm in facilitating mesocortical structures with information related to the sequence of behaviors predicting cocaine self-infusions via projections to mediodorsal thalamus and ventral tegmental area.
Collapse
Affiliation(s)
- David H Root
- Department of Psychology, Rutgers University, New Brunswick, New Jersey 08903, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Neurocircuitry of drug reward. Neuropharmacology 2013; 76 Pt B:329-41. [PMID: 23664810 DOI: 10.1016/j.neuropharm.2013.04.031] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/06/2013] [Accepted: 04/16/2013] [Indexed: 11/23/2022]
Abstract
In recent years, neuroscientists have produced profound conceptual and mechanistic advances on the neurocircuitry of reward and substance use disorders. Here, we will provide a brief review of intracranial drug self-administration and optogenetic self-stimulation studies that identified brain regions and neurotransmitter systems involved in drug- and reward-related behaviors. Also discussed is a theoretical framework that helps to understand the functional properties of the circuitry involved in these behaviors. The circuitry appears to be homeostatically regulated and mediate anticipatory processes that regulate behavioral interaction with the environment in response to salient stimuli. That is, abused drugs or, at least, some may act on basic motivation and mood processes, regulating behavior-environment interaction. Optogenetics and related technologies have begun to uncover detailed circuit mechanisms linking key brain regions in which abused drugs act for rewarding effects. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
|
38
|
Balodis IM, Kober H, Worhunsky PD, White MA, Stevens MC, Pearlson GD, Sinha R, Grilo CM, Potenza MN. Monetary reward processing in obese individuals with and without binge eating disorder. Biol Psychiatry 2013; 73:877-86. [PMID: 23462319 PMCID: PMC3686098 DOI: 10.1016/j.biopsych.2013.01.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND An important step in obesity research involves identifying neurobiological underpinnings of nonfood reward processing unique to specific subgroups of obese individuals. METHODS Nineteen obese individuals seeking treatment for binge eating disorder (BED) were compared with 19 non-BED obese individuals (OB) and 19 lean control subjects (LC) while performing a monetary reward/loss task that parses anticipatory and outcome components during functional magnetic resonance imaging. Differences in regional activation were investigated in BED, OB, and LC groups during reward/loss prospect, anticipation, and notification. RESULTS Relative to the LC group, the OB group demonstrated increased ventral striatal and ventromedial prefrontal cortex activity during anticipatory phases. In contrast, the BED group relative to the OB group demonstrated diminished bilateral ventral striatal activity during anticipatory reward/loss processing. No differences were observed between the BED and LC groups in the ventral striatum. CONCLUSIONS Heterogeneity exists among obese individuals with respect to the neural correlates of reward/loss processing. Neural differences in separable groups with obesity suggest that multiple, varying interventions might be important in optimizing prevention and treatment strategies for obesity.
Collapse
|
39
|
Effect of subthalamic nucleus stimulation during exercise on the mesolimbocortical dopaminergic region in Parkinson's disease: a positron emission tomography study. J Cereb Blood Flow Metab 2013; 33:415-21. [PMID: 23211966 PMCID: PMC3587812 DOI: 10.1038/jcbfm.2012.183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To elucidate the dynamic effects of deep brain stimulation (DBS) in the subthalamic nucleus (STN) during activity on the dopaminergic system, 12 PD patients who had STN-DBS operations at least 1 month prior, underwent two positron emission tomography scans during right-foot movement in DBS-off and DBS-on conditions. To quantify motor performance changes, the motion speed and mobility angle of the foot at the ankle were measured twice. Estimations of the binding potential of [(11)C]raclopride (BP(ND)) were based on the Logan plot method. Significant motor recovery was found in the DBS-on condition. The STN-DBS during exercise significantly reduced the [(11)C]raclopride BP(ND) in the caudate and the nucleus accumbens (NA), but not in the dorsal or ventral putamen. The magnitude of dopamine release in the NA correlated negatively with the magnitude of motor load, indicating that STN-DBS facilitated motor behavior more smoothly and at less expense to dopamine neurons in the region. The lack of dopamine release in the putamen and the significant dopamine release in the ventromedial striatum by STN-DBS during exercise indicated dopaminergic activation occurring in the motivational circuit during action, suggesting a compensatory functional activation of the motor loop from the nonmotor to the motor loop system.
Collapse
|
40
|
Einstein EB, Asaka Y, Yeckel MF, Higley MJ, Picciotto MR. Galanin-induced decreases in nucleus accumbens/striatum excitatory postsynaptic potentials and morphine conditioned place preference require both galanin receptor 1 and galanin receptor 2. Eur J Neurosci 2013; 37:1541-9. [PMID: 23387435 DOI: 10.1111/ejn.12151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/03/2013] [Accepted: 01/09/2013] [Indexed: 12/12/2022]
Abstract
The neuropeptide galanin has been shown to alter the rewarding properties of morphine. To identify potential cellular mechanisms that might be involved in the ability of galanin to modulate opiate reward, we measured excitatory postsynaptic potentials (EPSPs), using both field and whole-cell recordings from striatal brain slices extracted from wild-type mice and mice lacking specific galanin receptor (GalR) subtypes. We found that galanin decreased the amplitude of EPSPs in both the dorsal striatum and nucleus accumbens. We then performed recordings in slices from knockout mice lacking either the GalR1 or GalR2 gene, and found that the ability of galanin to decrease EPSP amplitude was absent from both mouse lines, suggesting that both receptor subtypes are required for this effect. In order to determine whether behavioral responses to opiates were dependent on the same receptor subtypes, we tested GalR1 and GalR2 knockout mice for morphine conditioned place preference (CPP). Morphine CPP was significantly attenuated in both GalR1 and GalR2 knockout mice. These data suggest that mesolimbic excitatory signaling is significantly modulated by galanin in a GalR1-dependent and GalR2-dependent manner, and that morphine CPP is dependent on the same receptor subtypes.
Collapse
Affiliation(s)
- Emily B Einstein
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine, 34 Park Street - 3rd floor research, New Haven, CT 06508, USA
| | | | | | | | | |
Collapse
|
41
|
Renard J, Krebs MO, Jay TM, Le Pen G. Long-term cognitive impairments induced by chronic cannabinoid exposure during adolescence in rats: a strain comparison. Psychopharmacology (Berl) 2013; 225:781-90. [PMID: 22983145 DOI: 10.1007/s00213-012-2865-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 08/28/2012] [Indexed: 12/15/2022]
Abstract
RATIONALE During cerebral development, adolescence is a critical phase in which the endocannabinoid system plays an important role in regulating various neurotransmitters. Moreover, evidence from both human and animal studies suggests that chronic cannabinoid exposure during this vulnerable period can induce persistent brain and behavioural alterations. OBJECTIVES The aim of this study was to compare the long-term cognitive consequences of chronic adolescence cannabinoid exposure between Lister Hooded rats and Wistar rats. METHODS Rats of both strains were injected daily throughout their adolescent or adult periods with vehicle or with incremental doses of the synthetic cannabinoid CB1 receptor agonist CP55,940 (CP). Short-term and spatial working memories were assessed using the object recognition and object location, tasks respectively. For both tasks, the effect of a 30- or 120-min delay between the learning and the testing phase was investigated. RESULTS In the object recognition task, adolescent CP exposure impaired short-term memory after both delays in both strains. In contrast, in the object location task, adolescent CP exposure impaired spatial working memory in the Wistar rats after a 30-min delay, whereas the Lister Hooded rats exhibited a similar effect only after a 120-min delay. In these tests, no long-term deleterious effects were found following adult CP exposure in either strain. CONCLUSIONS Our results confirm that adolescence is a critical period for the deleterious effects of cannabinoids on cognition and that these deleterious effects on spatial working memory are more strain-dependent than the effects observed on short-term memory.
Collapse
Affiliation(s)
- Justine Renard
- Laboratoire de "Physiopathologie des maladies Psychiatriques", Centre de Psychiatrie et Neurosciences U894, INSERM, Paris, France
| | | | | | | |
Collapse
|
42
|
Kusljic S, Van Den Buuse M. Differential role of serotonin projections from the dorsal and median raphe nuclei in phencyclidine-induced hyperlocomotion and fos-like immunoreactivity in rats. Synapse 2012; 66:885-92. [DOI: 10.1002/syn.21580] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 11/07/2022]
|
43
|
Abstract
Neuroimaging studies have been crucial in understanding changes in the various neurotransmitter systems implicated in addiction in the living human brain. Predominantly reduced striatal dopamine transmission appears to play an important role in psychostimulant, alcohol and heroin addiction, while addiction to cannabis may be mediated primarily by the endocannabinoid system. However, the study of other neurotransmitter systems likely involved in addiction, for example glutamate, has been limited by the number and quality of available radiotracers, and data on changes in these systems in the most common addictions are emerging only now. Further studies are needed to understand fully how the interplay of various neurotransmitter systems contributes to addiction and to ultimately help to develop more effective treatment approaches.
Collapse
Affiliation(s)
- Nina B L Urban
- Department of Psychiatry, Division of Substance Abuse, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
44
|
Li X, Xi ZX, Markou A. Metabotropic glutamate 7 (mGlu7) receptor: a target for medication development for the treatment of cocaine dependence. Neuropharmacology 2012; 66:12-23. [PMID: 22546614 DOI: 10.1016/j.neuropharm.2012.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/21/2012] [Accepted: 04/11/2012] [Indexed: 11/19/2022]
Abstract
Brain glutamate has been shown to play an important role in reinstatement to drug seeking, a behavior considered to be of relevance to relapse to drug taking in humans. Therefore, glutamate receptors, in particular metabotropic glutamate (mGlu) receptors, have become important targets for medication development for the treatment of drug dependence. In this review article, we focus on the mGlu7 receptor subtype, and discuss recent findings with AMN082, a selective mGlu7 receptor allosteric agonist, in animal models with relevance to drug dependence. Systemic or local administration of AMN082 into the nucleus accumbens (NAc), a critical brain region involved in reward and drug dependence processes, inhibited the reinforcing and motivational effects of cocaine, heroin and ethanol, as assessed by the intravenous drug self-administration procedure. In addition, AMN082 inhibited the reward-enhancing effects induced by cocaine, as assessed in the intracranial self-stimulation procedure, and cocaine- or cue-induced reinstatement of drug-seeking behavior. In vivo microdialysis studies indicated that systemic or intra-NAc administration of AMN082 significantly decreased extracellular γ-aminobutyric acid (GABA) and elevated extracellular glutamate, but had no effect on extracellular dopamine in the NAc, suggesting that a non-dopaminergic mechanism underlies the effects of AMN082 on the actions of cocaine. Further, data indicated that AMN082-induced changes in glutamate were the net effect of two actions: one is the direct inhibition of glutamate release by activation of mGlu7 receptors on glutamatergic neurons; another is the indirect increases of glutamate release mediated by decreases in GABA transmission. These increases in extracellular glutamate functionally antagonized cocaine-induced inhibition of NAc-ventral pallidum GABAergic neurotransmission, and therefore, the rewarding effects of cocaine. In addition, elevated extracellular glutamate activated presynaptic mGlu2/3 autoreceptors which in turn inhibited cocaine priming- or cue-induced enhancement of glutamate release and reinstatement of drug-seeking behavior. Taken together, these findings suggest that the mGlu7 receptor is an important target for medication development for the treatment of drug dependence. AMN082 or other mGlu7 receptor allosteric agonists may have potential as novel pharmacotherapies for cocaine addiction. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- Xia Li
- Department of Psychiatry, M/C 0603, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603, USA.
| | | | | |
Collapse
|
45
|
Balodis IM, Kober H, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN. Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry 2012; 71:749-57. [PMID: 22336565 PMCID: PMC3460522 DOI: 10.1016/j.biopsych.2012.01.006] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND Mesocorticolimbic neurocircuitry and impulsivity have both been implicated in pathological gambling (PG) and in reward processing. However, the neural underpinnings of specific phases of reward and loss processing in PG and their relationships to impulsivity remain only partially understood. The present functional magnetic resonance imaging study examined brain activity associated with different phases of reward and loss processing in PG. Given an inverse relationship between ventral striatal recruitment during anticipation of monetary rewards and impulsivity in alcohol dependence, the current study explored whether a similar association might also be present in PG. METHODS Fourteen adults with PG and 14 control comparison participants performed the Monetary Incentive Delay Task to identify brain activation changes associated with reward/loss prospect, reward/loss anticipation, and reward/loss notification. Impulsivity was assessed separately using the Barratt Impulsiveness Scale. RESULTS Relative to the control comparison group, the PG group exhibited significantly reduced activity in the ventromedial prefrontal cortex, insula, and ventral striatum during several phases, including the prospect and anticipation phases of both gains and losses. Activity in the ventral striatum correlated inversely with levels of impulsivity in PG participants, consistent with prior findings in alcohol dependence. CONCLUSIONS Relatively decreased activity in corticostriatal neurocircuitry during multiple phases of reward processing suggests consistent alterations in neurocircuitry underlying incentive valuation and loss prediction. Together with findings in alcohol dependence, these results suggest that impulsive tendencies in addictions may be reflected in diminished ventral striatal activations to reward anticipation and may represent targets for treatment development in addictions.
Collapse
Affiliation(s)
- Iris M Balodis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Ross RS, Sherrill KR, Stern CE. The hippocampus is functionally connected to the striatum and orbitofrontal cortex during context dependent decision making. Brain Res 2011; 1423:53-66. [PMID: 22000080 DOI: 10.1016/j.brainres.2011.09.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/15/2011] [Accepted: 09/17/2011] [Indexed: 01/21/2023]
Abstract
Many of our everyday actions are only appropriate in certain situations and selecting the appropriate behavior requires that we use current context and previous experience to guide our decisions. The current study examined hippocampal functional connectivity with prefrontal and striatal regions during a task that required participants to make decisions based on the contextual retrieval of overlapping sequential representations. Participants learned four sequences comprised of six faces each. An overlapping condition was created by having two sequences with two identical faces as the middle images. A non-overlapping condition contained two sequences that did not share any faces between them. Hippocampal functional connectivity was assessed during the presentation period and at the critical choice, where participants had to make a contextually dependent decision. The left hippocampus showed significantly increased functional connectivity with dorsal and ventral striatum and anterior cingulate cortex during the presentation period of the overlapping compared to the non-overlapping condition after participants knew the sequences. At the critical choice point of the overlapping condition, the left hippocampus showed stronger functional connectivity with the orbitofrontal cortex. These functional connectivity results suggest that the hippocampus may play a role in decision making by predicting the possibilities of what might come next, allowing orbitofrontal and striatal regions to evaluate the expected choice options in order to make the correct action at the choice point.
Collapse
Affiliation(s)
- Robert S Ross
- Psychology Department, Boston University, Boston, MA 02215, USA.
| | | | | |
Collapse
|
47
|
P2 receptors are involved in the mediation of motivation-related behavior. Purinergic Signal 2011; 1:21-9. [PMID: 18404397 PMCID: PMC2096569 DOI: 10.1007/s11302-004-4745-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 10/11/2004] [Accepted: 10/11/2004] [Indexed: 11/23/2022] Open
Abstract
The importance of purinergic signaling in the intact mesolimbic–mesocortical circuit of the brain of freely moving rats is reviewed. In the rat, an endogenous ADP/ATPergic tone reinforces the release of dopamine from the axon terminals in the nucleus accumbens as well as from the somatodendritic region of these neurons in the ventral tegmental area, as well as the release of glutamate, probably via P2Y1 receptor stimulation. Similar mechanisms may regulate the release of glutamate in both areas of the brain. Dopamine and glutamate determine in concert the activity of the accumbal GABAergic, medium-size spiny neurons thought to act as an interface between the limbic cortex and the extrapyramidal motor system. These neurons project to the pallidal and mesencephalic areas, thereby mediating the behavioral reaction of the animal in response to a motivation-related stimulus. There is evidence that extracellular ADP/ATP promotes goal-directed behavior, e.g., intention and feeding, via dopamine, probably via P2Y1 receptor stimulation. Accumbal P2 receptor-mediated glutamatergic mechanisms seem to counteract the dopaminergic effects on behavior. Furthermore, adaptive changes of motivation-related behavior, e.g., by chronic succession of starvation and feeding or by repeated amphetamine administration, are accompanied by changes in the expression of the P2Y1 receptor, thought to modulate the sensitivity of the animal to respond to certain stimuli.
Collapse
|
48
|
Katsuura Y, Heckmann JA, Taha SA. mu-Opioid receptor stimulation in the nucleus accumbens elevates fatty tastant intake by increasing palatability and suppressing satiety signals. Am J Physiol Regul Integr Comp Physiol 2011; 301:R244-54. [PMID: 21543633 DOI: 10.1152/ajpregu.00406.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infusion of a μ-opioid receptor (MOR) agonist into the nucleus accumbens (NAcc) drives voracious food intake, an effect hypothesized to occur through increased tastant palatability. While intake of many palatable foods is elevated by MOR stimulation, this manipulation has a preferential effect on fatty food ingestion. Consumption of high-fat foods is increased by NAcc MOR stimulation even in rats that prefer a carbohydrate-rich alternative under baseline conditions. This suggests that NAcc MOR stimulation may not simply potentiate palatability signals and raises the possibility that mechanisms mediating fat intake may be distinct from those underlying intake of other tastants. The present study was conducted to investigate the physiological mechanisms underlying the effects of NAcc MOR stimulation on fatty food intake. In experiment 1, we analyzed lick microstructure in rats ingesting Intralipid to identify the changes underlying feeding induced by infusion of a MOR-specific agonist into the NAcc. MOR stimulation in the NAcc core, but not shell, increased burst duration and first-minute licks, while simultaneously increasing the rate and duration of Intralipid ingestion. These results suggest that MOR activation in the core increases Intralipid palatability and attenuates inhibitory postingestive feedback. In experiment 2, we measured the effects of MOR stimulation in the NAcc core on consumption of nonnutritive olestra. A MOR-specific agonist dose dependently increased olestra intake, demonstrating that caloric signaling is not required for hyperphagia induced by NAcc MOR stimulation. Feeding induced by drug infusion in both experiments 1 and 2 was blocked by a MOR antagonist. In experiment 3, we determined whether MOR activation in the NAcc core could attenuate satiety-related signaling caused by infusion of the melanocortin agonist MTII into the third ventricle. Suppression of intake caused by MTII was reversed by MOR stimulation. Together, our results suggest that MOR stimulation in the NAcc core elevates fatty food intake through palatability mechanisms dependent on orosensory cues and suppression of satiety signals inhibiting food intake.
Collapse
Affiliation(s)
- Yoshihiro Katsuura
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
49
|
Gardner EL. Addiction and brain reward and antireward pathways. ADVANCES IN PSYCHOSOMATIC MEDICINE 2011; 30:22-60. [PMID: 21508625 PMCID: PMC4549070 DOI: 10.1159/000324065] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Addictive drugs have in common that they are voluntarily self-administered by laboratory animals (usually avidly), and that they enhance the functioning of the reward circuitry of the brain (producing the 'high' that the drug user seeks). The core reward circuitry consists of an 'in-series' circuit linking the ventral tegmental area, nucleus accumbens and ventral pallidum via the medial forebrain bundle. Although originally believed to simply encode the set point of hedonic tone, these circuits are now believed to be functionally far more complex, also encoding attention, expectancy of reward, disconfirmation of reward expectancy, and incentive motivation. 'Hedonic dysregulation' within these circuits may lead to addiction. The 'second-stage' dopaminergic component in this reward circuitry is the crucial addictive-drug-sensitive component. All addictive drugs have in common that they enhance (directly or indirectly or even transsynaptically) dop-aminergic reward synaptic function in the nucleus accumbens. Drug self-administration is regulated by nucleus accumbens dopamine levels, and is done to keep nucleus accumbens dopamine within a specific elevated range (to maintain a desired hedonic level). For some classes of addictive drugs (e.g. opiates), tolerance to the euphoric effects develops with chronic use. Postuse dysphoria then comes to dominate reward circuit hedonic tone, and addicts no longer use drugs to get high, but simply to get back to normal ('get straight'). The brain circuits mediating the pleasurable effects of addictive drugs are anatomically, neurophysiologically and neurochemically different from those mediating physical dependence, and from those mediating craving and relapse. There are important genetic variations in vulnerability to drug addiction, yet environmental factors such as stress and social defeat also alter brain-reward mechanisms in such a manner as to impart vulnerability to addiction. In short, the 'bio-psycho-social' model of etiology holds very well for addiction. Addiction appears to correlate with a hypodopaminergic dysfunctional state within the reward circuitry of the brain. Neuroimaging studies in humans add credence to this hypothesis. Credible evidence also implicates serotonergic, opioid, endocannabinoid, GABAergic and glutamatergic mechanisms in addiction. Critically, drug addiction progresses from occasional recreational use to impulsive use to habitual compulsive use. This correlates with a progression from reward-driven to habit-driven drug-seeking behavior. This behavioral progression correlates with a neuroanatomical progression from ventral striatal (nucleus accumbens) to dorsal striatal control over drug-seeking behavior. The three classical sets of craving and relapse triggers are (a) reexposure to addictive drugs, (b) stress, and (c) reexposure to environmental cues (people, places, things) previously associated with drug-taking behavior. Drug-triggered relapse involves the nucleus accumbens and the neurotransmitter dopamine. Stress-triggered relapse involves (a) the central nucleus of the amygdala, the bed nucleus of the stria terminalis, and the neurotransmitter corticotrophin-releasing factor, and (b) the lateral tegmental noradrenergic nuclei of the brain stem and the neurotransmitter norepinephrine. Cue-triggered relapse involves the basolateral nucleus of the amygdala, the hippocampus and the neurotransmitter glutamate. Knowledge of the neuroanatomy, neurophysiology, neurochemistry and neuropharmacology of addictive drug action in the brain is currently producing a variety of strategies for pharmacotherapeutic treatment of drug addiction, some of which appear promising.
Collapse
Affiliation(s)
- Eliot L Gardner
- Neuropsychopharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Md., USA
| |
Collapse
|
50
|
Wood DA, Walker TL, Rebec GV. Experience-dependent changes in neuronal processing in the nucleus accumbens shell in a discriminative learning task in differentially housed rats. Brain Res 2011; 1390:90-8. [PMID: 21420938 DOI: 10.1016/j.brainres.2011.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/04/2011] [Accepted: 03/09/2011] [Indexed: 11/30/2022]
Abstract
Environmental enrichment is associated with enhanced learning of complex tasks, attenuated seeking of natural and drug rewards, and altered function of the nucleus accumbens (NAcc), a brain region involved in goal-directed behavior. For example, during acquisition of a discriminative learning task, neurons in the NAcc core subregion are more responsive to discrete, goal-directed movements in rats raised in an enriched condition (EC) relative to an isolated condition (IC), but as learning materialized, this enhanced responsiveness shifts to the cues that predict these movements. Here, we report that these results do not extend to NAcc shell: neuronal responses in this subregion are similar in EC and IC rats during goal-directed movement and the presentation of associative cues both during and after task acquisition. With experience in this task, however, the overall proportion of task-related neuronal responses in NAcc shell decreases. The response pattern of shell neurons is also sensitive to the presence of contextual cues: shell neuronal firing reveals a significant shift from a predominant excitatory to a predominant inhibitory profile in probe trials when the cue that predicts sucrose availability is absent. Collectively, these data suggest that NAcc shell neurons encode cues associated with natural reward, are less responsive during appetitive behavior in familiar conditions, and are insensitive to appetitive learning differences expressed in rats reared in different environmental conditions.
Collapse
Affiliation(s)
- David A Wood
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, CLS 717, Boston, MA 02215, USA
| | | | | |
Collapse
|