1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Bossi S, Daniel H, McLean H. Interplay between metabotropic glutamate type 4 and adenosine type 1 receptors modulate synaptic transmission in the cerebellar cortex. Front Pharmacol 2024; 15:1406238. [PMID: 39211784 PMCID: PMC11358600 DOI: 10.3389/fphar.2024.1406238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The synapses between parallel fibers and Purkinje cells play a pivotal role in cerebellar function. They are intricately governed by a variety of presynaptic receptors, notably by type 4 metabotropic glutamate (mGlu4) receptors and type 1 adenosine (A1) receptors both of which curtail glutamate release upon activation. Despite their pivotal role in regulating synaptic transmission within the cerebellar cortex, functional interactions between mGlu4 and A1 receptors have remained relatively unexplored. To bridge this gap, our study delves into how mGlu4 receptor activity influences A1 receptor-mediated alterations in excitatory transmission. Employing a combination of whole-cell patch clamp recordings of Purkinje cells and parallel fiber presynaptic fluorometric calcium measurements in acute rat and mouse cerebellar cortical slices, our results reveal functional interactions between these receptor types. These findings hold implications for understanding potential roles of these presynaptic receptors in neuroprotection during pathophysiological conditions characterized by elevated glutamate and adenosine levels.
Collapse
Affiliation(s)
- Simon Bossi
- *Correspondence: Simon Bossi, ; Heather McLean,
| | | | - Heather McLean
- Institut des Neurosciences (NeuroPSI) UMR9197 CNRS, Université Paris-Saclay, Saclay, France
| |
Collapse
|
3
|
Sekerková G, Kilic S, Cheng YH, Fredrick N, Osmani A, Kim H, Opal P, Martina M. Phenotypical, genotypical and pathological characterization of the moonwalker mouse, a model of ataxia. Neurobiol Dis 2024; 195:106492. [PMID: 38575093 PMCID: PMC11089908 DOI: 10.1016/j.nbd.2024.106492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
We performed a comprehensive study of the morphological, functional, and genetic features of moonwalker (MWK) mice, a mouse model of spinocerebellar ataxia caused by a gain of function of the TRPC3 channel. These mice show numerous behavioral symptoms including tremor, altered gait, circling behavior, impaired motor coordination, impaired motor learning and decreased limb strength. Cerebellar pathology is characterized by early and almost complete loss of unipolar brush cells as well as slowly progressive, moderate loss of Purkinje cell (PCs). Structural damage also includes loss of synaptic contacts from parallel fibers, swollen ER structures, and degenerating axons. Interestingly, no obvious correlation was observed between PC loss and severity of the symptoms, as the phenotype stabilizes around 2 months of age, while the cerebellar pathology is progressive. This is probably due to the fact that PC function is severely impaired much earlier than the appearance of PC loss. Indeed, PC firing is already impaired in 3 weeks old mice. An interesting feature of the MWK pathology that still remains to be explained consists in a strong lobule selectivity of the PC loss, which is puzzling considering that TRPC is expressed in every PC. Intriguingly, genetic analysis of MWK cerebella shows, among other alterations, changes in the expression of both apoptosis inducing and resistance factors possibly suggesting that damaged PCs initiate specific cellular pathways that protect them from overt cell loss.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA.
| | - Sumeyra Kilic
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Yen-Hsin Cheng
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Natalie Fredrick
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Anne Osmani
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Haram Kim
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Puneet Opal
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Marco Martina
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Nagaraja RY, Stiles MA, Sherry DM, Agbaga MP, Ahmad M. Synapse-Specific Defects in Synaptic Transmission in the Cerebellum of W246G Mutant ELOVL4 Rats-a Model of Human SCA34. J Neurosci 2023; 43:5963-5974. [PMID: 37491316 PMCID: PMC10436685 DOI: 10.1523/jneurosci.0378-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
Elongation of very long fatty acids-4 (ELOVL4) mediates biosynthesis of very long chain-fatty acids (VLC-FA; ≥28 carbons). Various mutations in this enzyme result in spinocerebellar ataxia-34 (SCA34). We generated a rat model of human SCA34 by knock-in of a naturally occurring c.736T>G, p.W246G mutation in the Elovl4 gene. Our previous analysis of homozygous W246G mutant ELOVL4 rats (MUT) revealed early-onset gait disturbance and impaired synaptic transmission and plasticity at parallel fiber-Purkinje cell (PF-PC) and climbing fiber-Purkinje cell (CF-PC) synapses. However, the underlying mechanisms that caused these defects remained unknown. Here, we report detailed patch-clamp recordings from Purkinje cells that identify impaired synaptic mechanisms. Our results show that miniature EPSC (mEPSC) frequency is reduced in MUT rats with no change in mEPSC amplitude, suggesting a presynaptic defect of excitatory synaptic transmission on Purkinje cells. We also find alterations in inhibitory synaptic transmission as miniature IPSC (mIPSC) frequency and amplitude are increased in MUT Purkinje cells. Paired-pulse ratio is reduced at PF-PC synapses but increased at CF-PC synapses in MUT rats, which along with results from high-frequency stimulation suggest opposite changes in the release probability at these two synapses. In contrast, we identify exaggerated persistence of EPSC amplitude at CF-PC and PF-PC synapses in MUT cerebellum, suggesting a larger readily releasable pool (RRP) at both synapses. Furthermore, the dendritic spine density is reduced in MUT Purkinje cells. Thus, our results uncover novel mechanisms of action of VLC-FA at cerebellar synapses, and elucidate the synaptic dysfunction underlying SCA34 pathology.SIGNIFICANCE STATEMENT Very long chain-fatty acids (VLC-FA) are an understudied class of fatty acids that are present in the brain. They are critical for brain function as their deficiency caused by mutations in elongation of very long fatty acids-4 (ELOVL4), the enzyme that mediates their biosynthesis, results in neurologic diseases including spinocerebellar ataxia-34 (SCA34), neuroichthyosis, and Stargardt-like macular dystrophy. In this study, we investigated the synaptic defects present in a rat model of SCA34 and identified defects in presynaptic neurotransmitter release and dendritic spine density at synapses in the cerebellum, a brain region involved in motor coordination. These results advance our understanding of the synaptic mechanisms regulated by VLC-FA and describe the synaptic dysfunction that leads to motor incoordination in SCA34.
Collapse
Affiliation(s)
- Raghavendra Y Nagaraja
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Megan A Stiles
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - David M Sherry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Martin-Paul Agbaga
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Mohiuddin Ahmad
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
5
|
Ramesh V, Liu F, Minto MS, Chan U, West AE. Bidirectional regulation of postmitotic H3K27me3 distributions underlie cerebellar granule neuron maturation dynamics. eLife 2023; 12:e86273. [PMID: 37092728 PMCID: PMC10181825 DOI: 10.7554/elife.86273] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/21/2023] [Indexed: 04/25/2023] Open
Abstract
The functional maturation of neurons is a prolonged process that extends past the mitotic exit and is mediated by the chromatin-dependent orchestration of gene transcription programs. We find that expression of this maturation gene program in mouse cerebellar granule neurons (CGNs) requires dynamic changes in the genomic distribution of histone H3 lysine 27 trimethylation (H3K27me3), demonstrating a function for this chromatin modification beyond its role in cell fate specification. The developmental loss of H3K27me3 at promoters of genes activated as CGNs mature is facilitated by the lysine demethylase and ASD-risk gene, Kdm6b. Interestingly, inhibition of the H3K27 methyltransferase EZH2 in newborn CGNs not only blocks the repression of progenitor genes but also impairs the induction of mature CGN genes, showing the importance of bidirectional H3K27me3 regulation across the genome. These data demonstrate that H3K27me3 turnover in developing postmitotic neurons regulates the temporal coordination of gene expression programs that underlie functional neuronal maturation.
Collapse
Affiliation(s)
- Vijyendra Ramesh
- Molecular Cancer Biology Program, Duke UniversityDurhamUnited States
| | - Fang Liu
- Department of Neurobiology, Duke UniversityDurhamUnited States
| | - Melyssa S Minto
- Department of Neurobiology, Duke UniversityDurhamUnited States
| | - Urann Chan
- Department of Neurobiology, Duke UniversityDurhamUnited States
| | - Anne E West
- Molecular Cancer Biology Program, Duke UniversityDurhamUnited States
- Department of Neurobiology, Duke UniversityDurhamUnited States
| |
Collapse
|
6
|
Martín R, Suárez-Pinilla AS, García-Font N, Laguna-Luque ML, López-Ramos JC, Oset-Gasque MJ, Gruart A, Delgado-García JM, Torres M, Sánchez-Prieto J. The activation of mGluR4 rescues parallel fiber synaptic transmission and LTP, motor learning and social behavior in a mouse model of Fragile X Syndrome. Mol Autism 2023; 14:14. [PMID: 37029391 PMCID: PMC10082511 DOI: 10.1186/s13229-023-00547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS), the most common inherited intellectual disability, is caused by the loss of expression of the Fragile X Messenger Ribonucleoprotein (FMRP). FMRP is an RNA-binding protein that negatively regulates the expression of many postsynaptic as well as presynaptic proteins involved in action potential properties, calcium homeostasis and neurotransmitter release. FXS patients and mice lacking FMRP suffer from multiple behavioral alterations, including deficits in motor learning for which there is currently no specific treatment. METHODS We performed electron microscopy, whole-cell patch-clamp electrophysiology and behavioral experiments to characterise the synaptic mechanisms underlying the motor learning deficits observed in Fmr1KO mice and the therapeutic potential of positive allosteric modulator of mGluR4. RESULTS We found that enhanced synaptic vesicle docking of cerebellar parallel fiber to Purkinje cell Fmr1KO synapses was associated with enhanced asynchronous release, which not only prevents further potentiation, but it also compromises presynaptic parallel fiber long-term potentiation (PF-LTP) mediated by β adrenergic receptors. A reduction in extracellular Ca2+ concentration restored the readily releasable pool (RRP) size, basal synaptic transmission, β adrenergic receptor-mediated potentiation, and PF-LTP. Interestingly, VU 0155041, a selective positive allosteric modulator of mGluR4, also restored both the RRP size and PF-LTP in mice of either sex. Moreover, when injected into Fmr1KO male mice, VU 0155041 improved motor learning in skilled reaching, classical eyeblink conditioning and vestibuloocular reflex (VOR) tests, as well as the social behavior alterations of these mice. LIMITATIONS We cannot rule out that the activation of mGluR4s via systemic administration of VU0155041 can also affect other brain regions. Further studies are needed to stablish the effect of a specific activation of mGluR4 in cerebellar granule cells. CONCLUSIONS Our study shows that an increase in synaptic vesicles, SV, docking may cause the loss of PF-LTP and motor learning and social deficits of Fmr1KO mice and that the reversal of these changes by pharmacological activation of mGluR4 may offer therapeutic relief for motor learning and social deficits in FXS.
Collapse
Affiliation(s)
- Ricardo Martín
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain.
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain.
| | - Alberto Samuel Suárez-Pinilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Nuria García-Font
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
- Centre for Discovery Brain Sciences and Simon Initiative for Developing Brain, University of Edinburgh, Edinburgh, EH89JZ, UK
| | | | - Juan C López-Ramos
- Division de Neurociencias, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - María Jesús Oset-Gasque
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
- Departamento de Bioquímica, Facultad de Farmacia, Universidad Complutense, Instituto Universitario Investigación en Neuroquímica, 28040, Madrid, Spain
| | - Agnes Gruart
- Division de Neurociencias, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | | | - Magdalena Torres
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain.
| |
Collapse
|
7
|
Transcriptional regulation of NRF1 on metabotropic glutamate receptors in a neonatal hypoxic‑ischemic encephalopathy rat model. Pediatr Res 2022:10.1038/s41390-022-02353-9. [PMID: 36280709 DOI: 10.1038/s41390-022-02353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neonatal hypoxic-ischemic encephalopathy (HIE) is a kind of brain injury that causes severe neurological disorders in newborns. Metabotropic glutamate receptors (mGluRs) and ionotropic glutamate receptors (iGluRs) are significantly associated with HIE and are involved in ischemia-induced excitotoxicity. This study aimed to investigate the upstream mechanisms of mGluRs and the transcriptional regulation by nuclear respiratory factor 1 (NRF1). METHODS The rat model of neonatal HIE was created using unilateral carotid artery ligation and in vitro oxygen-glucose deprivation paradigm. We used western blot, immunofluorescence, Nissl staining, and Morris water maze to investigate the impact of NRF1 on brain damage and learning memory deficit by HIE. We performed ChIP and luciferase activities to identify the transcriptional regulation of NRF1 on mGluRs. RESULTS The neuronal NRF1 and some glutamatergic genes expression synchronously declined in infarcted tissues. The NRF1 overexpression effectively restored the expression of some glutamatergic genes and improved cognitive performance. NRF1 regulated some members of mGluRs and iGluRs in hypoxic-ischemic neurons. Finally, NRF1 is bound to the promoter regions of Grm1, Grm2, and Grm8 to activate their transcription. CONCLUSIONS NRF1 is involved in the pathology of the neonatal HIE rat model, suggesting a novel therapeutic approach to neonatal HIE. IMPACT NRF1 and some glutamatergic genes were synchronously downregulated in the infarcted brain of the neonatal HIE rat model. NRF1 overexpression could rescue cognitive impairment caused by the neonatal HIE rat model. NRF1 regulated the expressions of Grm1, Grm2, and Grm8, which activated their transcription by binding to the promoter regions.
Collapse
|
8
|
Nanobody-based sensors reveal a high proportion of mGlu heterodimers in the brain. Nat Chem Biol 2022; 18:894-903. [PMID: 35681029 DOI: 10.1038/s41589-022-01050-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/29/2022] [Indexed: 11/08/2022]
Abstract
Membrane proteins, including ion channels, receptors and transporters, are often composed of multiple subunits and can form large complexes. Their specific composition in native tissues is difficult to determine and remains largely unknown. In this study, we developed a method for determining the subunit composition of endogenous cell surface protein complexes from isolated native tissues. Our method relies on nanobody-based sensors, which enable proximity detection between subunits in time-resolved Förster resonance energy transfer (FRET) measurements. Additionally, given conformation-specific nanobodies, the activation of these complexes can be recorded in native brain tissue. Applied to the metabotropic glutamate receptors in different brain regions, this approach revealed the clear existence of functional metabotropic glutamate (mGlu)2-mGlu4 heterodimers in addition to mGlu2 and mGlu4 homodimers. Strikingly, the mGlu4 subunits appear to be mainly heterodimers in the brain. Overall, these versatile biosensors can determine the presence and activity of endogenous membrane proteins in native tissues with high fidelity and convenience.
Collapse
|
9
|
Yeung J, Palpagama T, Turner C, Waldvogel H, Faull R, Kwakowsky A. mGluR1α expression in the hippocampus, subiculum, entorhinal cortex and superior temporal gyrus in Alzheimer's disease. IBRO Neurosci Rep 2022; 13:78-86. [PMID: 36590090 PMCID: PMC9795296 DOI: 10.1016/j.ibneur.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 01/04/2023] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the central nervous system, responsible for a plethora of cellular processes including memory formation and higher cerebral function and has been implicated in various neurological disease states. Alzheimer's disease (AD) is the leading neurodegenerative disorder worldwide and is characterized by significant cell loss and glutamatergic dysfunction. While there has been a focus on ionotropic glutamatergic receptors few studies have attempted to elucidate the pathological changes of metabotropic glutamate receptors (mGluRs) in AD. mGluRs are G-protein coupled receptors which have a wide-ranging functionality, including the regulation of neuronal injury and survival. In particular, the group I mGluRs (mGluR1 and mGluR5) are associated with ionotropic receptor activation and upregulation with resultant glutamate release in normal neuronal functioning. The mGluR subtype 1 splice variant a (mGluR1α) is the longest variant of the mGluR1 receptor, is localized to dendritic processes and is mainly plasma membrane-bound. Activation of mGluR1a has been shown to result in increased constitutive activity of ionotropic receptors, although its role in neurodegenerative and other neurological diseases is controversial, with some animal studies demonstrating potential neuroprotective properties in excito- and neurotoxic environments. In this study, the expression of mGluR1a within normal and AD human hippocampal tissue was quantified using immunohistochemistry. We found a significantly reduced expression of mGluR1α within the stratum pyramidale and radiatum of the CA1subregion, subiculum, and entorhinal cortex. This downregulation could result in potential dysregulation of the glutamatergic system with consequences on AD progression by promoting excitotoxicity, but alternatively may also be a neuroprotective mechanism to prevent mGluR1α associated excitotoxic effects. In summary, more research is required to understand the role and possible consequences of mGluR1α downregulation in the human AD hippocampus, subiculum and entorhinal cortex and its potential as a therapeutic target.
Collapse
Affiliation(s)
- J.H.Y. Yeung
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - T.H. Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C. Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - H.J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - R.L.M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - A. Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
- Corresponding author at: Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
10
|
Zieger HL, Choquet D. Nanoscale synapse organization and dysfunction in neurodevelopmental disorders. Neurobiol Dis 2021; 158:105453. [PMID: 34314857 DOI: 10.1016/j.nbd.2021.105453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022] Open
Abstract
Neurodevelopmental disorders such as those linked to intellectual disabilities or autism spectrum disorder are thought to originate in part from genetic defects in synaptic proteins. Single gene mutations linked to synapse dysfunction can broadly be separated in three categories: disorders of transcriptional regulation, disorders of synaptic signaling and disorders of synaptic scaffolding and structures. The recent developments in super-resolution imaging technologies and their application to synapses have unraveled a complex nanoscale organization of synaptic components. On the one hand, part of receptors, adhesion proteins, ion channels, scaffold elements and the pre-synaptic release machinery are partitioned in subsynaptic nanodomains, and the respective organization of these nanodomains has tremendous impact on synaptic function. For example, pre-synaptic neurotransmitter release sites are partly aligned with nanometer precision to postsynaptic receptor clusters. On the other hand, a large fraction of synaptic components is extremely dynamic and constantly exchanges between synaptic domains and extrasynaptic or intracellular compartments. It is largely the combination of the exquisitely precise nanoscale synaptic organization of synaptic components and their high dynamic that allows the rapid and profound regulation of synaptic function during synaptic plasticity processes that underlie adaptability of brain function, learning and memory. It is very tempting to speculate that genetic defects that lead to neurodevelopmental disorders and target synaptic scaffolds and structures mediate their deleterious impact on brain function through perturbing synapse nanoscale dynamic organization. We discuss here how applying super-resolution imaging methods in models of neurodevelopmental disorders could help in addressing this question.
Collapse
Affiliation(s)
- Hanna L Zieger
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Daniel Choquet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France; Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, F-33000 Bordeaux, France.
| |
Collapse
|
11
|
Kryszkowski W, Boczek T. The G Protein-Coupled Glutamate Receptors as Novel Molecular Targets in Schizophrenia Treatment-A Narrative Review. J Clin Med 2021; 10:jcm10071475. [PMID: 33918323 PMCID: PMC8038150 DOI: 10.3390/jcm10071475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/02/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric disease with an unknown etiology. The research into the neurobiology of this disease led to several models aimed at explaining the link between perturbations in brain function and the manifestation of psychotic symptoms. The glutamatergic hypothesis postulates that disrupted glutamate neurotransmission may mediate cognitive and psychosocial impairments by affecting the connections between the cortex and the thalamus. In this regard, the greatest attention has been given to ionotropic NMDA receptor hypofunction. However, converging data indicates metabotropic glutamate receptors as crucial for cognitive and psychomotor function. The distribution of these receptors in the brain regions related to schizophrenia and their regulatory role in glutamate release make them promising molecular targets for novel antipsychotics. This article reviews the progress in the research on the role of metabotropic glutamate receptors in schizophrenia etiopathology.
Collapse
Affiliation(s)
- Waldemar Kryszkowski
- General Psychiatric Ward, Babinski Memorial Hospital in Lodz, 91229 Lodz, Poland;
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, 92215 Lodz, Poland
- Correspondence:
| |
Collapse
|
12
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2020; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
13
|
Boccella S, Marabese I, Guida F, Luongo L, Maione S, Palazzo E. The Modulation of Pain by Metabotropic Glutamate Receptors 7 and 8 in the Dorsal Striatum. Curr Neuropharmacol 2020; 18:34-50. [PMID: 31210112 PMCID: PMC7327935 DOI: 10.2174/1570159x17666190618121859] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/01/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022] Open
Abstract
The dorsal striatum, apart from controlling voluntary movement, displays a recently demonstrated pain inhibition. It is connected to the descending pain modulatory system and in particular to the rostral ventromedial medulla through the medullary dorsal reticular nucleus. Diseases of the basal ganglia, such as Parkinson's disease, in addition to being characterized by motor disorders, are associated with pain and hyperactivation of the excitatory transmission. A way to counteract glutamatergic hyperactivation is through the activation of group III metabotropic glutamate receptors (mGluRs), which are located on presynaptic terminals inhibiting neurotransmitter release. So far the mGluRs of group III have been the least investigated, owing to a lack of selective tools. More recently, selective ligands for each mGluR of group III, in particular positive and negative allosteric modulators, have been developed and the role of each subtype is starting to emerge. The neuroprotective potential of group III mGluRs in pathological conditions, such as those characterized by elevate glutamate, has been recently shown. In the dorsal striatum, mGluR7 and mGluR8 are located at glutamatergic corticostriatal terminals and their stimulation inhibits pain in pathological conditions such as neuropathic pain. The two receptors in the dorsal striatum have instead a different role in pain control in normal conditions. This review will discuss recent results focusing on the contribution of mGluR7 and mGluR8 in the dorsal striatal control of pain. The role of mGluR4, whose antiparkinsonian activity is widely reported, will also be addressed.
Collapse
Affiliation(s)
- Serena Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
14
|
Siddig S, Aufmkolk S, Doose S, Jobin ML, Werner C, Sauer M, Calebiro D. Super-resolution imaging reveals the nanoscale organization of metabotropic glutamate receptors at presynaptic active zones. SCIENCE ADVANCES 2020; 6:eaay7193. [PMID: 32494600 PMCID: PMC7159906 DOI: 10.1126/sciadv.aay7193] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/22/2020] [Indexed: 05/12/2023]
Abstract
G protein-coupled receptors (GPCRs) play a fundamental role in the modulation of synaptic transmission. A pivotal example is provided by the metabotropic glutamate receptor type 4 (mGluR4), which inhibits glutamate release at presynaptic active zones (AZs). However, how GPCRs are organized within AZs to regulate neurotransmission remains largely unknown. Here, we applied two-color super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) to investigate the nanoscale organization of mGluR4 at parallel fiber AZs in the mouse cerebellum. We find an inhomogeneous distribution, with multiple nanodomains inside AZs, each containing, on average, one to two mGluR4 subunits. Within these nanodomains, mGluR4s are often localized in close proximity to voltage-dependent CaV2.1 channels and Munc-18-1, which are both essential for neurotransmitter release. These findings provide previously unknown insights into the molecular organization of GPCRs at AZs, suggesting a likely implication of a close association between mGluR4 and the secretory machinery in modulating synaptic transmission.
Collapse
Affiliation(s)
- Sana Siddig
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, Würzburg, Germany
- Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Sarah Aufmkolk
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Marie-Lise Jobin
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, Würzburg, Germany
| | - Christian Werner
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
- Corresponding author. (M.S.); (D.C.)
| | - Davide Calebiro
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, Würzburg, Germany
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, UK
- Corresponding author. (M.S.); (D.C.)
| |
Collapse
|
15
|
Klotz L, Wendler O, Frischknecht R, Shigemoto R, Schulze H, Enz R. Localization of group II and III metabotropic glutamate receptors at pre- and postsynaptic sites of inner hair cell ribbon synapses. FASEB J 2019; 33:13734-13746. [PMID: 31585509 DOI: 10.1096/fj.201901543r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the CNS binding to a variety of glutamate receptors. Metabotropic glutamate receptors (mGluR1 to mGluR8) can act excitatory or inhibitory, depending on associated signal cascades. Expression and localization of inhibitory acting mGluRs at inner hair cells (IHCs) in the cochlea are largely unknown. Here, we analyzed expression of mGluR2, mGluR3, mGluR4, mGluR6, mGluR7, and mGluR8 and investigated their localization with respect to the presynaptic ribbon of IHC synapses. We detected transcripts for mGluR2, mGluR3, and mGluR4 as well as for mGluR7a, mGluR7b, mGluR8a, and mGluR8b splice variants. Using receptor-specific antibodies in cochlear wholemounts, we found expression of mGluR2, mGluR4, and mGluR8b close to presynaptic ribbons. Super resolution and confocal microscopy in combination with 3-dimensional reconstructions indicated a postsynaptic localization of mGluR2 that overlaps with postsynaptic density protein 95 on dendrites of afferent type I spiral ganglion neurons. In contrast, mGluR4 and mGluR8b were expressed at the presynapse close to IHC ribbons. In summary, we localized in detail 3 mGluR types at IHC ribbon synapses, providing a fundament for new therapeutical strategies that could protect the cochlea against noxious stimuli and excitotoxicity.-Klotz, L., Wendler, O., Frischknecht, R., Shigemoto, R., Schulze, H., Enz, R. Localization of group II and III metabotropic glutamate receptors at pre- and postsynaptic sites of inner hair cell ribbon synapses.
Collapse
Affiliation(s)
- Lisa Klotz
- Institute for Biochemistry (Emil-Fischer-Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Olaf Wendler
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Holger Schulze
- Department of Otorhinolaryngology, Head and Neck Surgery, Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf Enz
- Institute for Biochemistry (Emil-Fischer-Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Girard B, Tuduri P, Moreno MP, Sakkaki S, Barboux C, Bouschet T, Varrault A, Vitre J, McCort-Tranchepain I, Dairou J, Acher F, Fagni L, Marchi N, Perroy J, Bertaso F. The mGlu7 receptor provides protective effects against epileptogenesis and epileptic seizures. Neurobiol Dis 2019; 129:13-28. [PMID: 31051234 DOI: 10.1016/j.nbd.2019.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/28/2019] [Accepted: 04/29/2019] [Indexed: 01/26/2023] Open
Abstract
Finding new targets to control or reduce seizure activity is essential to improve the management of epileptic patients. We hypothesized that activation of the pre-synaptic and inhibitory metabotropic glutamate receptor type 7 (mGlu7) reduces spontaneous seizures. We tested LSP2-9166, a recently developed mGlu7/4 agonist with unprecedented potency on mGlu7 receptors, in two paradigms of epileptogenesis. In a model of chemically induced epileptogenesis (pentylenetetrazole systemic injection), LSP2-9166 induces an anti-epileptogenic effect rarely observed in preclinical studies. In particular, we found a bidirectional modulation of seizure progression by mGlu4 and mGlu7 receptors, the latter preventing kindling. In the intra-hippocampal injection of kainic acid mouse model that mimics the human mesial temporal lobe epilepsy, we found that LSP2-9166 reduces seizure frequency and hippocampal sclerosis. LSP2-9166 also acts as an anti-seizure drug on established seizures in both models tested. Specific modulation of the mGlu7 receptor could represent a novel approach to reduce pathological network remodeling.
Collapse
Affiliation(s)
- Benoit Girard
- IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Pola Tuduri
- IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | | | - Sophie Sakkaki
- IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | | | | | - Annie Varrault
- IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Jihane Vitre
- IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | | | | | | | - Laurent Fagni
- IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Nicola Marchi
- IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Julie Perroy
- IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | | |
Collapse
|
17
|
Bossi S, Helleringer R, Galante M, Monlleó E, Trapero A, Rovira X, Daniel H, Llebaria A, McLean H. A Light-Controlled Allosteric Modulator Unveils a Role for mGlu 4 Receptors During Early Stages of Ischemia in the Rodent Cerebellar Cortex. Front Cell Neurosci 2018; 12:449. [PMID: 30542267 PMCID: PMC6277836 DOI: 10.3389/fncel.2018.00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
Metabotropic glutamate receptors (mGlus) are G Protein coupled-receptors that modulate synaptic transmission and plasticity in the central nervous system. Some act as autoreceptors to control neurotransmitter release at excitatory synapses and have become attractive targets for drug therapy to treat certain neurological disorders. However, the high degree of sequence conservation around the glutamate binding site makes the development of subtype-specific orthosteric ligands difficult to achieve. This problem can be circumvented by designing molecules that target specific less well conserved allosteric sites. One such allosteric drug, the photo-switchable compound OptoGluNAM4.1, has been recently employed to reversibly inhibit the activity of metabotropic glutamate 4 (mGlu4) receptors in cell cultures and in vivo. We studied OptoGluNAM4.1 as a negative modulator of neurotransmission in rodent cerebellar slices at the parallel fiber – Purkinje cell synapse. Our data show that OptoGluNAM4.1 antagonizes pharmacological activation of mGlu4 receptors in a fully reversible and photo-controllable manner. In addition, for the first time, this new allosteric modulator allowed us to demonstrate that, in brain slices from the rodent cerebellar cortex, mGlu4 receptors are endogenously activated in excitotoxic conditions, such as the early phases of simulated cerebellar ischemia, which is associated with elevated levels of extracellular glutamate. These findings support OptoGluNAM4.1 as a promising new tool for unraveling the role of mGlu4 receptors in the central nervous system in physio-pathological conditions.
Collapse
Affiliation(s)
- Simon Bossi
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| | - Romain Helleringer
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| | - Micaela Galante
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| | - Ester Monlleó
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Ana Trapero
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Xavier Rovira
- Molecular Photopharmacology Research Group, The Tissue Repair and Regeneration Laboratory, University of Vic - Central University of Catalonia, Vic, Spain
| | - Hervé Daniel
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Heather McLean
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| |
Collapse
|
18
|
Wan YQ, Feng JG, Li M, Wang MZ, Liu L, Liu X, Duan XX, Zhang CX, Wang XB. Prefrontal cortex miR-29b-3p plays a key role in the antidepressant-like effect of ketamine in rats. Exp Mol Med 2018; 50:1-14. [PMID: 30369596 PMCID: PMC6204429 DOI: 10.1038/s12276-018-0164-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 01/07/2023] Open
Abstract
Ketamine has a rapid, obvious, and persistent antidepressant effect, but its underlying molecular mechanisms remain unknown. Recently, microRNAs (miRNAs) have emerged as important modulators of ketamine's antidepressant effect. We investigated the alteration in miR-29b-3p in the brain of rats subjected to ketamine administration and chronic unpredictable mild stress (CUMS), and a sucrose preference test and forced swimming test were used to evaluate the rats' depressive-like state. We used recombination adeno-associated virus (rAAV) or lentivirus-expressing miR-29b-3p to observe the change in metabotropic glutamate receptor 4 (GRM4). Cell culture and electrophysiological recordings were used to evaluate the function of miR-29b-3p. Ketamine dramatically increased miR-29b-3p expression in the prefrontal cortex of the normal rats. The dual luciferase reporter test confirmed that GRM4 was the target of miR-29b-3p. The miR-29b-3p levels were downregulated, while the GRM4 levels were upregulated in the prefrontal cortex of the depressive-like rats. The ketamine treatment increased miR-29b-3p expression and decreased GRM4 expression in the prefrontal cortex of the depressive-like rats and primary neurons. By overexpressing and silencing miR-29b-3p, we further validated that miR-29b-3p could negatively regulate GRM4. The silencing of miR-29b-3p suppressed the Ca2+ influx in the prefrontal cortex neurons. The miR-29b-3p overexpression contributed to cell survival, cytodendrite growth, increases in extracellular glutamate concentration, and cell apoptosis inhibition. The overexpression of miR-29b-3p by rAAV resulted in a noticeable relief of the depressive behaviors of the CUMS rats and a lower expression of GRM4. The miR-29b-3p/GRM4 pathway acts as a critical mediator of ketamine's antidepressant effect in depressive-like rats and could be considered a potential therapeutic target for treating major depression disorder.
Collapse
Affiliation(s)
- Yun-Qiang Wan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Jian-Guo Feng
- Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Mao Li
- Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Mao-Zhou Wang
- Department of Intensive Care Unit, The Affiliated Chaoyang Hospital of Capital Medical University, Beijing, People's Republic of China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Xueru Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Xiao-Xia Duan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Chun-Xiang Zhang
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiao-Bin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China.
| |
Collapse
|
19
|
Zang Z, Geiger LS, Braun U, Cao H, Zangl M, Schäfer A, Moessnang C, Ruf M, Reis J, Schweiger JI, Dixson L, Moscicki A, Schwarz E, Meyer-Lindenberg A, Tost H. Resting-state brain network features associated with short-term skill learning ability in humans and the influence of N-methyl-d-aspartate receptor antagonism. Netw Neurosci 2018; 2:464-480. [PMID: 30320294 PMCID: PMC6175691 DOI: 10.1162/netn_a_00045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/11/2018] [Indexed: 01/21/2023] Open
Abstract
Graph theoretical functional magnetic resonance imaging (fMRI) studies have demonstrated that brain networks reorganize significantly during motor skill acquisition, yet the associations between motor learning ability, brain network features, and the underlying biological mechanisms remain unclear. In the current study, we applied a visually guided sequential pinch force learning task and graph theoretical analyses to investigate the associations between short-term motor learning ability and resting-state brain network metrics in 60 healthy subjects. We further probed the test-retest reliability (n = 26) and potential effects of the N-methyl-d-aspartate (NMDA) antagonist ketamine (n = 19) in independent healthy volunteers. Our results show that the improvement of motor performance after short-term training was positively correlated with small-worldness (p = 0.032) and global efficiency (p = 0.025), whereas negatively correlated with characteristic path length (p = 0.014) and transitivity (p = 0.025). In addition, using network-based statistics (NBS), we identified a learning ability–associated (p = 0.037) and ketamine-susceptible (p = 0.027) cerebellar-cortical network with fair to good reliability (intraclass correlation coefficient [ICC] > 0.7) and higher functional connectivity in better learners. Our results provide new evidence for the association of intrinsic brain network features with motor learning and suggest a role of NMDA-related glutamatergic processes in learning-associated subnetworks. Learning a new motor skill prompts immediate reconfigurations of distributed brain networks followed by adaptive changes in intrinsic brain circuits related to synaptic plasticity. Here, we identify global brain network properties and a cerebellar-cortical functional subnetwork that are both significantly associated with motor learning ability in a previously trained visuomotor task in humans. We further show that the associated functional subnetwork connectivity but not the global brain network properties are susceptible to ketamine. Our findings suggest a distinct functional role for learning-related global versus local network metrics and support the idea of a preferential susceptibility of learning-associated subnetworks to N-methyl-d-aspartate antagonist and plasticity-related consolidation effects.
Collapse
Affiliation(s)
- Zhenxiang Zang
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Lena S Geiger
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Urs Braun
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Hengyi Cao
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Maria Zangl
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Axel Schäfer
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Matthias Ruf
- Department of Neuroimaging, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Janine Reis
- Department of Neurology and Neurophysiology, Albert-Ludwigs-University, Freiburg, Germany
| | - Janina I Schweiger
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Luanna Dixson
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Alexander Moscicki
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| |
Collapse
|
20
|
Zussy C, Gómez-Santacana X, Rovira X, De Bundel D, Ferrazzo S, Bosch D, Asede D, Malhaire F, Acher F, Giraldo J, Valjent E, Ehrlich I, Ferraguti F, Pin JP, Llebaria A, Goudet C. Dynamic modulation of inflammatory pain-related affective and sensory symptoms by optical control of amygdala metabotropic glutamate receptor 4. Mol Psychiatry 2018; 23:509-520. [PMID: 27994221 DOI: 10.1038/mp.2016.223] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 10/06/2016] [Accepted: 10/14/2016] [Indexed: 12/30/2022]
Abstract
Contrary to acute pain, chronic pain does not serve as a warning signal and must be considered as a disease per se. This pathology presents a sensory and psychological dimension at the origin of affective and cognitive disorders. Being largely refractory to current pharmacotherapies, identification of endogenous systems involved in persistent and chronic pain is crucial. The amygdala is a key brain region linking pain sensation with negative emotions. Here, we show that activation of a specific intrinsic neuromodulatory system within the amygdala associated with type 4 metabotropic glutamate receptors (mGlu4) abolishes sensory and affective symptoms of persistent pain such as hypersensitivity to pain, anxiety- and depression-related behaviors, and fear extinction impairment. Interestingly, neuroanatomical and synaptic analysis of the amygdala circuitry suggests that the effects of mGlu4 activation occur outside the central nucleus via modulation of multisensory thalamic inputs to lateral amygdala principal neurons and dorso-medial intercalated cells. Furthermore, we developed optogluram, a small diffusible photoswitchable positive allosteric modulator of mGlu4. This ligand allows the control of endogenous mGlu4 activity with light. Using this photopharmacological approach, we rapidly and reversibly inhibited behavioral symptoms associated with persistent pain through optical control of optogluram in the amygdala of freely behaving animals. Altogether, our data identify amygdala mGlu4 signaling as a mechanism that bypasses central sensitization processes to dynamically modulate persistent pain symptoms. Our findings help to define novel and more precise therapeutic interventions for chronic pain, and exemplify the potential of optopharmacology to study the dynamic activity of endogenous neuromodulatory mechanisms in vivo.
Collapse
Affiliation(s)
- C Zussy
- Institut de Génomique Fonctionnelle, CNRS, UMR-5203, Université de Montpellier, Montpellier, France.,INSERM, U1191, Montpellier, France
| | - X Gómez-Santacana
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.,Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - X Rovira
- Institut de Génomique Fonctionnelle, CNRS, UMR-5203, Université de Montpellier, Montpellier, France.,INSERM, U1191, Montpellier, France
| | - D De Bundel
- Institut de Génomique Fonctionnelle, CNRS, UMR-5203, Université de Montpellier, Montpellier, France.,INSERM, U1191, Montpellier, France
| | - S Ferrazzo
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - D Bosch
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - D Asede
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - F Malhaire
- Institut de Génomique Fonctionnelle, CNRS, UMR-5203, Université de Montpellier, Montpellier, France.,INSERM, U1191, Montpellier, France
| | - F Acher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - J Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Network Biomedical Research Center on Mental Health (CIBERSAM), Madrid, Spain
| | - E Valjent
- Institut de Génomique Fonctionnelle, CNRS, UMR-5203, Université de Montpellier, Montpellier, France.,INSERM, U1191, Montpellier, France
| | - I Ehrlich
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - F Ferraguti
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - J-P Pin
- Institut de Génomique Fonctionnelle, CNRS, UMR-5203, Université de Montpellier, Montpellier, France.,INSERM, U1191, Montpellier, France
| | - A Llebaria
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - C Goudet
- Institut de Génomique Fonctionnelle, CNRS, UMR-5203, Université de Montpellier, Montpellier, France.,INSERM, U1191, Montpellier, France
| |
Collapse
|
21
|
Volpi C, Fallarino F, Mondanelli G, Macchiarulo A, Grohmann U. Opportunities and challenges in drug discovery targeting metabotropic glutamate receptor 4. Expert Opin Drug Discov 2018; 13:411-423. [DOI: 10.1080/17460441.2018.1443076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
22
|
Selvam C, Lemasson IA, Brabet I, Oueslati N, Karaman B, Cabaye A, Tora AS, Commare B, Courtiol T, Cesarini S, McCort-Tranchepain I, Rigault D, Mony L, Bessiron T, McLean H, Leroux FR, Colobert F, Daniel H, Goupil-Lamy A, Bertrand HO, Goudet C, Pin JP, Acher FC. Increased Potency and Selectivity for Group III Metabotropic Glutamate Receptor Agonists Binding at Dual sites. J Med Chem 2018; 61:1969-1989. [DOI: 10.1021/acs.jmedchem.7b01438] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chelliah Selvam
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Isabelle A. Lemasson
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Isabelle Brabet
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Nadia Oueslati
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Berin Karaman
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Alexandre Cabaye
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Amélie S. Tora
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Bruno Commare
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
- UMR 7509/CNRS/ECPM, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg 02, France
| | - Tiphanie Courtiol
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Sara Cesarini
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Isabelle McCort-Tranchepain
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Delphine Rigault
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Laetitia Mony
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
- Institut de Biologie, Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, PSL University, 46 rue d’Ulm, 75005 Paris, France
| | - Thomas Bessiron
- Pharmacologie et Biochimie de la Synapse, Université Paris-Sud/CNRS/NeuroPSI−UMR 9197, F-91405 Orsay, France
| | - Heather McLean
- Pharmacologie et Biochimie de la Synapse, Université Paris-Sud/CNRS/NeuroPSI−UMR 9197, F-91405 Orsay, France
| | - Frédéric R. Leroux
- UMR 7509/CNRS/ECPM, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg 02, France
| | - Françoise Colobert
- UMR 7509/CNRS/ECPM, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg 02, France
| | - Hervé Daniel
- Pharmacologie et Biochimie de la Synapse, Université Paris-Sud/CNRS/NeuroPSI−UMR 9197, F-91405 Orsay, France
| | - Anne Goupil-Lamy
- BIOVIA, Dassault Systèmes, 10 rue Marcel Dassault, CS 40501, 78946 Vélizy-Villacoublay Cedex, France
| | - Hugues-Olivier Bertrand
- BIOVIA, Dassault Systèmes, 10 rue Marcel Dassault, CS 40501, 78946 Vélizy-Villacoublay Cedex, France
| | - Cyril Goudet
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Jean-Philippe Pin
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Francine C. Acher
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| |
Collapse
|
23
|
Moreno Delgado D, Møller TC, Ster J, Giraldo J, Maurel D, Rovira X, Scholler P, Zwier JM, Perroy J, Durroux T, Trinquet E, Prezeau L, Rondard P, Pin JP. Pharmacological evidence for a metabotropic glutamate receptor heterodimer in neuronal cells. eLife 2017; 6. [PMID: 28661401 PMCID: PMC5540479 DOI: 10.7554/elife.25233] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/26/2017] [Indexed: 12/25/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are mandatory dimers playing important roles in regulating CNS function. Although assumed to form exclusive homodimers, 16 possible heterodimeric mGluRs have been proposed but their existence in native cells remains elusive. Here, we set up two assays to specifically identify the pharmacological properties of rat mGlu heterodimers composed of mGlu2 and 4 subunits. We used either a heterodimer-specific conformational LRET-based biosensor or a system that guarantees the cell surface targeting of the heterodimer only. We identified mGlu2-4 specific pharmacological fingerprints that were also observed in a neuronal cell line and in lateral perforant path terminals naturally expressing mGlu2 and mGlu4. These results bring strong evidence for the existence of mGlu2-4 heterodimers in native cells. In addition to reporting a general approach to characterize heterodimeric mGluRs, our study opens new avenues to understanding the pathophysiological roles of mGlu heterodimers. DOI:http://dx.doi.org/10.7554/eLife.25233.001
Collapse
Affiliation(s)
- David Moreno Delgado
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Thor C Møller
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Jeanne Ster
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Network Biomedical Research Center on Mental Health, Madrid, Spain
| | - Damien Maurel
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Xavier Rovira
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Pauline Scholler
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | | | - Julie Perroy
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | | | - Laurent Prezeau
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| |
Collapse
|
24
|
Maksymetz J, Moran SP, Conn PJ. Targeting metabotropic glutamate receptors for novel treatments of schizophrenia. Mol Brain 2017; 10:15. [PMID: 28446243 PMCID: PMC5405554 DOI: 10.1186/s13041-017-0293-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
Support for the N-methyl-D-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia has led to increasing focus on restoring proper glutamatergic signaling as an approach for treatment of this devastating disease. The ability of metabotropic glutamate (mGlu) receptors to modulate glutamatergic neurotransmission has thus attracted considerable attention for the development of novel antipsychotics. Consisting of eight subtypes classified into three groups based on sequence homology, signal transduction, and pharmacology, the mGlu receptors provide a wide range of targets to modulate NMDAR function as well as glutamate release. Recently, allosteric modulators of mGlu receptors have been developed that allow unprecedented selectivity among subtypes, not just groups, facilitating the investigation of the effects of subtype-specific modulation. In preclinical animal models, positive allosteric modulators (PAMs) of the group I mGlu receptor mGlu5 have efficacy across all three symptom domains of schizophrenia (positive, negative, and cognitive). The discovery and development of mGlu5 PAMs that display unique signal bias suggests that efficacy can be retained while avoiding the neurotoxic effects of earlier compounds. Interestingly, mGlu1 negative allosteric modulators (NAMs) appear efficacious in positive symptom models of the disease but are still in early preclinical development. While selective group II mGlu receptor (mGlu2/3) agonists have reached clinical trials but were unsuccessful, specific mGlu2 or mGlu3 receptor targeting still hold great promise. Genetic studies implicated mGlu2 in the antipsychotic effects of group II agonists and mGlu2 PAMs have since entered into clinical trials. Additionally, mGlu3 appears to play an important role in cognition, may confer neuroprotective effects, and thus is a promising target to alleviate cognitive deficits in schizophrenia. Although group III mGlu receptors (mGlu4/6/7/8) have attracted less attention, mGlu4 agonists and PAMs appear to have efficacy across all three symptoms domains in preclinical models. The recent discovery of heterodimers comprising mGlu2 and mGlu4 may explain the efficacy of mGlu4 selective compounds but this remains to be determined. Taken together, compounds targeting mGlu receptors, specifically subtype-selective allosteric modulators, provide a compelling alternative approach to fill the unmet clinical needs for patients with schizophrenia.
Collapse
Affiliation(s)
- James Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232 USA
| | - Sean P. Moran
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232 USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232 USA
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232 USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232 USA
| |
Collapse
|
25
|
Chardonnet S, Bessiron T, Ramos CI, Dammak R, Richard MA, Boursier C, Cadilhac C, Coquelle FM, Bossi S, Ango F, Le Maréchal P, Decottignies P, Berrier C, McLean H, Daniel H. Native metabotropic glutamate receptor 4 depresses synaptic transmission through an unusual Gα q transduction pathway. Neuropharmacology 2017; 121:247-260. [PMID: 28456688 DOI: 10.1016/j.neuropharm.2017.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/22/2017] [Accepted: 04/24/2017] [Indexed: 01/13/2023]
Abstract
In cerebellar cortex, mGlu4 receptors located on parallel fibers play an essential role in normal motor function, but the molecular mechanisms involved are not yet completely understood. Using a strategy combining biochemical and electrophysiological approaches in the rodent cerebellum, we demonstrate that presynaptic mGlu4 receptors control synaptic transmission through an atypical activation of Gαq proteins. First, the Gαq subunit, PLC and PKC signaling proteins present in cerebellar extracts are retained on affinity chromatography columns grafted with different sequences of the cytoplasmic domain of mGlu4 receptor. The i2 loop and the C terminal domain were used as baits, two domains that are known to play a pivotal role in coupling selectivity and efficacy. Second, in situ proximity ligation assays show that native mGlu4 receptors and Gαq subunits are in close physical proximity in cerebellar cortical slices. Finally, electrophysiological experiments demonstrate that the molecular mechanisms underlying mGlu4 receptor-mediated inhibition of transmitter release at cerebellar Parallel Fiber (PF) - Molecular Layer Interneuron (MLI) synapses involves the Gαq-PLC signaling pathway. Taken together, our results provide compelling evidence that, in the rodent cerebellar cortex, mGlu4 receptors act by coupling to the Gαq protein and PLC effector system to reduce glutamate synaptic transmission.
Collapse
Affiliation(s)
- Solenne Chardonnet
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Thomas Bessiron
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Cathy Isaura Ramos
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Raoudha Dammak
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Marie-Ange Richard
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Céline Boursier
- Plateforme de Transcriptomique et Protéomique (Trans-Prot), UMS-IPSIT, Univ Paris Sud CNRS Inserm, F- 92296 Chatenay-Malabry, France
| | - Christelle Cadilhac
- Equipe Mise en place des circuits GABAergiques, Institut de Génomique Fonctionnelle, CNRS UMR 5203, F-34094 Montpellier Cedex 5, France
| | - Frédéric M Coquelle
- Department of Cell Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette Cedex, France
| | - Simon Bossi
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Fabrice Ango
- Equipe Mise en place des circuits GABAergiques, Institut de Génomique Fonctionnelle, CNRS UMR 5203, F-34094 Montpellier Cedex 5, France
| | - Pierre Le Maréchal
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Paulette Decottignies
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Catherine Berrier
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Heather McLean
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Hervé Daniel
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France.
| |
Collapse
|
26
|
Kinoshita PF, Leite JA, Orellana AMM, Vasconcelos AR, Quintas LEM, Kawamoto EM, Scavone C. The Influence of Na(+), K(+)-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. Front Physiol 2016; 7:195. [PMID: 27313535 PMCID: PMC4890531 DOI: 10.3389/fphys.2016.00195] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022] Open
Abstract
Decreased Na(+), K(+)-ATPase (NKA) activity causes energy deficiency, which is commonly observed in neurodegenerative diseases. The NKA is constituted of three subunits: α, β, and γ, with four distinct isoforms of the catalytic α subunit (α1-4). Genetic mutations in the ATP1A2 gene and ATP1A3 gene, encoding the α2 and α3 subunit isoforms, respectively can cause distinct neurological disorders, concurrent to impaired NKA activity. Within the central nervous system (CNS), the α2 isoform is expressed mostly in glial cells and the α3 isoform is neuron-specific. Mutations in ATP1A2 gene can result in familial hemiplegic migraine (FHM2), while mutations in the ATP1A3 gene can cause Rapid-onset dystonia-Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC), as well as the cerebellar ataxia, areflexia, pescavus, optic atrophy and sensorineural hearing loss (CAPOS) syndrome. Data indicates that the central glutamatergic system is affected by mutations in the α2 isoform, however further investigations are required to establish a connection to mutations in the α3 isoform, especially given the diagnostic confusion and overlap with glutamate transporter disease. The age-related decline in brain α2∕3 activity may arise from changes in the cyclic guanosine monophosphate (cGMP) and cGMP-dependent protein kinase (PKG) pathway. Glutamate, through nitric oxide synthase (NOS), cGMP and PKG, stimulates brain α2∕3 activity, with the glutamatergic N-methyl-D-aspartate (NMDA) receptor cascade able to drive an adaptive, neuroprotective response to inflammatory and challenging stimuli, including amyloid-β. Here we review the NKA, both as an ion pump as well as a receptor that interacts with NMDA, including the role of NKA subunits mutations. Failure of the NKA-associated adaptive response mechanisms may render neurons more susceptible to degeneration over the course of aging.
Collapse
Affiliation(s)
- Paula F. Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Jacqueline A. Leite
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Ana Maria M. Orellana
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Andrea R. Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Luis E. M. Quintas
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Elisa M. Kawamoto
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| |
Collapse
|
27
|
Amano I, Takatsuru Y, Toya S, Haijima A, Iwasaki T, Grasberger H, Refetoff S, Koibuchi N. Aberrant Cerebellar Development in Mice Lacking Dual Oxidase Maturation Factors. Thyroid 2016; 26:741-52. [PMID: 26914863 PMCID: PMC4860669 DOI: 10.1089/thy.2015.0034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Thyroid hormone (TH) plays a key role in the developing brain, including the cerebellum. TH deficiency induces organizational changes of the cerebellum, causing cerebellar ataxia. However, the mechanisms causing these abnormalities are poorly understood. Various animal models have been used to study the mechanism. Lacking dual oxidase (DUOX) and its maturation factor (DUOXA) are major inducers of congenital hypothyroidism. Thus, this study examined the organizational changes of the cerebellum using knockout mice of the Duoxa gene (Duoxa-/-). METHODS The morphological, behavioral, and electrophysiological changes were analyzed in wild type (Wt) and Duoxa-deficient (Duoxa-/-) mice from postnatal day (P) 10 to P30. To detect the changes in the expression levels of presynaptic proteins, Western blot analysis was performed. RESULTS The proliferation and migration of granule cells was delayed after P15 in Duoxa-/- mice. However, these changes disappeared by P25. Although the cerebellar structure of Duoxa-/- mice was not significantly different from that of Wt mice at P25, motor coordination was impaired. It was also found that the amplitude of paired-pulse facilitation at parallel fiber-Purkinje cell synapses decreased in Duoxa-/- mice, particularly at P15. There were no differences between expression levels of presynaptic proteins regulating neurotransmitter release at P25. CONCLUSIONS These results indicate that the anatomical catch-up growth of the cerebellum did not normalize its function because of the disturbance of neuronal circuits by the combined effect of hypothyroidism and functional disruption of the DUOX/DUOXA complex.
Collapse
Affiliation(s)
- Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yusuke Takatsuru
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Syutaro Toya
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Asahi Haijima
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Toshiharu Iwasaki
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Helmut Grasberger
- Department of Medicine, The University of Chicago, Chicago, Illinois
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, Illinois
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
- Department of Genetics, The University of Chicago, Chicago, Illinois
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
28
|
Volpi C, Mondanelli G, Pallotta MT, Vacca C, Iacono A, Gargaro M, Albini E, Bianchi R, Belladonna ML, Celanire S, Mordant C, Heroux M, Royer-Urios I, Schneider M, Vitte PA, Cacquevel M, Galibert L, Poli SM, Solari A, Bicciato S, Calvitti M, Antognelli C, Puccetti P, Orabona C, Fallarino F, Grohmann U. Allosteric modulation of metabotropic glutamate receptor 4 activates IDO1-dependent, immunoregulatory signaling in dendritic cells. Neuropharmacology 2015; 102:59-71. [PMID: 26522434 PMCID: PMC4720030 DOI: 10.1016/j.neuropharm.2015.10.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/05/2015] [Accepted: 10/26/2015] [Indexed: 01/01/2023]
Abstract
Metabotropic glutamate receptor 4 (mGluR4) possesses immune modulatory properties in vivo, such that a positive allosteric modulator (PAM) of the receptor confers protection on mice with relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE). ADX88178 is a newly-developed, one such mGluR4 modulator with high selectivity, potency, and optimized pharmacokinetics. Here we found that application of ADX88178 in the RR-EAE model system converted disease into a form of mild—yet chronic—neuroinflammation that remained stable for over two months after discontinuing drug treatment. In vitro, ADX88178 modulated the cytokine secretion profile of dendritic cells (DCs), increasing production of tolerogenic IL-10 and TGF-β. The in vitro effects required activation of a Gi-independent, alternative signaling pathway that involved phosphatidylinositol-3-kinase (PI3K), Src kinase, and the signaling activity of indoleamine 2,3-dioxygenase 1 (IDO1). A PI3K inhibitor as well as small interfering RNA targeting Ido1—but not pertussis toxin, which affects Gi protein-dependent responses—abrogated the tolerogenic effects of ADX88178-conditioned DCs in vivo. Thus our data indicate that, in DCs, highly selective and potent mGluR4 PAMs such as ADX88178 may activate a Gi-independent, long-lived regulatory pathway that could be therapeutically exploited in chronic autoimmune diseases such as multiple sclerosis. ADX88178, a selective mGluR4 PAM, exerts long-term therapeutic effects in RR-EAE. ADX88178 activates a noncanonical mGluR4 signaling in DCs. ADX88178 induces a tolerogenic functional phenotype in DCs via immunoregulatory IDO1. Highly selective mGluR4 PAMs may represent novel drugs in chronic neuroinflammation.
Collapse
Affiliation(s)
- Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Maria T Pallotta
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Carmine Vacca
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Alberta Iacono
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Elisa Albini
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Maria L Belladonna
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Sylvain Celanire
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Céline Mordant
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Madeleine Heroux
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Isabelle Royer-Urios
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Manfred Schneider
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Pierre-Alain Vitte
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Mathias Cacquevel
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Laurent Galibert
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Sonia-Maria Poli
- Addex Therapeutics, Chemin des Aulx 14, 1228, Plans les Ouates, Geneva, Switzerland
| | - Aldo Solari
- Department of Economics, Management, and Statistics, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milano, Italy
| | - Silvio Bicciato
- Department of Life Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Mario Calvitti
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Ciriana Orabona
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy.
| |
Collapse
|
29
|
Changes in the expression of genes encoding for mGlu4 and mGlu5 receptors and other regulators of the indirect pathway in acute mouse models of drug-induced parkinsonism. Neuropharmacology 2015; 95:50-8. [DOI: 10.1016/j.neuropharm.2015.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 11/23/2022]
|
30
|
Goddyn H, Callaerts-Vegh Z, D'Hooge R. Functional Dissociation of Group III Metabotropic Glutamate Receptors Revealed by Direct Comparison between the Behavioral Profiles of Knockout Mouse Lines. Int J Neuropsychopharmacol 2015; 18:pyv053. [PMID: 25999589 PMCID: PMC4756720 DOI: 10.1093/ijnp/pyv053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Group III metabotropic glutamate receptors (mGlu4, mGlu7, mGlu8) display differential brain distribution, which suggests different behavioral functions. However, comparison across the available animal studies remains methodologically hazardous and controversial. The present report directly compares knockouts for each group III receptor subtype using a single behavioral test battery and multivariate analysis. METHODS The behavioral phenotypes of C57BL/6J mice lacking mGlu4, mGlu7, or mGlu8 and their respective littermates were examined using a multimetric test battery, which included elements of neuromotor performance, exploratory behavior, and learning and memory. Multivariate statistical methods were used to identify subtype-specific behavioral profiles and variables that distinguished between these mouse lines. RESULTS It generally appears that mGlu7 plays a significant role in hippocampus-dependent spatial learning and in some fear-related behaviors, whereas mGlu4 is most clearly involved in startle and motivational processes. Excepting its influence on body weight, the effect of mGlu8 deletion on behavior appears more subtle than that of the other group III receptors. These receptors have been proposed as potential drug targets for a variety of psychopathological conditions. CONCLUSION On the basis of these controlled comparisons, we presently conclude that the different group III receptors indeed have quite distinct behavioral functions.
Collapse
Affiliation(s)
- Hannelore Goddyn
- KU Leuven, Laboratory of Biological Psychology, Leuven, Belgium (Drs Goddyn, Callaerts-Vegh, and D'Hooge)
| | - Zsuzsanna Callaerts-Vegh
- KU Leuven, Laboratory of Biological Psychology, Leuven, Belgium (Drs Goddyn, Callaerts-Vegh, and D'Hooge)
| | - Rudi D'Hooge
- KU Leuven, Laboratory of Biological Psychology, Leuven, Belgium (Drs Goddyn, Callaerts-Vegh, and D'Hooge).
| |
Collapse
|
31
|
Therapeutic potential of group III metabotropic glutamate receptor ligands in pain. Curr Opin Pharmacol 2015; 20:64-72. [DOI: 10.1016/j.coph.2014.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/18/2014] [Accepted: 11/21/2014] [Indexed: 11/22/2022]
|
32
|
Yasumatsu K, Manabe T, Yoshida R, Iwatsuki K, Uneyama H, Takahashi I, Ninomiya Y. Involvement of multiple taste receptors in umami taste: analysis of gustatory nerve responses in metabotropic glutamate receptor 4 knockout mice. J Physiol 2015; 593:1021-34. [PMID: 25529865 DOI: 10.1113/jphysiol.2014.284703] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/15/2014] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The taste receptor T1R1 + T1R3 heterodimer and metabotropic glutamate receptors (mGluR) may function as umami taste receptors. Here, we used mGluR4 knockout (mGluR4-KO) mice and examined the function of mGluR4 in peripheral taste responses of mice. The mGluR4-KO mice showed reduced responses to glutamate and L-AP4 (mGluR4 agonist) in the chorda tympani and glossopharyngeal nerves without affecting responses to other taste stimuli. Residual glutamate responses in mGluR4-KO mice were suppressed by gurmarin (T1R3 blocker) and AIDA (group I mGluR antagonist). The present study not only provided functional evidence for the involvement of mGluR4 in umami taste responses, but also suggested contributions of T1R1 + T1R3 and mGluR1 receptors in glutamate responses. ABSTRACT Umami taste is elicited by L-glutamate and some other amino acids and is thought to be initiated by G-protein-coupled receptors. Proposed umami receptors include heterodimers of taste receptor type 1, members 1 and 3 (T1R1 + T1R3), and metabotropic glutamate receptors 1 and 4 (mGluR1 and mGluR4). Accumulated evidences support the involvement of T1R1 + T1R3 in umami responses in mice. However, little is known about the in vivo function of mGluR in umami taste. Here, we examined taste responses of the chorda tympani (CT) and the glossopharyngeal (GL) nerves in wild-type mice and mice genetically lacking mGluR4 (mGluR4-KO). Our results indicated that compared to wild-type mice, mGluR4-KO mice showed significantly smaller gustatory nerve responses to glutamate and L-(+)-2-amino-4-phosphonobutyrate (an agonist for group III mGluR) in both the CT and GL nerves without affecting responses to other taste stimuli. Residual glutamate responses in mGluR4-KO mice were not affected by (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (an antagonist for group III mGluR), but were suppressed by gurmarin (a T1R3 blocker) in the CT and (RS)-1-aminoindan-1,5-dicarboxylic acid (an antagonist for group I mGluR) in the CT and GL nerve. In wild-type mice, both quisqualic acid (an agonist for group I mGluR) and L-(+)-2-amino-4-phosphonobutyrate elicited gustatory nerve responses and these responses were suppressed by addition of (RS)-1-aminoindan-1,5-dicarboxylic acid and (RS)-alpha-cyclopropyl-4-phosphonophenylglycine, respectively. Collectively, the present study provided functional evidences for the involvement of mGluR4 in umami taste responses in mice. The results also suggest that T1R1 + T1R3 and mGluR1 are involved in umami taste responses in mice. Thus, umami taste would be mediated by multiple receptors.
Collapse
Affiliation(s)
- Keiko Yasumatsu
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Raber J, Duvoisin RM. Novel metabotropic glutamate receptor 4 and glutamate receptor 8 therapeutics for the treatment of anxiety. Expert Opin Investig Drugs 2014; 24:519-28. [DOI: 10.1517/13543784.2014.986264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jacob Raber
- 1Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Oregon Health and Science University, Division of Neuroscience, ONPRC, Portland, OR, USA ;
| | - Robert M Duvoisin
- 2Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
34
|
Mercier MS, Lodge D. Group III metabotropic glutamate receptors: pharmacology, physiology and therapeutic potential. Neurochem Res 2014; 39:1876-94. [PMID: 25146900 DOI: 10.1007/s11064-014-1415-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 01/14/2023]
Abstract
Glutamate, the primary excitatory neurotransmitter in the central nervous system (CNS), exerts neuromodulatory actions via the activation of metabotropic glutamate (mGlu) receptors. There are eight known mGlu receptor subtypes (mGlu1-8), which are widely expressed throughout the brain, and are divided into three groups (I-III), based on signalling pathways and pharmacological profiles. Group III mGlu receptors (mGlu4/6/7/8) are primarily, although not exclusively, localised on presynaptic terminals, where they act as both auto- and hetero-receptors, inhibiting the release of neurotransmitter. Until recently, our understanding of the role of individual group III mGlu receptor subtypes was hindered by a lack of subtype-selective pharmacological tools. Recent advances in the development of both orthosteric and allosteric group III-targeting compounds, however, have prompted detailed investigations into the possible functional role of these receptors within the CNS, and revealed their involvement in a number of pathological conditions, such as epilepsy, anxiety and Parkinson's disease. The heterogeneous expression of group III mGlu receptor subtypes throughout the brain, as well as their distinct distribution at glutamatergic and GABAergic synapses, makes them ideal targets for therapeutic intervention. This review summarises the advances in subtype-selective pharmacology, and discusses the individual roles of group III mGlu receptors in physiology, and their potential involvement in disease.
Collapse
Affiliation(s)
- Marion S Mercier
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK,
| | | |
Collapse
|
35
|
Kalinichev M, Le Poul E, Boléa C, Girard F, Campo B, Fonsi M, Royer-Urios I, Browne SE, Uslaner JM, Davis MJ, Raber J, Duvoisin R, Bate ST, Reynolds IJ, Poli S, Celanire S. Characterization of the novel positive allosteric modulator of the metabotropic glutamate receptor 4 ADX88178 in rodent models of neuropsychiatric disorders. J Pharmacol Exp Ther 2014; 350:495-505. [PMID: 24947466 DOI: 10.1124/jpet.114.214437] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is growing evidence that activation of metabotropic glutamate receptor 4 (mGlu4) leads to anxiolytic- and antipsychotic-like efficacy in rodent models, yet its relevance to depression-like reactivity remains unclear. Here, we present the pharmacological evaluation of ADX88178 [5-methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine], a novel potent, selective, and brain-penetrant positive allosteric modulator of the mGlu4 receptor in rodent models of anxiety, obsessive compulsive disorder (OCD), fear, depression, and psychosis. ADX88178 dose-dependently reduced the number of buried marbles in the marble burying test and increased open-arm exploration in the elevated plus maze (EPM) test, indicative of anxiolytic-like efficacy. Target specificity of the effect in the EPM test was confirmed using male and female mGlu4 receptor knockout mice. In mice, ADX88178 reduced the likelihood of conditioned freezing in the acquisition phase of the fear conditioning test, yet had no carryover effect in the expression phase. Also, ADX88178 dose-dependently reduced duration of immobility in the forced swim test, indicative of antidepressant-like efficacy. ADX88178 reduced DOI (2,5-dimethoxy-4-iodoamphetamine)-mediated head twitches (albeit with no dose-dependency), and MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine]-induced locomotor hyperactivity in mice, but was inactive in the conditioned avoidance response test in rats. The compound showed good specificity as it had no effect on locomotor activity in mice and rats at efficacious doses. Thus, allosteric activation of mGlu4 receptors can be a promising new therapeutic approach for treatment of anxiety, OCD, fear-related disorders, and psychosis.
Collapse
Affiliation(s)
- Mikhail Kalinichev
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Emmanuel Le Poul
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Christelle Boléa
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Françoise Girard
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Brice Campo
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Massimiliano Fonsi
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Isabelle Royer-Urios
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Susan E Browne
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Jason M Uslaner
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Matthew J Davis
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Jacob Raber
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Robert Duvoisin
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Simon T Bate
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Ian J Reynolds
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Sonia Poli
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Sylvain Celanire
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| |
Collapse
|
36
|
Pomierny-Chamioło L, Rup K, Pomierny B, Niedzielska E, Kalivas PW, Filip M. Metabotropic glutamatergic receptors and their ligands in drug addiction. Pharmacol Ther 2014; 142:281-305. [DOI: 10.1016/j.pharmthera.2013.12.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023]
|
37
|
Broad therapeutic benefit after RNAi expression vector delivery to deep cerebellar nuclei: implications for spinocerebellar ataxia type 1 therapy. Mol Ther 2013; 22:588-595. [PMID: 24419082 DOI: 10.1038/mt.2013.279] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/30/2013] [Indexed: 01/30/2023] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant, late-onset neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the ataxin-1 protein, which causes progressive neurodegeneration in cerebellar Purkinje cells and brainstem nuclei. Here, we tested if reducing mutant ataxin-1 expression would significantly improve phenotypes in a knock-in (KI) mouse model that recapitulates spatial and temporal aspects of SCA1. Adeno-associated viruses (AAVs), expressing inhibitory RNAs targeting ataxin-1, were injected into the deep cerebellar nuclei (DCN) of KI mice. This approach induced ataxin-1 suppression in the cerebellar cortex and in brainstem neurons. RNA interference (RNAi) of ataxin-1 preserved cerebellar lobule integrity and prevented disease-related transcriptional changes for over a year. Notably, RNAi therapy also preserved rotarod performance and neurohistology. These data suggest that delivery of AAVs encoding RNAi sequences against ataxin-1, to DCN alone, may be sufficient for SCA1 therapy.
Collapse
|
38
|
Effects of group II and III metabotropic glutamate receptor ligands on conditioned taste aversion learning. Behav Brain Res 2013; 253:9-16. [DOI: 10.1016/j.bbr.2013.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 06/22/2013] [Accepted: 06/27/2013] [Indexed: 12/13/2022]
|
39
|
Iscru E, Goddyn H, Ahmed T, Callaerts-Vegh Z, D'Hooge R, Balschun D. Improved spatial learning is associated with increased hippocampal but not prefrontal long-term potentiation in mGluR4 knockout mice. GENES BRAIN AND BEHAVIOR 2013; 12:615-25. [PMID: 23714430 DOI: 10.1111/gbb.12052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/13/2013] [Accepted: 05/21/2013] [Indexed: 01/08/2023]
Abstract
Although much information about metabotropic glutamate receptors (mGluRs) and their role in normal and pathologic brain function has been accumulated during the last decades, the role of group III mGluRs is still scarcely documented. Here, we examined mGluR4 knockout mice for types of behavior and synaptic plasticity that depend on either the hippocampus or the prefrontal cortex (PFC). We found improved spatial short- and long-term memory in the radial arm maze, which was accompanied by enhanced long-term potentiation (LTP) in hippocampal CA1 region. In contrast, LTP in the PFC was unchanged when compared with wild-type controls. Changes in paired-pulse facilitation that became overt in the presence of the GABAA antagonist picrotoxin indicated a function of mGluR4 in maintaining the excitation/inhibition balance, which is of crucial importance for information processing in the brain and the deterioration of these processes in neuropsychological disorders such as autism, epilepsy and schizophrenia.
Collapse
Affiliation(s)
- E Iscru
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
40
|
Haug MF, Gesemann M, Mueller T, Neuhauss SC. Phylogeny and expression divergence of metabotropic glutamate receptor genes in the brain of zebrafish (Danio rerio). J Comp Neurol 2013; 521:1533-60. [DOI: 10.1002/cne.23240] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 04/05/2012] [Accepted: 10/02/2012] [Indexed: 12/15/2022]
|
41
|
Abstract
Cerebellar Purkinje neurons receive synaptic inputs from three different sources: the excitatory parallel fibre and climbing fibre synapses as well as the inhibitory synapses from molecular layer stellate and basket cells. These three synaptic systems use distinct mechanisms in order to generate Ca(2+) signals that are specialized for specific modes of neurotransmitter release and post-synaptic signal integration. In this review, we first describe the repertoire of Ca(2+) regulatory mechanisms that generate and regulate the amplitude and timing of Ca(2+) fluxes during synaptic transmission and then explore how these mechanisms interact to generate the unique functional properties of each of the Purkinje neuron synapses.
Collapse
|
42
|
Julio-Pieper M, O'Connor RM, Dinan TG, Cryan JF. Regulation of the brain-gut axis by group III metabotropic glutamate receptors. Eur J Pharmacol 2012; 698:19-30. [PMID: 23123053 DOI: 10.1016/j.ejphar.2012.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/11/2012] [Accepted: 10/22/2012] [Indexed: 01/14/2023]
Abstract
L-glutamate is produced by a great variety of peripheral tissues in both health and disease. Like other components of the glutamatergic system, metabotropic glutamate (mGlu) receptors also have a widespread distribution outside the central nervous system (CNS). In particular, group III mGlu receptors have been recently found in human stomach and colon revealing an extraordinary potential for these receptors in the treatment of peripheral disorders, including gastrointestinal dysfunction. The significance of these findings is that pharmacological tools originally designed for mGlu receptors in the CNS may also be directed towards new disease targets in the periphery. Targeting mGlu receptors can also be beneficial in the treatment of disorders involving central components together with gastrointestinal dysfunction, such as irritable bowel syndrome, which can be co-morbid with anxiety and depression. Conversely, the development of more specific therapeutic approaches for mGlu ligands both centrally as in the gut will depend on the elucidation of tissue-specific elements in mGlu receptor signalling.
Collapse
Affiliation(s)
- Marcela Julio-Pieper
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av Universidad 330, Curauma, Valparaíso, Chile.
| | | | | | | |
Collapse
|
43
|
Bradley SJ, Challiss RJ. G protein-coupled receptor signalling in astrocytes in health and disease: A focus on metabotropic glutamate receptors. Biochem Pharmacol 2012; 84:249-59. [DOI: 10.1016/j.bcp.2012.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/02/2012] [Accepted: 04/09/2012] [Indexed: 02/03/2023]
|
44
|
Le Poul E, Boléa C, Girard F, Poli S, Charvin D, Campo B, Bortoli J, Bessif A, Luo B, Koser AJ, Hodge LM, Smith KM, DiLella AG, Liverton N, Hess F, Browne SE, Reynolds IJ. A potent and selective metabotropic glutamate receptor 4 positive allosteric modulator improves movement in rodent models of Parkinson's disease. J Pharmacol Exp Ther 2012; 343:167-77. [PMID: 22787118 DOI: 10.1124/jpet.112.196063] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 4 (mGluR4) have been proposed as a novel therapeutic approach for the treatment of Parkinson's disease. However, evaluation of this proposal has been limited by the availability of appropriate pharmacological tools to interrogate the target. In this study, we describe the properties of a novel mGluR4 PAM. 5-Methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine (ADX88178) enhances glutamate-mediated activation of human and rat mGluR4 with EC(50) values of 4 and 9 nM, respectively. The compound is highly selective for mGluR4 with minimal activities at other mGluRs. Oral administration of ADX88178 in rats is associated with high bioavailability and results in cerebrospinal fluid exposure of >50-fold the in vitro EC(50) value. ADX88178 reverses haloperidol-induced catalepsy in rats at 3 and 10 mg/kg. It is noteworthy that this compound alone has no impact on forelimb akinesia resulting from a bilateral 6-hydroxydopamine lesion in rats. However, coadministration of a low dose of L-DOPA (6 mg/kg) enabled a robust, dose-dependent reversal of the forelimb akinesia deficit. ADX88178 also increased the effects of quinpirole in lesioned rats and enhanced the effects of L-DOPA in MitoPark mice. It is noteworthy that the enhancement of the actions of L-DOPA was not associated with an exacerbation of L-DOPA-induced dyskinesias in rats. ADX88178 is a novel, potent, and selective mGluR4 PAM that is a valuable tool for exploring the therapeutic potential of mGluR4 modulation. The use of this novel tool molecule supports the proposal that activation of mGluR4 may be therapeutically useful in Parkinson's disease.
Collapse
|
45
|
Abitbol K, McLean H, Bessiron T, Daniel H. A new signalling pathway for parallel fibre presynaptic type 4 metabotropic glutamate receptors (mGluR4) in the rat cerebellar cortex. J Physiol 2012; 590:2977-94. [PMID: 22570379 DOI: 10.1113/jphysiol.2012.232074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the rodent cerebellum, pharmacological activation of mGluR4 acutely depresses excitatory synaptic transmission at parallel fibre–Purkinje cell synapses. This depression involves the inhibition of presynaptic calcium (Ca2+) influx that ultimately controls glutamate release. In this study, we investigate the molecular basis of mGluR4-mediated inhibition of presynaptic Ca2+ transients. Our results demonstrate that the mGluR4 effect does not depend on selective inhibition of a specific type of presynaptic voltage-gated Ca2+ channel, but rather involves modulation of all classes of Ca2+ channels present in the presynaptic terminals. In addition, this inhibitory effect does not involve the activation of G protein-activated inwardly rectifying potassium channels, TEA-sensitive potassium channels or two-pore-domain potassium channels. Furthermore, this inhibition does not require pertussis toxin-sensitive G proteins, and is independent of any effect on adenylyl cyclases, protein kinase A, mitogen-activated protein kinases or phosphoinositol-3 kinase activity. Interestingly we found that mGluR4 inhibition of presynaptic Ca2+ influx employs a newly defined signalling pathway, notably that involving the activation of phospholipase C and ultimately protein kinase C.
Collapse
Affiliation(s)
- Karine Abitbol
- Pharmacology and Biochemistry of the synapse, CNRS UMR 8619, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud XI, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
46
|
Ramos C, Chardonnet S, Marchand CH, Decottignies P, Ango F, Daniel H, Le Maréchal P. Native presynaptic metabotropic glutamate receptor 4 (mGluR4) interacts with exocytosis proteins in rat cerebellum. J Biol Chem 2012; 287:20176-86. [PMID: 22528491 DOI: 10.1074/jbc.m112.347468] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The eight pre- or/and post-synaptic metabotropic glutamatergic receptors (mGluRs) modulate rapid excitatory transmission sustained by ionotropic receptors. They are classified in three families according to their percentage of sequence identity and their pharmacological properties. mGluR4 belongs to group III and is mainly localized presynaptically. Activation of group III mGluRs leads to depression of excitatory transmission, a process that is exclusively provided by mGluR4 at parallel fiber-Purkinje cell synapse in rodent cerebellum. This function relies at least partly on an inhibition of presynaptic calcium influx, which controls glutamate release. To improve the understanding of molecular mechanisms of the mGluR4 depressant effect, we decided to identify the proteins interacting with this receptor. Immunoprecipitations using anti-mGluR4 antibodies were performed with cerebellar extracts. 183 putative partners that co-immunoprecipitated with anti-mGluR4 antibodies were identified and classified according to their cellular functions. It appears that native mGluR4 interacts with several exocytosis proteins such as Munc18-1, synapsins, and syntaxin. In addition, native mGluR4 was retained on a Sepharose column covalently grafted with recombinant Munc18-1, and immunohistochemistry experiments showed that Munc18-1 and mGluR4 colocalized at plasma membrane in HEK293 cells, observations in favor of an interaction between the two proteins. Finally, affinity chromatography experiments using peptides corresponding to the cytoplasmic domains of mGluR4 confirmed the interaction observed between mGluR4 and a selection of exocytosis proteins, including Munc18-1. These results could give indications to explain how mGluR4 can modulate glutamate release at parallel fiber-Purkinje cell synapses in the cerebellum in addition to the inhibition of presynaptic calcium influx.
Collapse
Affiliation(s)
- Cathy Ramos
- Pharmacologie et Biochimie de la Synapse, CNRS UMR 8619, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Univ. Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Antflick JE, Hampson DR. Modulation of glutamate release from parallel fibers by mGlu4 and pre-synaptic GABA(A) receptors. J Neurochem 2012; 120:552-63. [PMID: 22145864 DOI: 10.1111/j.1471-4159.2011.07611.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The regulation of pre-synaptic glutamate release is important in the maintenance and fidelity of excitatory transmission in the nervous system. In this study, we report a novel interaction between a ligand-gated ion channel and a G-protein coupled receptor which regulates glutamate release from parallel fiber axon terminals. Immunocytochemical analysis revealed that GABA(A) receptors and the high affinity group III metabotropic glutamate receptor subtype 4 (mGlu4) are co-localized on glutamatergic parallel fiber axon terminals in the cerebellum. GABA(A) and mGlu4 receptors were also found to co-immunoprecipitate from cerebellar membranes. Independently, these two receptors have opposing roles on glutamate release: pre-synaptic GABA(A) receptors promote, while mGlu4 receptors inhibit, glutamate release. However, coincident activation of GABA(A) receptors with muscimol and mGlu4 with the agonist (2S)-S-2-amino-4-phosphonobutanoic acid , increased glutamate release from [(3) H]glutamate-loaded cerebellar synaptosomes above that observed with muscimol alone. Further support for an interaction between GABA(A) and mGlu4 receptors was obtained in the mGlu4 knockout mouse which displayed reduced binding of the GABA(A) ligand [(35) S]tert-butylbicyclophosphorothionate, and decreased expression of the α1, α6, β2 GABA(A) receptor subunits in the cerebellum. Taken together, our data suggest a new role for mGlu4 whereby simultaneous activation with GABA(A) receptors acts to amplify glutamate release at parallel fiber-Purkinje cell synapses.
Collapse
Affiliation(s)
- Jordan E Antflick
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, Toronto, Ontario, Canada
| | | |
Collapse
|
48
|
Célanire S, Campo B. Recent advances in the drug discovery of metabotropic glutamate receptor 4 (mGluR4) activators for the treatment of CNS and non-CNS disorders. Expert Opin Drug Discov 2012; 7:261-80. [PMID: 22468956 DOI: 10.1517/17460441.2012.660914] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The metabotropic glutamate receptor type 4 (mGluR4) plays a pivotal role in a plethora of therapeutic areas, as recently demonstrated in preclinical validation studies with several chemical classes of compounds in rodent models of central nervous system (CNS) and peripheral disorders. Activation of mGluR4 with orthosteric agonists, allosteric agonists or pure positive allosteric modulators (PAM) has been postulated to be of broad therapeutic use. AREAS COVERED The authors address past and current drug discovery efforts, insights and achievements in the field toward the identification of therapeutically promising and emerging class of mGluR4 activators, over the 2005 - 2011 period. Chemical structures, properties and in vivo pharmacological results discussed in the present review were retrieved from public literature including PubMed searches, Thomson Pharma and SciFinder databases searches, conferences, proceedings and posters. EXPERT OPINION Developing a subtype-selective, orally bioavailable brain penetrant mGluR4 orthosteric agonist remains challenging. Lack of subtype selectivity and low brain penetration has been a common limitation of the first generation of mGluR4 agonist and potentiators. However, significant progress has recently been made with the identification of several double- to single-digit nanomolar mGluR4 PAM having reasonable pharmacokinetic properties, oral bioavailability and brain penetration. The use of such compounds in research has led to advancement in understanding the central role of mGluR4 in multiple neurodegenerative and neuroinflammatory disorders, such as Parkinson's disease and multiple sclerosis. Our understanding of the potential application of mGluR4 as therapeutic target is expected to grow as these compounds advance into preclinical and clinical development.
Collapse
Affiliation(s)
- Sylvain Célanire
- Medicinal Chemistry Department, Addex Pharmaceuticals, Geneva, Switzerland.
| | | |
Collapse
|
49
|
Fazio F, Lionetto L, Molinaro G, Bertrand HO, Acher F, Ngomba RT, Notartomaso S, Curini M, Rosati O, Scarselli P, Di Marco R, Battaglia G, Bruno V, Simmaco M, Pin JP, Nicoletti F, Goudet C. Cinnabarinic acid, an endogenous metabolite of the kynurenine pathway, activates type 4 metabotropic glutamate receptors. Mol Pharmacol 2012; 81:643-56. [PMID: 22311707 DOI: 10.1124/mol.111.074765] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cinnabarinic acid is an endogenous metabolite of the kynurenine pathway that meets the structural requirements to interact with glutamate receptors. We found that cinnabarinic acid acts as a partial agonist of type 4 metabotropic glutamate (mGlu4) receptors, with no activity at other mGlu receptor subtypes. We also tested the activity of cinnabarinic acid on native mGlu4 receptors by examining 1) the inhibition of cAMP formation in cultured cerebellar granule cells; 2) protection against excitotoxic neuronal death in mixed cultures of cortical cells; and 3) protection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice after local infusion into the external globus pallidus. In all these models, cinnabarinic acid behaved similarly to conventional mGlu4 receptor agonists, and, at least in cultured neurons, the action of low concentrations of cinnabarinic acid was largely attenuated by genetic deletion of mGlu4 receptors. However, high concentrations of cinnabarinic acid were still active in the absence of mGlu4 receptors, suggesting that the compound may have off-target effects. Mutagenesis and molecular modeling experiments showed that cinnabarinic acid acts as an orthosteric agonist interacting with residues of the glutamate binding pocket of mGlu4. Accordingly, cinnabarinic acid did not activate truncated mGlu4 receptors lacking the N-terminal Venus-flytrap domain, as opposed to the mGlu4 receptor enhancer, N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC). Finally, we could detect endogenous cinnabarinic acid in brain tissue and peripheral organs by high-performance liquid chromatography-tandem mass spectrometry analysis. Levels increased substantially during inflammation induced by lipopolysaccharide. We conclude that cinnabarinic acid is a novel endogenous orthosteric agonist of mGlu4 receptors endowed with neuroprotective activity.
Collapse
Affiliation(s)
- F Fazio
- Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Davis MJ, Haley T, Duvoisin RM, Raber J. Measures of anxiety, sensorimotor function, and memory in male and female mGluR4⁻/⁻ mice. Behav Brain Res 2012; 229:21-8. [PMID: 22227508 DOI: 10.1016/j.bbr.2011.12.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 11/15/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are coupled to second messenger pathways via G proteins and modulate synaptic transmission. Of the eight different types of mGluRs (mGluR1-mGluR8), mGluR4, mGluR6, mGluR7, and mGluR8 are members of group III. Group III receptors are generally located presynaptically, where they regulate neurotransmitter release. Because of their role in modulating neurotransmission, mGluRs are attractive targets for therapies aimed at treating anxiety disorders. Previously we showed that the mGluR4-selective allosteric agonist VU 0155041 reduces anxiety-like behavior in wild-type male mice. Here, we explore the role of mGluR4 in adult (6-month old) and middle-aged (12-month old) male and female mice lacking this receptor. Compared to age- and sex-matched wild-type mice, middle-aged mGluR4(-/-) male mice showed increased measures of anxiety in the open field and elevated zero maze and impaired sensorimotor function on the rotarod. These changes were not seen in adult 6-month-old male mice. In contrast to the male mice, mGluR4(-/-) female mice showed reduced measures of anxiety in the open field and elevated zero maze and enhanced rotarod performance. During the hidden platform training sessions of the water maze, mGluR4(-/-) mice swam farther away from the platform than wild-type mice at 6, but not at 12, months of age. mGluR4(-/-) mice also showed enhanced amygdala-dependent cued fear conditioning. No genotype differences were seen in hippocampus-dependent contextual fear conditioning. These data indicate that effects of mGluR4 on sensorimotor function and measures of anxiety, but not cued fear conditioning, are critically modulated by sex and age.
Collapse
Affiliation(s)
- Matthew J Davis
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|