1
|
Riboldi JG, Correa J, Renfijes MM, Tintorelli R, Viola H. Arc and BDNF mediated effects of hippocampal astrocytic glutamate uptake blockade on spatial memory stages. Commun Biol 2024; 7:1032. [PMID: 39174690 PMCID: PMC11341830 DOI: 10.1038/s42003-024-06586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Glutamate is involved in fundamental functions, including neuronal plasticity and memory. Astrocytes are integral elements involved in synaptic function, and the GLT-1 transporter possesses a critical role in glutamate uptake. Here, we study the role of GLT-1, specifically located in astrocytes, in the consolidation, expression, reconsolidation and persistence of spatial object recognition memory in rats. Administration of dihydrokainic acid (DHK), a selective GLT-1 inhibitor, into the dorsal hippocampus around a weak training which only induces short-term memory, promotes long-term memory formation. This promotion is prevented by hippocampal administration of protein-synthesis translation inhibitor, blockade of Activity-regulated cytoskeleton-associated protein (Arc) translation or Brain-Derived Neurotrophic Factor (BDNF) action, which are plasticity related proteins necessary for memory consolidation. However, DHK around a strong training, which induces long-term memory, does not affect memory consolidation. Administration of DHK before the test session impairs the expression of long-term memory, and this effect is dependent of Arc translation. Furthermore, DHK impairs reconsolidation if applied before a reactivation session, and this effect is independent of Arc translation. These findings reveal specific consequences on spatial memory stages developed under hippocampal GLT-1 blockade, shedding light on the intricate molecular mechanisms, governed in part for the action of glia.
Collapse
Affiliation(s)
- Juan Gabriel Riboldi
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (FBMC), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Correa
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (FBMC), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
| | - Matías M Renfijes
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), Buenos Aires, Argentina
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ramiro Tintorelli
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (FBMC), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
| | - Haydee Viola
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (FBMC), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Vázquez-Durán DL, Ortega A, Rodríguez A. Amino Acid Transporters Proteins Involved in the Glutamate-Glutamine Cycle and Their Alterations in Murine Models of Alzheimer's Disease. Mol Neurobiol 2024; 61:6077-6088. [PMID: 38273046 DOI: 10.1007/s12035-024-03966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
The brain's ability to integrate external stimuli and generate responses is highly complex. While these mechanisms are not completely understood, current evidence suggests that alterations in cellular metabolism and microenvironment are involved in some dysfunctions as complex as Alzheimer's disease. This pathology courses with defects in the establishment of chemical synapses, which is dependent on the production and supply of neurotransmitters like glutamate and its recycling through the glutamate-glutamine cycle. Alterations in the expression and function of the amino acid transporters proteins involved in this cycle have recently been reported in different stages of Alzheimer's disease. Most of these data come from patients in advanced stages of the disease or post-mortem, due to the ethical and technical limitations of human studies. Therefore, genetically modified mouse models have been an excellent tool to analyze metabolic and even behavioral parameters that are very similar to those that develop in Alzheimer's disease, even at presymptomatic stages. Hence, this paper analyzes the role of glutamate metabolism and its intercellular trafficking in excitatory synapses from different approaches using transgenic mouse models; such an analysis will contribute to our present understanding of AD.
Collapse
Affiliation(s)
| | - Arturo Ortega
- Departamento de Toxicología, Cinvestav- IPN, Mexico City, México
| | - Angelina Rodríguez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro, México.
| |
Collapse
|
3
|
Kauf C, Kim HS, Lee EJ, Jhingan N, Selena She J, Taliaferro M, Gibson E, Fedorenko E. Linguistic inputs must be syntactically parsable to fully engage the language network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.599332. [PMID: 38948870 PMCID: PMC11212959 DOI: 10.1101/2024.06.21.599332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Human language comprehension is remarkably robust to ill-formed inputs (e.g., word transpositions). This robustness has led some to argue that syntactic parsing is largely an illusion, and that incremental comprehension is more heuristic, shallow, and semantics-based than is often assumed. However, the available data are also consistent with the possibility that humans always perform rule-like symbolic parsing and simply deploy error correction mechanisms to reconstruct ill-formed inputs when needed. We put these hypotheses to a new stringent test by examining brain responses to a) stimuli that should pose a challenge for syntactic reconstruction but allow for complex meanings to be built within local contexts through associative/shallow processing (sentences presented in a backward word order), and b) grammatically well-formed but semantically implausible sentences that should impede semantics-based heuristic processing. Using a novel behavioral syntactic reconstruction paradigm, we demonstrate that backward-presented sentences indeed impede the recovery of grammatical structure during incremental comprehension. Critically, these backward-presented stimuli elicit a relatively low response in the language areas, as measured with fMRI. In contrast, semantically implausible but grammatically well-formed sentences elicit a response in the language areas similar in magnitude to naturalistic (plausible) sentences. In other words, the ability to build syntactic structures during incremental language processing is both necessary and sufficient to fully engage the language network. Taken together, these results provide strongest to date support for a generalized reliance of human language comprehension on syntactic parsing.
Collapse
Affiliation(s)
- Carina Kauf
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Hee So Kim
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Elizabeth J. Lee
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Niharika Jhingan
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Jingyuan Selena She
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Maya Taliaferro
- Department of Psychology, New York University, New York, NY 10012 USA
| | - Edward Gibson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- The Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
4
|
Li K, Abbott SBG, Guyenet PG, Bayliss DA. JP-RL-2023-285396: Reply to 'Letter to the Editor' (JP-LE-2023-285385). J Physiol 2023; 601:4173-4175. [PMID: 37610165 DOI: 10.1113/jp285396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Affiliation(s)
- Keyong Li
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Fomitcheva IV, Sword J, Shi Y, Kirov SA. Plasticity of perisynaptic astroglia during ischemia-induced spreading depolarization. Cereb Cortex 2023; 33:5469-5483. [PMID: 36368909 PMCID: PMC10152098 DOI: 10.1093/cercor/bhac434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/13/2022] Open
Abstract
High astroglial capacity for glutamate and potassium clearance aids in recovering spreading depolarization (SD)-evoked disturbance of ion homeostasis during stroke. Since perisynaptic astroglia cannot be imaged with diffraction-limited light microscopy, nothing is known about the impact of SD on the ultrastructure of a tripartite synapse. We used serial section electron microscopy to assess astroglial synaptic coverage in the sensorimotor cortex of urethane-anesthetized male and female mice during and after SD evoked by transient bilateral common carotid artery occlusion. At the subcellular level, astroglial mitochondria were remarkably resilient to SD compared to dendritic mitochondria that were fragmented by SD. Overall, 482 synapses in `Sham' during `SD' and `Recovery' groups were randomly selected and analyzed in 3D. Perisynaptic astroglia was present at the axon-spine interface (ASI) during SD and after recovery. Astrocytic processes were more likely found at large synapses on mushroom spines after recovery, while the length of the ASI perimeter surrounded by astroglia has also significantly increased at large synapses. These findings suggest that as larger synapses have a bigger capacity for neurotransmitter release during SD, they attract astroglial processes to their perimeter during recovery, limiting extrasynaptic glutamate escape and further enhancing the astrocytic ability to protect synapses in stroke.
Collapse
Affiliation(s)
- Ioulia V Fomitcheva
- Department of Neurosurgery, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, United States
| | - Jeremy Sword
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, United States
| | - Yang Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, United States
- Division of Biostatistics and Data Science, Department of Population Health Sciences, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, United States
| | - Sergei A Kirov
- Department of Neurosurgery, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, United States
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA 30912, United States
| |
Collapse
|
6
|
Terradillos I, Bonilla-Del Río I, Puente N, Serrano M, Mimenza A, Lekunberri L, Anaut-Lusar I, Reguero L, Gerrikagoitia I, Ruiz de Martín Esteban S, Hillard CJ, Grande MT, Romero J, Elezgarai I, Grandes P. Altered glial expression of the cannabinoid 1 receptor in the subiculum of a mouse model of Alzheimer's disease. Glia 2023; 71:866-879. [PMID: 36437738 DOI: 10.1002/glia.24312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/23/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
The alteration of the endocannabinoid tone usually associates with changes in the expression and/or function of the cannabinoid CB1 receptor. In Alzheimer's disease (AD), amyloid beta (Aβ)-containing aggregates induce a chronic inflammatory response leading to reactivity of both microglia and astrocytes. However, how this glial response impacts on the glial CB1 receptor expression in the subiculum of a mouse model of AD, a brain region particularly affected by large accumulation of plaques and concomitant subcellular changes in microglia and astrocytes, is unknown. The CB1 receptor localization in both glial cells was investigated in the subiculum of male 5xFAD/CB2 EGFP/f/f (AD model) and CB2 EGFP/f/f mice by immuno-electron microscopy. The findings revealed that glial CB1 receptors suffer remarkable changes in the AD mouse. Thus, CB1 receptor expression increases in reactive microglia in 5xFAD/CB2 EGFP/f/f , but remains constant in astrocytes with CB1 receptor labeling rising proportionally to the perimeter of the reactive astrocytes. Not least, the CB1 receptor localization in microglial processes in the subiculum of controls and closely surrounding amyloid plaques and dystrophic neurites of the AD model, supports previous suggestions of the presence of the CB1 receptor in microglia. These findings on the correlation between glial reactivity and the CB1 receptor expression in microglial cells and astrocytes, contribute to the understanding of the role of the endocannabinoid system in the pathophysiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Itziar Terradillos
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Maitane Serrano
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Amaia Mimenza
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Leire Lekunberri
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Ilazki Anaut-Lusar
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Leire Reguero
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | | | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - María T Grande
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Julián Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| |
Collapse
|
7
|
Temmermand R, Barrett JE, Fontana ACK. Glutamatergic systems in neuropathic pain and emerging non-opioid therapies. Pharmacol Res 2022; 185:106492. [PMID: 36228868 PMCID: PMC10413816 DOI: 10.1016/j.phrs.2022.106492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/14/2023]
Abstract
Neuropathic pain, a disease of the somatosensory nervous system, afflicts many individuals and adequate management with current pharmacotherapies remains elusive. The glutamatergic system of neurons, receptors and transporters are intimately involved in pain but, to date, there have been few drugs developed that therapeutically modulate this system. Glutamate transporters, or excitatory amino acid transporters (EAATs), remove excess glutamate around pain transmitting neurons to decrease nociception suggesting that the modulation of glutamate transporters may represent a novel approach to the treatment of pain. This review highlights and summarizes (1) the physiology of the glutamatergic system in neuropathic pain, (2) the preclinical evidence for dysregulation of glutamate transport in animal pain models, and (3) emerging novel therapies that modulate glutamate transporters. Successful drug discovery requires continuous focus on basic and translational methods to fully elucidate the etiologies of this disease to enable the development of targeted therapies. Increasing the efficacy of astrocytic EAATs may serve as a new way to successfully treat those suffering from this devastating disease.
Collapse
Affiliation(s)
- Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
8
|
Rǎdulescu AR, Todd GC, Williams CL, Bennink BA, Lemus AA, Chesbro HE, Bourgeois JR, Kopec AM, Zuloaga DG, Scimemi A. Estimating the glutamate transporter surface density in distinct sub-cellular compartments of mouse hippocampal astrocytes. PLoS Comput Biol 2022; 18:e1009845. [PMID: 35120128 PMCID: PMC8849624 DOI: 10.1371/journal.pcbi.1009845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 02/16/2022] [Accepted: 01/18/2022] [Indexed: 11/19/2022] Open
Abstract
Glutamate transporters preserve the spatial specificity of synaptic transmission by limiting glutamate diffusion away from the synaptic cleft, and prevent excitotoxicity by keeping the extracellular concentration of glutamate at low nanomolar levels. Glutamate transporters are abundantly expressed in astrocytes, and previous estimates have been obtained about their surface expression in astrocytes of the rat hippocampus and cerebellum. Analogous estimates for the mouse hippocampus are currently not available. In this work, we derive the surface density of astrocytic glutamate transporters in mice of different ages via quantitative dot blot. We find that the surface density of glial glutamate transporters is similar in 7-8 week old mice and rats. In mice, the levels of glutamate transporters increase until about 6 months of age and then begin to decline slowly. Our data, obtained from a combination of experimental and modeling approaches, point to the existence of stark differences in the density of expression of glutamate transporters across different sub-cellular compartments, indicating that the extent to which astrocytes limit extrasynaptic glutamate diffusion depends not only on their level of synaptic coverage, but also on the identity of the astrocyte compartment in contact with the synapse. Together, these findings provide information on how heterogeneity in the spatial distribution of glutamate transporters in the plasma membrane of hippocampal astrocytes my alter glutamate receptor activation out of the synaptic cleft.
Collapse
Affiliation(s)
- Anca R. Rǎdulescu
- Department of Mathematics, State University of New York at New Paltz, New Paltz, New York, United States of America
| | - Gabrielle C. Todd
- Department of Biology, State University of New York at Albany, Albany, New York, United States of America
| | - Cassandra L. Williams
- Department of Mathematics, State University of New York at New Paltz, New Paltz, New York, United States of America
| | - Benjamin A. Bennink
- Department of Biology, State University of New York at Albany, Albany, New York, United States of America
| | - Alex A. Lemus
- Department of Biology, State University of New York at Albany, Albany, New York, United States of America
| | - Haley E. Chesbro
- Department of Biology, State University of New York at Albany, Albany, New York, United States of America
| | - Justin R. Bourgeois
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, United States of America
| | - Ashley M. Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, United States of America
| | - Damian G. Zuloaga
- Department of Psychology, State University of New York at Albany, Albany, New York, United States of America
| | - Annalisa Scimemi
- Department of Biology, State University of New York at Albany, Albany, New York, United States of America
| |
Collapse
|
9
|
Ketamine Alters Functional Plasticity of Astroglia: An Implication for Antidepressant Effect. Life (Basel) 2021; 11:life11060573. [PMID: 34204579 PMCID: PMC8234122 DOI: 10.3390/life11060573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Ketamine, a non-competitive N–methyl–d–aspartate receptor (NMDAR) antagonist, exerts a rapid, potent and long-lasting antidepressant effect, although the cellular and molecular mechanisms of this action are yet to be clarified. In addition to targeting neuronal NMDARs fundamental for synaptic transmission, ketamine also affects the function of astrocytes, the key homeostatic cells of the central nervous system that contribute to pathophysiology of major depressive disorder. Here, I review studies revealing that (sub)anesthetic doses of ketamine elevate intracellular cAMP concentration ([cAMP]i) in astrocytes, attenuate stimulus-evoked astrocyte calcium signaling, which regulates exocytotic secretion of gliosignaling molecules, and stabilize the vesicle fusion pore in a narrow configuration, possibly hindering cargo discharge or vesicle recycling. Next, I discuss how ketamine affects astrocyte capacity to control extracellular K+ by reducing vesicular delivery of the inward rectifying potassium channel (Kir4.1) to the plasmalemma that reduces the surface density of Kir4.1. Modified astroglial K+ buffering impacts upon neuronal firing pattern as demonstrated in lateral habenula in a rat model of depression. Finally, I highlight the discovery that ketamine rapidly redistributes cholesterol in the astrocyte plasmalemma, which may alter the flux of cholesterol to neurons. This structural modification may further modulate a host of processes that synergistically contribute to ketamine’s rapid antidepressant action.
Collapse
|
10
|
Rodríguez-Campuzano AG, Ortega A. Glutamate transporters: Critical components of glutamatergic transmission. Neuropharmacology 2021; 192:108602. [PMID: 33991564 DOI: 10.1016/j.neuropharm.2021.108602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. Once released, it binds to specific membrane receptors and transporters activating a wide variety of signal transduction cascades, as well as its removal from the synaptic cleft in order to avoid its extracellular accumulation and the overstimulation of extra-synaptic receptors that might result in neuronal death through a process known as excitotoxicity. Although neurodegenerative diseases are heterogenous in clinical phenotypes and genetic etiologies, a fundamental mechanism involved in neuronal degeneration is excitotoxicity. Glutamate homeostasis is critical for brain physiology and Glutamate transporters are key players in maintaining low extracellular Glutamate levels. Therefore, the characterization of Glutamate transporters has been an active area of glutamatergic research for the last 40 years. Transporter activity its regulated at different levels: transcriptional and translational control, transporter protein trafficking and membrane mobility, and through extensive post-translational modifications. The elucidation of these mechanisms has emerged as an important piece to shape our current understanding of glutamate actions in the nervous system.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
11
|
Todd AC, Hardingham GE. The Regulation of Astrocytic Glutamate Transporters in Health and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E9607. [PMID: 33348528 PMCID: PMC7766851 DOI: 10.3390/ijms21249607] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
The astrocytic glutamate transporters excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2) play a key role in nervous system function to maintain extracellular glutamate levels at low levels. In physiology, this is essential for the rapid uptake of synaptically released glutamate, maintaining the temporal fidelity of synaptic transmission. However, EAAT1/2 hypo-expression or hypo-function are implicated in several disorders, including epilepsy and neurodegenerative diseases, as well as being observed naturally with aging. This not only disrupts synaptic information transmission, but in extremis leads to extracellular glutamate accumulation and excitotoxicity. A key facet of EAAT1/2 expression in astrocytes is a requirement for signals from other brain cell types in order to maintain their expression. Recent evidence has shown a prominent role for contact-dependent neuron-to-astrocyte and/or endothelial cell-to-astrocyte Notch signalling for inducing and maintaining the expression of these astrocytic glutamate transporters. The relevance of this non-cell-autonomous dependence to age- and neurodegenerative disease-associated decline in astrocytic EAAT expression is discussed, plus the implications for disease progression and putative therapeutic strategies.
Collapse
Affiliation(s)
- Alison C. Todd
- UK Dementia Research Institute at the University of Edinburgh, Chancellor’s Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK;
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Giles E. Hardingham
- UK Dementia Research Institute at the University of Edinburgh, Chancellor’s Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK;
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
12
|
Balouch B, Funnell JL, Ziemba AM, Puhl DL, Lin K, Gottipati MK, Gilbert RJ. Conventional immunomarkers stain a fraction of astrocytes in vitro: A comparison of rat cortical and spinal cord astrocytes in naïve and stimulated cultures. J Neurosci Res 2020; 99:806-826. [PMID: 33295039 DOI: 10.1002/jnr.24759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/14/2020] [Indexed: 11/05/2022]
Abstract
Astrocytes are responsible for a wide variety of essential functions throughout the central nervous system. The protein markers glial fibrillary acidic protein (GFAP), glutamate aspartate transporter (GLAST), glutamate transporter-1 (GLT-1), glutamine synthetase (GS), 10-formyltetrahydrofolate dehydrogenase (ALDH1L1), and the transcription factor SOX9 are routinely used to label astrocytes in primary rodent cultures. However, GLAST, GLT-1, GS, and SOX9 are also produced by microglia and oligodendrocytes and GFAP, GLAST, GLT-1, and GS production levels are affected by astrocyte phenotypic changes associated with reactive astrogliosis. No group has performed a comprehensive immunocytochemical evaluation to quantify the percentage of cells labeled by these markers in vitro, nor compared changes in staining between cortex- and spinal cord-derived cells in naïve and stimulated cultures. Here, we quantified the percentage of cells positively stained for these six markers in astrocyte, microglia, and oligodendrocyte cultures isolated from neonatal rat cortices and spinal cords. Additionally, we incubated the astrocytes with transforming growth factor (TGF)-β1 or TGF-β3 to determine if the labeling of these markers is altered by these stimuli. We found that only SOX9 in cortical cultures and ALDH1L1 in spinal cord cultures labeled more than 75% of the cells in naïve and stimulated astrocyte cultures and stained less than 5% of the cells in microglia and oligodendrocyte cultures. Furthermore, significantly more cortical than spinal cord astrocytes stained for GFAP, GLAST, and ALDH1L1 in naïve cultures, whereas significantly more spinal cord than cortical astrocytes stained for GLAST and GS in TGF-β1-treated cultures. These findings are important as variability in marker staining may lead to misinterpretation of the astrocyte response in cocultures, migration assays, or engineered disease models.
Collapse
Affiliation(s)
- Bailey Balouch
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jessica L Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Alexis M Ziemba
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Neuroscience Program, Smith College, Northampton, MA, USA
| | - Devan L Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Kathy Lin
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Manoj K Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
13
|
das Neves SP, Sousa JC, Sousa N, Cerqueira JJ, Marques F. Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia 2020; 69:1341-1368. [PMID: 33247866 DOI: 10.1002/glia.23940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that affects about 2.5 million people worldwide. In MS, the patients' immune system starts to attack the myelin sheath, leading to demyelination, neurodegeneration, and, ultimately, loss of vital neurological functions such as walking. There is currently no cure for MS and the available treatments only slow the initial phases of the disease. The later-disease mechanisms are poorly understood and do not directly correlate with the activity of immune system cells, the main target of the available treatments. Instead, evidence suggests that disease progression and disability are better correlated with the maintenance of a persistent low-grade inflammation inside the CNS, driven by local glial cells, like astrocytes and microglia. Depending on the context, astrocytes can (a) exacerbate inflammation or (b) promote immunosuppression and tissue repair. In this review, we will address the present knowledge that exists regarding the role of astrocytes in MS and experimental animal models of the disease.
Collapse
Affiliation(s)
- Sofia Pereira das Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - João José Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
14
|
Zhou Y, Eid T, Hassel B, Danbolt NC. Novel aspects of glutamine synthetase in ammonia homeostasis. Neurochem Int 2020; 140:104809. [DOI: 10.1016/j.neuint.2020.104809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
15
|
Transport rate of EAAT2 is regulated by amino acid located at the interface between the scaffolding and substrate transport domains. Neurochem Int 2020; 139:104792. [PMID: 32668264 DOI: 10.1016/j.neuint.2020.104792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/19/2020] [Accepted: 06/21/2020] [Indexed: 01/24/2023]
Abstract
Excitatory Amino Acid Transporters (EAATs) are plasma membrane proteins responsible for maintenance of low extracellular concentrations of glutamate in the CNS. Dysfunction in their activity is implicated in various neurological disorders. Glutamate transport by EAATs occurs through the movement of the central transport domain relative to the scaffold domain in the EAAT membrane protein. Previous studies suggested that residues located within the interface of these two domains in EAAT2, the main subtype of glutamate transporter in the brain, are involved in regulating transport rates. We used mutagenesis, structure-function relationship, surface protein expression and electrophysiology studies, in transfected COS-7 cells and oocytes, to examine residue glycine at position 298, which is located within this interface. Mutation G298A results in increased transport rate without changes in surface expression, suggesting a more hydrophobic and larger alanine results in facilitated transport movement. The increased transport rate does not involve changes in sodium affinity. Electrophysiological currents show that G298A increase both transport and anion currents, suggesting faster transitions through the transport cycle. This work identifies a region critically involved in setting the glutamate transport rate.
Collapse
|
16
|
Suárez-Pozos E, Thomason EJ, Fuss B. Glutamate Transporters: Expression and Function in Oligodendrocytes. Neurochem Res 2020; 45:551-560. [PMID: 30628017 PMCID: PMC6616022 DOI: 10.1007/s11064-018-02708-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 12/14/2022]
Abstract
Glutamate, the main excitatory neurotransmitter of the vertebrate central nervous system (CNS), is well known as a regulator of neuronal plasticity and neurodevelopment. Such glutamate function is thought to be mediated primarily by signaling through glutamate receptors. Thus, it requires a tight regulation of extracellular glutamate levels and a fine-tuned homeostasis that, when dysregulated, has been associated with a wide range of central pathologies including neuropsychiatric, neurodevelopmental, and neurodegenerative disorders. In the mammalian CNS, extracellular glutamate levels are controlled by a family of sodium-dependent glutamate transporters belonging to the solute carrier family 1 (SLC1) that are also referred to as excitatory amino acid transporters (EAATs). The presumed main function of EAATs has been best described in the context of synaptic transmission where EAATs expressed by astrocytes and neurons effectively regulate extracellular glutamate levels so that synapses can function independently. There is, however, increasing evidence that EAATs are expressed by cells other than astrocytes and neurons, and that they exhibit functions beyond glutamate clearance. In this review, we will focus on the expression and functions of EAATs in the myelinating cells of the CNS, oligodendrocytes. More specifically, we will discuss potential roles of oligodendrocyte-expressed EAATs in contributing to extracellular glutamate homeostasis, and in regulating oligodendrocyte maturation and CNS myelination by exerting signaling functions that have traditionally been associated with glutamate receptors. In addition, we will provide some examples for how dysregulation of oligodendrocyte-expressed EAATs may be involved in the pathophysiology of neurologic diseases.
Collapse
Affiliation(s)
- Edna Suárez-Pozos
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA
| | - Elizabeth J Thomason
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA.
| |
Collapse
|
17
|
Hayashi MK, Nishioka T, Shimizu H, Takahashi K, Kakegawa W, Mikami T, Hirayama Y, Koizumi S, Yoshida S, Yuzaki M, Tammi M, Sekino Y, Kaibuchi K, Shigemoto-Mogami Y, Yasui M, Sato K. Hyaluronan synthesis supports glutamate transporter activity. J Neurochem 2019; 150:249-263. [PMID: 31188471 DOI: 10.1111/jnc.14791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 11/28/2022]
Abstract
Hyaluronan is synthesized, secreted, and anchored by hyaluronan synthases (HAS) at the plasma membrane and comprises the backbone of perineuronal nets around neuronal soma and dendrites. However, the molecular targets of hyaluronan to regulate synaptic transmission in the central nervous system have not been fully identified. Here, we report that hyaluronan is a negative regulator of excitatory signals. At excitatory synapses, glutamate is removed by glutamate transporters to turn off the signal and prevent excitotoxicity. Hyaluronan synthesized by HAS supports the activity of glial glutamate transporter 1 (GLT1). GLT1 also retracted from cellular processes of cultured astrocytes after hyaluronidase treatment and hyaluronan synthesis inhibition. A serial knockout study showed that all three HAS subtypes recruit GLT1 to cellular processes. Furthermore, hyaluronidase treatment activated neurons in a dissociated rat hippocampal culture and caused neuronal damage due to excitotoxicity. Our findings reveal that hyaluronan helps to turn off excitatory signals by supporting glutamate clearance. Cover Image for this issue: doi: 10.1111/jnc.14516.
Collapse
Affiliation(s)
- Mariko Kato Hayashi
- Medical School, International University of Health and Welfare, Narita, Chiba, Japan.,Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.,Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hideo Shimizu
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kanako Takahashi
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuri Mikami
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Yuri Hirayama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Sachiko Yoshida
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Markku Tammi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Yuko Sekino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yukari Shigemoto-Mogami
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Sato
- Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
18
|
Matias I, Morgado J, Gomes FCA. Astrocyte Heterogeneity: Impact to Brain Aging and Disease. Front Aging Neurosci 2019; 11:59. [PMID: 30941031 PMCID: PMC6433753 DOI: 10.3389/fnagi.2019.00059] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Astrocytes, one of the largest glial cell population in the central nervous system (CNS), play a key function in several events of brain development and function, such as synapse formation and function, control of neurotransmitters release and uptake, production of trophic factors and control of neuronal survival. Initially described as a homogenous population, several evidences have pointed that astrocytes are highly heterogeneous, both morphologically and functionally, within the same region, and across different brain regions. Recent findings suggest that the heterogeneity in the expression profile of proteins involved in astrocyte function may predict the selective vulnerability of brain regions to specific diseases, as well as to the age-related cognitive decline. However, the molecular mechanisms underlying these changes, either in aging as well as in brain disease are scarce. Neuroinflammation, a hallmark of several neurodegenerative diseases and aging, is reported to have a dubious impact on glial activation, as these cells release pro- and anti-inflammatory cytokines and chemokines, anti-oxidants, free radicals, and neurotrophic factors. Despite the emerging evidences supporting that reactive astrocytes have a duality in their phenotype, neurotoxic or neuroprotective properties, depending on the age and stimuli, the underlying mechanisms of their activation, cellular interplays and the impact of regional astrocyte heterogeneity are still a matter of discussion. In this review article, we will summarize recent findings on astrocyte heterogeneity and phenotypes, as well as their likely impact for the brain function during aging and neural diseases. We will focus on the molecules and mechanisms triggered by astrocyte to control synapse formation in different brain regions. Finally, we will discuss new evidences on how the modulation of astrocyte phenotype and function could impact the synaptic deficits and glial dysfunction present in aging and pathological states.
Collapse
Affiliation(s)
- Isadora Matias
- Laboratory of Cellular Neurobiology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Morgado
- Laboratory of Cellular Neurobiology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia Carvalho Alcantara Gomes
- Laboratory of Cellular Neurobiology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Fuentes-Santamaría V, Alvarado JC, Rodríguez-de la Rosa L, Juiz JM, Varela-Nieto I. Neuroglial Involvement in Abnormal Glutamate Transport in the Cochlear Nuclei of the Igf1 -/- Mouse. Front Cell Neurosci 2019; 13:67. [PMID: 30881288 PMCID: PMC6405628 DOI: 10.3389/fncel.2019.00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a powerful regulator of synaptic activity and a deficit in this protein has a profound impact on neurotransmission, mostly on excitatory synapses in both the developing and mature auditory system. Adult Igf1−/− mice are animal models for the study of human syndromic deafness; they show altered cochlear projection patterns into abnormally developed auditory neurons along with impaired glutamate uptake in the cochlear nuclei, phenomena that probably reflect disruptions in neuronal circuits. To determine the cellular mechanisms that might be involved in regulating excitatory synaptic plasticity in 4-month-old Igf1−/− mice, modifications to neuroglia, astroglial glutamate transporters (GLTs) and metabotropic glutamate receptors (mGluRs) were assessed in the cochlear nuclei. The Igf1−/− mice show significant decreases in IBA1 (an ionized calcium-binding adapter) and glial fibrillary acidic protein (GFAP) mRNA expression and protein accumulation, as well as dampened mGluR expression in conjunction with enhanced glutamate transporter 1 (GLT1) expression. By contrast, no differences were observed in the expression of glutamate aspartate transporter (GLAST) between these Igf1−/− mice and their heterozygous or wildtype littermates. These observations suggest that congenital IGF-1 deficiency may lead to alterations in microglia and astrocytes, an upregulation of GLT1, and the downregulation of groups I, II and III mGluRs. Understanding the molecular, biochemical and morphological mechanisms underlying neuronal plasticity in a mouse model of hearing deficits will give us insight into new therapeutic strategies that could help to maintain or even improve residual hearing when human deafness is related to IGF-1 deficiency.
Collapse
Affiliation(s)
- Veronica Fuentes-Santamaría
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Juan C Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Lourdes Rodríguez-de la Rosa
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIBER MP, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - José M Juiz
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Isabel Varela-Nieto
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIBER MP, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
20
|
Mahmoud S, Gharagozloo M, Simard C, Gris D. Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release. Cells 2019; 8:E184. [PMID: 30791579 PMCID: PMC6406900 DOI: 10.3390/cells8020184] [Citation(s) in RCA: 370] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/26/2023] Open
Abstract
Glutamate is one of the most prevalent neurotransmitters released by excitatory neurons in the central nervous system (CNS); however, residual glutamate in the extracellular space is, potentially, neurotoxic. It is now well-established that one of the fundamental functions of astrocytes is to uptake most of the synaptically-released glutamate, which optimizes neuronal functions and prevents glutamate excitotoxicity. In the CNS, glutamate clearance is mediated by glutamate uptake transporters expressed, principally, by astrocytes. Interestingly, recent studies demonstrate that extracellular glutamate stimulates Ca2+ release from the astrocytes' intracellular stores, which triggers glutamate release from astrocytes to the adjacent neurons, mostly by an exocytotic mechanism. This released glutamate is believed to coordinate neuronal firing and mediate their excitatory or inhibitory activity. Therefore, astrocytes contribute to glutamate homeostasis in the CNS, by maintaining the balance between their opposing functions of glutamate uptake and release. This dual function of astrocytes represents a potential therapeutic target for CNS diseases associated with glutamate excitotoxicity. In this regard, we summarize the molecular mechanisms of glutamate uptake and release, their regulation, and the significance of both processes in the CNS. Also, we review the main features of glutamate metabolism and glutamate excitotoxicity and its implication in CNS diseases.
Collapse
Affiliation(s)
- Shaimaa Mahmoud
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Marjan Gharagozloo
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Camille Simard
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Denis Gris
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
21
|
Cartography of hevin-expressing cells in the adult brain reveals prominent expression in astrocytes and parvalbumin neurons. Brain Struct Funct 2019; 224:1219-1244. [PMID: 30656447 DOI: 10.1007/s00429-019-01831-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 01/08/2019] [Indexed: 02/03/2023]
Abstract
Hevin, also known as SPARC-like 1, is a member of the secreted protein acidic and rich in cysteine family of matricellular proteins, which has been implicated in neuronal migration and synaptogenesis during development. Unlike previously characterized matricellular proteins, hevin remains strongly expressed in the adult brain in both astrocytes and neurons, but its precise pattern of expression is unknown. The present study provides the first systematic description of hevin mRNA distribution in the adult mouse brain. Using isotopic in situ hybridization, we showed that hevin is strongly expressed in the cortex, hippocampus, basal ganglia complex, diverse thalamic nuclei and brainstem motor nuclei. To identify the cellular phenotype of hevin-expressing cells, we used double fluorescent in situ hybridization in mouse and human adult brains. In the mouse, hevin mRNA was found in the majority of astrocytes but also in specific neuronal populations. Hevin was expressed in almost all parvalbumin-positive projection neurons and local interneurons. In addition, hevin mRNA was found in: (1) subsets of other inhibitory GABAergic neuronal subtypes, including calbindin, cholecystokinin, neuropeptide Y, and somatostatin-positive neurons; (2) subsets of glutamatergic neurons, identified by the expression of the vesicular glutamate transporters VGLUT1 and VGLUT2; and (3) the majority of cholinergic neurons from motor nuclei. Hevin mRNA was absent from all monoaminergic neurons and cholinergic neurons of the ascending pathway. A similar cellular profile of expression was observed in human, with expression of hevin in parvalbumin interneurons and astrocytes in the cortex and caudate nucleus as well as in cortical glutamatergic neurons. Furthermore, hevin transcript was enriched in ribosomes of astrocytes and parvalbumin neurons providing a direct evidence of hevin mRNAs translation in these cell types. This study reveals the unique and complex expression profile of the matricellular protein hevin in the adult brain. This distribution is compatible with a role of hevin in astrocytic-mediated adult synaptic plasticity and in the regulation of network activity mediated by parvalbumin-expressing neurons.
Collapse
|
22
|
Parkin GM, Udawela M, Gibbons A, Dean B. Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J Psychiatry 2018; 8:51-63. [PMID: 29988908 PMCID: PMC6033743 DOI: 10.5498/wjp.v8.i2.51] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/15/2018] [Accepted: 06/09/2018] [Indexed: 02/05/2023] Open
Abstract
Glutamate is the predominant excitatory neurotransmitter in the human brain and it has been shown that prolonged activation of the glutamatergic system leads to nerve damage and cell death. Following release from the pre-synaptic neuron and synaptic transmission, glutamate is either taken up into the pre-synaptic neuron or neighbouring glia by transmembrane glutamate transporters. Excitatory amino acid transporter (EAAT) 1 and EAAT2 are Na+-dependant glutamate transporters expressed predominantly in glia cells of the central nervous system. As the most abundant glutamate transporters, their primary role is to modulate levels of glutamatergic excitability and prevent spill over of glutamate beyond the synapse. This role is facilitated through the binding and transportation of glutamate into astrocytes and microglia. The function of EAAT1 and EAAT2 is heavily regulated at the levels of gene expression, post-transcriptional splicing, glycosylation states and cell-surface trafficking of the protein. Both glutamatergic dysfunction and glial dysfunction have been proposed to be involved in psychiatric disorder. This review will present an overview of the roles that EAAT1 and EAAT2 play in modulating glutamatergic activity in the human brain, and mount an argument that these two transporters could be involved in the aetiologies of schizophrenia and affective disorders as well as represent potential drug targets for novel therapies for those disorders.
Collapse
Affiliation(s)
- Georgia M Parkin
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
- CRC for Mental Health, Carlton VIC 3053, Australia
| | - Madhara Udawela
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
- CRC for Mental Health, Carlton VIC 3053, Australia
| | - Andrew Gibbons
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
| | - Brian Dean
- Molecular Psychiatry Laboratory, the Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia
- CRC for Mental Health, Carlton VIC 3053, Australia
- Research Centre for Mental Health, the Faculty of Health, Arts and Design, Swinburne University, Hawthorne VIC 3122, Australia
| |
Collapse
|
23
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
24
|
Abstract
Astrocytes make up approximately 30% of all the cells in the mammalian central nervous system. They are not passive, as once thought, but are integral to brain physiology and perform many functions that are important for normal neuronal development and metabolism, synapse formation, synaptic transmission, and in repair following injury/disease. Astrocytes also communicate with neurons, blood vessels, and other types of glial cells. Astrocytes within the optic nerve head region play a key role in glaucomatous axon degeneration. In this chapter, we describe ways in which astrocytes of the optic nerve head can be visualized, beginning with basic immunohistochemical staining methods, to single-cell dye injections and then to transgenic animals. We will also discuss the pros and cons of each method. Many of the methods were initially developed to visualize brain astrocytes; in some cases, the method has translated well to astrocytes of the optic nerve, and in others, it remains unclear.
Collapse
Affiliation(s)
- Daniel Sun
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA.
| |
Collapse
|
25
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 964] [Impact Index Per Article: 137.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
26
|
Verkhratsky A, Zorec R, Parpura V. Stratification of astrocytes in healthy and diseased brain. Brain Pathol 2017; 27:629-644. [PMID: 28805002 PMCID: PMC5599174 DOI: 10.1111/bpa.12537] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Astrocytes, a subtype of glial cells, come in variety of forms and functions. However, overarching role of these cell is in the homeostasis of the brain, be that regulation of ions, neurotransmitters, metabolism or neuronal synaptic networks. Loss of homeostasis represents the underlying cause of all brain disorders. Thus, astrocytes are likely involved in most if not all of the brain pathologies. We tabulate astroglial homeostatic functions along with pathological condition that arise from dysfunction of these glial cells. Classification of astrocytes is presented with the emphasis on evolutionary trails, morphological appearance and numerical preponderance. We note that, even though astrocytes from a variety of mammalian species share some common features, human astrocytes appear to be the largest and most complex of all astrocytes studied thus far. It is then an imperative to develop humanized models to study the role of astrocytes in brain pathologies, which is perhaps most abundantly clear in the case of glioblastoma multiforme.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Division of Neuroscience & Experimental PsychologyThe University of ManchesterManchesterUnited Kingdom
- Achúcarro Basque Center for NeuroscienceIKERBASQUE, Basque Foundation for Science48011 BilbaoSpain
- Department of NeuroscienceUniversity of the Basque Country UPV/EHU and CIBERNED48940 LeioaSpain
| | - Robert Zorec
- Laboratory of Cell EngineeringCelica BIOMEDICAL, Tehnološki park 24, Ljubljana 1000SloveniaEurope
- Laboratory of Neuroendocrinology‐Molecular Cell PhysiologyInstitute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana 1000SloveniaEurope
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories, 1719 6th Avenue South, CIRC 429University of Alabama at BirminghamBirminghamAL 35294‐0021
| |
Collapse
|
27
|
Spencer S, Kalivas PW. Glutamate Transport: A New Bench to Bedside Mechanism for Treating Drug Abuse. Int J Neuropsychopharmacol 2017; 20:797-812. [PMID: 28605494 PMCID: PMC5632313 DOI: 10.1093/ijnp/pyx050] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Drug addiction has often been described as a "hijacking" of the brain circuits involved in learning and memory. Glutamate is the principal excitatory neurotransmitter in the brain, and its contribution to synaptic plasticity and learning processes is well established in animal models. Likewise, over the past 20 years the addiction field has ascribed a critical role for glutamatergic transmission in the development of addiction. Chronic drug use produces enduring neuroadaptations in corticostriatal projections that are believed to contribute to a maladaptive deficit in inhibitory control over behavior. Much of this research focuses on the role played by ionotropic glutamate receptors directly involved in long-term potentiation and depression or metabotropic receptors indirectly modulating synaptic plasticity. Importantly, the balance between glutamate release and clearance tightly regulates the patterned activation of these glutamate receptors, emphasizing an important role for glutamate transporters in maintaining extracellular glutamate levels. Five excitatory amino acid transporters participate in active glutamate reuptake. Recent evidence suggests that these glutamate transporters can be modulated by chronic drug use at a variety of levels. In this review, we synopsize the evidence and mechanisms associated with drug-induced dysregulation of glutamate transport. We then summarize the preclinical and clinical data suggesting that glutamate transporters offer an effective target for the treatment of drug addiction. In particular, we focus on the role that altered glutamate transporters have in causing drug cues and contexts to develop an intrusive quality that guides maladaptive drug seeking behaviors.
Collapse
Affiliation(s)
- Sade Spencer
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina.,Correspondence: Sade Spencer, PhD, Medical University of South Carolina, 173 Ashley Avenue, BSB, 403- MSC 510, Charleston, SC 29425 ()
| | - Peter W Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
28
|
Murphy-Royal C, Dupuis J, Groc L, Oliet SHR. Astroglial glutamate transporters in the brain: Regulating neurotransmitter homeostasis and synaptic transmission. J Neurosci Res 2017; 95:2140-2151. [PMID: 28150867 DOI: 10.1002/jnr.24029] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/20/2016] [Accepted: 01/02/2017] [Indexed: 12/29/2022]
Abstract
Astrocytes, the major glial cell type in the central nervous system (CNS), are critical for brain function and have been implicated in various disorders of the central nervous system. These cells are involved in a wide range of cerebral processes including brain metabolism, control of central blood flow, ionic homeostasis, fine-tuning synaptic transmission, and neurotransmitter clearance. Such varied roles can be efficiently carried out due to the intimate interactions astrocytes maintain with neurons, the vasculature, as well as with other glial cells. Arguably, one of the most important functions of astrocytes in the brain is their control of neurotransmitter clearance. This is particularly true for glutamate whose timecourse in the synaptic cleft needs to be controlled tightly under physiological conditions to maintain point-to-point excitatory transmission, thereby limiting spillover and activation of more receptors. Most importantly, accumulation of glutamate in the extracellular space can trigger excessive activation of glutamatergic receptors and lead to excitotoxicity, a trademark of many neurodegenerative diseases. It is thus of utmost importance for both physiological and pathophysiological reasons to understand the processes that control glutamate time course within the synaptic cleft and regulate its concentrations in the extracellular space. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ciaran Murphy-Royal
- Neurocentre Magendie, Inserm U1215, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Julien Dupuis
- Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France
| | - Laurent Groc
- Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France
| | - Stéphane H R Oliet
- Neurocentre Magendie, Inserm U1215, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| |
Collapse
|
29
|
Usardi A, Iyer K, Sigoillot SM, Dusonchet A, Selimi F. The immunoglobulin-like superfamily member IGSF3 is a developmentally regulated protein that controls neuronal morphogenesis. Dev Neurobiol 2016; 77:75-92. [PMID: 27328461 DOI: 10.1002/dneu.22412] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/18/2016] [Accepted: 06/18/2016] [Indexed: 01/06/2023]
Abstract
The establishment of a functional brain depends on the fine regulation and coordination of many processes, including neurogenesis, differentiation, dendritogenesis, axonogenesis, and synaptogenesis. Proteins of the immunoglobulin-like superfamily (IGSF) are major regulators during this sequence of events. Different members of this class of proteins play nonoverlapping functions at specific developmental time-points, as shown in particular by studies of the cerebellum. We have identified a member of the little studied EWI subfamily of IGSF, the protein IGSF3, as a membrane protein expressed in a neuron specific- and time-dependent manner during brain development. In the cerebellum, it is transiently found in membranes of differentiating granule cells, and is particularly concentrated at axon terminals. There it co-localizes with other IGSF proteins with well-known functions in cerebellar development: TAG-1 and L1. Functional analysis shows that IGSF3 controls the differentiation of granule cells, more precisely axonal growth and branching. Biochemical experiments demonstrate that, in the developing brain, IGSF3 is in a complex with the tetraspanin TSPAN7, a membrane protein mutated in several forms of X-linked intellectual disabilities. In cerebellar granule cells, TSPAN7 promotes axonal branching and the size of TSPAN7 clusters is increased by downregulation of IGSF3. Thus IGSF3 is a novel regulator of neuronal morphogenesis that might function through interactions with multiple partners including the tetraspanin TSPAN7. This developmentally regulated protein might thus be at the center of a new signaling pathway controlling brain development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 75-92, 2017.
Collapse
Affiliation(s)
- Alessia Usardi
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Keerthana Iyer
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Séverine M Sigoillot
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Antoine Dusonchet
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Fekrije Selimi
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| |
Collapse
|
30
|
Danbolt NC, Furness DN, Zhou Y. Neuronal vs glial glutamate uptake: Resolving the conundrum. Neurochem Int 2016; 98:29-45. [PMID: 27235987 DOI: 10.1016/j.neuint.2016.05.009] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 12/30/2022]
Abstract
Neither normal brain function nor the pathological processes involved in neurological diseases can be adequately understood without knowledge of the release, uptake and metabolism of glutamate. The reason for this is that glutamate (a) is the most abundant amino acid in the brain, (b) is at the cross-roads between several metabolic pathways, and (c) serves as the major excitatory neurotransmitter. In fact most brain cells express glutamate receptors and are thereby influenced by extracellular glutamate. In agreement, brain cells have powerful uptake systems that constantly remove glutamate from the extracellular fluid and thereby limit receptor activation. It has been clear since the 1970s that both astrocytes and neurons express glutamate transporters. However the relative contribution of neuronal and glial transporters to the total glutamate uptake activity, however, as well as their functional importance, has been hotly debated ever since. The present short review provides (a) an overview of what we know about neuronal glutamate uptake as well as an historical description of how we got there, and (b) a hypothesis reconciling apparently contradicting observations thereby possibly resolving the paradox.
Collapse
Affiliation(s)
- N C Danbolt
- The Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - D N Furness
- School of Life Sciences, Keele University, Keele, Staffs. ST5 5BG, UK
| | - Y Zhou
- The Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Martinez-Lozada Z, Guillem AM, Robinson MB. Transcriptional Regulation of Glutamate Transporters: From Extracellular Signals to Transcription Factors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:103-45. [PMID: 27288076 DOI: 10.1016/bs.apha.2016.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the mammalian CNS. It mediates essentially all rapid excitatory signaling. Dysfunction of glutamatergic signaling contributes to developmental, neurologic, and psychiatric diseases. Extracellular glutamate is cleared by a family of five Na(+)-dependent glutamate transporters. Two of these transporters (GLAST and GLT-1) are relatively selectively expressed in astrocytes. Other of these transporters (EAAC1) is expressed by neurons throughout the nervous system. Expression of the last two members of this family (EAAT4 and EAAT5) is almost exclusively restricted to specific populations of neurons in cerebellum and retina, respectively. In this review, we will discuss our current understanding of the mechanisms that control transcriptional regulation of the different members of this family. Over the last two decades, our understanding of the mechanisms that regulate expression of GLT-1 and GLAST has advanced considerably; several specific transcription factors, cis-elements, and epigenetic mechanisms have been identified. For the other members of the family, little or nothing is known about the mechanisms that control their transcription. It is assumed that by defining the mechanisms involved, we will advance our understanding of the events that result in cell-specific expression of these transporters and perhaps begin to define the mechanisms by which neurologic diseases are changing the biology of the cells that express these transporters. This approach might provide a pathway for developing new therapies for a wide range of essentially untreatable and devastating diseases that kill neurons by an excitotoxic mechanism.
Collapse
Affiliation(s)
- Z Martinez-Lozada
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - A M Guillem
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - M B Robinson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
32
|
Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab 2016; 36:513-38. [PMID: 26661240 PMCID: PMC4776312 DOI: 10.1177/0271678x15617172] [Citation(s) in RCA: 381] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/25/2022]
Abstract
Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema.
Collapse
Affiliation(s)
- Jesse A Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, USA Department of Pathology, University of Maryland School of Medicine, Baltimore, USA Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
33
|
Chrobak AA, Soltys Z. Bergmann Glia, Long-Term Depression, and Autism Spectrum Disorder. Mol Neurobiol 2016; 54:1156-1166. [PMID: 26809583 PMCID: PMC5310553 DOI: 10.1007/s12035-016-9719-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/12/2016] [Indexed: 12/22/2022]
Abstract
Bergmann glia (BG), a specific type of radial astrocytes in the cerebellum, play a variety of vital functions in the development of this structure. However, the possible role of BG in the development of abnormalities observed in individuals with autism spectrum disorder (ASD) seems to be underestimated. One of the most consistent findings observed in ASD patients is loss of Purkinje cells (PCs). Such a defect may be caused by dysregulation of glutamate homeostasis, which is maintained mainly by BG. Moreover, these glial cells are involved in long-term depression (LTD), a form of plasticity which can additionally subserve neuroprotective functions. The aim of presented review is to summarize the current knowledge about interactions which occur between PC and BG, with special emphasis on those which are relevant to the survival and proper functioning of cerebellar neurons.
Collapse
Affiliation(s)
- Adrian Andrzej Chrobak
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Gronostajowa St. 9, Cracow, 30-387, Poland. .,Faculty of Medicine, Jagiellonian University Medical College, Kopernika St. 21A, Cracow, 31-501, Poland.
| | - Zbigniew Soltys
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Gronostajowa St. 9, Cracow, 30-387, Poland
| |
Collapse
|
34
|
Alasmari F, Rao PSS, Sari Y. Effects of cefazolin and cefoperazone on glutamate transporter 1 isoforms and cystine/glutamate exchanger as well as alcohol drinking behavior in male alcohol-preferring rats. Brain Res 2016; 1634:150-157. [PMID: 26790351 DOI: 10.1016/j.brainres.2016.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/09/2015] [Accepted: 01/07/2016] [Indexed: 12/22/2022]
Abstract
Previously, we have reported that cefazolin and cefoperazone treatments attenuated ethanol consumption, at least in part, through upregulation of GLT-1 expression in male alcohol-preferring (P) rats. In this study, we determined the effects of these compounds on the expression of GLT-1 isoforms (GLT-1a and GLT-1b), cysteine/glutamate exchanger (xCT), which is another glial glutamate transporter co-localized with GLT-1, and glutamate/aspartate transporter (GLAST). We found that cefazolin and cefoperazone treatments decreased ethanol intake and upregulated both GLT-1 isoforms, GLT-1a and GLT-1b, in nucleus accumbens (NAc) and prefrontal cortex (PFC) compared to saline treated group. In addition, cefazolin increased the expression of xCT in NAc and PFC, while cefoperazone upregulated xCT expression only in NAc. However, we did not find any significant differences in GLAST expression between the treated and control groups. Overall, our findings suggest that cefazolin and cefoperazone may be considered as potential compounds for the treatment of ethanol dependence.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - P S S Rao
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
35
|
Mela V, Díaz F, Borcel E, Argente J, Chowen JA, Viveros MP. Long Term Hippocampal and Cortical Changes Induced by Maternal Deprivation and Neonatal Leptin Treatment in Male and Female Rats. PLoS One 2015; 10:e0137283. [PMID: 26382238 PMCID: PMC4575204 DOI: 10.1371/journal.pone.0137283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/14/2015] [Indexed: 01/17/2023] Open
Abstract
Maternal deprivation (MD) during neonatal life has diverse long-term behavioral effects and alters the development of the hippocampus and frontal cortex, with several of these effects being sexually dimorphic. MD animals show a marked reduction in their circulating leptin levels, not only during the MD period, but also several days later (PND 13). A neonatal leptin surge occurs in rodents (beginning around PND 5 and peaking between PND 9 and 10) that has an important neurotrophic role. We hypothesized that the deficient neonatal leptin signaling of MD rats could be involved in the altered development of their hippocampus and frontal cortex. Accordingly, a neonatal leptin treatment in MD rats would at least in part counteract their neurobehavioural alterations. MD was carried out in Wistar rats for 24 h on PND 9. Male and female MD and control rats were treated from PND 9 to 13 with rat leptin (3 mg/kg/day sc) or vehicle. In adulthood, the animals were submitted to the open field, novel object memory test and the elevated plus maze test of anxiety. Neuronal and glial population markers, components of the glutamatergic and cannabinoid systems and diverse synaptic plasticity markers were evaluated by PCR and/or western blotting. Main results include: 1) In some of the parameters analyzed, neonatal leptin treatment reversed the effects of MD (eg., mRNA expression of hippocampal IGF1 and protein expression of GFAP and vimentin) partially confirming our hypothesis; 2) The neonatal leptin treatment, per se, exerted a number of behavioral (increased anxiety) and neural effects (eg., expression of the following proteins: NG2, NeuN, PSD95, NCAM, synaptophysin). Most of these effects were sex dependent. An adequate neonatal leptin level (avoiding excess and deficiency) appears to be necessary for its correct neuro-programing effect.
Collapse
Affiliation(s)
- Virginia Mela
- Department of Physiology (Anim Physiol II), Faculty of Biology, Complutense University Madrid, Madrid, Spain
| | - Francisca Díaz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa & CIBEROBN Instituto Carlos III, Madrid, Spain
| | - Erika Borcel
- Brain Mind Institute and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa & CIBEROBN Instituto Carlos III, Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa & CIBEROBN Instituto Carlos III, Madrid, Spain
| | - Maria-Paz Viveros
- Department of Physiology (Anim Physiol II), Faculty of Biology, Complutense University Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
36
|
Astrocyte physiopathology: At the crossroads of intercellular networking, inflammation and cell death. Prog Neurobiol 2015; 130:86-120. [PMID: 25930681 DOI: 10.1016/j.pneurobio.2015.04.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
Recent breakthroughs in neuroscience have led to the awareness that we should revise our traditional mode of thinking and studying the CNS, i.e. by isolating the privileged network of "intelligent" synaptic contacts. We may instead need to contemplate all the variegate communications occurring between the different neural cell types, and centrally involving the astrocytes. Basically, it appears that a single astrocyte should be considered as a core that receives and integrates information from thousands of synapses, other glial cells and the blood vessels. In turn, it generates complex outputs that control the neural circuitry and coordinate it with the local microcirculation. Astrocytes thus emerge as the possible fulcrum of the functional homeostasis of the healthy CNS. Yet, evidence indicates that the bridging properties of the astrocytes can change in parallel with, or as a result of, the morphological, biochemical and functional alterations these cells undergo upon injury or disease. As a consequence, they have the potential to transform from supportive friends and interactive partners for neurons into noxious foes. In this review, we summarize the currently available knowledge on the contribution of astrocytes to the functioning of the CNS and what goes wrong in various pathological conditions, with a particular focus on Amyotrophic Lateral Sclerosis, Alzheimer's Disease and ischemia. The observations described convincingly demonstrate that the development and progression of several neurological disorders involve the de-regulation of a finely tuned interplay between multiple cell populations. Thus, it seems that a better understanding of the mechanisms governing the integrated communication and detrimental responses of the astrocytes as well as their impact towards the homeostasis and performance of the CNS is fundamental to open novel therapeutic perspectives.
Collapse
|
37
|
Argente-Arizón P, Freire-Regatillo A, Argente J, Chowen JA. Role of non-neuronal cells in body weight and appetite control. Front Endocrinol (Lausanne) 2015; 6:42. [PMID: 25859240 PMCID: PMC4374626 DOI: 10.3389/fendo.2015.00042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022] Open
Abstract
The brain is composed of neurons and non-neuronal cells, with the latter encompassing glial, ependymal and endothelial cells, as well as pericytes and progenitor cells. Studies aimed at understanding how the brain operates have traditionally focused on neurons, but the importance of non-neuronal cells has become increasingly evident. Once relegated to supporting roles, it is now indubitable that these diverse cell types are fundamental for brain development and function, including that of metabolic circuits, and they may play a significant role in obesity onset and complications. They participate in processes of neurogenesis, synaptogenesis, and synaptic plasticity of metabolic circuits both during development and in adulthood. Some glial cells, such as tanycytes and astrocytes, transport circulating nutrients and metabolic factors that are fundamental for neuronal viability and activity into and within the hypothalamus. All of these cell types express receptors for a variety of metabolic factors and hormones, suggesting that they participate in metabolic function. They are the first line of defense against any assault to neurons. Indeed, microglia and astrocytes participate in the hypothalamic inflammatory response to high fat diet (HFD)-induced obesity, with this process contributing to inflammatory-related insulin and leptin resistance. Moreover, HFD-induced obesity and hyperleptinemia modify hypothalamic astroglial morphology, which is associated with changes in the synaptic inputs to neuronal metabolic circuits. Astrocytic contact with the microvasculature is increased by HFD intake and this could modify nutrient/hormonal uptake into the brain. In addition, progenitor cells in the hypothalamus are now known to have the capacity to renew metabolic circuits, and this can be affected by HFD intake and obesity. Here, we discuss our current understanding of how non-neuronal cells participate in physiological and physiopathological metabolic control.
Collapse
Affiliation(s)
- Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Julie A. Chowen, Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Avda. Menéndez Pelayo, 65, Madrid E-28009, Spain e-mail: ;
| |
Collapse
|
38
|
Jiménez E, Núñez E, Ibáñez I, Draffin JE, Zafra F, Giménez C. Differential regulation of the glutamate transporters GLT-1 and GLAST by GSK3β. Neurochem Int 2014; 79:33-43. [PMID: 25454285 DOI: 10.1016/j.neuint.2014.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/03/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
The glutamate transporters GLAST and GLT-1 are mainly expressed in glial cells and regulate glutamate levels in the synapses. GLAST and GLT-1 are the targets of several signaling pathways. In this study we explore the possible functional interaction between these transporters and GSK3β. This kinase is involved in multiple cellular processes including neuronal development and synaptic plasticity. To evaluate whether GLT-1 and GLAST were regulated by GSK3β, we coexpressed these proteins in heterologous expression systems. In both COS-7 cells and Xenopus laevis oocytes, GSK3β stimulated the activity of GLT-1 and reduced that of GLAST. These effects were associated with corresponding changes in the amounts of GLT-1 or GLAST in the plasma membrane. These effects were suppressed by inhibitors of GSK3β or a catalytically inactive form of the kinase. GSK3β also decreases the incorporation of (32)Pi into GLT-1 and increases GLAST phosphorylation. Pharmacological inhibition of endogenous GSK3β in primary cultures of rat brain cortex also leads to a differential modulation of GLT-1 and GLAST. Our results suggest that constitutively active GSK3β is important in controlling the expression of functional glutamate transporters on the plasma membrane. This regulation might be relevant in physiological and pathological conditions in which glutamate transporters and GSK3β signaling are involved.
Collapse
Affiliation(s)
- Esperanza Jiménez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Núñez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Ibáñez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Jonathan E Draffin
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Cecilio Giménez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
39
|
Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 2014; 121:799-817. [PMID: 24578174 PMCID: PMC4133642 DOI: 10.1007/s00702-014-1180-8] [Citation(s) in RCA: 561] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/11/2014] [Indexed: 12/13/2022]
Abstract
Glutamate is the most abundant free amino acid in the brain and is at the crossroad between multiple metabolic pathways. Considering this, it was a surprise to discover that glutamate has excitatory effects on nerve cells, and that it can excite cells to their death in a process now referred to as "excitotoxicity". This effect is due to glutamate receptors present on the surface of brain cells. Powerful uptake systems (glutamate transporters) prevent excessive activation of these receptors by continuously removing glutamate from the extracellular fluid in the brain. Further, the blood-brain barrier shields the brain from glutamate in the blood. The highest concentrations of glutamate are found in synaptic vesicles in nerve terminals from where it can be released by exocytosis. In fact, glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. It took, however, a long time to realize that. The present review provides a brief historical description, gives a short overview of glutamate as a transmitter in the healthy brain, and comments on the so-called glutamate-glutamine cycle. The glutamate transporters responsible for the glutamate removal are described in some detail.
Collapse
Affiliation(s)
- Y. Zhou
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, P.O. Box 1105, 0317 Oslo, Norway
| | - N. C. Danbolt
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, P.O. Box 1105, 0317 Oslo, Norway
| |
Collapse
|
40
|
Astrocytes and glutamate homoeostasis in Alzheimer's disease: a decrease in glutamine synthetase, but not in glutamate transporter-1, in the prefrontal cortex. ASN Neuro 2013; 5:273-82. [PMID: 24059854 PMCID: PMC3791522 DOI: 10.1042/an20130017] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Astrocytes control tissue equilibrium and hence define the homoeostasis and function of the CNS (central nervous system). Being principal homoeostatic cells, astroglia are fundamental for various forms of neuropathology, including AD (Alzheimer's disease). AD is a progressive neurodegenerative disorder characterized by the loss of cognitive functions due to specific lesions in mnesic-associated regions, including the mPFC (medial prefrontal cortex). Here, we analyzed the expression of GS (glutamine synthetase) and GLT-1 (glutamate transporter-1) in astrocytes in the mPFC during the progression of AD in a triple-transgenic mouse model (3xTg-AD). GS is an astrocyte-specific enzyme, responsible for the intracellular conversion of glutamate into glutamine, whereas the removal of glutamate from the extracellular space is accomplished mainly by astroglia-specific GLT-1. We found a significant decrease in the numerical density (Nv, cells/mm3) of GS-positive astrocytes from early to middle ages (1–9 months; at the age of 1 month by 17%, 6 months by 27% and 9 months by 27% when compared with control animals) in parallel with a reduced expression of GS (determined by Western blots), which started at the age of 6 months and was sustained up to 12 months of age. We did not, however, find any changes in the expression of GLT-1, which implies an intact glutamate uptake mechanism. Our results indicate that the decrease in GS expression may underlie a gradual decline in the vital astrocyte-dependent glutamate–glutamine conversion pathway, which in turn may compromise glutamate homoeostasis, leading towards failures in synaptic connectivity with deficient cognition and memory.
Collapse
|
41
|
Hida H, Mouri A, Ando Y, Mori K, Mamiya T, Iwamoto K, Ozaki N, Yamada K, Nabeshima T, Noda Y. Combination of neonatal PolyI:C and adolescent phencyclidine treatments is required to induce behavioral abnormalities with overexpression of GLAST in adult mice. Behav Brain Res 2013; 258:34-42. [PMID: 24060653 DOI: 10.1016/j.bbr.2013.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/08/2013] [Accepted: 09/11/2013] [Indexed: 12/25/2022]
Abstract
Cumulative incidences of multiple risk factors are related to pathology of psychiatric disorders. The present study was designed to examine combinative effects of a neonatal immune challenge with adolescent abused substance treatment on the psychological behaviors and molecular expressions in the adult. C57BL/6J mice were neonatally treated, with polyriboinosinic-polyribocytidylic acid (PolyI:C: 5mg/kg) during postnatal days (PD) 2-6, then with phencyclidine (PCP: 10mg/kg) during adolescence (PD35-41). Locomotor activity was analyzed to evaluate sensitivity to PCP on PD35 and PD41. Emotional and cognitive tests were carried out on PD42-48. Neonatal PolyI:C treatment markedly enhanced sensitivity to PCP- and methamphetamine-induced hyperactivity in the adolescent. Mice treated with both neonatal PolyI:C and adolescent PCP (PolyI:C/PCP) showed social deficit and object recognition memory impairment. The expression of glutamate/aspartate transporter (GLAST) in the prefrontal cortex (PFC) was significantly increased in the (PolyI:C/PCP)-treated mice. Infusion of glutamate transporter inhibitor (DL-TBOA: 1 nmol/bilaterally) into the PFC reversed the object recognition impairment in the (PolyI:C/PCP)-treated mice. These results indicate that the combined treatment of neonatal PolyI:C with adolescent PCP leads to behavioral abnormalities, which were associated with increase of GLAST expression in the adult PFC.
Collapse
Affiliation(s)
- Hirotake Hida
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
DeSilva TM, Borenstein NS, Volpe JJ, Kinney HC, Rosenberg PA. Expression of EAAT2 in neurons and protoplasmic astrocytes during human cortical development. J Comp Neurol 2013; 520:3912-32. [PMID: 22522966 DOI: 10.1002/cne.23130] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The major regulators of synaptic glutamate in the cerebral cortex are the excitatory amino acid transporters 1-3 (EAAT1-3). In this study, we determined the cellular and temporal expression of EAAT1-3 in the developing human cerebral cortex. We applied single- and double-label immunocytochemistry to normative frontal or parietal (associative) cortex samples from 14 cases ranging in age from 23 gestational weeks to 2.5 postnatal years. The most striking finding was the transient expression of EAAT2 in layer V pyramidal neuronal cell bodies up until 8 postnatal months prior to its expression in protoplasmic astrocytes at 41 postconceptional weeks onward. EAAT2 was also expressed in neurons in layer I (presumed Cajal-Retzius cells), and white matter (interstitial) neurons. This expression in neurons in the developing human cortex contrasts with findings by others of transient expression exclusively in axon tracts in the developing sheep and rodent brain. With western blotting, we found that EAAT2 was expressed as a single band until 2 postnatal months, after which it was expressed as two bands. The expression of EAAT2 in pyramidal neurons during human brain development may contribute to cortical vulnerability to excitotoxicity during the critical period for perinatal hypoxic-ischemic encephalopathy. In addition, by studying the expression of EAAT1 and EAAT2 glutamate transporters, it was possible to document the development of protoplasmic astrocytes.
Collapse
Affiliation(s)
- Tara M DeSilva
- Department of Neurology and the FM Kirby Neurobiology Center, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
43
|
Kan L, Peng CY, McGuire TL, Kessler JA. Glast-expressing progenitor cells contribute to heterotopic ossification. Bone 2013; 53:194-203. [PMID: 23262027 PMCID: PMC3793345 DOI: 10.1016/j.bone.2012.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/28/2012] [Accepted: 12/09/2012] [Indexed: 01/15/2023]
Abstract
Heterotopic ossification (HO), acquired or hereditary, is the formation of true bone outside the normal skeleton. Although the lineages of cells contributing to bone formation during normal development are well defined, the precise lineages of cells that contribute to HO are not clear. This study utilized Cre-lox based genetic lineage tracing to examine the contribution to HO of cells that expressed either FoxD1 or Glast. Both lineages contributed broadly to different normal tissues, and FoxD1-cre labeled cells contributed to normal bone formation. Despite the similarity in labeling patterns of normal tissues, and the significant contribution of FoxD1-cre labeled cells to normal bone, only Glast-creERT labeled progenitors contributed significantly to HO at all stages, suggesting that the cell populations that normally contribute to physiological bone formation, such as the Foxd1-cre labeled cells, may not participate in pathological HO. Further, identification of Glast-expressing cells as precursors that give rise to HO should help with the molecular targeting of this population both for the prevention and for the treatment of HO.
Collapse
Affiliation(s)
- Lixin Kan
- Department of Neurology, Northwestern University Feinberg Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
44
|
Shan D, Lucas EK, Drummond JB, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE. Abnormal expression of glutamate transporters in temporal lobe areas in elderly patients with schizophrenia. Schizophr Res 2013; 144:1-8. [PMID: 23356950 PMCID: PMC3572263 DOI: 10.1016/j.schres.2012.12.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/26/2022]
Abstract
Glutamate transporters facilitate the buffering, clearance and cycling of glutamate and play an important role in maintaining synaptic and extrasynaptic glutamate levels. Alterations in glutamate transporter expression may lead to abnormal glutamate neurotransmission contributing to the pathophysiology of schizophrenia. In addition, alterations in the architecture of the superior temporal gyrus and hippocampus have been implicated in this illness, suggesting that synapses in these regions may be remodeled from a lifetime of severe mental illness and antipsychotic treatment. Thus, we hypothesize that glutamate neurotransmission may be abnormal in the superior temporal gyrus and hippocampus in schizophrenia. To test this hypothesis, we examined protein expression of excitatory amino acid transporter 1-3 and vesicular glutamate transporter 1 and 2 in subjects with schizophrenia (n=23) and a comparison group (n=27). We found decreased expression of EAAT1 and EAAT2 protein in the superior temporal gyrus, and decreased EAAT2 protein in the hippocampus in schizophrenia. We didn't find any changes in expression of the neuronal transporter EAAT3 or the presynaptic vesicular glutamate transporters VGLUT1-2. In addition, we did not detect an effect of antipsychotic medication on expression of EAAT1 and EAAT2 proteins in the temporal association cortex or hippocampus in rats treated with haloperidol for 9 months. Our findings suggest that buffering and reuptake, but not presynaptic release, of glutamate is altered in glutamate synapses in the temporal lobe in schizophrenia.
Collapse
Affiliation(s)
- Dan Shan
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Jana B. Drummond
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - James H. Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
,Evelyn F. McKnight Brain Institute, University of Arizona, Arizona, USA
| | - Robert E. McCullumsmith
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
45
|
Abstract
Astrocytes respond to all forms of CNS insult and disease by becoming reactive, a nonspecific but highly characteristic response that involves various morphological and molecular changes. Probably the most recognized aspect of reactive astrocytes is the formation of a glial scar that impedes axon regeneration. Although the reactive phenotype was first suggested more than 100 years ago based on morphological changes, the remodeling process is not well understood. We know little about the actual structure of a reactive astrocyte, how an astrocyte remodels during the progression of an insult, and how populations of these cells reorganize to form the glial scar. New methods of labeling astrocytes, along with transgenic mice, allow the complete morphology of reactive astrocytes to be visualized. Recent studies show that reactivity can induce a remarkable change in the shape of a single astrocyte, that not all astrocytes react in the same way, and that there is plasticity in the reactive response.
Collapse
Affiliation(s)
- Daniel Sun
- 1Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
46
|
Qu X, Xu C, Wang H, Xu J, Liu W, Wang Y, Jia X, Xie Z, Xu Z, Ji C, Wu A, Yue Y. Hippocampal glutamate level and glutamate aspartate transporter (GLAST) are up-regulated in senior rat associated with isoflurane-induced spatial learning/memory impairment. Neurochem Res 2012; 38:59-73. [PMID: 23070469 DOI: 10.1007/s11064-012-0889-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 08/31/2012] [Accepted: 09/10/2012] [Indexed: 12/30/2022]
Abstract
Postoperative cognitive decline is a clinical concern especially for senior patients. It is generally recognized that glutamatergic system plays a crucial role in the physiopathologic process of neurocognitive deterioration. However, alterations of glutamatergic system in prolonged isoflurane-induced learning/memory decline are still unclear. This study investigates the question whether glutamate concentration and corresponding transporters or receptors display any alternations in aged rat suffering from isoflurane-induced learning/memory impairment. 111 male Sprague-Dawley rats (>18 months) were randomly divided into two main groups: hippocampal microdialysis group (n = 38) and western blotting group (n = 73). Each group was subdivided into three subgroups including (1) control subgroup (n = 6 and 10, receiving no behavioral trial, anesthesia or air exposure); (2) air-exposed subgroup (n = 7 and 15, receiving behavioral trial and air exposure but not anesthesia); (3) isoflurane anesthesia subgroup (n = 25 and 48, receiving both behavioral trial and anesthesia). The isoflurane-exposed rats were further divided into a learning/memory-impaired subgroup and a non-learning/memory-impaired subgroup according to their behavioral performance, which was measured using Morris water maze. Hippocampal glutamate concentrations in microdialysates were determined by high-performance liquid chromatography. Expression levels of GLAST, GLT-1, NMDAR1, NMDAR2A/B, AMPAR and tau in hippocampus were assessed via quantitative Western blotting. The incidences of learning/memory impairment of isoflurane-exposed rats in hippocampal microdialysis group and western blotting group were 12.0 (3/25) and 10.4 % (5/48) respectively. The intra-anesthesia hippocampal glutamate levels were significantly lower than those of non-anesthesized rats. The learning/memory-impaired rats showed a long-lasting increased glutamate level from 24 h after isoflurane exposure to the end of the study, but the other 22 isoflurane-exposed rats did not. The learning/memory-impaired subgroup displayed a significantly higher GLAST level than the other three subgroups (p = 0.026, 0.02 and 0.032 respectively). The expression levels of GLT-1, NMDAR1, NMDAR2A/B and AMPAR of every subgroup were comparable. We found a continuous raised hippocampal glutamate and an up-regulation of GLAST rather than GLT-1, NMDAR1, NMDAR2A/B, AMPAR or tau in hippocampus of aged rats associated with isoflurane-induced learning/memory impairment.
Collapse
Affiliation(s)
- Xiangdong Qu
- Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fuente-Martín E, García-Cáceres C, Granado M, de Ceballos ML, Sánchez-Garrido MÁ, Sarman B, Liu ZW, Dietrich MO, Tena-Sempere M, Argente-Arizón P, Díaz F, Argente J, Horvath TL, Chowen JA. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes. J Clin Invest 2012; 122:3900-13. [PMID: 23064363 DOI: 10.1172/jci64102] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/27/2012] [Indexed: 01/08/2023] Open
Abstract
Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity.
Collapse
Affiliation(s)
- Esther Fuente-Martín
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology, Instituto de Investigación La Princesa, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kaufmann W, Bolon B, Bradley A, Butt M, Czasch S, Garman RH, George C, Gröters S, Krinke G, Little P, McKay J, Narama I, Rao D, Shibutani M, Sills R. Proliferative and nonproliferative lesions of the rat and mouse central and peripheral nervous systems. Toxicol Pathol 2012; 40:87S-157S. [PMID: 22637737 DOI: 10.1177/0192623312439125] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Harmonization of diagnostic nomenclature used in the pathology analysis of tissues from rodent toxicity studies will enhance the comparability and consistency of data sets from different laboratories worldwide. The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of four major societies of toxicologic pathology to develop a globally recognized nomenclature for proliferative and nonproliferative lesions in rodents. This article recommends standardized terms for classifying changes observed in tissues of the mouse and rat central (CNS) and peripheral (PNS) nervous systems. Sources of material include academic, government, and industrial histopathology databases from around the world. Covered lesions include frequent, spontaneous, and aging-related changes as well as principal toxicant-induced findings. Common artifacts that might be confused with genuine lesions are also illustrated. The neural nomenclature presented in this document is also available electronically on the Internet at the goRENI website (http://www.goreni.org/).
Collapse
|
49
|
García-Cáceres C, Fuente-Martín E, Argente J, Chowen JA. Emerging role of glial cells in the control of body weight. Mol Metab 2012; 1:37-46. [PMID: 24024117 DOI: 10.1016/j.molmet.2012.07.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 12/18/2022] Open
Abstract
Glia are the most abundant cell type in the brain and are indispensible for the normal execution of neuronal actions. They protect neurons from noxious insults and modulate synaptic transmission through affectation of synaptic inputs, release of glial transmitters and uptake of neurotransmitters from the synaptic cleft. They also transport nutrients and other circulating factors into the brain thus controlling the energy sources and signals reaching neurons. Moreover, glia express receptors for metabolic hormones, such as leptin and insulin, and can be activated in response to increased weight gain and dietary challenges. However, chronic glial activation can be detrimental to neurons, with hypothalamic astrocyte activation or gliosis suggested to be involved in the perpetuation of obesity and the onset of secondary complications. It is now accepted that glia may be a very important participant in metabolic control and a possible therapeutical target. Here we briefly review this rapidly advancing field.
Collapse
Affiliation(s)
- Cristina García-Cáceres
- Institute of Diabetes and Obesity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany ; CIBER de Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | |
Collapse
|
50
|
Lee A, Anderson AR, Beasley SJ, Barnett NL, Poronnik P, Pow DV. A new splice variant of the glutamate-aspartate transporter: cloning and immunolocalization of GLAST1c in rat, pig and human brains. J Chem Neuroanat 2011; 43:52-63. [PMID: 22026960 DOI: 10.1016/j.jchemneu.2011.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/28/2011] [Accepted: 10/13/2011] [Indexed: 01/16/2023]
Abstract
GLAST (EAAT1) is an abundant glial glutamate transporter in the mammalian brain. It plays important roles in terminating excitatory transmission in grey matter, as well as pathophysiological roles, including protecting white matter from excitotoxic injury. In normal brain, alternative splicing of GLAST has been described: GLAST1a and GLAST1b arise from the splicing out of exons 3 and 9, respectively. This study describes the isolation of a novel cDNA clone from neonatal hypoxic pig brain, referred to as GLAST1c, where exons 5 and 6 are skipped. GLAST1c encodes a protein of 430 amino acids. RT-PCR analysis showed that GLAST1c mRNA was readily detectable in control and hypoxic pig cortex, as well as in various brain regions of rat (cortex, mid, hind and cerebellum), and human cortex, retina and optic nerve. We have raised antibodies that selectively recognize GLAST1c and demonstrate expression of this novel splice variant in astrocytes and oligodendrocytes in rat brain, pig brain and human brain, including grey and white matter. Similarly expression of GLAST1c was observed in primary astrocyte cultures and in cultured oligodendrocytes. In unstimulated astrocytes GLAST1c exhibited an intracellular peri-nuclear distribution similar to that observed when GFP-tagged GLAST1c was transfected into COS 7 cells. In astrocytes this protein rapidly redistributed to the surface upon stimulation of protein kinase with phorbol esters. We conclude that GLAST1c may represent an astrocyte and oligodendrocyte glutamate transporter, though this could not be formally validated by D-aspartate uptake studies, due to the low transfection efficiency of constructs into COS 7 cells.
Collapse
Affiliation(s)
- Aven Lee
- The University of Queensland, Centre for Clinical Research, Queensland, Australia
| | | | | | | | | | | |
Collapse
|