1
|
Hardowar L, Valentine T, Da Vitoria Lobo M, Corbett J, Owen B, Skeen O, Tomblin L, Sharma D, Elphick-Ross J, Philip Hulse R. Cisplatin induced alterations in nociceptor developmental trajectory elicits a TrkA dependent platinum-based chemotherapy induced neuropathic pain. Neuroscience 2024; 559:39-53. [PMID: 39187001 DOI: 10.1016/j.neuroscience.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Cisplatin-based chemotherapy is a common treatment for paediatric cancer. Unfortunately, cisplatin treatment causes neuropathic pain, a highly prevalent adverse health related complication in adult childhood cancer survivors. Due to minimal understanding of this condition, there are currently no condition tailored analgesics available. Here we investigated an alteration in nociceptor maturation that results in neuronal sensitisation and manifestation of cisplatin induced survivorship pain in a TrkA dependent manner. Cisplatin was administered (i.p. 0.1 mg/kg Postnatal day 14 and 16) to neonatal male and female Wistar rats and nociceptive behavioural assays were performed. In vitro studies utilised isolated neonatal dorsal root ganglia sensory neurons treated with cisplatin (5 μg/ml) to elucidate impact upon nociceptor activation and neurite growth, in combination with TrkA inhibition (GW441756 10 nM and 100 nM). Cisplatin treated male and female neonatal Wistar rats developed a delayed but lasting mechanical and heat hypersensitivity. Cisplatin administration led to increased TrkA expression in dorsal root ganglia sensory neurons. Nerve growth factor (NGF) induced TrkA activation led to sensory neuritogenesis and nociceptor sensitisation, which could be prevented through pharmacological TrkA inhibition (GW441756 either s.c. 100 nM or i.p. 2 mg/kg). Administration of TrkA antagonist suppressed cisplatin induced TRPV1 mediated nociceptor sensitisation and prevented cisplatin induced neuropathic pain. These studies provide greater understanding of the underlying mechanisms that cause cisplatin induced childhood cancer survivorship pain and allowing identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Lydia Hardowar
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Tameille Valentine
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Marlene Da Vitoria Lobo
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jack Corbett
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Beccy Owen
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Oliver Skeen
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Lucy Tomblin
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Dhyana Sharma
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Jasmine Elphick-Ross
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Richard Philip Hulse
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| |
Collapse
|
2
|
Zhang B, Hu Y, Du H, Han S, Ren L, Cheng H, Wang Y, Gao X, Zheng S, Cui Q, Tian L, Liu T, Sun J, Chai R. Tissue engineering strategies for spiral ganglion neuron protection and regeneration. J Nanobiotechnology 2024; 22:458. [PMID: 39085923 PMCID: PMC11293049 DOI: 10.1186/s12951-024-02742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Cochlear implants can directly activate the auditory system's primary sensory neurons, the spiral ganglion neurons (SGNs), via circumvention of defective cochlear hair cells. This bypass restores auditory input to the brainstem. SGN loss etiologies are complex, with limited mammalian regeneration. Protecting and revitalizing SGN is critical. Tissue engineering offers a novel therapeutic strategy, utilizing seed cells, biomolecules, and scaffold materials to create a cellular environment and regulate molecular cues. This review encapsulates the spectrum of both human and animal research, collating the factors contributing to SGN loss, the latest advancements in the utilization of exogenous stem cells for auditory nerve repair and preservation, the taxonomy and mechanism of action of standard biomolecules, and the architectural components of scaffold materials tailored for the inner ear. Furthermore, we delineate the potential and benefits of the biohybrid neural interface, an incipient technology in the realm of implantable devices. Nonetheless, tissue engineering requires refined cell selection and differentiation protocols for consistent SGN quality. In addition, strategies to improve stem cell survival, scaffold biocompatibility, and molecular cue timing are essential for biohybrid neural interface integration.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Haoliang Du
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
| | - Shanying Han
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Ren
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hong Cheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yusong Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xin Gao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shasha Zheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Qingyue Cui
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lei Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Tingting Liu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
| |
Collapse
|
3
|
Kumro J, Tripathi A, Terry AV, Pillai A, Blake DT. α7 nicotinic acetylcholine receptors are necessary for basal forebrain activation to increase expression of the nerve growth factor receptor TrkA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582932. [PMID: 38463995 PMCID: PMC10925259 DOI: 10.1101/2024.03.01.582932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Activation of the basal forebrain leads to increases in the expression of the nerve growth factor receptor, Tropomyosin receptor kinase A (TrkA) and decreases in expression of the beta amyloid cleavage enzyme 1 (BACE1) in the cerebral cortex of both sexes of 5xFAD mice. The studies described in this report were designed to determine if these changes were dependent on acetylcholine receptors. Mice were stimulated unilaterally in the basal forebrain for two weeks. Animals were administered a cholinergic antagonist, or saline, 30 minutes prior to stimulation. Animals administered saline exhibited significant increases in TrkA expression and decreases in BACE1 in the stimulated hemisphere relative to the unstimulated. While both nonselective nicotinic and muscarinic acetylcholine receptor blockade attenuated the BACE1 decline, only the nicotinic receptor antagonism blocked the TrkA increase. Next, we applied selective nicotinic antagonists, and the α7 antagonist blocked the TrkA increases, but the α4β2 antagonist did not. BACE1 declines were not blocked by either intervention. Mice with a loxP conditional knockout of the gene for the α7 nicotinic receptor were also employed in these studies. Animals were either stimulated bilaterally for two weeks, or left unstimulated. With or without stimulation, the expression of TrkA receptors was lower in the cortical region with the α7 nicotinic receptor knockdown. We thus conclude that α7 nicotinic receptor activation is necessary for normal expression of TrkA and increases caused by basal forebrain activation, while BACE1 declines caused by stimulation have dependency on a broader array of receptor subtypes.
Collapse
Affiliation(s)
- Jacob Kumro
- Dept Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Ashutosh Tripathi
- Dept Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX
| | - Alvin V Terry
- Dept Pharmacology/Toxicology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Anilkumar Pillai
- Dept Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA
- Dept Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA
| | - David T Blake
- Dept Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| |
Collapse
|
4
|
Berry AS, Harrison TM. New perspectives on the basal forebrain cholinergic system in Alzheimer's disease. Neurosci Biobehav Rev 2023; 150:105192. [PMID: 37086935 PMCID: PMC10249144 DOI: 10.1016/j.neubiorev.2023.105192] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/24/2023]
Abstract
The basal forebrain cholinergic system (BFCS) has long been implicated in age-related cognitive changes and the pathophysiology of Alzheimer's disease (AD). Limitations of cholinergic interventions helped to inspire a shift away from BFCS in AD research. A resurgence in interest in the BFCS following methodological and analytical advances has resulted in a call for the BFCS to be examined in novel frameworks. We outline the basic structure and function of the BFCS, its role in supporting cognitive and affective function, and its vulnerability to aging and AD. We consider the BFCS in the context of the amyloid hypothesis and evolving concepts in AD research: resilience and resistance to pathology, selective neuronal vulnerability, trans-synaptic pathology spread and sleep health. We highlight 1) the potential role of the BFCS in cognitive resilience, 2) recent work refining understanding about the selective vulnerability of BFCS to AD, 3) BFCS connectivity that suggests it is related to tau spreading and neurodegeneration and 4) the gap between BFCS involvement in AD and sleep-wake cycles.
Collapse
Affiliation(s)
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Nickerson KR, Tom I, Cortés E, Abolafia JR, Özkan E, Gonzalez LC, Jaworski A. WFIKKN2 is a bifunctional axon guidance cue that signals through divergent DCC family receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.544950. [PMID: 37398498 PMCID: PMC10312737 DOI: 10.1101/2023.06.15.544950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Axon pathfinding is controlled by attractive and repulsive molecular cues that activate receptors on the axonal growth cone, but the full repertoire of axon guidance molecules remains unknown. The vertebrate DCC receptor family contains the two closely related members DCC and Neogenin with prominent roles in axon guidance and three additional, divergent members - Punc, Nope, and Protogenin - for which functions in neural circuit formation have remained elusive. We identified a secreted Punc/Nope/Protogenin ligand, WFIKKN2, which guides mouse peripheral sensory axons through Nope-mediated repulsion. In contrast, WFIKKN2 attracts motor axons, but not via Nope. These findings identify WFIKKN2 as a bifunctional axon guidance cue that acts through divergent DCC family members, revealing a remarkable diversity of ligand interactions for this receptor family in nervous system wiring. One-Sentence Summary WFIKKN2 is a ligand for the DCC family receptors Punc, Nope, and Prtg that repels sensory axons and attracts motor axons.
Collapse
|
6
|
Wit CB, Hiesinger PR. Neuronal filopodia: From stochastic dynamics to robustness of brain morphogenesis. Semin Cell Dev Biol 2023; 133:10-19. [PMID: 35397971 DOI: 10.1016/j.semcdb.2022.03.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/30/2022]
Abstract
Brain development relies on dynamic morphogenesis and interactions of neurons. Filopodia are thin and highly dynamic membrane protrusions that are critically required for neuronal development and neuronal interactions with the environment. Filopodial interactions are typically characterized by non-deterministic dynamics, yet their involvement in developmental processes leads to stereotypic and robust outcomes. Here, we discuss recent advances in our understanding of how filopodial dynamics contribute to neuronal differentiation, migration, axonal and dendritic growth and synapse formation. Many of these advances are brought about by improved methods of live observation in intact developing brains. Recent findings integrate known and novel roles ranging from exploratory sensors and decision-making agents to pools for selection and mechanical functions. Different types of filopodial dynamics thereby reveal non-deterministic subcellular decision-making processes as part of genetically encoded brain development.
Collapse
Affiliation(s)
- Charlotte B Wit
- Devision of Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - P Robin Hiesinger
- Devision of Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Chen C, Chu CH, Chu Y, Chang TY, Chen SW, Liang SY, Tsai YC, Chen BC, Tu HL, Cheng PL. Neuronal paxillin and drebrin mediate BDNF-induced force transduction and growth cone turning in a soft-tissue-like environment. Cell Rep 2022; 40:111188. [PMID: 35977504 DOI: 10.1016/j.celrep.2022.111188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/23/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Soft tissue environments govern neuronal morphogenesis. However, the precise molecular mechanisms underlying chemotropism-directed axonal growth cone movement in extremely soft environments remain unclear. Here, we show that drebrin, a growth cone T-zone protein, modulates growth cone turning in response to brain-derived neurotrophic factor (BDNF) coated on a soft substrate. Structurally, axonal growth cones of rodent hippocampal neurons grown on 0.1 kPa hydrogels possess an expanded T zone in which drebrin is highly integrated with both F-actin and microtubules. Biochemically, we identify paxillin as interacting with drebrin in cells grown on 0.1 kPa hydrogels but not on glass coverslips. When grown on 0.1 kPa substrates, growth cones asymmetrically exposed to BDNF-bound stripes exhibit enhanced paxillin-drebrin interaction on the side facing the stripes, an activity that is PKA and AAK1 dependent but independent of Src kinase. Functionally, we show that BDNF-induced growth cone turning and force generation on soft substrates require drebrin phosphorylation and paxillin-drebrin association.
Collapse
Affiliation(s)
- Chen Chen
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Chien-Hsin Chu
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Ying Chu
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Ting-Ya Chang
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Sheng-Wen Chen
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Shu-Yang Liang
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yun-Chi Tsai
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Pei-Lin Cheng
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan.
| |
Collapse
|
8
|
Development of Neurogenic Detrusor Overactivity after Thoracic Spinal Cord Injury Is Accompanied by Time-Dependent Changes in Lumbosacral Expression of Axonal Growth Regulators. Int J Mol Sci 2022; 23:ijms23158667. [PMID: 35955811 PMCID: PMC9368817 DOI: 10.3390/ijms23158667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Thoracic spinal cord injury (SCI) results in urinary dysfunction, which majorly affects the quality of life of SCI patients. Abnormal sprouting of lumbosacral bladder afferents plays a crucial role in this condition. Underlying mechanisms may include changes in expression of regulators of axonal growth, including chondroitin sulphate proteoglycans (CSPGs), myelin-associated inhibitors (MAIs) and repulsive guidance molecules, known to be upregulated at the injury site post SCI. Here, we confirmed lumbosacral upregulation of the growth-associated protein GAP43 in SCI animals with bladder dysfunction, indicating the occurrence of axonal sprouting. Neurocan and Phosphacan (CSPGs), as well as Nogo-A (MAI), at the same spinal segments were upregulated 7 days post injury (dpi) but returned to baseline values 28 dpi. In turn, qPCR analysis of the mRNA levels for receptors of those repulsive molecules in dorsal root ganglia (DRG) neurons showed a time-dependent decrease in receptor expression. In vitro assays with DRG neurons from SCI rats demonstrated that exposure to high levels of NGF downregulated the expression of some, but not all, receptors for those regulators of axonal growth. The present results, therefore, show significant molecular changes at the lumbosacral cord and DRGs after thoracic lesion, likely critically involved in neuroplastic events leading to urinary impairment.
Collapse
|
9
|
Sainath R, Gallo G. Bioenergetic Requirements and Spatiotemporal Profile of Nerve Growth Factor Induced PI3K-Akt Signaling Along Sensory Axons. Front Mol Neurosci 2021; 14:726331. [PMID: 34630035 PMCID: PMC8497901 DOI: 10.3389/fnmol.2021.726331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Nerve Growth Factor (NGF) promotes the elaboration of axonal filopodia and branches through PI3K-Akt. NGF activates the TrkA receptor resulting in an initial transient high amplitude burst of PI3K-Akt signaling followed by a maintained lower steady state, hereafter referred to as initiation and steady state phases. Akt initially undergoes phosphorylation at T308 followed by phosphorylation at S473, resulting in maximal kinase activation. We report that during the initiation phase the localization of PI3K signaling, reported by visualizing sites of PIP3 formation, and Akt signaling, reflected by Akt phosphorylation at T308, correlates with the positioning of axonal mitochondria. Mitochondrial oxidative phosphorylation but not glycolysis is required for Akt phosphorylation at T308. In contrast, the phosphorylation of Akt at S473 is not spatially associated with mitochondria and is dependent on both oxidative phosphorylation and glycolysis. Under NGF steady state conditions, maintenance of phosphorylation at T308 shows dual dependence on oxidative phosphorylation and glycolysis. Phosphorylation at S473 is more dependent on glycolysis but also requires oxidative phosphorylation for maintenance over longer time periods. The data indicate that NGF induced PI3K-Akt signaling along axons is preferentially initiated at sites containing mitochondria, in a manner dependent on oxidative phosphorylation. Steady state signaling is discussed in the context of combined contributions by mitochondria and the possibility of glycolysis occurring in association with endocytosed signalosomes.
Collapse
Affiliation(s)
- Rajiv Sainath
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Gianluca Gallo
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
10
|
Barker PA, Mantyh P, Arendt-Nielsen L, Viktrup L, Tive L. Nerve Growth Factor Signaling and Its Contribution to Pain. J Pain Res 2020; 13:1223-1241. [PMID: 32547184 PMCID: PMC7266393 DOI: 10.2147/jpr.s247472] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nerve growth factor (NGF) is a neurotrophic protein essential for the growth, differentiation, and survival of sympathetic and sensory afferent neurons during development. A substantial body of evidence, based on both animal and human studies, demonstrates that NGF plays a pivotal role in modulation of nociception in adulthood. This has spurred development of a variety of novel analgesics that target the NGF signaling pathway. Here, we present a narrative review designed to summarize how NGF receptor activation and downstream signaling alters nociception through direct sensitization of nociceptors at the site of injury and changes in gene expression in the dorsal root ganglion that collectively increase nociceptive signaling from the periphery to the central nervous system. This review illustrates that NGF has a well-known and multifunctional role in nociceptive processing, although the precise signaling pathways downstream of NGF receptor activation that mediate nociception are complex and not completely understood. Additionally, much of the existing knowledge derives from studies performed in animal models and may not accurately represent the human condition. However, available data establish a role for NGF in the modulation of nociception through effects on the release of inflammatory mediators, nociceptive ion channel/receptor activity, nociceptive gene expression, and local neuronal sprouting. The role of NGF in nociception and the generation and/or maintenance of chronic pain has led to it becoming a novel and attractive target of pain therapeutics for the treatment of chronic pain conditions.
Collapse
Affiliation(s)
- Philip A Barker
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Patrick Mantyh
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Lars Arendt-Nielsen
- Department of Health Science and Technology and the Center for Sensory-Motor Interaction/Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
11
|
Inositol 1,4,5-Trisphosphate Receptor Type 3 Regulates Neuronal Growth Cone Sensitivity to Guidance Signals. iScience 2020; 23:100963. [PMID: 32199289 PMCID: PMC7082556 DOI: 10.1016/j.isci.2020.100963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/10/2020] [Accepted: 02/29/2020] [Indexed: 11/22/2022] Open
Abstract
During neurodevelopment, the growth cone deciphers directional information from extracellular guidance cues presented as shallow concentration gradients via signal amplification. However, it remains unclear how the growth cone controls this amplification process during its navigation through an environment in which basal cue concentrations vary widely. Here, we identified inositol 1,4,5-trisphosphate (IP3) receptor type 3 as a regulator of axonal sensitivity to guidance cues in vitro and in vivo. Growth cones lacking the type 3 subunit are hypersensitive to nerve growth factor (NGF), an IP3-dependent attractive cue, and incapable of turning toward normal concentration ranges of NGF to which wild-type growth cones respond. This is due to globally, but not asymmetrically, activated Ca2+ signaling in the hypersensitive growth cones. Remarkably, lower NGF concentrations can polarize growth cones for turning if IP3 receptor type 3 is deficient. These data suggest a subtype-specific IP3 receptor function in sensitivity adjustment during axon navigation. IP3 receptor type 3 (IP3R3) controls axonal sensitivity to IP3-based guidance cues IP3R3−/− growth cones are not attracted to NGF due to global Ca2+ responses Lower NGF concentrations can polarize IP3R3−/− growth cones for attractive turning NGF knockdown in vivo can revert abnormal trajectory of IP3R3−/− axons
Collapse
|
12
|
Armijo-Weingart L, Ketschek A, Sainath R, Pacheco A, Smith GM, Gallo G. Neurotrophins induce fission of mitochondria along embryonic sensory axons. eLife 2019; 8:e49494. [PMID: 31789589 PMCID: PMC6887118 DOI: 10.7554/elife.49494] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/26/2019] [Indexed: 12/30/2022] Open
Abstract
Neurotrophins are growth factors that have a multitude of roles in the nervous system. We report that neurotrophins induce the fission of mitochondria along embryonic chick sensory axons driven by combined PI3K and Mek-Erk signaling. Following an initial burst of fission, a new steady state of neurotrophin-dependent mitochondria length is established. Mek-Erk controls the activity of the fission mediator Drp1 GTPase, while PI3K may contribute to the actin-dependent aspect of fission. Drp1-mediated fission is required for nerve growth factor (NGF)-induced collateral branching in vitro and expression of dominant negative Drp1 impairs the branching of axons in the developing spinal cord in vivo. Fission is also required for NGF-induced mitochondria-dependent intra-axonal translation of the actin regulatory protein cortactin, a previously determined component of NGF-induced branching. Collectively, these observations unveil a novel biological function of neurotrophins; the regulation of mitochondrial fission and steady state mitochondrial length and density in axons.
Collapse
Affiliation(s)
- Lorena Armijo-Weingart
- Department of Anatomy and Cell Biology, Shriner Hospitals Pediatric Research CenterTemple University Lewis Katz School of MedicinePhiladelphiaUnited States
| | - Andrea Ketschek
- Department of Anatomy and Cell Biology, Shriner Hospitals Pediatric Research CenterTemple University Lewis Katz School of MedicinePhiladelphiaUnited States
| | - Rajiv Sainath
- Department of Anatomy and Cell Biology, Shriner Hospitals Pediatric Research CenterTemple University Lewis Katz School of MedicinePhiladelphiaUnited States
| | - Almudena Pacheco
- Department of Anatomy and Cell Biology, Shriner Hospitals Pediatric Research CenterTemple University Lewis Katz School of MedicinePhiladelphiaUnited States
| | - George M Smith
- Department of Neuroscience, Shriner Hospitals Pediatric Research CenterTemple University Lewis Katz School of MedicinePhiladelphiaUnited States
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriner Hospitals Pediatric Research CenterTemple University Lewis Katz School of MedicinePhiladelphiaUnited States
| |
Collapse
|
13
|
Ren Y, He Y, Brown S, Zbornik E, Mlodzianoski MJ, Ma D, Huang F, Mattoo S, Suter DM. A single tyrosine phosphorylation site in cortactin is important for filopodia formation in neuronal growth cones. Mol Biol Cell 2019; 30:1817-1833. [PMID: 31116646 PMCID: PMC6727743 DOI: 10.1091/mbc.e18-04-0202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cortactin is a Src tyrosine phosphorylation substrate that regulates multiple actin-related cellular processes. While frequently studied in nonneuronal cells, the functions of cortactin in neuronal growth cones are not well understood. We recently reported that cortactin mediates the effects of Src tyrosine kinase in regulating actin organization and dynamics in both lamellipodia and filopodia of Aplysia growth cones. Here, we identified a single cortactin tyrosine phosphorylation site (Y499) to be important for the formation of filopodia. Overexpression of a 499F phospho-deficient cortactin mutant decreased filopodia length and density, whereas overexpression of a 499E phospho-mimetic mutant increased filopodia length. Using an antibody against cortactin pY499, we showed that tyrosine-phosphorylated cortactin is enriched along the leading edge. The leading edge localization of phosphorylated cortactin is Src2-dependent, F-actin-independent, and important for filopodia formation. In vitro kinase assays revealed that Src2 phosphorylates cortactin at Y499, although Y505 is the preferred site in vitro. Finally, we provide evidence that Arp2/3 complex acts downstream of phosphorylated cortactin to regulate density but not length of filopodia. In conclusion, we have characterized a tyrosine phosphorylation site in Aplysia cortactin that plays a major role in the Src/cortactin/Arp2/3 signaling pathway controlling filopodia formation.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Yingpei He
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Sherlene Brown
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
| | - Erica Zbornik
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Michael J Mlodzianoski
- Department of Weldon School of Biomedical Engineering, Purdue Institutes of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907
| | - Donghan Ma
- Department of Weldon School of Biomedical Engineering, Purdue Institutes of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907
| | - Fang Huang
- Department of Weldon School of Biomedical Engineering, Purdue Institutes of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907.,Department of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907.,Department of Integrative Neuroscience, Purdue University, West Lafayette, IN 47907
| | - Seema Mattoo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.,Department of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.,Department of Integrative Neuroscience, Purdue University, West Lafayette, IN 47907.,Department of Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907.,Department of Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
14
|
Ye X, Qiu Y, Gao Y, Wan D, Zhu H. A Subtle Network Mediating Axon Guidance: Intrinsic Dynamic Structure of Growth Cone, Attractive and Repulsive Molecular Cues, and the Intermediate Role of Signaling Pathways. Neural Plast 2019; 2019:1719829. [PMID: 31097955 PMCID: PMC6487106 DOI: 10.1155/2019/1719829] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 01/01/2023] Open
Abstract
A fundamental feature of both early nervous system development and axon regeneration is the guidance of axonal projections to their targets in order to assemble neural circuits that control behavior. In the navigation process where the nerves grow toward their targets, the growth cones, which locate at the tips of axons, sense the environment surrounding them, including varies of attractive or repulsive molecular cues, then make directional decisions to adjust their navigation journey. The turning ability of a growth cone largely depends on its highly dynamic skeleton, where actin filaments and microtubules play a very important role in its motility. In this review, we summarize some possible mechanisms underlying growth cone motility, relevant molecular cues, and signaling pathways in axon guidance of previous studies and discuss some questions regarding directions for further studies.
Collapse
Affiliation(s)
- Xiyue Ye
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yan Qiu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yuqing Gao
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Dong Wan
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Huifeng Zhu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| |
Collapse
|
15
|
Batool S, Raza H, Zaidi J, Riaz S, Hasan S, Syed NI. Synapse formation: from cellular and molecular mechanisms to neurodevelopmental and neurodegenerative disorders. J Neurophysiol 2019; 121:1381-1397. [PMID: 30759043 DOI: 10.1152/jn.00833.2018] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The precise patterns of neuronal assembly during development determine all functional outputs of a nervous system; these may range from simple reflexes to learning, memory, cognition, etc. To understand how brain functions and how best to repair it after injury, disease, or trauma, it is imperative that we first seek to define fundamental steps mediating this neuronal assembly. To acquire the sophisticated ensemble of highly specialized networks seen in a mature brain, all proliferated and migrated neurons must extend their axonal and dendritic processes toward targets, which are often located at some distance. Upon contact with potential partners, neurons must undergo dramatic structural changes to become either a pre- or a postsynaptic neuron. This connectivity is cemented through specialized structures termed synapses. Both structurally and functionally, the newly formed synapses are, however, not static as they undergo consistent changes in order for an animal to meet its behavioral needs in a changing environment. These changes may be either in the form of new synapses or an enhancement of their synaptic efficacy, referred to as synaptic plasticity. Thus, synapse formation is not restricted to neurodevelopment; it is a process that remains active throughout life. As the brain ages, either the lack of neuronal activity or cell death render synapses dysfunctional, thus giving rise to neurodegenerative disorders. This review seeks to highlight salient steps that are involved in a neuron's journey, starting with the establishment, maturation, and consolidation of synapses; we particularly focus on identifying key players involved in the synaptogenic program. We hope that this endeavor will not only help the beginners in this field to understand how brain networks are assembled in the first place but also shed light on various neurodevelopmental, neurological, neurodegenerative, and neuropsychiatric disorders that involve synaptic inactivity or dysfunction.
Collapse
Affiliation(s)
- Shadab Batool
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada.,Department of Neuroscience, University of Calgary, Alberta, Canada
| | - Hussain Raza
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Jawwad Zaidi
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Saba Riaz
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Sean Hasan
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Naweed I Syed
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada.,Department of Cell Biology & Anatomy, University of Calgary, Alberta, Canada
| |
Collapse
|
16
|
Del Valle J, Santos D, Delgado-Martínez I, de la Oliva N, Giudetti G, Micera S, Navarro X. Segregation of motor and sensory axons regenerating through bicompartmental tubes by combining extracellular matrix components with neurotrophic factors. J Tissue Eng Regen Med 2018; 12:e1991-e2000. [PMID: 29266822 DOI: 10.1002/term.2629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/30/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
Segregation of regenerating motor and sensory axons may be a good strategy to improve selective functionality of regenerative interfaces to provide closed-loop commands. Provided that extracellular matrix components and neurotrophic factors exert guidance effects on different neuronal populations, we assessed in vivo the potential of separating sensory and motor axons regenerating in a bicompartmental Y-type tube, with each branch prefilled with an adequate combination of extracellular matrix and neurotrophic factors. The severed rat sciatic nerve was repaired using a bicompartmental tube filled with a collagen matrix enriched with fibronectin (FN) and brain-derived neurotrophic factor (BDNF) encapsulated in poly-lactic co-glycolic acid microspheres (FN + MP.BDNF) in one compartment to preferentially attract motor axons and collagen enriched with laminin (LM) and nerve growth factor (NGF) and neurotrophin-3 (NT-3) in microspheres (LM + MP.NGF/NT-3) in the other compartment for promoting sensory axons regeneration. Control animals were implanted with the same Y-tube with a collagen matrix with microspheres (MP) containing PBS (Col + MP.PBS). By using retrotracer labelling, we found that LM + MP.NGF/NT-3 did not attract higher number of regenerated sensory axons compared with controls, and no differences were observed in sensory functional recovery. However, FN + MP.BDNF guided a higher number of regenerating motor axons compared with controls, improving also motor recovery. A small proportion of sensory axons with large soma size, likely proprioceptive neurons, was also attracted to the FN + MP.BDNF compartment. These results demonstrate that muscular axonal guidance can be modulated in vivo by the addition of fibronectin and BDNF.
Collapse
Affiliation(s)
- Jaume Del Valle
- Institute of Neurosciences and Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.,Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and BIST, Bellaterra, Spain
| | - Daniel Santos
- Institute of Neurosciences and Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Ignacio Delgado-Martínez
- Institute of Neurosciences and Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Natàlia de la Oliva
- Institute of Neurosciences and Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Guido Giudetti
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Silvestro Micera
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy.,Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
17
|
Oh SH, Kang JG, Kim TH, Namgung U, Song KS, Jeon BH, Lee JH. Enhanced peripheral nerve regeneration through asymmetrically porous nerve guide conduit with nerve growth factor gradient. J Biomed Mater Res A 2017; 106:52-64. [DOI: 10.1002/jbm.a.36216] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/27/2017] [Accepted: 08/30/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Se Heang Oh
- Department of Nanobiomedical Science; Dankook University; Cheonan 31116 Republic of Korea
- Department of Pharmaceutical Engineering; Dankook University; Cheonan 31116 Republic of Korea
| | - Jun Goo Kang
- Department of Advanced Materials and Chemical Engineering; Hannam University; Daejeon 34054 Republic of Korea
| | - Tae Ho Kim
- Department of Advanced Materials and Chemical Engineering; Hannam University; Daejeon 34054 Republic of Korea
| | - Uk Namgung
- Department of Oriental Medicine; Daejeon University; Daejeon 34520 Republic of Korea
| | - Kyu Sang Song
- Department of Pathology, School of Medicine; Chungnam National University; Daejeon 35015 Republic of Korea
| | - Byeong Hwa Jeon
- Department of Physiology, School of Medicine; Chungnam National University; Daejeon 35015 Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials and Chemical Engineering; Hannam University; Daejeon 34054 Republic of Korea
| |
Collapse
|
18
|
Austin M, Elliott L, Nicolaou N, Grabowska A, Hulse RP. Breast cancer induced nociceptor aberrant growth and collateral sensory axonal branching. Oncotarget 2017; 8:76606-76621. [PMID: 29100335 PMCID: PMC5652729 DOI: 10.18632/oncotarget.20609] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022] Open
Abstract
The tumour and neuron interaction has a significant impact upon disease progression and the patients quality of life. In breast cancer patients, it is known that there is an interaction between the tumour microenvironment and the sensory neurons to influence the progression of cancer as well as pain, though these mechanisms still need to be clearly defined. Here it is demonstrated that in a rodent orthotopic model of breast cancer (MDA MB 231) there was an increase in nerve fibre innervation into the tumour microenvironment (protein gene product 9.5), which were calcitonin gene related peptide positive C fibre nociceptors. In contrast, there was a reduction in myelinated nerve fibres (NF200). A sensory neuronal cell line was cultured in response to conditioned media from MDA MB231 and MCF7 as well as vascular endothelial growth factor-A (VEGF-A). All these experimental conditions induced sensory neuronal growth, with increased formation of collateral axonal branches. Furthermore, it was demonstrated that MDA MB231 and VEGF-A induced sensory neuronal sensitisation in response to capsaicin a TRPV1 agonist. MDA MB231 induced neuronal growth was suppressed by VEGFR2 inhibition (ZM323881 and neutralising antibody DC101), in addition both MDA MB231 and VEGF-A induced neurite growth was attenuated by the inhibition of ARP2/3 complex through co-treatment with CK666. This demonstrates that breast cancer can interact with the sensory nervous system to drive neuritogenesis through a VEGF-A/VEGFR2/ARP2/3 mediated pathway.
Collapse
Affiliation(s)
- Matt Austin
- Cancer Biology, School of Cancer and Stem Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Laura Elliott
- Cancer Biology, School of Cancer and Stem Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Niovi Nicolaou
- Cancer Biology, School of Cancer and Stem Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Anna Grabowska
- Cancer Biology, School of Cancer and Stem Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Richard P Hulse
- Cancer Biology, School of Cancer and Stem Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
19
|
Huettl RE, Huber AB. Characterizing Semaphorin-Mediated Effects on Sensory and Motor Axon Pathfinding and Connectivity During Embryonic Development. Methods Mol Biol 2017; 1493:443-466. [PMID: 27787870 DOI: 10.1007/978-1-4939-6448-2_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
How are precise connectivity to peripheral targets and corresponding sensory-motor networks established during developmental innervation of the vertebrate extremities? The formation of functional sensory-motor circuits requires highly appropriate temporal and spatial regulation of axon growth which is achieved through the combination of different molecular mechanisms such as communication between heterotypic fiber systems, axon-environment, or axon-glia interactions that ensure proper fasciculation and accurate pathfinding to distal targets. Family members of the class 3 semaphorins and their cognate receptors, the neuropilins, were shown to govern various events during wiring of central and peripheral circuits, with mice lacking Sema3-Npn signaling showing deficits in timing of growth, selective fasciculation, guidance fidelity, and coupling of sensory axon growth to motor axons at developmental time points. Given the accuracy with which these processes have to interact in a stepwise manner, deficiency of the smallest cog in the wheel may impact severely on the faithful establishment and functionality of peripheral circuitries, ultimately leading to behavioral impairments or even cause the death of the animal. Reliable quantitative analyses of sensory-motor fasciculation, extension, and guidance of axons to their cognate target muscles and the skin during development, but also assessment of physiological and behavioral consequences at adult age, are therefore a necessity to extend our understanding of the molecular mechanisms of peripheral circuit formation. In this chapter we provide a detailed methodology to characterize class 3 semaphorin-mediated effects on peripheral sensory and motor axon pathfinding and connectivity during embryonic development.
Collapse
Affiliation(s)
- Rosa Eva Huettl
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Andrea B Huber
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
20
|
Dewanto A, Dudas J, Glueckert R, Mechsner S, Schrott-Fischer A, Wildt L, Seeber B. Localization of TrkB and p75 receptors in peritoneal and deep infiltrating endometriosis: an immunohistochemical study. Reprod Biol Endocrinol 2016; 14:43. [PMID: 27519317 PMCID: PMC4982126 DOI: 10.1186/s12958-016-0178-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/29/2016] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND The roles of the neurotrophins NGF (Neurotrophic growth factor) and BDNF (brain-derived neurotrophic factor) in neuronal growth and development are already known. Meanwhile, the neurotrophin receptors TrkA (tropomyosin related kinase A), TrkB, and p75 are important for determining the fate of cells. In endometriosis, this complex system has not been fully elucidated yet. The aim of this study was to evaluate the expression and location of these neurotrophins and their receptors in peritoneal (PE) and deep infiltrating endometriotic (DIE) tissues and to measure and compare the density of nerve fibers in the disease subtypes. METHODS PE lesions (n = 20) and DIE lesions (n = 22) were immunostained and analyzed on serial slides with anti-BDNF, -NGF, -TrkA, -TrkB, -p75,-protein gene product 9.5 (PGP9.5, intact nerve fibers) and -tyrosine hydroxylase (TH, sympathetic nerve fibers) antibodies. RESULT There was an equally high percentage (greater than 75 %) of BDNF-positive immunostaining cells in both PE and DIE. TrkB (major BDNF receptor) and p75 showed a higher percentage of immunostaining cells in DIE compared to in PE in stroma only (p < 0.014, p < 0.027, respectively). Both gland and stroma of DIE lesions had a lower percentage of NGF-positive immunostaining cells compared to those in PE lesions (p < 0.01 and p < 0.01, respectively), but there was no significant reduction in immunostaining of TrkA in DIE lesions. There was no difference in the mean density of nerve fibers stained with PGP9.5 between PE (26.27 ± 17.32) and DIE (28.19 ± 33.15, p = 0.8). When we performed sub-group analysis, the density of nerves was significantly higher in the bowel DIE (mean 57.33 ± 43.9) than in PE (mean 26.27 ± 17.32, p < 0.01) and non-bowel DIE (mean 14.6. ± 8.6 p < 0.002). CONCLUSIONS While the neurotrophin BDNF is equally present in PE and DIE, its receptors TrkB and p75 are more highly expressed in DIE and may have a potential role in the pathophysiology of DIE, especially in promotion of cell growth. BDNF has a stronger binding affinity than NGF to the p75 receptor, likely inducing sympathetic nerve axonal pruning in DIE, resulting in the lower nerve fiber density seen.
Collapse
Affiliation(s)
- Agung Dewanto
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020 Austria
- Department of Obstetrics and Gynecology, Gadjah Mada University, Yogyakarta, Indonesia
| | - Jozsef Dudas
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sylvia Mechsner
- Endometriosis Centre Charité, Department of Gynecology - Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Ludwig Wildt
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020 Austria
| | - Beata Seeber
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020 Austria
| |
Collapse
|
21
|
Turney SG, Ahmed M, Chandrasekar I, Wysolmerski RB, Goeckeler ZM, Rioux RM, Whitesides GM, Bridgman PC. Nerve growth factor stimulates axon outgrowth through negative regulation of growth cone actomyosin restraint of microtubule advance. Mol Biol Cell 2016; 27:500-17. [PMID: 26631553 PMCID: PMC4751601 DOI: 10.1091/mbc.e15-09-0636] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 01/19/2023] Open
Abstract
Nerve growth factor (NGF) promotes growth, differentiation, and survival of sensory neurons in the mammalian nervous system. Little is known about how NGF elicits faster axon outgrowth or how growth cones integrate and transform signal input to motor output. Using cultured mouse dorsal root ganglion neurons, we found that myosin II (MII) is required for NGF to stimulate faster axon outgrowth. From experiments inducing loss or gain of function of MII, specific MII isoforms, and vinculin-dependent adhesion-cytoskeletal coupling, we determined that NGF causes decreased vinculin-dependent actomyosin restraint of microtubule advance. Inhibition of MII blocked NGF stimulation, indicating the central role of restraint in directed outgrowth. The restraint consists of myosin IIB- and IIA-dependent processes: retrograde actin network flow and transverse actin bundling, respectively. The processes differentially contribute on laminin-1 and fibronectin due to selective actin tethering to adhesions. On laminin-1, NGF induced greater vinculin-dependent adhesion-cytoskeletal coupling, which slowed retrograde actin network flow (i.e., it regulated the molecular clutch). On fibronectin, NGF caused inactivation of myosin IIA, which negatively regulated actin bundling. On both substrates, the result was the same: NGF-induced weakening of MII-dependent restraint led to dynamic microtubules entering the actin-rich periphery more frequently, giving rise to faster elongation.
Collapse
Affiliation(s)
- Stephen G Turney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Mostafa Ahmed
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| | - Indra Chandrasekar
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| | - Robert B Wysolmerski
- Department of Neurobiology and Anatomy, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Zoe M Goeckeler
- Department of Neurobiology and Anatomy, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Robert M Rioux
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - George M Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Paul C Bridgman
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
22
|
Lee HC, Hsu YM, Tsai CC, Ke CJ, Yao CH, Chen YS. Improved Peripheral Nerve Regeneration in Streptozotocin-Induced Diabetic Rats by Oral Lumbrokinase. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:215-30. [DOI: 10.1142/s0192415x15500147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We assessed the therapeutic effects of lumbrokinase, a group of enzymes extracted from the earthworm, on peripheral-nerve regeneration using well-defined sciatic nerve lesion paradigms in diabetic rats induced by the injection of streptozotocin (STZ). We found that lumbrokinase therapy could improve the rats' circulatory blood flow and promote the regeneration of axons in a silicone rubber conduit after nerve transection. Lumbrokinase treatment could also improve the neuromuscular functions with better nerve conductive performances. Immunohistochemical staining showed that lumbrokinase could dramatically promote calcitonin gene-related peptide (CGRP) expression in the lamina I–II regions in the dorsal horn ipsilateral to the injury and cause a marked increase in the number of macrophages recruited within the distal nerve stumps. In addition, the lumbrokinase could stimulate the secretion of interleukin-1 (IL-1), nerve growth factor (NGF), platelet-derived growth factor (PDGF), and transforming growth factor-β (TGF-β) in dissected diabetic sciatic nerve segments. In conclusion, the administration of lumbrokinase after nerve repair surgery in diabetic rats was found to have remarkable effects on promoting peripheral nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Han-Chung Lee
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Division of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chin-Chuan Tsai
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Chinese Medicine Department, E-DA Hospital, Kaohsiung, Taiwan
| | - Cherng-Jyh Ke
- Department of Orthopedics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Hsu Yao
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biomedical Informatics, Asia University, Wufeng District, Taichung, Taiwan
| | - Yueh-Sheng Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biomedical Informatics, Asia University, Wufeng District, Taichung, Taiwan
| |
Collapse
|
23
|
Romano NH, Lampe KJ, Xu H, Ferreira MM, Heilshorn SC. Microfluidic gradients reveal enhanced neurite outgrowth but impaired guidance within 3D matrices with high integrin ligand densities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:722-30. [PMID: 25315156 PMCID: PMC4528974 DOI: 10.1002/smll.201401574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/11/2014] [Indexed: 05/08/2023]
Abstract
The density of integrin-binding ligands in an extracellular matrix (ECM) is known to regulate cell migration speed by imposing a balance of traction forces between the leading and trailing edges of the cell, but the effect of cell-adhesive ligands on neurite chemoattraction is not well understood. A platform is presented here that combines gradient-generating microfluidic devices with 3D protein-engineered hydrogels to study the effect of RGD ligand density on neurite pathfinding from chick dorsal root ganglia-derived spheroids. Spheroids are encapsulated in elastin-like polypeptide (ELP) hydrogels presenting either 3.2 or 1.6 mM RGD ligands and exposed to a microfluidic gradient of nerve growth factor (NGF). While the higher ligand density matrix enhanced neurite initiation and persistence of neurite outgrowth, the lower ligand density matrix significantly improved neurite pathfinding and increased the frequency of growth cone turning up the NGF gradient. The apparent trade-off between neurite extension and neurite guidance is reminiscent of the well-known trade-off between adhesive forces at the leading and trailing edges of a migrating cell, implying that a similar matrix-mediated balance of forces regulates neurite elongation and growth cone turning. These results have implications in the design of engineered materials for in vitro models of neural tissue and in vivo nerve guidance channels.
Collapse
Affiliation(s)
| | | | - Hui Xu
- 476 Lomita Mall, McCullough 246, Stanford, CA 94305
| | | | | |
Collapse
|
24
|
Pita-Thomas W, Steketee MB, Moysidis SN, Thakor K, Hampton B, Goldberg JL. Promoting filopodial elongation in neurons by membrane-bound magnetic nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:559-67. [PMID: 25596077 DOI: 10.1016/j.nano.2014.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/30/2014] [Accepted: 11/24/2014] [Indexed: 12/15/2022]
Abstract
Filopodia are 5-10 μm long processes that elongate by actin polymerization, and promote axon growth and guidance by exerting mechanical tension and by molecular signaling. Although axons elongate in response to mechanical tension, the structural and functional effects of tension specifically applied to growth cone filopodia are unknown. Here we developed a strategy to apply tension specifically to retinal ganglion cell (RGC) growth cone filopodia through surface-functionalized, membrane-targeted superparamagnetic iron oxide nanoparticles (SPIONs). When magnetic fields were applied to surface-bound SPIONs, RGC filopodia elongated directionally, contained polymerized actin filaments, and generated retrograde forces, behaving as bona fide filopodia. Data presented here support the premise that mechanical tension induces filopodia growth but counter the hypothesis that filopodial tension directly promotes growth cone advance. Future applications of these approaches may be used to induce sustained forces on multiple filopodia or other subcellular microstructures to study axon growth or cell migration. From the clinical editor: Mechanical tension to the tip of filopodia is known to promote axonal growth. In this article, the authors used superparamagnetic iron oxide nanoparticles (SPIONs) targeted specifically to membrane molecules, then applied external magnetic field to elicit filopodial elongation, which provided a tool to study the role of mechanical forces in filopodia dynamics and function.
Collapse
Affiliation(s)
- Wolfgang Pita-Thomas
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Anatomy and Neurobiology, Washington University, St. Louis, MO, USA
| | - Michael B Steketee
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Ophthalmology and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stavros N Moysidis
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kinjal Thakor
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Blake Hampton
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffrey L Goldberg
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Ophthalmology, Shiley Eye Center, UC San Diego, San Diego, CA, USA.
| |
Collapse
|
25
|
Romano NH, Madl CM, Heilshorn SC. Matrix RGD ligand density and L1CAM-mediated Schwann cell interactions synergistically enhance neurite outgrowth. Acta Biomater 2015; 11:48-57. [PMID: 25308870 DOI: 10.1016/j.actbio.2014.10.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 11/26/2022]
Abstract
The innate biological response to peripheral nerve injury involves a complex interplay of multiple molecular cues to guide neurites across the injury gap. Many current strategies to stimulate regeneration take inspiration from this biological response. However, little is known about the balance of cell-matrix and Schwann cell-neurite dynamics required for regeneration of neural architectures. We present an engineered extracellular matrix (eECM) microenvironment with tailored cell-matrix and cell-cell interactions to study their individual and combined effects on neurite outgrowth. This eECM regulates cell-matrix interactions by presenting integrin-binding RGD (Arg-Gly-Asp) ligands at specified densities. Simultaneously, the addition or exclusion of nerve growth factor (NGF) is used to modulate L1CAM-mediated Schwann cell-neurite interactions. Individually, increasing the RGD ligand density from 0.16 to 3.2mM resulted in increasing neurite lengths. In matrices presenting higher RGD ligand densities, neurite outgrowth was synergistically enhanced in the presence of soluble NGF. Analysis of Schwann cell migration and co-localization with neurites revealed that NGF enhanced cooperative outgrowth between the two cell types. Interestingly, neurites in NGF-supplemented conditions were unable to extend on the surrounding eECM without the assistance of Schwann cells. Blocking studies revealed that L1CAM is primarily responsible for these Schwann cell-neurite interactions. Without NGF supplementation, neurite outgrowth was unaffected by L1CAM blocking or the depletion of Schwann cells. These results underscore the synergistic interplay between cell-matrix and cell-cell interactions in enhancing neurite outgrowth for peripheral nerve regeneration.
Collapse
|
26
|
Olbrich L, Wessel L, Balakrishnan-Renuka A, Böing M, Brand-Saberi B, Theiss C. Rapid impact of progesterone on the neuronal growth cone. Endocrinology 2013; 154:3784-95. [PMID: 23913445 DOI: 10.1210/en.2013-1175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the last two decades, sensory neurons and Schwann cells in the dorsal root ganglia (DRG) were shown to express the rate-limiting enzyme of the steroid synthesis, cytochrome P450 side-chain cleavage enzyme (P450scc), as well as the key enzyme of progesterone synthesis, 3β-hydroxysteroid dehydrogenase (3β-HSD). Thus, it was well justified to consider that DRG neurons similarly are able to synthesize progesterone de novo from cholesterol. Because direct progesterone effects on axonal outgrowth in peripheral neurons have not been investigated up to now, the present study provides the first insights into the impact of exogenous progesterone on axonal outgrowth in DRG neurons. Our studies including microinjection and laser scanning microscopy demonstrate morphological changes especially in the neuronal growth cones after progesterone treatment. Furthermore, we were able to detect a distinctly enhanced motility only a few minutes after the start of progesterone treatment using time-lapse imaging. Investigation of the cytoskeletal distribution in the neuronal growth cone before, during, and after progesterone incubation revealed a rapid reorganization of actin filaments. To get a closer idea of the underlying receptor mechanisms, we further studied the expression of progesterone receptors in DRG neurons using RT-PCR and immunohistochemistry. Thus, we could demonstrate for the first time that classical progesterone receptor (PR) A and B and the recently described progesterone receptor membrane component 1 (PGRMC1) are expressed in DRG neurons. Antagonism of the classical progesterone receptors by mifepristone revealed that the observed progesterone effects are transmitted through PR-A and PR-B.
Collapse
Affiliation(s)
- Laura Olbrich
- Faculty of Medicine, Institute of Anatomy and Molecular Embryology, Ruhr-University Bochum, 44780 Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Bornschlögl T. How filopodia pull: what we know about the mechanics and dynamics of filopodia. Cytoskeleton (Hoboken) 2013; 70:590-603. [PMID: 23959922 DOI: 10.1002/cm.21130] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/04/2023]
Abstract
In recent years, the dynamic, hair-like cell protrusions called filopodia have attracted considerable attention. They have been found in a multitude of different cell types and are often called "sensory organelles," since they seem to sense the mechanical and chemical environment of a cell. Once formed, filopodia can exhibit complex behavior, they can grow and retract, push or pull, and transform into distinct structures. They are often found to make first adhesive contact with the extracellular matrix, pathogens or with adjacent cells, and to subsequently exert pulling forces. Much is known about the cytoskeletal players involved in filopodia formation, but only recently have we started to explore the mechanics of filopodia together with the related cytoskeletal dynamics. This review summarizes current advancements in our understanding of the mechanics and dynamics of filopodia, with a focus on the molecular mechanisms behind filopodial force exertion.
Collapse
Affiliation(s)
- Thomas Bornschlögl
- Institut Curie, Laboratoire, Physico-Chimie UMR CNRS, 168, 11 Rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
28
|
Lee SC, Tsai CC, Yao CH, Hsu YM, Chen YS, Wu MC. Effect of Arecoline on Regeneration of Injured Peripheral Nerves. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:865-85. [DOI: 10.1142/s0192415x13500584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The present study provides in vitro and in vivo evaluation of arecoline on peripheral nerve regeneration. In the in vitro study, we found that arecoline at 50 μg/ml could significantly promote the survival and outgrowth of cultured Schwann cells as compared to the controls treated with culture medium only. In the in vivo study, we evaluated peripheral nerve regeneration across a 10-mm gap in the sciatic nerve of the rat, using a silicone rubber nerve chamber filled with the arecoline solution. In the control group, the chambers were filled with normal saline only. At the end of the fourth week, morphometric data revealed that the arecoline-treated group at 5 μg/ml significantly increased the number and the density of myelinated axons as compared to the controls. Immunohistochemical staining in the arecoline-treated animals at 5 μg/ml also showed their neural cells in the L4 and L5 dorsal root ganglia ipsilateral to the injury were strongly retrograde-labeled with fluorogold and lamina I–II regions in the dorsal horn ipsilateral to the injury were significantly calcitonin gene-related peptide-immunolabeled compared with the controls. In addition, we found that the number of macrophages recruited in the distal sciatic nerve was increased as the concentration of arecoline was increased. Electrophysiological measurements showed the arecoline-treated groups at 5 and 50 μg/ml had a relatively larger nerve conductive velocity of the evoked muscle action potentials compared to the controls. These results indicate that arecoline could stimulate local inflammatory conditions, improving the recovery of a severe peripheral nerve injury.
Collapse
Affiliation(s)
- Sheng-Chi Lee
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Orthopaedics, Pingtung Branch, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chin-Chuan Tsai
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Chinese Medicine Department, E-DA Hospital, Kaohsiung, Taiwan
| | - Chun-Hsu Yao
- Lab of Biomaterials, School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yueh-Sheng Chen
- Lab of Biomaterials, School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Ming-Chang Wu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
29
|
Cell signaling experiments driven by optical manipulation. Int J Mol Sci 2013; 14:8963-84. [PMID: 23698758 PMCID: PMC3676767 DOI: 10.3390/ijms14058963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/08/2013] [Accepted: 04/14/2013] [Indexed: 01/09/2023] Open
Abstract
Cell signaling involves complex transduction mechanisms in which information released by nearby cells or extracellular cues are transmitted to the cell, regulating fundamental cellular activities. Understanding such mechanisms requires cell stimulation with precise control of low numbers of active molecules at high spatial and temporal resolution under physiological conditions. Optical manipulation techniques, such as optical tweezing, mechanical stress probing or nano-ablation, allow handling of probes and sub-cellular elements with nanometric and millisecond resolution. PicoNewton forces, such as those involved in cell motility or intracellular activity, can be measured with femtoNewton sensitivity while controlling the biochemical environment. Recent technical achievements in optical manipulation have new potentials, such as exploring the actions of individual molecules within living cells. Here, we review the progress in optical manipulation techniques for single-cell experiments, with a focus on force probing, cell mechanical stimulation and the local delivery of active molecules using optically manipulated micro-vectors and laser dissection.
Collapse
|
30
|
Lankford KL, Arroyo EJ, Liu CN, Somps CJ, Zorbas MA, Shelton DL, Evans MG, Hurst SI, Kocsis JD. Sciatic nerve regeneration is not inhibited by anti-NGF antibody treatment in the adult rat. Neuroscience 2013; 241:157-69. [PMID: 23531437 DOI: 10.1016/j.neuroscience.2013.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/31/2022]
Abstract
Elevated nerve growth factor (NGF) is believed to play a role in many types of pain. An NGF-blocking antibody (muMab 911) has been shown to reduce pain and hyperalgesia in pain models, suggesting a novel therapeutic approach for pain management. Since NGF also plays important roles in peripheral nervous system development and sensory nerve outgrowth, we asked whether anti-NGF antibodies would adversely impact peripheral nerve regeneration. Adult rats underwent a unilateral sciatic nerve crush to transect axons and were subcutaneously dosed weekly for 8weeks with muMab 911 or vehicle beginning 1day prior to injury. Plasma levels of muMab 911 were assessed from blood samples and foot print analysis was used to assess functional recovery. At 8-weeks post-nerve injury, sciatic nerves were prepared for light and electron microscopy. In a separate group, Fluro-Gold was injected subcutaneously at the ankle prior to perfusion, and counts and sizes of retrogradely labeled and unlabeled dorsal root ganglion neurons were obtained. There was no difference in the time course of gait recovery in antibody-treated and vehicle-treated animals. The number of myelinated and nonmyelinated axons was the same in the muMab 911-treated crushed nerves and intact nerves, consistent with observed complete recovery. Treatment with muMab 911 did however result in a small decrease in average cell body size on both the intact and injured sides. These results indicate that muMab 911 did not impair functional recovery or nerve regeneration after nerve injury in adult rats.
Collapse
Affiliation(s)
- K L Lankford
- Department of Neurology, Yale University School of Medicine and Center for Neuroscience & Regeneration Research, VA CT Healthcare System, West Haven, CT 06516, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
A dual compartment diffusion chamber for studying axonal chemotaxis in 3D collagen. J Neurosci Methods 2013; 215:53-9. [PMID: 23453927 DOI: 10.1016/j.jneumeth.2013.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/10/2013] [Accepted: 02/12/2013] [Indexed: 01/26/2023]
Abstract
During nervous system development growing axons are often guided by diffusible chemical gradients. An important contribution to our understanding of the mechanisms involved in this process has been made by in vitro assays. However, an inexpensive and simple assay which allows the establishment of stable and reproducible gradients in a 3D collagen environment has been lacking. Here we present a simple two-compartment diffusion chamber for this purpose. We show that gradient steepnesses of up to 2% are achieved within 1h post setup, and a gradient persists for at least 2 days. We demonstrate the assay by showing robust chemoattraction of dorsal root ganglion neurites by gradients of nerve growth factor (NGF), and chemorepulsion of olfactory bulb neurites by gradients of Slit2.
Collapse
|
32
|
Gallo G. Mechanisms underlying the initiation and dynamics of neuronal filopodia: from neurite formation to synaptogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:95-156. [PMID: 23317818 DOI: 10.1016/b978-0-12-407704-1.00003-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Filopodia are finger-like cellular protrusions found throughout the metazoan kingdom and perform fundamental cellular functions during development and cell migration. Neurons exhibit a wide variety of extremely complex morphologies. In the nervous system, filopodia underlie many major morphogenetic events. Filopodia have roles spanning the initiation and guidance of neuronal processes, axons and dendrites to the formation of synaptic connections. This chapter addresses the mechanisms of the formation and dynamics of neuronal filopodia. Some of the major lessons learned from the study of neuronal filopodia are (1) there are multiple mechanisms that can regulate filopodia in a context-dependent manner, (2) that filopodia are specialized subcellular domains, (3) that filopodia exhibit dynamic membrane recycling which also controls aspects of filopodial dynamics, (4) that neuronal filopodia contain machinery for the orchestration of the actin and microtubule cytoskeleton, and (5) localized protein synthesis contributes to neuronal filopodial dynamics.
Collapse
Affiliation(s)
- Gianluca Gallo
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Department of Anatomy and Cell Biology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Ghilardi JR, Freeman KT, Jimenez-Andrade JM, Coughlin KA, Kaczmarska MJ, Castaneda-Corral G, Bloom AP, Kuskowski MA, Mantyh PW. Neuroplasticity of sensory and sympathetic nerve fibers in a mouse model of a painful arthritic joint. ACTA ACUST UNITED AC 2012; 64:2223-32. [PMID: 22246649 DOI: 10.1002/art.34385] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Many forms of arthritis are accompanied by significant chronic joint pain. This study was undertaken to investigate whether there is significant sprouting of sensory and sympathetic nerve fibers in the painful arthritic knee joint and whether nerve growth factor (NGF) drives this pathologic reorganization. METHODS A painful arthritic knee joint was produced by injection of Freund's complete adjuvant (CFA) into the knee joint of young adult mice. CFA-injected mice were then treated systemically with vehicle or anti-NGF antibody. Pain behaviors were assessed, and at 28 days following the initial CFA injection, the knee joints were processed for immunohistochemistry analysis using antibodies against calcitonin gene-related peptide (CGRP; sensory nerve fibers), neurofilament 200 kd (NF200; sensory nerve fibers), growth-associated protein 43 (GAP-43; sprouted nerve fibers), tyrosine hydroxylase (TH; sympathetic nerve fibers), CD31 (endothelial cells), or CD68 (monocyte/macrophages). RESULTS In CFA-injected mice, there was a significant increase in the density of CD68+ macrophages, CD31+ blood vessels, and CGRP+, NF200+, GAP-43+, and TH+ nerve fibers in the synovium, as well as a significant increase in joint pain-related behaviors. None of these findings were observed in sham-injected mice. Administration of anti-NGF reduced these pain-related behaviors and the ectopic sprouting of nerve fibers, but had no significant effect on the increase in density of CD31+ blood vessels or CD68+ macrophages. CONCLUSION These findings demonstrate that ectopic sprouting of sensory and sympathetic nerve fibers occurs in the painful arthritic joint and may be involved in the generation and maintenance of arthritic pain.
Collapse
|
34
|
Greif KF, Asabere N, Lutz GJ, Gallo G. Synaptotagmin-1 promotes the formation of axonal filopodia and branches along the developing axons of forebrain neurons. Dev Neurobiol 2012; 73:27-44. [PMID: 22589224 DOI: 10.1002/dneu.22033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 04/29/2012] [Accepted: 05/08/2012] [Indexed: 01/01/2023]
Abstract
Synaptotagmin-1 (syt1) is a Ca(2+)-binding protein that functions in regulation of synaptic vesicle exocytosis at the synapse. Syt1 is expressed in many types of neurons well before synaptogenesis begins both in vivo and in vitro. To determine if expression of syt1 has a functional role in neuronal development before synapse formation, we examined the effects of syt1 overexpression and knockdown on the growth and branching of the axons of cultured primary embryonic day 8 chicken forebrain neurons. In vivo these neurons express syt1, and most have not yet extended axons. We present evidence that syt1 plays a role in regulating axon branching, while not regulating overall axon length. To study the effects of overexpression of syt1, we used adenovirus-mediated infection to introduce a syt1-YFP construct, or control GFP construct, into neurons. Syt1 levels were reduced using RNA interference. Overexpression of syt1 increased the formation of axonal filopodia and branches. Conversely, knockdown of syt1 decreased the number of axonal filopodia and branches. Time-lapse analysis of filopodial dynamics in syt1-overexpressing cells demonstrated that elevation of syt1 levels increased both the frequency of filopodial initiation and their lifespan. Taken together these data indicate that syt1 regulates the formation of axonal filopodia and branches before engaging in its conventional functions at the synapse.
Collapse
Affiliation(s)
- Karen F Greif
- Department of Biology, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, USA.
| | | | | | | |
Collapse
|
35
|
Sato Y, Mita S, Fukushima N, Fujisawa H, Saga Y, Hirata T. Induction of axon growth arrest without growth cone collapse through the N-terminal region of four-transmembrane glycoprotein M6a. Dev Neurobiol 2012; 71:733-46. [PMID: 21714103 DOI: 10.1002/dneu.20941] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During development, axons elongate vigorously, carefully controlling their speed, to connect with their targets. In general, rapid axon growth is correlated with active growth cones driven by dynamic actin filaments. For example, when the actin-driven tip is collapsed by repulsive guidance molecules, axon growth is severely impaired. In this study, we report that axon growth can be suppressed, without destroying the actin-based structure or motility of the growth cones, when antibodies bind to the four-transmembrane glycoprotein M6a concentrated on the growth cone edge. Surprisingly, M6a-deficient axons grow actively but are not growth suppressed by the antibodies, arguing for an inductive action of the antibody. The binding of antibodies clusters and displaces M6a protein from the growth cone edge membrane, suggesting that the spatial rearrangement of this protein might underlie the unique growth cone behavior triggered by the antibodies. Molecular dissection of M6a suggested involvement for the N-terminal intracellular domain in this antibody-induced growth cone arrest.
Collapse
Affiliation(s)
- Yasufumi Sato
- Division of Brain Function, National Institute of Genetics, Yata 1111, Mishima 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Growth-Promoting Effects of Quercetin on Peripheral Nerves in Rats. Int J Artif Organs 2011; 34:1095-105. [DOI: 10.5301/ijao.5000064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2011] [Indexed: 12/28/2022]
Abstract
Objectives The present study evaluated in vitro and in vivo the effects of quercetin (QC), a major ingredient in various flavonoids, on peripheral nerve regeneration. Methods In the in vitro study, we found that QC at concentrations of 0.1, 1, and 10 μg/mL could significantly promote the survival and outgrowth of cultured Schwann cells as compared with the controls treated with culture medium only. In the in vivo study, we evaluated peripheral nerve regeneration across a 15-mm gap in the sciatic nerve of the rat, using a silicone rubber nerve chamber filled with the QC solution. In the control group, the chambers were filled with normal saline only. Results At the end of 8 weeks, morphometric data revealed that all 3 QC groups significantly increased the count and density of myelinated axons as compared with the controls. Electro-physiological measurements showed that the QC-treated group at 1 μg/mL had a significantly larger area of evoked muscle action potential (MAP) compared with the controls. In addition, the amplitude of the MAP in the QC-treated groups at 0.1 and 1 μg/mL was significantly larger than that in the controls. Conclusions All of these results indicate that QC treatment has nerve growth–promoting effects which may lead to a promising herbal medicine for the recovery of regenerating peripheral nerves.
Collapse
|
37
|
Hsieh SC, Tang CM, Huang WT, Hsieh LL, Lu CM, Chang CJ, Hsu SH. Comparison between two different methods of immobilizing NGF in poly(DL-lactic acid-co-glycolic acid) conduit for peripheral nerve regeneration by EDC/NHS/MES and genipin. J Biomed Mater Res A 2011; 99:576-85. [PMID: 21953828 DOI: 10.1002/jbm.a.33157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/28/2011] [Accepted: 04/29/2011] [Indexed: 11/08/2022]
Abstract
For surface modification and nerve regeneration, chitosan, followed by nerve growth factor (NGF), was immobilized onto the interior surface of poly (lactic acit-co-glycolic) conduits, using EDC/NHS/MES system (EDCs) and genipin (GP). Four new conduits were, therefore, obtained and named by immobilizing order-EDCs/EDCs, GP/EDCs, EDCs/GP, and GP/GP groups. The immobilized methods used were evaluated and compared, respectively. The researchers found that the EDCs- and GP-cross-linked chitosan displayed higher hydrophilic than pure poly (DL-lactic acid-co-glycolic acid) (PLGA) in water contact angle experiment, which meant the cell compatibility was improved by the modification. Scanning electron microscopic observations revealed that the GP-cross-linking of chitosan greatly improved cell compatibility while cultured rat PC12 cells were flatter and more spindle-shaped than EDCs-cross-linked chitosan. The results concerning the GP-cross-linked chitosan revealed significant proliferation of the seeded cells relative to pure PLGA films, as determined by counting cells and MTT assay. The NGF was released from the modified conduits in two separate periods--an initial burst in 5 days and then slow release from day 10 to day 40. The GP/EDCs group had the highest NGF value among all groups after the 5th day. Finally, the controlled-release conduits were used to bridge a 10 mm rat sciatic nerve defect. Six weeks following implantation, morphological analysis revealed the highest numbers of myelinated axons in the midconduit and distal regenerated nerve in GP/EDCs group. Therefore, the results confirm that GP/EDCs groups with good cell compatibility and effective release of NGF can considerably improve peripheral nerve regeneration.
Collapse
Affiliation(s)
- Shu-Chih Hsieh
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
38
|
Wahlin KJ, Hackler L, Adler R, Zack DJ. Alternative splicing of neuroligin and its protein distribution in the outer plexiform layer of the chicken retina. J Comp Neurol 2011; 518:4938-62. [PMID: 21031560 DOI: 10.1002/cne.22499] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although synaptogenesis within the retina is obviously essential for vision, mechanisms responsible for the initiation and maintenance of retinal synapses are poorly understood. In addition to its scientific interest, understanding retinal synapse formation is becoming clinically relevant with ongoing efforts to develop transplantation-based approaches for the treatment of retinal degenerative disease. To extend our understanding, we have focused on the chick model system and have studied the neuroligin family of neuronal adhesion factors that has been shown to participate in synapse assembly in the brain. We identified chicken orthologs of neuroligins 1, -3, and -4, but could find no evidence of neuroligin 2. We investigated temporal and spatial patterns of mRNA and protein expression during development using standard polymerase chain reaction (RT-PCR), quantitative PCR (QPCR), laser-capture microdissection (LCM), and confocal microscopy. At the mRNA level, neuroligins were detected at the earliest period tested, embryonic day (ED)5, which precedes the period of inner retina synaptogenesis. Significant alternative splicing was observed through development. While neuroligin gene products were generally detected in the inner retina, low levels of neuroligin 1 mRNA were also detected in the photoreceptor layer. Neuroligin 3 and -4 transcripts, on the other hand, were only detected in the inner retina. At retinal synapses neuroligin 1 protein was detected in the inner plexiform layer, but its highest levels were detected in the outer plexiform layer on the tips of horizontal cell dendrites. This work lays the groundwork for future studies on the functional roles of the neuroligins within the retina.
Collapse
Affiliation(s)
- Karl J Wahlin
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | | | | | |
Collapse
|
39
|
Bodmer D, Ascaño M, Kuruvilla R. Isoform-specific dephosphorylation of dynamin1 by calcineurin couples neurotrophin receptor endocytosis to axonal growth. Neuron 2011; 70:1085-99. [PMID: 21689596 DOI: 10.1016/j.neuron.2011.04.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2011] [Indexed: 01/19/2023]
Abstract
Endocytic events are critical for neuronal survival in response to target-derived neurotrophic cues, but whether local axon growth is mediated by endocytosis-dependent signaling mechanisms remains unclear. Here, we report that Nerve Growth Factor (NGF) promotes endocytosis of its TrkA receptors and axon growth by calcineurin-mediated dephosphorylation of the endocytic GTPase dynamin1. Conditional deletion of calcineurin in sympathetic neurons disrupts NGF-dependent innervation of peripheral target tissues. Calcineurin signaling is required locally in sympathetic axons to support NGF-mediated growth in a manner independent of transcription. We show that calcineurin associates with dynamin1 via a PxIxIT interaction motif found only in specific dynamin1 splice variants. PxIxIT-containing dynamin1 isoforms colocalize with surface TrkA receptors, and their phosphoregulation is selectively required for NGF-dependent TrkA internalization and axon growth in sympathetic neurons. Thus, NGF-dependent phosphoregulation of dynamin1 is a critical event coordinating neurotrophin receptor endocytosis and axonal growth.
Collapse
Affiliation(s)
- Daniel Bodmer
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
40
|
Gomez TM. Pioneering studies on the mechanisms of neuronal morphogenesis. Dev Neurobiol 2011; 71:780-4. [PMID: 21805681 DOI: 10.1002/dneu.20902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 11/06/2022]
Abstract
Axon outgrowth and pathfinding occurs through a complex series of interacting biochemical signaling pathways that regulate the motility of neuronal growth cones. Over the past 30 years, Paul Letourneau and his students have explored the molecular basis of growth cone motility and have contributed immensely to this field. In celebration of his 65th birthday, this essay is written in gratitude for Paul's many contributions and training.
Collapse
Affiliation(s)
- Timothy M Gomez
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
41
|
Suter DM, Miller KE. The emerging role of forces in axonal elongation. Prog Neurobiol 2011; 94:91-101. [PMID: 21527310 DOI: 10.1016/j.pneurobio.2011.04.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/18/2011] [Accepted: 04/06/2011] [Indexed: 11/26/2022]
Abstract
An understanding of how axons elongate is needed to develop rational strategies to treat neurological diseases and nerve injury. Growth cone-mediated neuronal elongation is currently viewed as occurring through cytoskeletal dynamics involving the polymerization of actin and tubulin subunits at the tip of the axon. However, recent work suggests that axons and growth cones also generate forces (through cytoskeletal dynamics, kinesin, dynein, and myosin), forces induce axonal elongation, and axons lengthen by stretching. This review highlights results from various model systems (Drosophila, Aplysia, Xenopus, chicken, mouse, rat, and PC12 cells), supporting a role for forces, bulk microtubule movements, and intercalated mass addition in the process of axonal elongation. We think that a satisfying answer to the question, "How do axons grow?" will come by integrating the best aspects of biophysics, genetics, and cell biology.
Collapse
Affiliation(s)
- Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, United States.
| | | |
Collapse
|
42
|
Bloom AP, Jimenez-Andrade JM, Taylor RN, Castañeda-Corral G, Kaczmarska MJ, Freeman KT, Coughlin KA, Ghilardi JR, Kuskowski MA, Mantyh PW. Breast cancer-induced bone remodeling, skeletal pain, and sprouting of sensory nerve fibers. THE JOURNAL OF PAIN 2011; 12:698-711. [PMID: 21497141 DOI: 10.1016/j.jpain.2010.12.016] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/09/2010] [Accepted: 12/27/2010] [Indexed: 01/06/2023]
Abstract
UNLABELLED Breast cancer metastasis to bone is frequently accompanied by pain. What remains unclear is why this pain tends to become more severe and difficult to control with disease progression. Here we test the hypothesis that with disease progression, sensory nerve fibers that innervate the breast cancer bearing bone undergo a pathological sprouting and reorganization, which in other nonmalignant pathologies has been shown to generate and maintain chronic pain. Injection of human breast cancer cells (MDA-MB-231-BO) into the femoral intramedullary space of female athymic nude mice induces sprouting of calcitonin gene-related peptide (CGRP(+)) sensory nerve fibers. Nearly all CGRP(+) nerve fibers that undergo sprouting also coexpress tropomyosin receptor kinase A (TrkA(+)) and growth-associated protein-43 (GAP43(+)). This ectopic sprouting occurs in periosteal sensory nerve fibers that are in close proximity to breast cancer cells, tumor-associated stromal cells, and remodeled cortical bone. Therapeutic treatment with an antibody that sequesters nerve growth factor (NGF), administered when the pain and bone remodeling were first observed, blocks this ectopic sprouting and attenuates cancer pain. The present data suggest that the breast cancer cells and tumor-associated stromal cells express and release NGF, which drives bone pain and the pathological reorganization of nearby CGRP(+)/TrkA(+)/GAP43(+) sensory nerve fibers. PERSPECTIVE Therapies that block breast cancer pain by reducing the tumor-induced pathological sprouting and reorganization of sensory nerve fibers may provide insight into the evolving mechanisms that drive breast cancer pain and lead to more effective therapies for attenuating this chronic pain state.
Collapse
Affiliation(s)
- Aaron P Bloom
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
D'Este E, Baj G, Beuzer P, Ferrari E, Pinato G, Tongiorgi E, Cojoc D. Use of optical tweezers technology for long-term, focal stimulation of specific subcellular neuronal compartments. Integr Biol (Camb) 2011; 3:568-77. [DOI: 10.1039/c0ib00102c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Abstract
The neuronal growth cone, a highly motile structure at the tip of neuronal processes, is an excellent model system for studying directional cell movements. While biochemical and genetic approaches unveiled molecular interactions between ligand, receptor, signaling, and cytoskeleton-associated proteins controlling axonal growth and guidance, in vitro live cell imaging has emerged as a crucial approach for dissecting cellular mechanisms of growth cone motility and guidance. Important insights into these mechanisms have been gained from studies using the large growth cones elaborated by Aplysia californica neurons, an outstanding model system for live cell imaging for a number of reasons. Identified neurons can be isolated and imaged at room temperature. Aplysia growth cones are five to ten times larger than growth cones from other species, making them suitable for quantitative high-resolution imaging of cytoskeletal protein dynamics and biophysical approaches. Lastly, protein, RNA, fluorescent probes, and small molecules can be microinjected into the neuronal cell body for localization and functional studies. This chapter describes culturing of Aplysia bag cell neurons, live cell imaging of neuronal growth cones using differential interference contrast and fluorescent speckle microscopy as well as the restrained bead interaction assay to induce adhesion-mediated growth cone guidance in vitro.
Collapse
Affiliation(s)
- Daniel M Suter
- Department of Biological Sciences, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
45
|
Vetter I, Pujic Z, Goodhill GJ. The response of dorsal root ganglion axons to nerve growth factor gradients depends on spinal level. J Neurotrauma 2010; 27:1379-86. [PMID: 20504159 DOI: 10.1089/neu.2010.1279] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Directed sensory axon regeneration has the potential to promote functional recovery after peripheral nerve injury. Using a novel guidance assay to generate precisely controllable nerve growth factor gradients, we show for the first time that the guidance and outgrowth response of rat dorsal root ganglion neurons to identical nerve growth factor gradients depends on the rostrocaudal origin of the dorsal root ganglion explant. These findings have implications for the study of peripheral nerve regeneration in response to exogenous neurotrophins such as nerve growth factor, and provide new insight into the clinical potential of nerve growth factor in the treatment of nerve injury.
Collapse
Affiliation(s)
- Irina Vetter
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
46
|
Marsick BM, Flynn KC, Santiago-Medina M, Bamburg JR, Letourneau PC. Activation of ADF/cofilin mediates attractive growth cone turning toward nerve growth factor and netrin-1. Dev Neurobiol 2010; 70:565-88. [PMID: 20506164 DOI: 10.1002/dneu.20800] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proper neural circuitry requires that growth cones, motile tips of extending axons, respond to molecular guidance cues expressed in the developing organism. However, it is unclear how guidance cues modify the cytoskeleton to guide growth cone pathfinding. Here, we show acute treatment with two attractive guidance cues, nerve growth factor (NGF) and netrin-1, for embryonic dorsal root ganglion and temporal retinal neurons, respectively, results in increased growth cone membrane protrusion, actin polymerization, and filamentous actin (F-actin). ADF/cofilin (AC) family proteins facilitate F-actin dynamics, and we found the inactive phosphorylated form of AC is decreased in NGF- or netrin-1-treated growth cones. Directly increasing AC activity mimics addition of NGF or netrin-1 to increase growth cone protrusion and F-actin levels. Extracellular gradients of NGF, netrin-1, and a cell-permeable AC elicit attractive growth cone turning and increased F-actin barbed ends, F-actin accumulation, and active AC in growth cone regions proximal to the gradient source. Reducing AC activity blunts turning responses to NGF and netrin. Our results suggest that gradients of NGF and netrin-1 locally activate AC to promote actin polymerization and subsequent growth cone turning toward the side containing higher AC activity.
Collapse
Affiliation(s)
- Bonnie M Marsick
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
47
|
Blockade of nerve sprouting and neuroma formation markedly attenuates the development of late stage cancer pain. Neuroscience 2010; 171:588-98. [PMID: 20851743 DOI: 10.1016/j.neuroscience.2010.08.056] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/11/2010] [Accepted: 08/18/2010] [Indexed: 12/12/2022]
Abstract
For many patients, pain is the first sign of cancer and, while pain can be present at any time, the frequency and intensity of pain tend to increase with advancing stages of the disease. Thus, between 75 and 90% of patients with metastatic or advanced-stage cancer will experience significant cancer-induced pain. One major unanswered question is why cancer pain increases and frequently becomes more difficult to fully control with disease progression. To gain insight into this question we used a mouse model of bone cancer pain to demonstrate that as tumor growth progresses within bone, tropomyosin receptor kinase A (TrkA)-expressing sensory and sympathetic nerve fibers undergo profuse sprouting and form neuroma-like structures. To address what is driving the pathological nerve reorganization we administered an antibody to nerve growth factor (anti-NGF). Early sustained administration of anti-NGF, whose cognate receptor is TrkA, blocks the pathological sprouting of sensory and sympathetic nerve fibers, the formation of neuroma-like structures, and inhibits the development of cancer pain. These results suggest that cancer cells and their associated stromal cells release nerve growth factor (NGF), which induces a pathological remodeling of sensory and sympathetic nerve fibers. This pathological remodeling of the peripheral nervous system then participates in driving cancer pain. Similar to therapies that target the cancer itself, the data presented here suggest that, the earlier therapies blocking this pathological nerve remodeling are initiated, the more effective the control of cancer pain.
Collapse
|
48
|
The use of immobilized neurotrophins to support neuron survival and guide nerve fiber growth in compartmentalized chambers. Biomaterials 2010; 31:6987-99. [PMID: 20579725 DOI: 10.1016/j.biomaterials.2010.05.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 05/26/2010] [Indexed: 12/11/2022]
Abstract
We answered two major questions: (1) does retrograde signaling involve retrograde transport of nerve growth factor (NGF); and (2) is a gradient of immobilized NGF sufficient to promote and guide local axonal growth? To answer these questions, we developed a technique that resulted in stably immobilized NGF and combined this with compartmented chambers. NGF was photochemically-immobilized on a chitosan surface either in the cell body (CB) compartment, distal axon (DA) compartment, or both. Neuron survival and axon outgrowth were found to be insignificantly different from positive controls where soluble NGF was present. When NGF was immobilized on chitosan surfaces in the DA compartment, and in the absence of soluble NGF, neuron survival was observed, likely due to the retrograde signal of the activated TrkA receptor and NGF-induced signals, but not the retrograde signal of NGF itself. Axons were guided towards the higher end of the step concentration gradient of NGF that was photoimmobilized on the chitosan surface in the DA compartment by laser confocal patterning, demonstrating axonal guidance. These studies provide better insight into NGF signaling mechanisms which are important to both understanding developmental disorders and degenerative diseases of the nervous system, as well as improving design strategies to promote nerve regeneration after injury.
Collapse
|
49
|
The nerve regenerative microenvironment: Early behavior and partnership of axons and Schwann cells. Exp Neurol 2010; 223:51-9. [DOI: 10.1016/j.expneurol.2009.05.037] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/28/2009] [Accepted: 05/28/2009] [Indexed: 11/19/2022]
|
50
|
Han LH, Suri S, Schmidt CE, Chen S. Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering. Biomed Microdevices 2010; 12:721-5. [DOI: 10.1007/s10544-010-9425-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|