1
|
Enck JR, Olson EC. Calcium Signaling during Cortical Apical Dendrite Initiation: A Role for Cajal-Retzius Neurons. Int J Mol Sci 2023; 24:12965. [PMID: 37629145 PMCID: PMC10455361 DOI: 10.3390/ijms241612965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The apical dendrite of a cortical projection neuron (CPN) is generated from the leading process of the migrating neuron as the neuron completes migration. This transformation occurs in the cortical marginal zone (MZ), a layer that contains the Cajal-Retzius neurons and their axonal projections. Cajal-Retzius neurons (CRNs) are well known for their critical role in secreting Reelin, a glycoprotein that controls dendritogenesis and cell positioning in many regions of the developing brain. In this study, we examine the possibility that CRNs in the MZ may provide additional signals to arriving CPNs, that may promote the maturation of CPNs and thus shape the development of the cortex. We use whole embryonic hemisphere explants and multiphoton microscopy to confirm that CRNs display intracellular calcium transients of <1-min duration and high amplitude during early corticogenesis. In contrast, developing CPNs do not show high-amplitude calcium transients, but instead show a steady increase in intracellular calcium that begins at the time of dendritic initiation, when the leading process of the migrating CPN is encountering the MZ. The possible existence of CRN to CPN communication was revealed by the application of veratridine, a sodium channel activator, which has been shown to preferentially stimulate more mature cells in the MZ at an early developmental time. Surprisingly, veratridine application also triggers large calcium transients in CPNs, which can be partially blocked by a cocktail of antagonists that block glutamate and glycine receptor activation. These findings outline a model in which CRN spontaneous activity triggers the release of glutamate and glycine, neurotransmitters that can trigger intracellular calcium elevations in CPNs. These elevations begin as CPNs initiate dendritogenesis and continue as waves in the post-migratory cells. Moreover, we show that the pharmacological blockade of glutamatergic signaling disrupts migration, while forced expression of a bacterial voltage-gated calcium channel (CavMr) in the migrating neurons promotes dendritic growth and migration arrest. The identification of CRN to CPN signaling during early development provides insight into the observation that many autism-linked genes encode synaptic proteins that, paradoxically, are expressed in the developing cortex well before the appearance of synapses and the establishment of functional circuits.
Collapse
Affiliation(s)
| | - Eric C. Olson
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, 505 Irving Ave., Syracuse, NY 13210, USA;
| |
Collapse
|
2
|
Furukawa T, Fukuda A. Maternal taurine as a modulator of Cl - homeostasis as well as of glycine/GABA A receptors for neocortical development. Front Cell Neurosci 2023; 17:1221441. [PMID: 37601283 PMCID: PMC10435090 DOI: 10.3389/fncel.2023.1221441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
During brain and spinal cord development, GABA and glycine, the inhibitory neurotransmitters, cause depolarization instead of hyperpolarization in adults. Since glycine and GABAA receptors (GABAARs) are chloride (Cl-) ion channel receptor, the conversion of GABA/glycine actions during development is influenced by changes in the transmembrane Cl- gradient, which is regulated by Cl- transporters, NKCC1 (absorption) and KCC2 (expulsion). In immature neurons, inhibitory neurotransmitters are released in a non-vesicular/non-synaptic manner, transitioning to vesicular/synaptic release as the neuron matures. In other word, in immature neurons, neurotransmitters generally act tonically. Thus, the glycine/GABA system is a developmentally multimodal system that is required for neurogenesis, differentiation, migration, and synaptogenesis. The endogenous agonists for these receptors are not fully understood, we address taurine. In this review, we will discuss about the properties and function of taurine during development of neocortex. Taurine cannot be synthesized by fetuses or neonates, and is transferred from maternal blood through the placenta or maternal milk ingestion. In developing neocortex, taurine level is higher than GABA level, and taurine tonically activates GABAARs to control radial migration as a stop signal. In the marginal zone (MZ) of the developing neocortex, endogenous taurine modulates the spread of excitatory synaptic transmission, activating glycine receptors (GlyRs) as an endogenous agonist. Thus, taurine affects information processing and crucial developmental processes such as axonal growth, cell migration, and lamination in the developing cerebral cortex. Additionally, we also refer to the possible mechanism of taurine-regulating Cl- homeostasis. External taurine is uptake by taurine transporter (TauT) and regulates NKCC1 and KCC2 mediated by intracellular signaling pathway, with-no-lysine kinase 1 (WNK1) and its subsequent kinases STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) and oxidative stress response kinase-1 (OSR1). Through the regulation of NKCC1 and KCC2, mediated by the WNK-SPAK/OSR1 signaling pathway, taurine plays a role in maintaining Cl- homeostasis during normal brain development.
Collapse
Affiliation(s)
- Tomonori Furukawa
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
3
|
Everlien I, Yen TY, Liu YC, Di Marco B, Vázquez-Marín J, Centanin L, Alfonso J, Monyer H. Diazepam binding inhibitor governs neurogenesis of excitatory and inhibitory neurons during embryonic development via GABA signaling. Neuron 2022; 110:3139-3153.e6. [PMID: 35998632 DOI: 10.1016/j.neuron.2022.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
Abstract
Of the neurotransmitters that influence neurogenesis, gamma-aminobutyric acid (GABA) plays an outstanding role, and GABA receptors support non-synaptic signaling in progenitors and migrating neurons. Here, we report that expression levels of diazepam binding inhibitor (DBI), an endozepine that modulates GABA signaling, regulate embryonic neurogenesis, affecting the long-term outcome regarding the number of neurons in the postnatal mouse brain. We demonstrate that DBI is highly expressed in radial glia and intermediate progenitor cells in the germinal zones of the embryonic mouse brain that give rise to excitatory and inhibitory cells. The mechanism by which DBI controls neurogenesis involves its action as a negative allosteric modulator of GABA-induced currents on progenitor cells that express GABAA receptors containing γ2 subunits. DBI's modulatory effect parallels that of GABAA-receptor-mediating signaling in these cells in the proliferative areas, reflecting the tight control that DBI exerts on embryonic neurogenesis.
Collapse
Affiliation(s)
- Isabelle Everlien
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ting-Yun Yen
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yu-Chao Liu
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Barbara Di Marco
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Javier Vázquez-Marín
- Center for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Lázaro Centanin
- Center for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Hui KK, Chater TE, Goda Y, Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front Mol Neurosci 2022; 15:893111. [PMID: 35875665 PMCID: PMC9305173 DOI: 10.3389/fnmol.2022.893111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Excitatory-inhibitory (E-I) imbalance has been shown to contribute to the pathogenesis of a wide range of neurodevelopmental disorders including autism spectrum disorders, epilepsy, and schizophrenia. GABA neurotransmission, the principal inhibitory signal in the mature brain, is critically coupled to proper regulation of chloride homeostasis. During brain maturation, changes in the transport of chloride ions across neuronal cell membranes act to gradually change the majority of GABA signaling from excitatory to inhibitory for neuronal activation, and dysregulation of this GABA-shift likely contributes to multiple neurodevelopmental abnormalities that are associated with circuit dysfunction. Whilst traditionally viewed as a phenomenon which occurs during brain development, recent evidence suggests that this GABA-shift may also be involved in neuropsychiatric disorders due to the "dematuration" of affected neurons. In this review, we will discuss the cell signaling and regulatory mechanisms underlying the GABA-shift phenomenon in the context of the latest findings in the field, in particular the role of chloride cotransporters NKCC1 and KCC2, and furthermore how these regulatory processes are altered in neurodevelopmental and neuropsychiatric disorders. We will also explore the interactions between GABAergic interneurons and other cell types in the developing brain that may influence the GABA-shift. Finally, with a greater understanding of how the GABA-shift is altered in pathological conditions, we will briefly outline recent progress on targeting NKCC1 and KCC2 as a therapeutic strategy against neurodevelopmental and neuropsychiatric disorders associated with improper chloride homeostasis and GABA-shift abnormalities.
Collapse
Affiliation(s)
- Kelvin K. Hui
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas E. Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
- Synapse Biology Unit, Okinawa Institute for Science and Technology Graduate University, Onna, Japan
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
5
|
Razenkova VA, Korzhevskii DE. Morphological Changes in GABAergic Structures of the Rat Brain during Postnatal Development. NEUROCHEM J+ 2022. [DOI: 10.1134/s181971242201010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Atefimanash P, Pourhamzeh M, Susanabadi A, Arabi M, Jamali-Raeufy N, Mehrabi S. Hippocampal chloride transporter KCC2 contributes to excitatory GABA dysregulation in the developmental rat model of schizophrenia. J Chem Neuroanat 2021; 118:102040. [PMID: 34695562 DOI: 10.1016/j.jchemneu.2021.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Recent studies have revealed an altered expression of NKCC1 and KCC2 in prefrontal cortex (PFC) and hippocampus of schizophrenic patients. Despite extensive considerations, the alteration of NKCC1 and KCC2 co-transporters at different stages of development has not been fully studied. Therefore, we evaluated the expression of these transporters in PFC and hippocampus at time points of four, eight, and twelve weeks in post-weaning social isolation rearing rat model. For this purpose, 23-25 days-old rats were classified into social- or isolation-reared groups. The levels of NKCC1 and KCC2 mRNA expression were evaluated at hippocampus or PFC regions at the time-points of four, eight, and twelve weeks following housing. Post-weaning isolation rearing decreased the hippocampal KCC2 mRNA expression level, but does not affect the NKCC1 mRNA expression. However, no significant difference was observed in the PFC mRNA levels of NKCC1 and KCC2 in the isolation-reared group compared to the socially-reared group during the course of modeling. Further, we assessed the therapeutic effect of selective NKCC1 inhibitor bumetanide (10 mg/kg), on improvement of prepulse inhibition (PPI) test on twelve weeks isolation-reared rats. Intraperitoneal administration of bumetanide (10 mg/kg) did not exert beneficial effects on PPI deficit. Our findings show that isolation rearing reduces hippocampal KCC2 expression level and may underlie hippocampal GABA excitatory. In addition, 10 mg/kg bumetanide is not effective in improving the reduced PPI of twelve weeks isolation-reared rats. Collectively, our findings show that hippocampal chloride transporter KCC2 contributes to excitatory GABA dysregulation in the developmental rat model of schizophrenia.
Collapse
Affiliation(s)
- Pezhman Atefimanash
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Pourhamzeh
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Susanabadi
- Department of Anesthesia and pain medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mehrnoosh Arabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Radiology and Medical Physics, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Nida Jamali-Raeufy
- Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Soraya Mehrabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran.
| |
Collapse
|
7
|
Glaser T, Shimojo H, Ribeiro DE, Martins PPL, Beco RP, Kosinski M, Sampaio VFA, Corrêa-Velloso J, Oliveira-Giacomelli Á, Lameu C, de Jesus Santos AP, de Souza HDN, Teng YD, Kageyama R, Ulrich H. ATP and spontaneous calcium oscillations control neural stem cell fate determination in Huntington's disease: a novel approach for cell clock research. Mol Psychiatry 2021; 26:2633-2650. [PMID: 32350390 DOI: 10.1038/s41380-020-0717-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022]
Abstract
Calcium, the most versatile second messenger, regulates essential biology including crucial cellular events in embryogenesis. We investigated impacts of calcium channels and purinoceptors on neuronal differentiation of normal mouse embryonic stem cells (ESCs), with outcomes being compared to those of in vitro models of Huntington's disease (HD). Intracellular calcium oscillations tracked via real-time fluorescence and luminescence microscopy revealed a significant correlation between calcium transient activity and rhythmic proneuronal transcription factor expression in ESCs stably expressing ASCL-1 or neurogenin-2 promoters fused to luciferase reporter genes. We uncovered that pharmacological manipulation of L-type voltage-gated calcium channels (VGCCs) and purinoceptors induced a two-step process of neuronal differentiation. Specifically, L-type calcium channel-mediated augmentation of spike-like calcium oscillations first promoted stable expression of ASCL-1 in differentiating ESCs, which following P2Y2 purinoceptor activation matured into GABAergic neurons. By contrast, there was neither spike-like calcium oscillations nor responsive P2Y2 receptors in HD-modeling stem cells in vitro. The data shed new light on mechanisms underlying neurogenesis of inhibitory neurons. Moreover, our approach may be tailored to identify pathogenic triggers of other developmental neurological disorders for devising targeted therapies.
Collapse
Affiliation(s)
- Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Hiromi Shimojo
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Renata Pereira Beco
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Michal Kosinski
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Boston, MA, USA.,Translative Plataform for Regenerative Medicine, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | - Juliana Corrêa-Velloso
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Yang D Teng
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Boston, MA, USA
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Melrose J, Hayes AJ, Bix G. The CNS/PNS Extracellular Matrix Provides Instructive Guidance Cues to Neural Cells and Neuroregulatory Proteins in Neural Development and Repair. Int J Mol Sci 2021; 22:5583. [PMID: 34070424 PMCID: PMC8197505 DOI: 10.3390/ijms22115583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The extracellular matrix of the PNS/CNS is unusual in that it is dominated by glycosaminoglycans, especially hyaluronan, whose space filling and hydrating properties make essential contributions to the functional properties of this tissue. Hyaluronan has a relatively simple structure but its space-filling properties ensure micro-compartments are maintained in the brain ultrastructure, ensuring ionic niches and gradients are maintained for optimal cellular function. Hyaluronan has cell-instructive, anti-inflammatory properties and forms macro-molecular aggregates with the lectican CS-proteoglycans, forming dense protective perineuronal net structures that provide neural and synaptic plasticity and support cognitive learning. AIMS To highlight the central nervous system/peripheral nervous system (CNS/PNS) and its diverse extracellular and cell-associated proteoglycans that have cell-instructive properties regulating neural repair processes and functional recovery through interactions with cell adhesive molecules, receptors and neuroregulatory proteins. Despite a general lack of stabilising fibrillar collagenous and elastic structures in the CNS/PNS, a sophisticated dynamic extracellular matrix is nevertheless important in tissue form and function. CONCLUSIONS This review provides examples of the sophistication of the CNS/PNS extracellular matrix, showing how it maintains homeostasis and regulates neural repair and regeneration.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Sydney, NSW 2052, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Gregory Bix
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
9
|
Peerboom C, Wierenga CJ. The postnatal GABA shift: A developmental perspective. Neurosci Biobehav Rev 2021; 124:179-192. [PMID: 33549742 DOI: 10.1016/j.neubiorev.2021.01.024] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
GABA is the major inhibitory neurotransmitter that counterbalances excitation in the mature brain. The inhibitory action of GABA relies on the inflow of chloride ions (Cl-), which hyperpolarizes the neuron. In early development, GABA signaling induces outward Cl- currents and is depolarizing. The postnatal shift from depolarizing to hyperpolarizing GABA is a pivotal event in brain development and its timing affects brain function throughout life. Altered timing of the postnatal GABA shift is associated with several neurodevelopmental disorders. Here, we argue that the postnatal shift from depolarizing to hyperpolarizing GABA represents the final shift in a sequence of GABA shifts, regulating proliferation, migration, differentiation, and finally plasticity of developing neurons. Each developmental GABA shift ensures that the instructive role of GABA matches the circumstances of the developing network. Sensory input may be a crucial factor in determining proper timing of the postnatal GABA shift. A developmental perspective is necessary to interpret the full consequences of a mismatch between connectivity, activity and GABA signaling during brain development.
Collapse
Affiliation(s)
- Carlijn Peerboom
- Cell Biology, Neurobiology and Biophysics, Biology Department, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Corette J Wierenga
- Cell Biology, Neurobiology and Biophysics, Biology Department, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
10
|
Medvedeva VP, Pierani A. How Do Electric Fields Coordinate Neuronal Migration and Maturation in the Developing Cortex? Front Cell Dev Biol 2020; 8:580657. [PMID: 33102486 PMCID: PMC7546860 DOI: 10.3389/fcell.2020.580657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
During development the vast majority of cells that will later compose the mature cerebral cortex undergo extensive migration to reach their final position. In addition to intrinsically distinct migratory behaviors, cells encounter and respond to vastly different microenvironments. These range from axonal tracts to cell-dense matrices, electrically active regions and extracellular matrix components, which may all change overtime. Furthermore, migrating neurons themselves not only adapt to their microenvironment but also modify the local niche through cell-cell contacts, secreted factors and ions. In the radial dimension, the developing cortex is roughly divided into dense progenitor and cortical plate territories, and a less crowded intermediate zone. The cortical plate is bordered by the subplate and the marginal zone, which are populated by neurons with high electrical activity and characterized by sophisticated neuritic ramifications. Neuronal migration is influenced by these boundaries resulting in dramatic changes in migratory behaviors as well as morphology and electrical activity. Modifications in the levels of any of these parameters can lead to alterations and even arrest of migration. Recent work indicates that morphology and electrical activity of migrating neuron are interconnected and the aim of this review is to explore the extent of this connection. We will discuss on one hand how the response of migrating neurons is altered upon modification of their intrinsic electrical properties and whether, on the other hand, the electrical properties of the cellular environment can modify the morphology and electrical activity of migrating cortical neurons.
Collapse
Affiliation(s)
- Vera P Medvedeva
- Imagine Institute of Genetic Diseases, Université de Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| | - Alessandra Pierani
- Imagine Institute of Genetic Diseases, Université de Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| |
Collapse
|
11
|
Markus F, Angelini C, Trimouille A, Rudolf G, Lesca G, Goizet C, Lasseaux E, Arveiler B, van Slegtenhorst M, Brooks AS, Abou Jamra R, Korenke G, Neidhardt J, Owczarek‐Lipska M. Rare variants in the GABA A receptor subunit ε identified in patients with a wide spectrum of epileptic phenotypes. Mol Genet Genomic Med 2020; 8:e1388. [PMID: 32588540 PMCID: PMC7507344 DOI: 10.1002/mgg3.1388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Epilepsy belongs to a group of chronic and highly heterogeneous brain disorders. Many types of epilepsy and epileptic syndromes are caused by genetic factors. The neural amino acid y-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the mammalian central nervous system. It regulates activity of channel pores by binding to transmembrane GABA-receptors (GABRs). The GABRs are heteropentamers assembled from different receptor subunits (α1-6, β1-3, γ1-3, δ, ε, θ, π, and ρ1-3). Several epileptic disorders are caused by mutations in genes encoding single GABRs. METHODS We applied trio- and single-whole exome sequencing to search for genetic sequence variants associated with a wide range of epileptic phenotypes accompanied by intellectual disability and/or global developmental delay in the investigated patients. RESULTS We identified four hemizygous sequence variants in the GABAA receptor subunit ε gene (GABRE), including one nonsense (NM_004961.3: c.399C>A, p.Tyr133*), two missense variants (NM_004961.3: c.664G>A, p.Glu222Lys; NM_004961.3: c.1045G>A, p.Val349Ile), and one variant affecting the translation initiation codon (NM_004961.3: c.1A>G, p.Met1?) in four unrelated families. CONCLUSION Our clinical and molecular genetic findings suggest that GABRE is a likely candidate gene for epilepsy. Nevertheless, functional studies are necessary to better understand pathogenicity of the GABRE-mutations and their associations with epileptic phenotypes.
Collapse
Affiliation(s)
- Fenja Markus
- Junior Research GroupGenetics of Childhood Brain MalformationsFaculty VI‐School of Medicine and Health SciencesUniversity of OldenburgOldenburgGermany
- Human GeneticsFaculty VI‐School of Medicine and Health SciencesUniversity of OldenburgOldenburgGermany
| | - Chloé Angelini
- Service de Génétique médicaleCHU de BordeauxBordeauxFrance
| | | | - Gabrielle Rudolf
- CNRS U7104INSERM U1258Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Service de NeurologieCentre de Références des Maladies Neurogénétique RaresHôpitaux Universitaires de StrasbourgStrasbourgFrance
| | - Gaetan Lesca
- Genetics departmentLyon University Hospital and University of LyonLyonFrance
| | - Cyril Goizet
- Service de Génétique médicaleCHU de BordeauxBordeauxFrance
- CNRS U7104INSERM U1258Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | | | | | | | - Alice S. Brooks
- Department of Clinical GeneticsErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Rami Abou Jamra
- Institute of Human GeneticsUniversity Medical Center LeipzigLeipzigGermany
| | | | - John Neidhardt
- Human GeneticsFaculty VI‐School of Medicine and Health SciencesUniversity of OldenburgOldenburgGermany
- Research Center Neurosensory ScienceUniversity of OldenburgOldenburgGermany
| | - Marta Owczarek‐Lipska
- Junior Research GroupGenetics of Childhood Brain MalformationsFaculty VI‐School of Medicine and Health SciencesUniversity of OldenburgOldenburgGermany
- Human GeneticsFaculty VI‐School of Medicine and Health SciencesUniversity of OldenburgOldenburgGermany
| |
Collapse
|
12
|
Transcriptomic Profiling of Ca2+ Transport Systems During the Formation of the Cerebral Cortex in Mice. Cells 2020; 9:cells9081800. [PMID: 32751129 PMCID: PMC7465657 DOI: 10.3390/cells9081800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 01/05/2023] Open
Abstract
Cytosolic calcium (Ca2+) transients control key neural processes, including neurogenesis, migration, the polarization and growth of neurons, and the establishment and maintenance of synaptic connections. They are thus involved in the development and formation of the neural system. In this study, a publicly available whole transcriptome sequencing (RNA-Seq) dataset was used to examine the expression of genes coding for putative plasma membrane and organellar Ca2+-transporting proteins (channels, pumps, exchangers, and transporters) during the formation of the cerebral cortex in mice. Four ages were considered: embryonic days 11 (E11), 13 (E13), and 17 (E17), and post-natal day 1 (PN1). This transcriptomic profiling was also combined with live-cell Ca2+ imaging recordings to assess the presence of functional Ca2+ transport systems in E13 neurons. The most important Ca2+ routes of the cortical wall at the onset of corticogenesis (E11–E13) were TACAN, GluK5, nAChR β2, Cav3.1, Orai3, transient receptor potential cation channel subfamily M member 7 (TRPM7) non-mitochondrial Na+/Ca2+ exchanger 2 (NCX2), and the connexins CX43/CX45/CX37. Hence, transient receptor potential cation channel mucolipin subfamily member 1 (TRPML1), transmembrane protein 165 (TMEM165), and Ca2+ “leak” channels are prominent intracellular Ca2+ pathways. The Ca2+ pumps sarco/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) and plasma membrane Ca2+ ATPase 1 (PMCA1) control the resting basal Ca2+ levels. At the end of neurogenesis (E17 and onward), a more numerous and diverse population of Ca2+ uptake systems was observed. In addition to the actors listed above, prominent Ca2+-conducting systems of the cortical wall emerged, including acid-sensing ion channel 1 (ASIC1), Orai2, P2X2, and GluN1. Altogether, this study provides a detailed view of the pattern of expression of the main actors participating in the import, export, and release of Ca2+. This work can serve as a framework for further functional and mechanistic studies on Ca2+ signaling during cerebral cortex formation.
Collapse
|
13
|
Duy PQ, He M, He Z, Kahle KT. Preclinical insights into therapeutic targeting of KCC2 for disorders of neuronal hyperexcitability. Expert Opin Ther Targets 2020; 24:629-637. [PMID: 32336175 DOI: 10.1080/14728222.2020.1762174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Epilepsy is a common neurological disorder of neuronal hyperexcitability that begets recurrent and unprovoked seizures. The lack of a truly satisfactory pharmacotherapy for epilepsy highlights the clinical urgency for the discovery of new drug targets. To that end, targeting the electroneutral K+/Cl- cotransporter KCC2 has emerged as a novel therapeutic strategy for the treatment of epilepsy. AREAS COVERED We summarize the roles of KCC2 in the maintenance of synaptic inhibition and the evidence linking KCC2 dysfunction to epileptogenesis. We also discuss preclinical proof-of-principle studies that demonstrate that augmentation of KCC2 function can reduce seizure activity. Moreover, potential strategies to modulate KCC2 activity for therapeutic benefit are highlighted. EXPERT OPINION Although KCC2 is a promising drug target, questions remain before clinical translation. It is unclear whether increasing KCC2 activity can reverse epileptogenesis, the ultimate curative goal for epilepsy therapy that extends beyond seizure reduction. Furthermore, the potential adverse effects associated with increased KCC2 function have not been studied. Continued investigations into the neurobiology of KCC2 will help to translate promising preclinical insights into viable therapeutic avenues that leverage fundamental properties of KCC2 to treat medically intractable epilepsy and other disorders of failed synaptic inhibition with attendant neuronal hyperexcitability.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, Yale University School of Medicine , New Haven, CT, USA.,Medical Scientist Training Program, Yale University School of Medicine , New Haven, CT, USA
| | - Miao He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School , Boston, MA, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School , Boston, MA, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale University School of Medicine , New Haven, CT, USA.,Department of Genetics, Yale University School of Medicine , New Haven, CT, USA.,Departments of Pediatrics and Cellular & Molecular Physiology, Yale University School of Medicine , New Haven, CT, USA.,Yale-Rockefeller NIH Centers for Mendelian Genomics, Yale University , New Haven, CT, USA.,Yale Stem Cell Center, Yale School of Medicine , New Haven, CT, USA
| |
Collapse
|
14
|
Horigane SI, Ozawa Y, Yamada H, Takemoto-Kimura S. Calcium signalling: a key regulator of neuronal migration. J Biochem 2019; 165:401-409. [PMID: 30753600 DOI: 10.1093/jb/mvz012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/10/2019] [Indexed: 12/12/2022] Open
Abstract
Neuronal migration is a crucial event in neuronal development for the construction of brain architecture and neuronal networks. Newborn neurons proliferate in the germinal zone and start migration toward their final destination. Migrating neurons adopt different routes, cell shapes and migratory modes depending on extracellular factors and outer physical substrates. Intracellular Ca2+ is an essential second messenger that regulates diverse cellular functions by activating Ca2+-dependent signalling molecules that underlie Ca2+-responsive cellular functions. Neuronal migration during brain architecture construction is no exception. Spontaneous Ca2+ transients are observed in several types of migrating neurons, and a series of Ca2+-dependent signalling molecules governing neuronal migration has been identified. In this review, we first summarize the molecular mechanisms that trigger intracellular Ca2+ elevation in migrating neurons. In the latter half of this review, we provide an overview of the literature on Ca2+-dependent signalling molecules underlying neuronal migration.
Collapse
Affiliation(s)
- Shin-Ichiro Horigane
- Department of Neuroscience I, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Molecular/Cellular Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Ozawa
- Department of Neuroscience I, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Molecular/Cellular Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Hirokazu Yamada
- Department of Neuroscience I, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Molecular/Cellular Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sayaka Takemoto-Kimura
- Department of Neuroscience I, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Molecular/Cellular Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
15
|
Navarro Quiroz E, Navarro Quiroz R, Ahmad M, Gomez Escorcia L, Villarreal JL, Fernandez Ponce C, Aroca Martinez G. Cell Signaling in Neuronal Stem Cells. Cells 2018; 7:E75. [PMID: 30011912 PMCID: PMC6070865 DOI: 10.3390/cells7070075] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/30/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
The defining characteristic of neural stem cells (NSCs) is their ability to multiply through symmetric divisions and proliferation, and differentiation by asymmetric divisions, thus giving rise to different types of cells of the central nervous system (CNS). A strict temporal space control of the NSC differentiation is necessary, because its alterations are associated with neurological dysfunctions and, in some cases, death. This work reviews the current state of the molecular mechanisms that regulate the transcription in NSCs, organized according to whether the origin of the stimulus that triggers the molecular cascade in the CNS is internal (intrinsic factors) or whether it is the result of the microenvironment that surrounds the CNS (extrinsic factors).
Collapse
Affiliation(s)
- Elkin Navarro Quiroz
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
- School of Medicine, Universidad Rafael Nuñez, Cartagena 130001, Colombia.
| | - Roberto Navarro Quiroz
- Centro de Investigación en Salud para el Trópico, Universidad Cooperativa de Colombia, Santa Marta 470002, Colombia.
| | - Mostapha Ahmad
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
| | - Lorena Gomez Escorcia
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
| | | | | | - Gustavo Aroca Martinez
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
- Clinica de la Costa, Barranquilla 080002, Colombia.
| |
Collapse
|
16
|
Fay KA, Villeneuve DL, LaLone CA, Song Y, Tollefsen KE, Ankley GT. Practical approaches to adverse outcome pathway development and weight-of-evidence evaluation as illustrated by ecotoxicological case studies. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1429-1449. [PMID: 28198554 PMCID: PMC6058314 DOI: 10.1002/etc.3770] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/14/2016] [Accepted: 02/13/2017] [Indexed: 05/20/2023]
Abstract
Adverse outcome pathways (AOPs) describe toxicant effects as a sequential chain of causally linked events beginning with a molecular perturbation and culminating in an adverse outcome at an individual or population level. Strategies for developing AOPs are still evolving and depend largely on the intended use or motivation for development and data availability. The present review describes 4 ecotoxicological AOP case studies, developed for different purposes. In each situation, creation of the AOP began in a manner determined by the initial motivation for its creation and expanded either to include additional components of the pathway or to address the domains of applicability in terms of chemical initiators, susceptible species, life stages, and so forth. Some general strategies can be gleaned from these case studies, which a developer may find to be useful for supporting an existing AOP or creating a new one. Several web-based tools that can aid in AOP assembly and evaluation of weight of evidence for scientific robustness of AOP components are highlighted. Environ Toxicol Chem 2017;36:1429-1449. © 2017 SETAC.
Collapse
Affiliation(s)
- Kellie A. Fay
- Mid Continent Ecology Division, U.S. EPA, Duluth, Minnesota
- University of Minnesota – Duluth, Duluth, Minnesota, USA
- Address correspondence to
| | | | | | - You Song
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | | | | |
Collapse
|
17
|
Ascenzi M, Bony G. The building of the neocortex with non-hyperpolarizing neurotransmitters. Dev Neurobiol 2017; 77:1023-1037. [PMID: 28276653 DOI: 10.1002/dneu.22495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 12/12/2022]
Abstract
The development of the neocortex requires the synergic action of several secreted molecules to achieve the right amount of proliferation, differentiation, and migration of neural cells. Neurons are well known to release neurotransmitters (NTs) in adult and a growing body of evidences describes the presence of NTs already in the embryonic brain, long before the generation of synapses. NTs are classified as inhibitory or excitatory based on the physiological responses of the target neuron. However, this view is challenged by the fact that glycine and GABA NTs are excitatory during development. Many reviews have described the role of nonhyperpolarizing GABA at this stage. Nevertheless, a global consideration of the inhibitory neurotransmitters and their downstream signaling during the embryonic cortical development is still needed. For example, taurine, the most abundant neurotransmitter during development is poorly studied regarding its role during cortical development. In the light of recent discoveries, we will discuss the functions of glycine, GABA, and taurine during embryonic cortical development with an emphasis on their downstream signaling. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1023-1037, 2017.
Collapse
Affiliation(s)
| | - Guillaume Bony
- INSERM U1215, NeuroCentre Magendie, Bordeaux, France.,Université de Bordeaux, NeuroCentre Magendie, Bordeaux, France
| |
Collapse
|
18
|
Shenoda BB. An Overview of the Mechanisms of Abnormal GABAergic Interneuronal Cortical Migration Associated with Prenatal Ethanol Exposure. Neurochem Res 2017; 42:1279-1287. [PMID: 28160199 DOI: 10.1007/s11064-016-2169-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/25/2016] [Accepted: 12/27/2016] [Indexed: 12/25/2022]
Abstract
GABAergic Interneuronal migration constitutes an essential process during corticogenesis. Derived from progenitor cells located in the proliferative zones of the ventral telencephalon, newly generated GABAergic Interneuron migrate to their cortical destinations. Cortical dysfunction associated with defects in neuronal migration results in severe developmental consequences. There is growing evidence linking prenatal ethanol exposure to abnormal GABAergic interneuronal migration and subsequent cortical dysfunction. Investigating the pathophysiological mechanisms behind disrupted GABAergic interneuronal migration encountered with prenatal alcohol exposure is crucial for understanding and managing fetal alcohol spectrum disorders. This review explores the molecular pathways regulating GABAergic interneuronal cortical migration that might be altered by prenatal ethanol exposure thus opening new avenues for further research in this topic.
Collapse
Affiliation(s)
- Botros B Shenoda
- Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Philadelphia, PA, 19102, USA. .,Department of Pharmacology, Assiut University College of Medicine, Assiut, Egypt.
| |
Collapse
|
19
|
Wu ZC, Yang ZY, Li JG, Chen HB, Huang XM, Wang HC. Methyl-inositol, γ-aminobutyric acid and other health benefit compounds in the aril of litchi. Int J Food Sci Nutr 2016; 67:762-72. [PMID: 27314889 DOI: 10.1080/09637486.2016.1198888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The available components in the flesh of litchi seem insufficient to interpret its wide and significant physiological effects. Some unusual compounds, including myo-inositol, inositol methyl derivatives and γ-aminobutyric acid (GABA) were identified as main constituents in the flesh of litchi. Their concentrations varied among cultivars but remain relatively constant during development. Litchi flesh was shown to contain moderate myo-inositol (0.28-0.78 mg g(-1) FW), ascorbic acid (0.08-0.39 mg g(-1) FW) and phenolics (0.47-1.60 mg g(-1) FW), but abundant l-quebrachitol (1.6-6.4 mg g(-1) FW) and GABA (1.7-3.5 mg g(-1) FW). The concentration of GABA in the flesh of litchi was about 100 times higher than in other fruits. And l-quebrachitol is not a common component in fruits. The biological and physiological activities of inositols, inositol derivatives and GABA have been extensively documented. These compounds are probably important compositional characteristic contributing to the widely shown health benefits of litchi.
Collapse
Affiliation(s)
- Zi-Chen Wu
- a Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University , Guangzhou , China
| | - Zhuan-Ying Yang
- a Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University , Guangzhou , China ;,b Agricultural College, Guangdong Ocean University , Zhanjiang , China
| | - Jian-Guo Li
- a Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University , Guangzhou , China
| | - Hou-Bin Chen
- a Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University , Guangzhou , China
| | - Xu-Ming Huang
- a Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University , Guangzhou , China
| | - Hui-Cong Wang
- a Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University , Guangzhou , China
| |
Collapse
|
20
|
Ngalula KP, Cramer N, Schell MJ, Juliano SL. Transplanted Neural Progenitor Cells from Distinct Sources Migrate Differentially in an Organotypic Model of Brain Injury. Front Neurol 2015; 6:212. [PMID: 26500604 PMCID: PMC4595842 DOI: 10.3389/fneur.2015.00212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/17/2015] [Indexed: 01/19/2023] Open
Abstract
Brain injury is a major cause of long-term disability. The possibility exists for exogenously derived neural progenitor cells to repair damage resulting from brain injury, although more information is needed to successfully implement this promising therapy. To test the ability of neural progenitor cells (NPCs) obtained from rats to repair damaged neocortex, we transplanted neural progenitor cell suspensions into normal and injured slice cultures of the neocortex acquired from rats on postnatal day 0–3. Donor cells from E16 embryos were obtained from either the neocortex, including the ventricular zone (VZ) for excitatory cells, ganglionic eminence (GE) for inhibitory cells or a mixed population of the two. Cells were injected into the ventricular/subventricular zone (VZ/SVZ) or directly into the wounded region. Transplanted cells migrated throughout the cortical plate with GE and mixed population donor cells predominately targeting the upper cortical layers, while neocortically derived NPCs from the VZ/SVZ migrated less extensively. In the injured neocortex, transplanted cells moved predominantly into the wounded area. NPCs derived from the GE tended to be immunoreactive for GABAergic markers while those derived from the neocortex were more strongly immunoreactive for other neuronal markers such as MAP2, TUJ1, or Milli-Mark. Cells transplanted in vitro acquired the electrophysiological characteristics of neurons, including action potential generation and reception of spontaneous synaptic activity. This suggests that transplanted cells differentiate into neurons capable of functionally integrating with the host tissue. Together, our data suggest that transplantation of neural progenitor cells holds great potential as an emerging therapeutic intervention for restoring function lost to brain damage.
Collapse
Affiliation(s)
- Kapinga P Ngalula
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences , Bethesda, MD , USA
| | - Nathan Cramer
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences , Bethesda, MD , USA
| | - Michael J Schell
- Department of Pharmacology, Uniformed Services University of Health Sciences , Bethesda, MD , USA
| | - Sharon L Juliano
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences , Bethesda, MD , USA
| |
Collapse
|
21
|
Abeysinghe HCS, Bokhari L, Quigley A, Choolani M, Chan J, Dusting GJ, Crook JM, Kobayashi NR, Roulston CL. Pre-differentiation of human neural stem cells into GABAergic neurons prior to transplant results in greater repopulation of the damaged brain and accelerates functional recovery after transient ischemic stroke. Stem Cell Res Ther 2015; 6:186. [PMID: 26420220 PMCID: PMC4588906 DOI: 10.1186/s13287-015-0175-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Despite attempts to prevent brain injury during the hyperacute phase of stroke, most sufferers end up with significant neuronal loss and functional deficits. The use of cell-based therapies to recover the injured brain offers new hope. In the current study, we employed human neural stem cells (hNSCs) isolated from subventricular zone (SVZ), and directed their differentiation into GABAergic neurons followed by transplantation to ischemic brain. METHODS Pre-differentiated GABAergic neurons, undifferentiated SVZ-hNSCs or media alone were stereotaxically transplanted into the rat brain (n=7/group) 7 days after endothelin-1 induced stroke. Neurological outcome was assessed by neurological deficit scores and the cylinder test. Transplanted cell survival, cellular phenotype and maturation were assessed using immunohistochemistry and confocal microscopy. RESULTS Behavioral assessments revealed accelerated improvements in motor function 7 days post-transplant in rats treated with pre-differentiated GABAergic cells in comparison to media alone and undifferentiated hNSC treated groups. Histopathology 28 days-post transplant indicated that pre-differentiated cells maintained their GABAergic neuronal phenotype, showed evidence of synaptogenesis and up-regulated expression of both GABA and calcium signaling proteins associated with neurotransmission. Rats treated with pre-differentiated cells also showed increased neurogenic activity within the SVZ at 28 days, suggesting an additional trophic role of these GABAergic cells. In contrast, undifferentiated SVZ-hNSCs predominantly differentiated into GFAP-positive astrocytes and appeared to be incorporated into the glial scar. CONCLUSION Our study is the first to show enhanced exogenous repopulation of a neuronal phenotype after stroke using techniques aimed at GABAergic cell induction prior to delivery that resulted in accelerated and improved functional recovery.
Collapse
Affiliation(s)
- Hima C S Abeysinghe
- Neurotrauma Research Team, Department of Medicine, University of Melbourne, Level 4, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC, 3065, Australia.
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.
| | - Laita Bokhari
- Neurotrauma Research Team, Department of Medicine, University of Melbourne, Level 4, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC, 3065, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia.
| | - Anita Quigley
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia.
| | - Mahesh Choolani
- Department of Obstetrics and Gynecology, National University of Singapore, Singapore, Singapore.
| | - Jerry Chan
- Department of Obstetrics and Gynecology, National University of Singapore, Singapore, Singapore.
| | - Gregory J Dusting
- Cytoprotection Pharmacology Program, Centre for Eye Research, The Royal Eye and Ear Hospital Melbourne, Melbourne, VIC, Australia.
- Department of Opthamology, Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia.
| | - Jeremy M Crook
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia.
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Nao R Kobayashi
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia
| | - Carli L Roulston
- Neurotrauma Research Team, Department of Medicine, University of Melbourne, Level 4, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC, 3065, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
22
|
Abstract
This review presents a brief overview of the γ-aminobutyric acid (GABA) system in the developing and mature central nervous system (CNS) and its potential connections to pathologies of the CNS. γ-aminobutyric acid (GABA) is a major neurotransmitter expressed from the embryonic stage and throughout life. At an early developmental stage, GABA acts in an excitatory manner and is implicated in many processes of neurogenesis, including neuronal proliferation, migration, differentiation, and preliminary circuit-building, as well as the development of critical periods. In the mature CNS, GABA acts in an inhibitory manner, a switch mediated by chloride/cation transporter expression and summarized in this review. GABA also plays a role in the development of interstitial neurons of the white matter, as well as in oligodendrocyte development. Although the underlying cellular mechanisms are not yet well understood, we present current findings for the role of GABA in neurological diseases with characteristic white matter abnormalities, including anoxic-ischemic injury, periventricular leukomalacia, and schizophrenia. Development abnormalities of the GABAergic system appear particularly relevant in the etiology of schizophrenia. This review also covers the potential role of GABA in mature brain injury, namely transient ischemia, stroke, and traumatic brain injury/post-traumatic epilepsy.
Collapse
Affiliation(s)
- Connie Wu
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53706
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
23
|
Jiang H, Jiang W, Zou J, Wang B, Yu M, Pan Y, Lin Y, Mao Y, Wang Y. The GluN2B subunit of N-methy-D-asparate receptor regulates the radial migration of cortical neurons in vivo. Brain Res 2015; 1610:20-32. [PMID: 25838242 DOI: 10.1016/j.brainres.2015.03.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 02/01/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
The formation of layered structure of the mammalian neocortex requires a fine organized migration of post-mitotic neurons during early development. However, whether the radial migration is regulated by NMDA receptor and specific subunits remains contradictory and unknown. Here, we reported that in the developing rat cortex, migration of presumptive layer II/III neurons to their deserved destination was regulated by NMDA receptors with GluN2B but not GluN2A subunit. Using in utero electroporation of small interference RNA (siRNA) of distinct NMDA receptor subunits, we found that knockdown GluN1 and GluN2B subunits dramatically delayed the neuronal migration to proper layer II/III, while improperly stayed at lower layers or even the germinal regions, without changing the cell fate. In contrast, knockdown of GluN2A subunit did not impair the neuronal migration. Additionally, the ecotopic neurons by GluN2B RNAi developed to well dendritic differentiation, while the ones by GluN1 RNAi still kept morphology of migrating neurons. Therefore, GluN2B subunit of NMDA receptor plays an essential role in regulating proper neuronal migration and cortical lamination.
Collapse
Affiliation(s)
- Huayu Jiang
- Neurology Department, Shanghai Tenth People׳s Hospital, Tongji University, School of Medicine, Shanghai 200072, China
| | - Weiqing Jiang
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing Zou
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Baoxiang Wang
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mingrong Yu
- Neurology Department, Qiqihar Hospital, Heilongjiang Agriculture Reclamation Bureau, Qiqihar 161005, China
| | - Yuanmei Pan
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yan Lin
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yingwei Mao
- Department of Biology, 214 Life Sciences Building Penn State University, University Park, PA 16802, USA
| | - Yonggang Wang
- Neurology Department, Shanghai Tenth People׳s Hospital, Tongji University, School of Medicine, Shanghai 200072, China.
| |
Collapse
|
24
|
Ardakani AG, Cheema U, Brown RA, Shipley RJ. Quantifying the correlation between spatially defined oxygen gradients and cell fate in an engineered three-dimensional culture model. J R Soc Interface 2015; 11:20140501. [PMID: 24966240 PMCID: PMC4233699 DOI: 10.1098/rsif.2014.0501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A challenge in three-dimensional tissue culture remains the lack of quantitative information linking nutrient delivery and cellular distribution. Both in vivo and in vitro, oxygen is delivered by diffusion from its source (blood vessel or the construct margins). The oxygen level at a defined distance from its source depends critically on the balance of diffusion and cellular metabolism. Cells may respond to this oxygen environment through proliferation, death and chemotaxis, resulting in spatially resolved gradients in cellular density. This study extracts novel spatially resolved and simultaneous data on tissue oxygenation, cellular proliferation, viability and chemotaxis in three-dimensional spiralled, cellular collagen constructs. Oxygen concentration gradients drove preferential cellular proliferation rates and viability in the higher oxygen zones and induced chemotaxis along the spiral of the collagen construct; an oxygen gradient of 1.03 mmHg mm−1 in the spiral direction induced a mean migratory speed of 1015 μm day−1. Although this movement was modest, it was effective in balancing the system to a stable cell density distribution, and provided insights into the natural cell mechanism for adapting cell number and activity to a prevailing oxygen regime.
Collapse
Affiliation(s)
- Amir G Ardakani
- University College London, Tissue Repair and Engineering Centre, Institute for Orthopaedics and Musculoskeletal Sciences, Stanmore Campus, London HA7 4LP, UK
| | - Umber Cheema
- University College London, Tissue Repair and Engineering Centre, Institute for Orthopaedics and Musculoskeletal Sciences, Stanmore Campus, London HA7 4LP, UK
| | - Robert A Brown
- University College London, Tissue Repair and Engineering Centre, Institute for Orthopaedics and Musculoskeletal Sciences, Stanmore Campus, London HA7 4LP, UK
| | - Rebecca J Shipley
- University College London, Tissue Repair and Engineering Centre, Institute for Orthopaedics and Musculoskeletal Sciences, Stanmore Campus, London HA7 4LP, UK University College London, Biomechanical Engineering Group, Department of Mechanical Engineering, London WC1E 7JE, UK
| |
Collapse
|
25
|
Luhmann HJ, Fukuda A, Kilb W. Control of cortical neuronal migration by glutamate and GABA. Front Cell Neurosci 2015; 9:4. [PMID: 25688185 PMCID: PMC4311642 DOI: 10.3389/fncel.2015.00004] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/06/2015] [Indexed: 11/13/2022] Open
Abstract
Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca(2+) transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e., neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g., anti-epileptics, anesthetics, alcohol) may disturb the normal migration pattern when present during early corticogenesis.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - A Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Shizuoka, Japan
| | - W Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
26
|
Kakehashi A, Kato A, Ishii N, Wei M, Morimura K, Fukushima S, Wanibuchi H. Valerian inhibits rat hepatocarcinogenesis by activating GABA(A) receptor-mediated signaling. PLoS One 2014; 9:e113610. [PMID: 25419570 PMCID: PMC4242630 DOI: 10.1371/journal.pone.0113610] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/28/2014] [Indexed: 01/05/2023] Open
Abstract
Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA) A receptor (GABA(A)R) system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(A)R agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis) at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN). Formation of glutathione S-transferase placental form positive (GST-P+) foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2′-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P+ foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21Waf1/Cip1, p53 and Bax mRNA expression. Interestingly, expression of the GABA(A)R alpha 1 subunit was observed in GST-P+ foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P+ foci by activating GABA(A)R-mediated signaling.
Collapse
Affiliation(s)
- Anna Kakehashi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| | - Ayumi Kato
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Naomi Ishii
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Min Wei
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Keiichirou Morimura
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shoji Fukushima
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
27
|
Bolton MM, Heaney CF, Murtishaw AS, Sabbagh JJ, Magcalas CM, Kinney JW. Postnatal alterations in GABA
B
receptor tone produce sensorimotor gating deficits and protein level differences in adulthood. Int J Dev Neurosci 2014; 41:17-27. [DOI: 10.1016/j.ijdevneu.2014.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 01/05/2023] Open
Affiliation(s)
- Monica M. Bolton
- Behavioral Neuroscience LaboratoryDepartment of PsychologyUniversity of NevadaLas VegasUnited States
| | - Chelcie F. Heaney
- Behavioral Neuroscience LaboratoryDepartment of PsychologyUniversity of NevadaLas VegasUnited States
| | - Andrew S. Murtishaw
- Behavioral Neuroscience LaboratoryDepartment of PsychologyUniversity of NevadaLas VegasUnited States
| | - Jonathan J. Sabbagh
- Behavioral Neuroscience LaboratoryDepartment of PsychologyUniversity of NevadaLas VegasUnited States
| | - Christy M. Magcalas
- Behavioral Neuroscience LaboratoryDepartment of PsychologyUniversity of NevadaLas VegasUnited States
| | - Jefferson W. Kinney
- Behavioral Neuroscience LaboratoryDepartment of PsychologyUniversity of NevadaLas VegasUnited States
| |
Collapse
|
28
|
Wilson WW, Onyenwe W, Bradner JM, Nennig SE, Caudle WM. Developmental exposure to the organochlorine insecticide endosulfan alters expression of proteins associated with neurotransmission in the frontal cortex. Synapse 2014; 68:485-97. [PMID: 25042905 DOI: 10.1002/syn.21764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/11/2014] [Indexed: 11/11/2022]
Abstract
Exposure to environmental contaminants, such as organochlorine insecticides during critical periods of neurodevelopment has been shown to be a major contributor to several neuropsychological deficits seen in children, adolescence, and adults. Although the neurobehavioral outcomes resulting from exposure to these compounds are known the neurotransmitter circuitry and molecular targets that mediate these endpoints have not been identified. Given the importance of the frontal cortex in facilitating numerous neuropsychological processes, our current study sought to investigate the effects of developmental exposure to the organochlorine insecticide, endosulfan, on the expression of specific proteins associated with neurotransmission in the frontal cortex. Utilizing in vitro models we were able to show endosulfan reduces cell viability in IMR-32 neuroblastoma cells in addition to reducing synaptic puncta and neurite outgrowth in primary cultured neurons isolated from the frontal cortex of mice. Elaborating these findings to an in vivo model we found that developmental exposure of female mice to endosulfan during gestation and lactation elicited significant alterations to the GABAergic (GAT1, vGAT, GABAA receptor), glutamatergic (vGlut and GluN2B receptor), and dopaminergic (DAT, TH, VMAT2, and D2 receptor) neurotransmitter systems in the frontal cortex of male offspring. These findings identify damage to critical neurotransmitter circuits and proteins in the frontal cortex, which may underlie the neurobehavioral deficits observed following developmental exposure to endosulfan and other organochlorine insecticides.
Collapse
Affiliation(s)
- W Wyatt Wilson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, 30322-3090
| | | | | | | | | |
Collapse
|
29
|
Wang T, Kumada T, Morishima T, Iwata S, Kaneko T, Yanagawa Y, Yoshida S, Fukuda A. Accumulation of GABAergic neurons, causing a focal ambient GABA gradient, and downregulation of KCC2 are induced during microgyrus formation in a mouse model of polymicrogyria. Cereb Cortex 2014; 24:1088-101. [PMID: 23246779 PMCID: PMC3948493 DOI: 10.1093/cercor/bhs375] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although focal cortical malformations are considered neuronal migration disorders, their formation mechanisms remain unknown. We addressed how the γ-aminobutyric acid (GABA)ergic system affects the GABAergic and glutamatergic neuronal migration underlying such malformations. A focal freeze-lesion (FFL) of the postnatal day zero (P0) glutamic acid decarboxylase-green fluorescent protein knock-in mouse neocortex produced a 3- or 4-layered microgyrus at P7. GABAergic interneurons accumulated around the necrosis including the superficial region during microgyrus formation at P4, whereas E17.5-born, Cux1-positive pyramidal neurons outlined the GABAergic neurons and were absent from the superficial layer, forming cell-dense areas in layer 2 of the P7 microgyrus. GABA imaging showed that an extracellular GABA level temporally increased in the GABAergic neuron-positive area, including the necrotic center, at P4. The expression of the Cl(-) transporter KCC2 was downregulated in the microgyrus-forming GABAergic and E17.5-born glutamatergic neurons at P4; these cells may need a high intracellular Cl(-) concentration to induce depolarizing GABA effects. Bicuculline decreased the frequency of spontaneous Ca(2+) oscillations in these microgyrus-forming cells. Thus, neonatal FFL causes specific neuronal accumulation, preceded by an increase in ambient GABA during microgyrus formation. This GABA increase induces GABAA receptor-mediated Ca(2+) oscillation in KCC2-downregulated microgyrus-forming cells, as seen in migrating cells during early neocortical development.
Collapse
Affiliation(s)
- Tianying Wang
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tatsuro Kumada
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Toshitaka Morishima
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Satomi Iwata
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Japan Science and Technology Agency, CREST, Tokyo 102-0075, Japan and
| | - Sachiko Yoshida
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
30
|
Furukawa T, Yamada J, Akita T, Matsushima Y, Yanagawa Y, Fukuda A. Roles of taurine-mediated tonic GABAA receptor activation in the radial migration of neurons in the fetal mouse cerebral cortex. Front Cell Neurosci 2014; 8:88. [PMID: 24734001 PMCID: PMC3975117 DOI: 10.3389/fncel.2014.00088] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/10/2014] [Indexed: 11/15/2022] Open
Abstract
γ-Aminobutyric acid (GABA) depolarizes embryonic cerebrocortical neurons and continuous activation of the GABAA receptor (GABAAR) contributes to their tonic depolarization. Although multiple reports have demonstrated a role of GABAAR activation in neocortical development, including in migration, most of these studies have used pharmacological blockers. Herein, we performed in utero electroporation in GABA synthesis-lacking homozygous GAD67-GFP knock-in mice (GAD67GFP/GFP) to label neurons born in the ventricular zone. Three days after electroporation, there were no differences in the distribution of labeled cells between the genotypes. The dose–response properties of labeled cells to GABA were equivalent among genotypes. However, continuous blockade of GABAAR with the GABAAR antagonist SR95531 accelerated radial migration. This effect of GABAAR blockade in GAD67GFP/GFP mice suggested a role for alternative endogenous GABAAR agonists. Thus, we tested the role of taurine, which is derived from maternal blood but is abundant in the fetal brain. The taurine-evoked currents in labeled cells were mediated by GABAAR. Taurine uptake was blocked by a taurine transporter inhibitor, 2-(guanidino)ethanesulfonic acid (GES), and taurine release was blocked by a volume-sensitive anion channel blocker, 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl) oxobutyric acid, as examined through high-performance liquid chromatography. GES increased the extracellular taurine concentration and induced an inward shift of the holding current, which was reversed by SR95531. In a taurine-deficient mouse model, the GABAAR-mediated tonic currents were greatly reduced, and radial migration was accelerated. As the tonic currents were equivalent among the genotypes of GAD67-GFP knock-in mice, taurine, rather than GABA, might play a major role as an endogenous agonist of embryonic tonic GABAAR conductance, regulating the radial migration of neurons in the developing neocortex.
Collapse
Affiliation(s)
- Tomonori Furukawa
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Shizuoka, Japan
| | - Junko Yamada
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Shizuoka, Japan ; Department of Neurophysiology, Hirosaki University Graduate School of Medicine Hirosaki, Aomori, Japan
| | - Tenpei Akita
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Shizuoka, Japan
| | - Yoshitaka Matsushima
- Department of Chemistry, Hamamatsu University School of Medicine Hamamatsu, Shizuoka, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine Maebashi, Gunma, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Shizuoka, Japan
| |
Collapse
|
31
|
Won C, Lin Z, Kumar T P, Li S, Ding L, Elkhal A, Szabó G, Vasudevan A. Autonomous vascular networks synchronize GABA neuron migration in the embryonic forebrain. Nat Commun 2014; 4:2149. [PMID: 23857367 PMCID: PMC3763945 DOI: 10.1038/ncomms3149] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 06/14/2013] [Indexed: 02/06/2023] Open
Abstract
GABA neurons, born in remote germinative zones in the ventral forebrain (telencephalon), migrate tangentially in two spatially distinct streams to adopt their specific positions in the developing cortex. The cell types and molecular cues that regulate this divided migratory route remains to be elucidated. Here we show that embryonic vascular networks are strategically positioned to fulfill the task of providing support as well as critical guidance cues that regulate the divided migratory routes of GABA neurons in the telencephalon. Interestingly, endothelial cells of the telencephalon are not homogeneous in their gene expression profiles. Endothelial cells of the periventricular vascular network have molecular identities distinct from those of the pial network. Our data suggest that periventricular endothelial cells have intrinsic programs that can significantly mold neuronal development and uncovers new insights into concepts and mechanisms of CNS angiogenesis from both developmental and disease perspectives.
Collapse
Affiliation(s)
- Chungkil Won
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Blecharz-Klin K, Joniec-Maciejak I, Piechal A, Pyrzanowska J, Wawer A, Widy-Tyszkiewicz E. Paracetamol impairs the profile of amino acids in the rat brain. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:95-102. [PMID: 24316461 DOI: 10.1016/j.etap.2013.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/18/2013] [Accepted: 11/01/2013] [Indexed: 06/02/2023]
Abstract
In our experiment we investigated the effect of subcutaneous administration of paracetamol on the levels of amino acids in the brain structures. Male Wistar rats received for eight weeks paracetamol at two doses: 10 mg/kg b.w. (group P10, n=9) and 50 mg/kg b.w. per day s.c. (group P50, n=9). The regional brain concentrations of amino acids were determined in the prefrontal cortex, hippocampus, hypothalamus and striatum of control (Con, n=9) and paracetamol-treated groups using HPLC. Evaluation of the biochemical results indicated considerable decrease of the content of amino acids in the striatum (glutamine, glutamic acid, taurine, alanine, aspartic acid) and hypothalamus (glycine) between groups treated with paracetamol compared to the control. In the prefrontal cortex paracetamol increased the level of γ-aminobutyric acid (GABA). The present study demonstrated significant effect of the long term paracetamol treatment on the level of amino acids in the striatum, prefrontal cortex and hypothalamus of rats.
Collapse
Affiliation(s)
- Kamilla Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
| | - Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
| | - Justyna Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
| | - Adriana Wawer
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
| | - Ewa Widy-Tyszkiewicz
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland.
| |
Collapse
|
33
|
Cellot G, Cherubini E. GABAergic signaling as therapeutic target for autism spectrum disorders. Front Pediatr 2014; 2:70. [PMID: 25072038 PMCID: PMC4085902 DOI: 10.3389/fped.2014.00070] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/23/2014] [Indexed: 11/13/2022] Open
Abstract
γ-Aminobutyric acid (GABA), the main inhibitory neurotransmitter in the adult brain, early in postnatal life exerts a depolarizing and excitatory action. This depends on accumulation of chloride inside the cell via the cation-chloride importer NKCC1, being the expression of the chloride exporter KCC2 very low at birth. The developmentally regulated expression of KCC2 results in extrusion of chloride with age and a shift of GABA from the depolarizing to the hyperpolarizing direction. The depolarizing action of GABA leads to intracellular calcium rise through voltage-dependent calcium channels and/or N-methyl-d-aspartate receptors. GABA-mediated calcium signals regulate a variety of developmental processes from cell proliferation migration, differentiation, synapse maturation, and neuronal wiring. Therefore, it is not surprising that some forms of neuro-developmental disorders such as autism spectrum disorders (ASDs) are associated with alterations of GABAergic signaling and impairment of the excitatory/inhibitory balance in selective neuronal circuits. In this review, we will discuss how changes of GABAA-mediated neurotransmission affect several forms of ASDs including the Fragile X, the Angelman, and Rett syndromes. Then, we will describe various animal models of ASDs with GABAergic dysfunctions, highlighting their behavioral deficits and the possibility to rescue them by targeting selective components of the GABAergic synapse. In particular, we will discuss how in some cases, reverting the polarity of GABA responses from the depolarizing to the hyperpolarizing direction with the diuretic bumetanide, a selective blocker of NKCC1, may have beneficial effects on ASDs, thus opening new therapeutic perspectives for the treatment of these devastating disorders.
Collapse
Affiliation(s)
- Giada Cellot
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati , Trieste , Italy
| | - Enrico Cherubini
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati , Trieste , Italy ; European Brain Research Institute , Rome , Italy
| |
Collapse
|
34
|
Sebe JY, Looke-Stewart E, Dinday MT, Alvarez-Buylla A, Baraban SC. Neocortical integration of transplanted GABA progenitor cells from wild type and GABA(B) receptor knockout mouse donors. Neurosci Lett 2013; 561:52-7. [PMID: 24291697 DOI: 10.1016/j.neulet.2013.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/17/2013] [Accepted: 11/10/2013] [Indexed: 10/26/2022]
Abstract
Most cortical interneurons originate in a region of the embryonic subpallium called the medial ganglionic eminence (MGE). When MGE cells are transplanted into cerebral cortex, these progenitors migrate extensively and differentiate into functional inhibitory neurons. Although MGE progenitors have therapeutic potential following transplantation, it is unknown precisely how these cells distribute within neocortical lamina of the recipient brain. Here we transplanted mouse embryonic day 12.5 MGE progenitors into postnatal neocortex and evaluated laminar distribution of interneuron subtypes using double- and triple-label immunohistochemistry. Studies were performed using wild type (WT) or donor mice lacking a metabotropic GABA(B) receptor subunit (GABA(B1)R KO). MGE-derived neurons from WT and GABA(B1)R KO mice preferentially and densely distributed in neocortical layers 2/3, 5 and 6. As expected, MGE-derived neurons differentiated into parvalbumin+ and somatostatin+ interneurons within these neocortical lamina. Our findings provide insights into the anatomical integration of MGE-derived interneurons following transplantation.
Collapse
Affiliation(s)
- Joy Y Sebe
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, United States.
| | - Elizabeth Looke-Stewart
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Matthew T Dinday
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, United States; Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 941432, United States; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Scott C Baraban
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, United States; Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 941432, United States; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, United States
| |
Collapse
|
35
|
Ling Y, Chen T, Jing Y, Fan L, Wan Y, Lin J. γ-Aminobutyric acid (GABA) homeostasis regulates pollen germination and polarized growth in Picea wilsonii. PLANTA 2013; 238:831-43. [PMID: 23900837 DOI: 10.1007/s00425-013-1938-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/19/2013] [Indexed: 05/10/2023]
Abstract
γ-Aminobutyric acid (GABA) is a four-carbon non-protein amino acid found in a wide range of organisms. Recently, GABA accumulation has been shown to play a role in the stress response and cell growth in angiosperms. However, the effect of GABA deficiency on pollen tube development remains unclear. Here, we demonstrated that specific concentrations of exogenous GABA stimulated pollen tube growth in Picea wilsonii, while an overdose suppressed pollen tube elongation. The germination percentage of pollen grains and morphological variations in pollen tubes responded in a dose-dependent manner to treatment with 3-mercaptopropionic acid (3-MP), a glutamate decarboxylase inhibitor, while the inhibitory effects could be recovered in calcium-containing medium supplemented with GABA. Using immunofluorescence labeling, we found that the actin cables were disorganized in 3-MP treated cells, followed by the transition of endo/exocytosis activating sites from the apex to the whole tube shank. In addition, variations in the deposition of cell wall components were detected upon labeling with JIM5, JIM7, and aniline blue. Our results demonstrated that calcium-dependent GABA signaling regulates pollen germination and polarized tube growth in P. wilsonii by affecting actin filament patterns, vesicle trafficking, and the configuration and distribution of cell wall components.
Collapse
Affiliation(s)
- Yu Ling
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | | | | | | | | | | |
Collapse
|
36
|
Evsyukova I, Plestant C, Anton ES. Integrative mechanisms of oriented neuronal migration in the developing brain. Annu Rev Cell Dev Biol 2013; 29:299-353. [PMID: 23937349 DOI: 10.1146/annurev-cellbio-101512-122400] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization.
Collapse
Affiliation(s)
- Irina Evsyukova
- Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599;
| | | | | |
Collapse
|
37
|
Brauns S, Gollub RL, Walton E, Hass J, Smolka MN, White T, Wassink TH, Calhoun VD, Ehrlich S. Genetic variation in GAD1 is associated with cortical thickness in the parahippocampal gyrus. J Psychiatr Res 2013; 47:872-9. [PMID: 23566421 PMCID: PMC4115611 DOI: 10.1016/j.jpsychires.2013.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 01/09/2023]
Abstract
Patients with schizophrenia show widespread cortical thickness reductions throughout the brain. Likewise, reduced expression of the γ-Aminobutyric acid (GABA) synthesizing enzyme glutamic acid decarboxylase (GAD1) and a single nucleotide polymorphism (SNP) rs3749034 in the corresponding gene have been associated with schizophrenia. We tested whether this SNP is associated with reduced cortical thickness, an intermediate phenotype for schizophrenia. Because of the well known interactions between the GABAergic and dopaminergic systems, we examined whether associations between GAD1 rs3749034 and cortical thickness are modulated by the catechol-O-methyltransferase (COMT) Val158Met genotype. Structural MRI and genotype data was obtained from 94 healthy subjects enrolled in the Mind Clinical Imaging Consortium study to examine the relations between GAD1 genotype and cortical thickness. Our data show a robust reduction of cortical thickness in the left parahippocampal gyrus (PHG) in G allele homozygotes of GAD1 rs3749034. When we stratified our analyses according to the COMT Val158Met genotype, cortical thickness reductions of G allele homozygotes were only found in the presence of the Val allele. Genetic risk variants of schizophrenia in the GABAergic system might interact with the dopaminergic system and impact brain structure and functioning. Our findings point to the importance of the GABAergic system in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Stefan Brauns
- Department of Child and Adolescent Psychiatry, TU Dresden, Germany,MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA,Department of Psychiatry, Charité University Medicine, Berlin, Germany
| | - Randy L. Gollub
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA,Harvard Medical School, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Esther Walton
- Department of Child and Adolescent Psychiatry, TU Dresden, Germany,MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Johanna Hass
- Department of Child and Adolescent Psychiatry, TU Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Tonya White
- Department of Child Psychiatry, Erasmus MC – Sophia, Rotterdam, Netherlands
| | | | - Vince D. Calhoun
- The Mind Research Network, Albuquerque, NM, USA,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry, TU Dresden, Germany,MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA,Harvard Medical School, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA,Corresponding author. Dresden University of Technology, University Hospital Carl Gustav Carus, Department of Child and Adolescent Psychiatry, Translational Developmental Neuroscience Section, Fetscherstraβe 74, 01307 Dresden, Germany. Tel.: +49 (0)351 458 5095; fax: +49 (0)351 458 5754. (S. Ehrlich)
| |
Collapse
|
38
|
Le Magueresse C, Monyer H. GABAergic interneurons shape the functional maturation of the cortex. Neuron 2013; 77:388-405. [PMID: 23395369 DOI: 10.1016/j.neuron.2013.01.011] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
From early embryonic development to adulthood, GABA release participates in the construction of the mammalian cerebral cortex. The maturation of GABAergic neurotransmission is a protracted process which takes place in discrete steps and results from the dynamic interaction between developmentally directed gene expression and brain activity. During the course of development, GABAergic interneurons contribute to key aspects of the functional maturation of the cortex in different ways, from exerting a trophic role to pacing immature neural networks. In this review, we provide an overview of the maturation of GABAergic neurotransmission and discuss the role of GABAergic interneurons in cortical wiring, plasticity, and network activity during pre- and postnatal development. We also discuss psychiatric diseases that may be considered at least in part developmental disorders of the GABAergic system.
Collapse
Affiliation(s)
- Corentin Le Magueresse
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | | |
Collapse
|
39
|
Fukuda A, Wang T. A perturbation of multimodal
GABA
functions underlying the formation of focal cortical malformations: Assessments by using animal models. Neuropathology 2013; 33:480-6. [DOI: 10.1111/neup.12021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Atsuo Fukuda
- Department of Neurophysiology Hamamatsu University School of Medicine Hamamatsu Japan
| | - Tianying Wang
- Department of Neurophysiology Hamamatsu University School of Medicine Hamamatsu Japan
| |
Collapse
|
40
|
Jansson L, Louhivuori L, Wigren HK, Nordström T, Louhivuori V, Castrén M, Åkerman K. Brain-derived neurotrophic factor increases the motility of a particular N-methyl-d-aspartate /GABA-responsive subset of neural progenitor cells. Neuroscience 2012; 224:223-34. [DOI: 10.1016/j.neuroscience.2012.08.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 10/28/2022]
|
41
|
Tobet SA, Walker HJ, Seney ML, Yu KW. Viewing cell movements in the developing neuroendocrine brain. Integr Comp Biol 2012; 43:794-801. [PMID: 21680478 DOI: 10.1093/icb/43.6.794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many studies suggest that migratory guidance cues within the developing brain are diverse across many regions. To better understand the early development and differentiation of select brain regions, an in vitro method was developed using selected inbred and transgenic strains of embryonic mice. In particular, organotypic slices are used to test factors that influence the movements of neurons during brain development. Thick 250 μm slices cut on a vibrating microtome are prepared and maintained in vitro for 0-3 days. Nissl stain analyses often show a uniform distribution of cells in the regions of interest on the day of plating (embryonic days 12-15). After 3 days in vitro, cellular aggregation suggesting nuclear formation or the changing position of cells with a defined phenotype show that reasonably normal cell movements occur in several regions. Movements in vitro that mimic changes in vivo suggest that key factors reside locally within the plane of the slices. Video microscopy studies are used to follow the migration of fluorescently labeled cells in brain slices from mice maintained in serum-free media for 1 to 3 days. Transgenic mice with selective promoter driven expression of fluorescent proteins allow us to view specific cell types (e.g., neurons expressing gonadotropin-releasing hormone). The accessibility of an in vitro system that provides for relatively normal brain development over key brief windows of time allows for the testing of important mechanisms.
Collapse
Affiliation(s)
- Stuart A Tobet
- Colorado State University, Department of Biomedical Sciences, Fort Collins, Colorado 80523
| | | | | | | |
Collapse
|
42
|
Faigle R, Song H. Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim Biophys Acta Gen Subj 2012; 1830:2435-48. [PMID: 22982587 DOI: 10.1016/j.bbagen.2012.09.002] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/11/2012] [Accepted: 09/05/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adult neurogenesis occurs throughout life in discrete regions of the mammalian brain and is tightly regulated via both extrinsic environmental influences and intrinsic genetic factors. In recent years, several crucial signaling pathways have been identified in regulating self-renewal, proliferation, and differentiation of neural stem cells, as well as migration and functional integration of developing neurons in the adult brain. SCOPE OF REVIEW Here we review our current understanding of signaling mechanisms, including Wnt, notch, sonic hedgehog, growth and neurotrophic factors, bone morphogenetic proteins, neurotransmitters, transcription factors, and epigenetic modulators, and crosstalk between these signaling pathways in the regulation of adult neurogenesis. We also highlight emerging principles in the vastly growing field of adult neural stem cell biology and neural plasticity. MAJOR CONCLUSIONS Recent methodological advances have enabled the field to identify signaling mechanisms that fine-tune and coordinate neurogenesis in the adult brain, leading to a better characterization of both cell-intrinsic and environmental cues defining the neurogenic niche. Significant questions related to niche cell identity and underlying regulatory mechanisms remain to be fully addressed and will be the focus of future studies. GENERAL SIGNIFICANCE A full understanding of the role and function of individual signaling pathways in regulating neural stem cells and generation and integration of newborn neurons in the adult brain may lead to targeted new therapies for neurological diseases in humans. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Roland Faigle
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|
43
|
Inoue K, Furukawa T, Kumada T, Yamada J, Wang T, Inoue R, Fukuda A. Taurine inhibits K+-Cl- cotransporter KCC2 to regulate embryonic Cl- homeostasis via with-no-lysine (WNK) protein kinase signaling pathway. J Biol Chem 2012; 287:20839-50. [PMID: 22544747 PMCID: PMC3375508 DOI: 10.1074/jbc.m111.319418] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 04/02/2012] [Indexed: 01/01/2023] Open
Abstract
GABA inhibits mature neurons and conversely excites immature neurons due to lower K(+)-Cl(-) cotransporter 2 (KCC2) expression. We observed that ectopically expressed KCC2 in embryonic cerebral cortices was not active; however, KCC2 functioned in newborns. In vitro studies revealed that taurine increased KCC2 inactivation in a phosphorylation-dependent manner. When Thr-906 and Thr-1007 residues in KCC2 were substituted with Ala (KCC2T906A/T1007A), KCC2 activity was facilitated, and the inhibitory effect of taurine was not observed. Exogenous taurine activated the with-no-lysine protein kinase 1 (WNK1) and downstream STE20/SPS1-related proline/alanine-rich kinase (SPAK)/oxidative stress response 1 (OSR1), and overexpression of active WNK1 resulted in KCC2 inhibition in the absence of taurine. Phosphorylation of SPAK was consistently higher in embryonic brains compared with that of neonatal brains and down-regulated by a taurine transporter inhibitor in vivo. Furthermore, cerebral radial migration was perturbed by a taurine-insensitive form of KCC2, KCC2T906A/T1007A, which may be regulated by WNK-SPAK/OSR1 signaling. Thus, taurine and WNK-SPAK/OSR1 signaling may contribute to embryonic neuronal Cl(-) homeostasis, which is required for normal brain development.
Collapse
Affiliation(s)
- Koichi Inoue
- From the Department of Physiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan and
| | - Tomonori Furukawa
- From the Department of Physiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan and
| | - Tatsuro Kumada
- From the Department of Physiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan and
| | - Junko Yamada
- the Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Tianying Wang
- From the Department of Physiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan and
| | - Rieko Inoue
- From the Department of Physiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan and
| | - Atsuo Fukuda
- From the Department of Physiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan and
| |
Collapse
|
44
|
Manent JB, Beguin S, Ganay T, Represa A. Cell-autonomous and cell-to-cell signalling events in normal and altered neuronal migration. Eur J Neurosci 2012; 34:1595-608. [PMID: 22103417 DOI: 10.1111/j.1460-9568.2011.07867.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cerebral cortex is a complex six-layered structure that contains an important diversity of neurons, and has rich local and extrinsic connectivity. Among the mechanisms governing the cerebral cortex construction, neuronal migration is perhaps the most crucial as it ensures the timely formation of specific and selective neuronal circuits. Here, we review the main extrinsic and extrinsic factors involved in regulating neuronal migration in the cortex and describe some environmental factors interfering with their actions.
Collapse
|
45
|
El Idrissi A, Yan X, L'Amoreaux W, Brown WT, Dobkin C. Neuroendocrine alterations in the fragile X mouse. Results Probl Cell Differ 2012; 54:201-221. [PMID: 22009354 DOI: 10.1007/978-3-642-21649-7_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The expression of GABA(A) receptors in the fragile X mouse brain is significantly downregulated. We additionally found that the expression of somatostatin and voltage-sensitive calcium channels (VSCCs) is also reduced. GABA(A) and the VSCCs, through a synergistic interaction, perform a critical role in mediating activity-dependent developmental processes. In the developing brain, GABA is excitatory and its actions are mediated through GABA(A) receptors. Subsequent to GABA-mediated depolarization, the VSCCs are activated and intracellular calcium is increased, which mediates gene transcription and other cellular events. GABAergic excitation mediated through GABA(A) receptors and the subsequent activation of the VSCCs are critically important for the establishment of neuronal connectivity within immature neuronal networks. Data from our laboratories suggest that there is a dysregulation of axonal pathfinding during development in the fragile X mouse brain and that this is likely due to a dysregulation of the synergistic interactions of GABA and VSCC. Thus, we hypothesize that the altered expression of these critical channels in the early stages of brain development leads to altered activity-dependent gene expression that may potentially lead to the developmental delay characteristic of the fragile X syndrome.
Collapse
|
46
|
Contribution of metabotropic GABA(B) receptors to neuronal network construction. Pharmacol Ther 2011; 132:170-9. [PMID: 21718720 DOI: 10.1016/j.pharmthera.2011.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 01/05/2023]
Abstract
In the 1980s, Bowery and colleagues discovered the presence of a novel, bicuculline-resistant and baclofen-sensitive type of GABA receptor on peripheral nerve terminals, the GABA(B) receptor. Since this pioneering work, GABA(B) receptors have been identified in the Central Nervous System (CNS), where they provide an important inhibitory control of postsynaptic excitability and presynaptic transmitter release. GABA(B) receptors have been implicated in a number of important processes in the adult brain such as the regulation of synaptic plasticity and modulation of rhythmic activity. As a result of these studies, several potential therapeutic applications of GABA(B) receptor ligands have been identified. Recent advances have further shown that GABA(B) receptors play more than a classical inhibitory role in adult neurotransmission, and can in fact function as an important developmental signal early in life. Here we summarize current knowledge on the contribution of GABA(B) receptors to the construction and function of developing neuronal networks.
Collapse
|
47
|
Krishnan RR, Fivaz M, Kraus MS, Keefe RSE. Hierarchical temporal processing deficit model of reality distortion and psychoses. Mol Psychiatry 2011; 16:129-44. [PMID: 21263440 DOI: 10.1038/mp.2010.63] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We posit in this article that hierarchical temporal processing deficit is the underlying basis of reality distortion and psychoses. Schizophrenia is a prototypical reality distortion disorder in which the patient manifests with auditory hallucinations, delusions, disorganized speech and thinking, cognitive impairment, avolition and social and occupational dysfunction. Reality distortion can be present in many other disorders including bipolar disorder, major depression and even dementia. Conceptually, schizophrenia is a heterogeneous entity likely to be because of numerous causes similar to dementia. Although no single symptom or set of symptoms is pathognomonic, a cardinal feature in all patients with schizophrenia is chronic distortion of reality. The model that we have proposed accounts for the varied manifestations of reality distortion including hallucinations and delusions. In this paper we consider the implications of this model for the underlying biology of psychoses and also for the neurobiology of schizophrenia and suggest potential targets to consider for the etiology and pathophysiology of reality distortion, especially in the context of schizophrenia.
Collapse
Affiliation(s)
- R R Krishnan
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
48
|
Cuzon Carlson VC, Yeh HH. GABAA receptor subunit profiles of tangentially migrating neurons derived from the medial ganglionic eminence. Cereb Cortex 2010; 21:1792-802. [PMID: 21148088 DOI: 10.1093/cercor/bhq247] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
During rodent corticogenesis, a sizeable subpopulation of γ-aminobutyric acid (GABA)ergic interneurons arises extracortically from the medial ganglionic eminence (MGE). These neurons progressively acquire responsiveness to GABA in the course of corticopetal tangential migration, a process regulated by ambient GABA and mediated by GABA(A) receptors. Here, we combined patch clamp electrophysiology and single-cell reverse transcription-polymerase chain reaction to examine GABA(A) receptor expression in green fluorescent MGE-derived (eGFP+) cells in telencephalic slices from gestational day 14.5 BAC-Lhx6 embryos. GABA concentration-response curves revealed lower apparent affinity and efficacy in eGFP+ cells in and around the MGE than their counterparts in the cortex. Pharmacological tests revealed subunit-selective response profiles in the MGE and cortex consistent with differential expression of GABA(A) receptor isoforms. Profiling of GABA(A) receptor subunit transcripts (α1-5, β1-3, and γ1-3, δ) uncovered increased expression of the α1-, α2-, α5-, γ2-, and γ3-subunit messenger RNAs in the cortex. We propose that the dynamic expression of certain GABA(A) receptor subunits contributes to assembling receptor isoforms that confer functional attributes important in regulating the migration and maturation of primordial GABAergic cortical interneurons.
Collapse
Affiliation(s)
- Verginia C Cuzon Carlson
- Department of Physiology and Neurobiology, Dartmouth Medical School, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | |
Collapse
|
49
|
GABAC receptors are functionally expressed in the intermediate zone and regulate radial migration in the embryonic mouse neocortex. Neuroscience 2010; 167:124-34. [DOI: 10.1016/j.neuroscience.2010.01.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 01/09/2010] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
|
50
|
Molecules and mechanisms involved in the generation and migration of cortical interneurons. ASN Neuro 2010; 2:e00031. [PMID: 20360946 PMCID: PMC2847827 DOI: 10.1042/an20090053] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/04/2010] [Accepted: 03/05/2010] [Indexed: 11/30/2022] Open
Abstract
The GABA (γ-aminobutyric acid)-containing interneurons of the neocortex are largely derived from the ganglionic eminences in the subpallium. Numerous studies have previously defined the migratory paths travelled by these neurons from their origins to their destinations in the cortex. We review here results of studies that have identified many of the genes expressed in the subpallium that are involved in the specification of the subtypes of cortical interneurons, and the numerous transcription factors, motogenic factors and guidance molecules that are involved in their migration.
Collapse
Key Words
- 5-HT, 5-hydroxytryptamine
- AEP, anterior entopeduncular
- BDNF, brain-derived neurotrophic factor
- CGE, caudal ganglionic eminence
- CP, cortical plate
- CR, calretinin
- CXCR, CXC chemokine receptor
- E, embryonic day
- GABA, γ-aminobutyric acid
- GABAR, GABA receptor
- HGF/SF, hepatocyte growth factor/scatter factor
- IZ, intermediate zone
- LGE, lateral ganglionic eminence
- MGE, medial ganglionic eminence
- MZ, marginal zone
- NGR, neuregulin
- NPY, neuropeptide Y
- Nrp, neuropilin
- POA, preoptic area
- PV, paravalbumin
- Robo, Roundabout
- SDF-1, stromal-derived factor 1
- SHH, sonic hedgehog
- SST, somatostatin
- SVZ, subventricular zone
- VZ, ventricular zone
- gene expression
- interneuron
- migration
- neocortex
- neuronal specification
- subpallium
Collapse
|