1
|
Gungor Aydin A, Lemenze A, Bieszczad KM. Functional diversities within neurons and astrocytes in the adult rat auditory cortex revealed by single-nucleus RNA sequencing. Sci Rep 2024; 14:25314. [PMID: 39455606 PMCID: PMC11511993 DOI: 10.1038/s41598-024-74732-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
The mammalian cerebral cortex is composed of a rich diversity of cell types. Sensory cortical cells are organized into networks that rely on their functional diversity to ultimately carry out a variety of sophisticated cognitive functions for perception, learning, and memory. The auditory cortex (AC) has been most extensively studied for its experience-dependent effects, including for perceptual learning and associative memory. Here, we used single-nucleus RNA sequencing (snRNA-seq) in the AC of the adult rat to investigate the breadth of transcriptionally diverse cell types that likely support the role of AC in experience-dependent functions. A variety of unique excitatory and inhibitory neuron subtypes were identified that harbor unique transcriptional profiles of genes with putative relevance for the adaptive neuroplasticity of cortical microcircuits. In addition, we report for the first time a diversity of astrocytes in AC that may represent functionally unique subtypes, including those that could integrate experience-dependent adult neuroplasticity at cortical synapses. Together, these results pave the way for building models of how cortical neurons work in concert with astrocytes to fulfill dynamic and experience-dependent cognitive functions.
Collapse
Affiliation(s)
- Aysegul Gungor Aydin
- Department of Psychology-Behavioral and Systems Neuroscience, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| | - Alexander Lemenze
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers University, Newark, NJ, 07103, USA
| | - Kasia M Bieszczad
- Department of Psychology-Behavioral and Systems Neuroscience, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
- Rutgers Center for Cognitive Science (RuCCS), Rutgers University, Piscataway, NJ, 08854, USA.
- Department of Otolaryngology-Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
2
|
Lee CK, Nguyen HS, Kang SJ, Jeong SW. Cellular and Molecular Mechanisms Underlying Altered Excitability of Cardiac Efferent Neurons in Cirrhotic Rats. Biomedicines 2024; 12:1722. [PMID: 39200187 PMCID: PMC11351538 DOI: 10.3390/biomedicines12081722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Patients with cirrhosis often exhibit cardiac autonomic dysfunction (CAD), characterized by enhanced cardiac sympathetic activity and diminished cardiac vagal tone, leading to increased morbidity and mortality. This study delineates the cellular and molecular mechanisms associated with altered neuronal activities causing cirrhosis-induced CAD. Biliary and nonbiliary cirrhotic rats were produced by common bile duct ligation (CBDL) and intraperitoneal injections of thioacetamide (TAA), respectively. Three weeks after CBDL or TAA injection, the assessment of heart rate variability revealed autonomic imbalance in cirrhotic rats. We observed increased excitability in stellate ganglion (SG) neurons and decreased excitability in intracardiac ganglion (ICG) neurons in cirrhotic rats compared to sham-operated controls. Additionally, threshold, rheobase, and action potential duration exhibited opposite alterations in SG and ICG neurons, along with changes in afterhyperpolarization duration. A- and M-type K⁺ channels were significantly downregulated in SG neurons, while M-type K⁺ channels were upregulated, with downregulation of the N- and L-type Ca2⁺ channels in the ICG neurons of cirrhotic rats, both in transcript expression and functional activity. Collectively, these findings suggest that cirrhosis induces an imbalance between cardiac sympathetic and parasympathetic neuronal activities via the differential regulation of K+ and Ca2+ channels. Thus, cirrhosis-induced CAD may be associated with impaired autonomic efferent functions within the homeostatic reflex arc that regulates cardiac functions.
Collapse
Affiliation(s)
| | | | | | - Seong-Woo Jeong
- Laboratory of Molecular Neurophysiology, Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (C.-K.L.); (H.S.N.); (S.J.K.)
| |
Collapse
|
3
|
Zhan D, Zhang J, Su S, Ren X, Zhao S, Zang W, Cao J. TET1 Participates in Complete Freund's Adjuvant-induced Trigeminal Inflammatory Pain by Regulating Kv7.2 in a Mouse Model. Neurosci Bull 2024; 40:707-718. [PMID: 37973721 PMCID: PMC11178721 DOI: 10.1007/s12264-023-01139-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/10/2023] [Indexed: 11/19/2023] Open
Abstract
Trigeminal inflammatory pain is one of the most severe pain-related disorders in humans; however, the underlying mechanisms remain largely unknown. In this study, we investigated the possible contribution of interaction between ten-eleven translocation methylcytosine dioxygenase 1 (TET1) and the voltage-gated K+ channel Kv7.2 (encoded by Kcnq2) to orofacial inflammatory pain in mice. We found that complete Freund's adjuvant (CFA) injection reduced the expression of Kcnq2/Kv7.2 in the trigeminal ganglion (TG) and induced orofacial inflammatory pain. The involvement of Kv7.2 in CFA-induced orofacial pain was further confirmed by Kv7.2 knockdown or overexpression. Moreover, TET1 knockdown in Tet1flox/flox mice significantly reduced the expression of Kv7.2 and M currents in the TG and led to pain-like behaviors. Conversely, TET1 overexpression by lentivirus rescued the CFA-induced decreases of Kcnq2 and M currents and alleviated mechanical allodynia. Our data suggest that TET1 is implicated in CFA-induced trigeminal inflammatory pain by positively regulating Kv7.2 in TG neurons.
Collapse
Affiliation(s)
- Dengcheng Zhan
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingjing Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China
| | - Songxue Su
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuhua Ren
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sen Zhao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Sun H, Undem BJ. Selective KCNQ2/3 Potassium Channel Opener ICA-069673 Inhibits Excitability in Mouse Vagal Sensory Neurons. J Pharmacol Exp Ther 2024; 389:118-127. [PMID: 38290975 PMCID: PMC10949160 DOI: 10.1124/jpet.123.001959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024] Open
Abstract
Heightened excitability of vagal sensory neurons in inflammatory visceral diseases contributes to unproductive and difficult-to-treat neuronally based symptoms such as visceral pain and dysfunction. Identification of targets and modulators capable of regulating the excitability of vagal sensory neurons may lead to novel therapeutic options. KCNQ1-KCNQ5 genes encode KV7.1-7.5 potassium channel α-subunits. Homotetrameric or heterotetrameric KV7.2-7.5 channels can generate the so-called M-current (IM) known to decrease the excitability of neurons including visceral sensory neurons. This study aimed to address the hypothesis that KV7.2/7.3 channels are key regulators of vagal sensory neuron excitability by evaluating the effects of KCNQ2/3-selective activator, ICA-069673, on IM in mouse nodose neurons and determining its effects on excitability and action potential firings using patch clamp technique. The results showed that ICA-069673 enhanced IM density, accelerated the activation, and delayed the deactivation of M-channels in a concentration-dependent manner. ICA-069673 negatively shifted the voltage-dependent activation of IM and increased the maximal conductance. Consistent with its effects on IM, ICA-069673 induced a marked hyperpolarization of resting potential and reduced the input resistance. The hyperpolarizing effect was more pronounced in partially depolarized neurons. Moreover, ICA-069673 caused a 3-fold increase in the minimal amount of depolarizing current needed to evoke an action potential, and significantly limited the action potential firings in response to sustained suprathreshold stimulations. ICA-069673 had no effect on membrane currents when Kcnq2 and Kcnq3 were deleted. These results indicate that opening KCNQ2/3-mediated M-channels is sufficient to suppress the excitability and enhance spike accommodation in vagal visceral sensory neurons. SIGNIFICANCE STATEMENT: This study supports the hypothesis that selectively activating KCNQ2/3-mediated M-channels is sufficient to suppress the excitability and action potential firings in vagal sensory neurons. These results provide evidence in support of further investigations into the treatment of various visceral disorders that involve nociceptor hyperexcitability with selective KCNQ2/3 M-channel openers.
Collapse
Affiliation(s)
- Hui Sun
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bradley J Undem
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Chen S, Huang M, Xu D, Li M. Epigenetic regulation in epilepsy: A novel mechanism and therapeutic strategy for epilepsy. Neurochem Int 2024; 173:105657. [PMID: 38145842 DOI: 10.1016/j.neuint.2023.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent seizures with excessive and abnormal neuronal discharges. Epileptogenesis is usually involved in neuropathological processes such as ion channel dysfunction, neuronal injury, inflammatory response, synaptic plasticity, gliocyte proliferation and mossy fiber sprouting, currently the pathogenesis of epilepsy is not yet completely understood. A growing body of studies have shown that epigenetic regulation, such as histone modifications, DNA methylation, noncoding RNAs (ncRNAs), N6-methyladenosine (m6A) and restrictive element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) are also involved in epilepsy. Through epigenetic studies, we found that the synaptic dysfunction, nerve damage, cognitive dysfunction and brain development abnormalities are affected by epigenetic regulation of epilepsy-related genes in patients with epilepsy. However, the functional roles of epigenetics in pathogenesis and treatment of epilepsy are still to be explored. Therefore, profiling the array of genes that are epigenetically dysregulated in epileptogenesis is likely to advance our understanding of the mechanisms underlying the pathophysiology of epilepsy and may for the amelioration of these serious human conditions provide novel insight into therapeutic strategies and diagnostic biomarkers for epilepsy to improve serious human condition.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Ming Huang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
6
|
Pethő G, Kántás B, Horváth Á, Pintér E. The Epigenetics of Neuropathic Pain: A Systematic Update. Int J Mol Sci 2023; 24:17143. [PMID: 38138971 PMCID: PMC10743356 DOI: 10.3390/ijms242417143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Epigenetics deals with alterations to the gene expression that occur without change in the nucleotide sequence in the DNA. Various covalent modifications of the DNA and/or the surrounding histone proteins have been revealed, including DNA methylation, histone acetylation, and methylation, which can either stimulate or inhibit protein expression at the transcriptional level. In the past decade, an exponentially increasing amount of data has been published on the association between epigenetic changes and the pathomechanism of pain, including its most challenging form, neuropathic pain. Epigenetic regulation of the chromatin by writer, reader, and eraser proteins has been revealed for diverse protein targets involved in the pathomechanism of neuropathic pain. They include receptors, ion channels, transporters, enzymes, cytokines, chemokines, growth factors, inflammasome proteins, etc. Most work has been invested in clarifying the epigenetic downregulation of mu opioid receptors and various K+ channels, two types of structures mediating neuronal inhibition. Conversely, epigenetic upregulation has been revealed for glutamate receptors, growth factors, and lymphokines involved in neuronal excitation. All these data cannot only help better understand the development of neuropathic pain but outline epigenetic writers, readers, and erasers whose pharmacological inhibition may represent a novel option in the treatment of pain.
Collapse
Affiliation(s)
- Gábor Pethő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2., H-7624 Pécs, Hungary;
| | - Boglárka Kántás
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
- Department of Obstetrics and Gynecology, University of Pécs, Édesanyák Str. 17., H-7624 Pécs, Hungary
| | - Ádám Horváth
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2., H-7624 Pécs, Hungary;
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
| |
Collapse
|
7
|
Sheng ZF, Zhang H, Phaup JG, Zheng P, Kang X, Liu Z, Chang HM, Yeh ETH, Johnson AK, Pan HL, Li DP. Corticotropin-releasing hormone neurons in the central nucleus of amygdala are required for chronic stress-induced hypertension. Cardiovasc Res 2023; 119:1751-1762. [PMID: 37041718 PMCID: PMC10325697 DOI: 10.1093/cvr/cvad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/30/2022] [Accepted: 04/08/2023] [Indexed: 04/13/2023] Open
Abstract
AIMS Chronic stress is a well-known risk factor for the development of hypertension. However, the underlying mechanisms remain unclear. Corticotropin-releasing hormone (CRH) neurons in the central nucleus of the amygdala (CeA) are involved in the autonomic responses to chronic stress. Here, we determined the role of CeA-CRH neurons in chronic stress-induced hypertension. METHODS AND RESULTS Borderline hypertensive rats (BHRs) and Wistar-Kyoto (WKY) rats were subjected to chronic unpredictable stress (CUS). Firing activity and M-currents of CeA-CRH neurons were assessed, and a CRH-Cre-directed chemogenetic approach was used to suppress CeA-CRH neurons. CUS induced a sustained elevation of arterial blood pressure (ABP) and heart rate (HR) in BHRs, while in WKY rats, CUS-induced increases in ABP and HR quickly returned to baseline levels after CUS ended. CeA-CRH neurons displayed significantly higher firing activities in CUS-treated BHRs than unstressed BHRs. Selectively suppressing CeA-CRH neurons by chemogenetic approach attenuated CUS-induced hypertension and decreased elevated sympathetic outflow in CUS-treated BHRs. Also, CUS significantly decreased protein and mRNA levels of Kv7.2 and Kv7.3 channels in the CeA of BHRs. M-currents in CeA-CRH neurons were significantly decreased in CUS-treated BHRs compared with unstressed BHRs. Blocking Kv7 channel with its blocker XE-991 increased the excitability of CeA-CRH neurons in unstressed BHRs but not in CUS-treated BHRs. Microinjection of XE-991 into the CeA increased sympathetic outflow and ABP in unstressed BHRs but not in CUS-treated BHRs. CONCLUSIONS CeA-CRH neurons are required for chronic stress-induced sustained hypertension. The hyperactivity of CeA-CRH neurons may be due to impaired Kv7 channel activity, which represents a new mechanism involved in chronic stress-induced hypertension.
Collapse
Affiliation(s)
- Zhao-Fu Sheng
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Hua Zhang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Jeffery G Phaup
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - PeiRu Zheng
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - XunLei Kang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Zhenguo Liu
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Hui-Ming Chang
- Department of Pharmacology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Toxicology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Internal Medicine, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Edward T H Yeh
- Department of Pharmacology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Toxicology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Internal Medicine, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, The University of Iowa, G60 Psychological and Brain Sciences Building, Iowa City, IA 52242, USA
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| |
Collapse
|
8
|
Zhang H, Li H, Lu M, Wang S, Ma X, Wang F, Liu J, Li X, Yang H, Zhang F, Shen H, Buckley NJ, Gamper N, Yamoah EN, Lv P. Repressor element 1-silencing transcription factor deficiency yields profound hearing loss through K v7.4 channel upsurge in auditory neurons and hair cells. eLife 2022; 11:76754. [PMID: 36125121 PMCID: PMC9525063 DOI: 10.7554/elife.76754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Repressor element 1-silencing transcription factor (REST) is a transcriptional repressor that recognizes neuron-restrictive silencer elements in the mammalian genomes in a tissue- and cell-specific manner. The identity of REST target genes and molecular details of how REST regulates them are emerging. We performed conditional null deletion of Rest (cKO), mainly restricted to murine hair cells (HCs) and auditory neurons (aka spiral ganglion neurons [SGNs]). Null inactivation of full-length REST did not affect the development of normal HCs and SGNs but manifested as progressive hearing loss in adult mice. We found that the inactivation of REST resulted in an increased abundance of Kv7.4 channels at the transcript, protein, and functional levels. Specifically, we found that SGNs and HCs from Rest cKO mice displayed increased Kv7.4 expression and augmented Kv7 currents; SGN’s excitability was also significantly reduced. Administration of a compound with Kv7.4 channel activator activity, fasudil, recapitulated progressive hearing loss in mice. In contrast, inhibition of the Kv7 channels by XE991 rescued the auditory phenotype of Rest cKO mice. Previous studies identified some loss-of-function mutations within the Kv7.4-coding gene, Kcnq4, as a causative factor for progressive hearing loss in mice and humans. Thus, the findings reveal that a critical homeostatic Kv7.4 channel level is required for proper auditory functions.
Collapse
Affiliation(s)
- Haiwei Zhang
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Hongchen Li
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Mingshun Lu
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Shengnan Wang
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Xueya Ma
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Fei Wang
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Jiaxi Liu
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Xinyu Li
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Haichao Yang
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Fan Zhang
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical University, Hebei, China
| | - Noel J Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Nikita Gamper
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada Reno, Reno, United States
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Hebei, China
| |
Collapse
|
9
|
Modelling the Human Blood-Brain Barrier in Huntington Disease. Int J Mol Sci 2022; 23:ijms23147813. [PMID: 35887162 PMCID: PMC9321930 DOI: 10.3390/ijms23147813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
While blood–brain barrier (BBB) dysfunction has been described in neurological disorders, including Huntington’s disease (HD), it is not known if endothelial cells themselves are functionally compromised when promoting BBB dysfunction. Furthermore, the underlying mechanisms of BBB dysfunction remain elusive given the limitations with mouse models and post mortem tissue to identify primary deficits. We established models of BBB and undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived brain-like microvascular endothelial cells (iBMEC) from HD patients or unaffected controls. We demonstrated that HD-iBMECs have abnormalities in barrier properties, as well as in specific BBB functions such as receptor-mediated transcytosis.
Collapse
|
10
|
Li SB, Damonte VM, Chen C, Wang GX, Kebschull JM, Yamaguchi H, Bian WJ, Purmann C, Pattni R, Urban AE, Mourrain P, Kauer JA, Scherrer G, de Lecea L. Hyperexcitable arousal circuits drive sleep instability during aging. Science 2022; 375:eabh3021. [PMID: 35201886 PMCID: PMC9107327 DOI: 10.1126/science.abh3021] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sleep quality declines with age; however, the underlying mechanisms remain elusive. We found that hyperexcitable hypocretin/orexin (Hcrt/OX) neurons drive sleep fragmentation during aging. In aged mice, Hcrt neurons exhibited more frequent neuronal activity epochs driving wake bouts, and optogenetic activation of Hcrt neurons elicited more prolonged wakefulness. Aged Hcrt neurons showed hyperexcitability with lower KCNQ2 expression and impaired M-current, mediated by KCNQ2/3 channels. Single-nucleus RNA-sequencing revealed adaptive changes to Hcrt neuron loss in the aging brain. Disruption of Kcnq2/3 genes in Hcrt neurons of young mice destabilized sleep, mimicking aging-associated sleep fragmentation, whereas the KCNQ-selective activator flupirtine hyperpolarized Hcrt neurons and rejuvenated sleep architecture in aged mice. Our findings demonstrate a mechanism underlying sleep instability during aging and a strategy to improve sleep continuity.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Valentina Martinez Damonte
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Chong Chen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gordon X. Wang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
| | | | - Hiroshi Yamaguchi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Wen-Jie Bian
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Carolin Purmann
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander Eckehart Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- INSERM 1024, Ecole Normale Supérieure, Paris, France
| | - Julie A. Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
The potential roles of excitatory-inhibitory imbalances and the repressor element-1 silencing transcription factor in aging and aging-associated diseases. Mol Cell Neurosci 2021; 117:103683. [PMID: 34775008 DOI: 10.1016/j.mcn.2021.103683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/28/2022] Open
Abstract
Disruptions to the central excitatory-inhibitory (E/I) balance are thought to be related to aging and underlie a host of neural pathologies, including Alzheimer's disease. Aging may induce an increase in excitatory signaling, causing an E/I imbalance, which has been linked to shorter lifespans in mice, flies, and worms. In humans, extended longevity correlates to greater repression of genes involved in excitatory neurotransmission. The repressor element-1 silencing transcription factor (REST) is a master regulator in neural cells and is believed to be upregulated with senescent stimuli, whereupon it counters hyperexcitability, insulin/insulin-like signaling pathway activity, oxidative stress, and neurodegeneration. This review examines the putative mechanisms that distort the E/I balance with aging and neurodegeneration, and the putative roles of REST in maintaining neuronal homeostasis.
Collapse
|
13
|
Butler-Ryan R, Wood IC. The functions of repressor element 1-silencing transcription factor in models of epileptogenesis and post-ischemia. Metab Brain Dis 2021; 36:1135-1150. [PMID: 33813634 PMCID: PMC8272694 DOI: 10.1007/s11011-021-00719-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Epilepsy is a debilitating neurological disorder characterised by recurrent seizures for which 30% of patients are refractory to current treatments. The genetic and molecular aetiologies behind epilepsy are under investigation with the goal of developing new epilepsy medications. The transcriptional repressor REST (Repressor Element 1-Silencing Transcription factor) is a focus of interest as it is consistently upregulated in epilepsy patients and following brain insult in animal models of epilepsy and ischemia. This review analyses data from different epilepsy models and discusses the contribution of REST to epileptogenesis. We propose that in healthy brains REST acts in a protective manner to homeostatically downregulate increases in excitability, to protect against seizure through downregulation of BDNF (Brain-Derived Neurotrophic Factor) and its receptor, TrkB (Tropomyosin receptor kinase B). However, in epilepsy patients and post-seizure, REST may increase to a larger degree, which allows downregulation of the glutamate receptor subunit GluR2. This leads to AMPA glutamate receptors lacking GluR2 subunits, which have increased permeability to Ca2+, causing excitotoxicity, cell death and seizure. This concept highlights therapeutic potential of REST modulation through gene therapy in epilepsy patients.
Collapse
Affiliation(s)
- Ruth Butler-Ryan
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT UK
| | - Ian C. Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT UK
| |
Collapse
|
14
|
Pereira V, Lamoine S, Cuménal M, Lolignier S, Aissouni Y, Pizzoccaro A, Prival L, Balayssac D, Eschalier A, Bourinet E, Busserolles J. Epigenetics Involvement in Oxaliplatin-Induced Potassium Channel Transcriptional Downregulation and Hypersensitivity. Mol Neurobiol 2021; 58:3575-3587. [PMID: 33772465 DOI: 10.1007/s12035-021-02361-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/15/2021] [Indexed: 01/10/2023]
Abstract
Peripheral neuropathy is the most frequent dose-limiting adverse effect of oxaliplatin. Acute pain symptoms that are induced or exacerbated by cold occur in almost all patients immediately following the first infusions. Evidence has shown that oxaliplatin causes ion channel expression modulations in dorsal root ganglia neurons, which are thought to contribute to peripheral hypersensitivity. Most dysregulated genes encode ion channels involved in cold and mechanical perception, noteworthy members of a sub-group of potassium channels of the K2P family, TREK and TRAAK. Downregulation of these K2P channels has been identified as an important tuner of acute oxaliplatin-induced hypersensitivity. We investigated the molecular mechanisms underlying this peripheral dysregulation in a murine model of neuropathic pain triggered by a single oxaliplatin administration. We found that oxaliplatin-mediated TREK-TRAAK downregulation, as well as downregulation of other K+ channels of the K2P and Kv families, involves a transcription factor known as the neuron-restrictive silencer factor (NRSF) and its epigenetic co-repressors histone deacetylases (HDACs). NRSF knockdown was able to prevent most of these K+ channel mRNA downregulation in mice dorsal root ganglion neurons as well as oxaliplatin-induced acute cold and mechanical hypersensitivity. Interestingly, pharmacological inhibition of class I HDAC reproduces the antinociceptive effects of NRSF knockdown and leads to an increased K+ channel expression in oxaliplatin-treated mice.
Collapse
Affiliation(s)
- Vanessa Pereira
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Sylvain Lamoine
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Mélissa Cuménal
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Stéphane Lolignier
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Youssef Aissouni
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Anne Pizzoccaro
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS UMR-5203, INSERM U1091, F-34094, Montpellier, France
| | - Laetitia Prival
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - David Balayssac
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Alain Eschalier
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Emmanuel Bourinet
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS UMR-5203, INSERM U1091, F-34094, Montpellier, France
| | - Jérôme Busserolles
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France.
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
15
|
Singh S, Singh TG, Rehni AK. An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:750-779. [PMID: 32914725 DOI: 10.2174/1871527319666200910153827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Epilepsy is the second most common neurological disease with abnormal neural activity involving the activation of various intracellular signalling transduction mechanisms. The molecular and system biology mechanisms responsible for epileptogenesis are not well defined or understood. Neuroinflammation, neurodegeneration and Epigenetic modification elicit epileptogenesis. The excessive neuronal activities in the brain are associated with neurochemical changes underlying the deleterious consequences of excitotoxicity. The prolonged repetitive excessive neuronal activities extended to brain tissue injury by the activation of microglia regulating abnormal neuroglia remodelling and monocyte infiltration in response to brain lesions inducing axonal sprouting contributing to neurodegeneration. The alteration of various downstream transduction pathways resulted in intracellular stress responses associating endoplasmic reticulum, mitochondrial and lysosomal dysfunction, activation of nucleases, proteases mediated neuronal death. The recently novel pharmacological agents modulate various receptors like mTOR, COX-2, TRK, JAK-STAT, epigenetic modulators and neurosteroids are used for attenuation of epileptogenesis. Whereas the various molecular changes like the mutation of the cell surface, nuclear receptor and ion channels focusing on repetitive episodic seizures have been explored by preclinical and clinical studies. Despite effective pharmacotherapy for epilepsy, the inadequate understanding of precise mechanisms, drug resistance and therapeutic failure are the current fundamental problems in epilepsy. Therefore, the novel pharmacological approaches evaluated for efficacy on experimental models of epilepsy need to be identified and validated. In addition, we need to understand the downstream signalling pathways of new targets for the treatment of epilepsy. This review emphasizes on the current state of novel molecular targets as therapeutic approaches and future directions for the management of epileptogenesis. Novel pharmacological approaches and clinical exploration are essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33101, United States
| |
Collapse
|
16
|
Abstract
Kv7.1-Kv7.5 (KCNQ1-5) K+ channels are voltage-gated K+ channels with major roles in neurons, muscle cells and epithelia where they underlie physiologically important K+ currents, such as neuronal M current and cardiac IKs. Specific biophysical properties of Kv7 channels make them particularly well placed to control the activity of excitable cells. Indeed, these channels often work as 'excitability breaks' and are targeted by various hormones and modulators to regulate cellular activity outputs. Genetic deficiencies in all five KCNQ genes result in human excitability disorders, including epilepsy, arrhythmias, deafness and some others. Not surprisingly, this channel family attracts considerable attention as potential drug targets. Here we will review biophysical properties and tissue expression profile of Kv7 channels, discuss recent advances in the understanding of their structure as well as their role in various neurological, cardiovascular and other diseases and pathologies. We will also consider a scope for therapeutic targeting of Kv7 channels for treatment of the above health conditions.
Collapse
|
17
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
18
|
Smith PA. K + Channels in Primary Afferents and Their Role in Nerve Injury-Induced Pain. Front Cell Neurosci 2020; 14:566418. [PMID: 33093824 PMCID: PMC7528628 DOI: 10.3389/fncel.2020.566418] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sensory abnormalities generated by nerve injury, peripheral neuropathy or disease are often expressed as neuropathic pain. This type of pain is frequently resistant to therapeutic intervention and may be intractable. Numerous studies have revealed the importance of enduring increases in primary afferent excitability and persistent spontaneous activity in the onset and maintenance of peripherally induced neuropathic pain. Some of this activity results from modulation, increased activity and /or expression of voltage-gated Na+ channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. K+ channels expressed in dorsal root ganglia (DRG) include delayed rectifiers (Kv1.1, 1.2), A-channels (Kv1.4, 3.3, 3.4, 4.1, 4.2, and 4.3), KCNQ or M-channels (Kv7.2, 7.3, 7.4, and 7.5), ATP-sensitive channels (KIR6.2), Ca2+-activated K+ channels (KCa1.1, 2.1, 2.2, 2.3, and 3.1), Na+-activated K+ channels (KCa4.1 and 4.2) and two pore domain leak channels (K2p; TWIK related channels). Function of all K+ channel types is reduced via a multiplicity of processes leading to altered expression and/or post-translational modification. This also increases excitability of DRG cell bodies and nociceptive free nerve endings, alters axonal conduction and increases neurotransmitter release from primary afferent terminals in the spinal dorsal horn. Correlation of these cellular changes with behavioral studies provides almost indisputable evidence for K+ channel dysfunction in the onset and maintenance of neuropathic pain. This idea is underlined by the observation that selective impairment of just one subtype of DRG K+ channel can produce signs of pain in vivo. Whilst it is established that various mediators, including cytokines and growth factors bring about injury-induced changes in DRG function and excitability, evidence presently available points to a seminal role for interleukin 1β (IL-1β) in control of K+ channel function. Despite the current state of knowledge, attempts to target K+ channels for therapeutic pain management have met with limited success. This situation may change with the advent of personalized medicine. Identification of specific sensory abnormalities and genetic profiling of individual patients may predict therapeutic benefit of K+ channel activators.
Collapse
Affiliation(s)
- Peter A. Smith
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Shi YQ, Fan P, Zhang GC, Zhang YH, Li MZ, Wang F, Li BX. Probucol-induced hERG Channel Reduction can be Rescued by Matrine and Oxymatrine in vitro. Curr Pharm Des 2020; 25:4606-4612. [PMID: 31657676 PMCID: PMC7327797 DOI: 10.2174/1381612825666191026170033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/19/2019] [Indexed: 01/24/2023]
Abstract
Background The human ether-a-go-go-related gene (hERG) potassium channel is the rapidly activating component of cardiac delayed rectifier potassium current (IKr), which is a crucial determinant of cardiac repolarization. The reduction of hERG current is commonly believed to cause Long QT Syndrome (LQTs). Probucol, a cholesterol-lowering drug, induces LQTs by inhibiting the expression of the hERG channel. Unfortunately, there is currently no effective therapeutic method to rescue probucol-induced LQTs. Methods Patch-clamp recording techniques were used to detect the action potential duration (APD) and current of hERG. Western blot was performed to measure the expression levels of proteins. Results In this study, we demonstrated that 1 μM matrine and oxymatrine could rescue the hERG current and hERG surface expression inhibited by probucol. In addition, matrine and oxymatrine significantly shortened the prolonged action potential duration induced by probucol in neonatal cardiac myocytes. We proposed a novel mechanism underlying the probucol induced decrease in the expression of transcription factor Specificity protein 1 (Sp1), which is an established transactivator of the hERG gene. We also demonstrated that matrine and oxymatrine were able to upregulate Sp1 expression which may be one of the possible mechanisms by which matrine and oxymatrine rescued probucol-induced hERG channel deficiency. Conclusion Our current results demonstrate that matrine and oxymatrine could rescue probucol-induced hERG deficiency in vitro, which may lead to potentially effective therapeutic drugs for treating acquired LQT2 by probucol in the future.
Collapse
Affiliation(s)
- Yuan-Qi Shi
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Pan Fan
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, No. 148 Baojian Road, Nangang District, Harbin 150081, China
| | - Guo-Cui Zhang
- Department of Pharmacology, Harbin Medical University, No. 157 Baojian Road, Harbin, 150086, China
| | - Yu-Hao Zhang
- Department of Pharmacology, Harbin Medical University, No. 157 Baojian Road, Harbin, 150086, China
| | - Ming-Zhu Li
- Department of Pharmacology, Harbin Medical University, No. 157 Baojian Road, Harbin, 150086, China
| | - Fang Wang
- Department of Pharmacology, Harbin Medical University, No. 157 Baojian Road, Harbin, 150086, China
| | - Bao-Xin Li
- Department of Pharmacology, Harbin Medical University, No. 157 Baojian Road, Harbin, 150086, China.,State-Province Key Laboratory of Biopharmaceutical Engineering, No. 157 Baojian Road, Harbin, 150086, China
| |
Collapse
|
20
|
Dysregulated Glial Differentiation in Schizophrenia May Be Relieved by Suppression of SMAD4- and REST-Dependent Signaling. Cell Rep 2020; 27:3832-3843.e6. [PMID: 31242417 DOI: 10.1016/j.celrep.2019.05.088] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/04/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022] Open
Abstract
Astrocytic differentiation is developmentally impaired in patients with childhood-onset schizophrenia (SCZ). To determine why, we used genetic gain- and loss-of-function studies to establish the contributions of differentially expressed transcriptional regulators to the defective differentiation of glial progenitor cells (GPCs) produced from SCZ patient-derived induced pluripotent cells (iPSCs). Negative regulators of the bone morphogenetic protein (BMP) pathway were upregulated in SCZ GPCs, including BAMBI, FST, and GREM1, whose overexpression retained SCZ GPCs at the progenitor stage. SMAD4 knockdown (KD) suppressed the production of these BMP inhibitors by SCZ GPCs and rescued normal astrocytic differentiation. In addition, the BMP-regulated transcriptional repressor REST was upregulated in SCZ GPCs, and its KD similarly restored normal glial differentiation. REST KD also rescued potassium-transport-associated gene expression and K+ uptake, which were otherwise deficient in SCZ glia. These data suggest that the glial differentiation defect in childhood-onset SCZ, and its attendant disruption in K+ homeostasis, may be rescued by targeting BMP/SMAD4- and REST-dependent transcription.
Collapse
|
21
|
Zhang J, Rong L, Shao J, Zhang Y, Liu Y, Zhao S, Li L, Yu W, Zhang M, Ren X, Zhao Q, Zhu C, Luo H, Zang W, Cao J. Epigenetic restoration of voltage-gated potassium channel Kv1.2 alleviates nerve injury-induced neuropathic pain. J Neurochem 2020; 156:367-378. [PMID: 32621322 DOI: 10.1111/jnc.15117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Voltage-gated potassium channels (Kv) are important regulators of neuronal excitability for its role of regulating resting membrane potential and repolarization. Recent studies show that Kv channels participate in neuropathic pain, but the detailed underlying mechanisms are far from being clear. In this study, we used siRNA, miR-137 agomir, and antagomir to regulate the expression of Kv1.2 in spinal cord and dorsal root ganglia (DRG) of naïve and chronic constriction injury (CCI) rats. Kv currents and neuron excitability in DRG neurons were examined by patch-clamp whole-cell recording to verify the change in Kv1.2 function. The results showed that Kv1.2 was down-regulated in DRG and spinal dorsal horn (SDH) by CCI. Knockdown of Kv1.2 by intrathecally injecting Kcna2 siRNA induced significant mechanical and thermal hypersensitivity in naïve rats. Concomitant with the down-regulation of Kv1.2 was an increase in the expression of the miR-137. The targeting and regulating of miR-137 on Kcna2 was verified by dual-luciferase reporter system and intrathecal injecting miR-137 agomir. Furthermore, rescuing the expression of Kv1.2 in CCI rats, achieved through inhibiting miR-137, restored the abnormal Kv currents and excitability in DRG neurons, and alleviated mechanical allodynia and thermal hyperalgesia. These results indicate that the miR-137-mediated Kv1.2 impairment is a crucial etiopathogenesis for the nerve injury-induced neuropathic pain and can be a novel potential therapeutic target for neuropathic pain management.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lina Rong
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinping Shao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yidan Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaping Liu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sen Zhao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenli Yu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengya Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiuhua Ren
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qingzan Zhao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Changlian Zhu
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden.,Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Huan Luo
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Zhang D, Men H, Zhang L, Gao X, Wang J, Li L, Zhu Q, Zhang H, Jia Z. Inhibition of M/K v7 Currents Contributes to Chloroquine-Induced Itch in Mice. Front Mol Neurosci 2020; 13:105. [PMID: 32694980 PMCID: PMC7339983 DOI: 10.3389/fnmol.2020.00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/20/2020] [Indexed: 01/31/2023] Open
Abstract
M/Kv7 potassium channels play a key role in regulation of neuronal excitability. Modulation of neuronal excitability of primary sensory neurons determines the itch sensation induced by a variety of itch-causing substances including chloroquine (CQ). In the present study, we demonstrate that suppression of M/Kv7 channel activity contributes to generation of itch in mice. CQ enhances excitability of the primary sensory neurons through inhibiting M/Kv7 potassium currents in a Ca2+ influx-dependent manner. Specific M/Kv7 channel opener retigabine (RTG) or tannic acid (TA) not only reverses the CQ-induced enhancement of neuronal excitability but also suppresses the CQ-induced itch behavior. Systemic application of RTG or TA also significantly inhibits the itch behavior induced by a variety of pruritogens. Taken together, our findings provide novel insight into the molecular basis of CQ-induced itch sensation in mammals that can be applied to the development of strategies to mitigate itch behavior.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China.,Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, China
| | - Hongchao Men
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China.,Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, China
| | - Ludi Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Xiangxin Gao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Jingjing Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Leying Li
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Qiaoying Zhu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Zhanfeng Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| |
Collapse
|
23
|
Vigil FA, Bozdemir E, Bugay V, Chun SH, Hobbs M, Sanchez I, Hastings SD, Veraza RJ, Holstein DM, Sprague SM, M Carver C, Cavazos JE, Brenner R, Lechleiter JD, Shapiro MS. Prevention of brain damage after traumatic brain injury by pharmacological enhancement of KCNQ (Kv7, "M-type") K + currents in neurons. J Cereb Blood Flow Metab 2020; 40:1256-1273. [PMID: 31272312 PMCID: PMC7238379 DOI: 10.1177/0271678x19857818] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nearly three million people in the USA suffer traumatic brain injury (TBI) yearly; however, there are no pre- or post-TBI treatment options available. KCNQ2-5 voltage-gated K+ channels underlie the neuronal "M current", which plays a dominant role in the regulation of neuronal excitability. Our strategy towards prevention of TBI-induced brain damage is predicated on the suggested hyper-excitability of neurons induced by TBIs, and the decrease in neuronal excitation upon pharmacological augmentation of M/KCNQ K+ currents. Seizures are very common after a TBI, making further seizures and development of epilepsy disease more likely. Our hypothesis is that TBI-induced hyperexcitability and ischemia/hypoxia lead to metabolic stress, cell death and a maladaptive inflammatory response that causes further downstream morbidity. Using the mouse controlled closed-cortical impact blunt TBI model, we found that systemic administration of the prototype M-channel "opener", retigabine (RTG), 30 min after TBI, reduces the post-TBI cascade of events, including spontaneous seizures, enhanced susceptibility to chemo-convulsants, metabolic stress, inflammatory responses, blood-brain barrier breakdown, and cell death. This work suggests that acutely reducing neuronal excitability and energy demand via M-current enhancement may be a novel model of therapeutic intervention against post-TBI brain damage and dysfunction.
Collapse
Affiliation(s)
- Fabio A Vigil
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Eda Bozdemir
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Vladislav Bugay
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Sang H Chun
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - MaryAnn Hobbs
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Isamar Sanchez
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shayne D Hastings
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Rafael J Veraza
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Deborah M Holstein
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shane M Sprague
- Department of Neurosurgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jose E Cavazos
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Robert Brenner
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - James D Lechleiter
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
24
|
Platelet-derived growth factor activates nociceptive neurons by inhibiting M-current and contributes to inflammatory pain. Pain 2020; 160:1281-1296. [PMID: 30933959 PMCID: PMC6553959 DOI: 10.1097/j.pain.0000000000001523] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Supplemental Digital Content is Available in the Text. Our work reveals that the platelet-derived growth factor-BB, by inhibiting nociceptive M-type potassium channels, acts as a pain-inducing proinflammatory factor that significantly contributes to inflammatory pain. Endogenous inflammatory mediators contribute to the pathogenesis of pain by acting on nociceptors, specialized sensory neurons that detect noxious stimuli. Here, we describe a new factor mediating inflammatory pain. We show that platelet-derived growth factor (PDGF)-BB applied in vitro causes repetitive firing of dissociated nociceptor-like rat dorsal root ganglion neurons and decreased their threshold for action potential generation. Injection of PDGF-BB into the paw produced nocifensive behavior in rats and led to thermal and mechanical pain hypersensitivity. We further detailed the biophysical mechanisms of these PDGF-BB effects and show that PDGF receptor–induced inhibition of nociceptive M-current underlies PDGF-BB–mediated nociceptive hyperexcitability. Moreover, in vivo sequestration of PDGF or inhibition of the PDGF receptor attenuates acute formalin-induced inflammatory pain. Our discovery of a new pain-facilitating proinflammatory mediator, which by inhibiting M-current activates nociceptive neurons and thus contributes to inflammatory pain, improves our understanding of inflammatory pain pathophysiology and may have important clinical implications for pain treatment.
Collapse
|
25
|
Valdor M, Wagner A, Fischer H, Röhrs V, Schröder W, Bahrenberg G, Welbers A, Fechner H, Kurreck J, Tzschentke TM, Christoph T. RNA interference-mediated silencing of Kv7.2 in rat dorsal root ganglion neurons abolishes the anti-nociceptive effect of a selective channel opener. J Pharmacol Toxicol Methods 2020; 103:106693. [DOI: 10.1016/j.vascn.2020.106693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/25/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
|
26
|
van Loo KMJ, Becker AJ. Transcriptional Regulation of Channelopathies in Genetic and Acquired Epilepsies. Front Cell Neurosci 2020; 13:587. [PMID: 31992970 PMCID: PMC6971179 DOI: 10.3389/fncel.2019.00587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is a common neurological disorder characterized by recurrent uncontrolled seizures and has an idiopathic “genetic” etiology or a symptomatic “acquired” component. Genetic studies have revealed that many epilepsy susceptibility genes encode ion channels, including voltage-gated sodium, potassium and calcium channels. The high prevalence of ion channels in epilepsy pathogenesis led to the causative concept of “ion channelopathies,” which can be elicited by specific mutations in the coding or promoter regions of genes in genetic epilepsies. Intriguingly, expression changes of the same ion channel genes by augmentation of specific transcription factors (TFs) early after an insult can underlie acquired epilepsies. In this study, we review how the transcriptional regulation of ion channels in both genetic and acquired epilepsies can be controlled, and compare these epilepsy “ion channelopathies” with other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Karen M J van Loo
- Department of Neuropathology, Section for Translational Epilepsy Research, University of Bonn Medical Center, Bonn, Germany
| | - Albert J Becker
- Department of Neuropathology, Section for Translational Epilepsy Research, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
27
|
Carver CM, Hastings SD, Cook ME, Shapiro MS. Functional responses of the hippocampus to hyperexcitability depend on directed, neuron-specific KCNQ2 K + channel plasticity. Hippocampus 2019; 30:435-455. [PMID: 31621989 DOI: 10.1002/hipo.23163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/24/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
M-type (KCNQ2/3) K+ channels play dominant roles in regulation of active and passive neuronal discharge properties such as resting membrane potential, spike-frequency adaptation, and hyper-excitatory states. However, plasticity of M-channel expression and function in nongenetic forms of epileptogenesis are still not well understood. Using transgenic mice with an EGFP reporter to detect expression maps of KCNQ2 mRNA, we assayed hyperexcitability-induced alterations in KCNQ2 transcription across subregions of the hippocampus. Pilocarpine and pentylenetetrazol chemoconvulsant models of seizure induction were used, and brain tissue examined 48 hr later. We observed increases in KCNQ2 mRNA in CA1 and CA3 pyramidal neurons after chemoconvulsant-induced hyperexcitability at 48 hr, but no significant change was observed in dentate gyrus (DG) granule cells. Using chromogenic in situ hybridization assays, changes to KCNQ3 transcription were not detected after hyper-excitation challenge, but the results for KCNQ2 paralleled those using the KCNQ2-mRNA reporter mice. In mice 7 days after pilocarpine challenge, levels of KCNQ2 mRNA were similar in all regions to those from control mice. In brain-slice electrophysiology recordings, CA1 pyramidal neurons demonstrated increased M-current amplitudes 48 hr after hyperexcitability; however, there were no significant changes to DG granule cell M-current amplitude. Traumatic brain injury induced significantly greater KCNQ2 expression in the hippocampal hemisphere that was ipsilateral to the trauma. In vivo, after a secondary challenge with subconvulsant dose of pentylenetetrazole, control mice were susceptible to tonic-clonic seizures, whereas mice administered the M-channel opener retigabine were protected from such seizures. This study demonstrates that increased excitatory activity promotes KCNQ2 upregulation in the hippocampus in a cell-type specific manner. Such novel ion channel expressional plasticity may serve as a compensatory mechanism after a hyperexcitable event, at least in the short term. The upregulation described could be potentially leveraged in anticonvulsant enhancement of KCNQ2 channels as therapeutic target for preventing onset of epileptogenic seizures.
Collapse
Affiliation(s)
- Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Shayne D Hastings
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Mileah E Cook
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
28
|
Zhang F, Gigout S, Liu Y, Wang Y, Hao H, Buckley NJ, Zhang H, Wood IC, Gamper N. Repressor element 1-silencing transcription factor drives the development of chronic pain states. Pain 2019; 160:2398-2408. [PMID: 31206463 PMCID: PMC6756259 DOI: 10.1097/j.pain.0000000000001633] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 11/25/2022]
Abstract
Chronic pain is an unmet clinical problem with vast individual, societal, and economic impact. Pathologic activity of the peripheral somatosensory afferents is one of the major drivers of chronic pain. This overexcitable state of somatosensory neurons is, in part, produced by the dysregulation of genes controlling neuronal excitability. Despite intense research, a unifying theory behind neuropathic remodelling is lacking. Here, we show that transcriptional suppressor, repressor element 1-silencing transcription factor (REST; neuron-restrictive silencing factor, NRSF), is necessary and sufficient for the development of hyperalgesic state after chronic nerve injury or inflammation. Viral overexpression of REST in mouse dorsal root ganglion (DRG) induced prominent mechanical and thermal hyperalgesia in vivo. Sensory neuron-specific, inducible Rest knockout prevented the development of such hyperalgesic state in 3 different chronic pain models. Genetic deletion of Rest reverted injury-induced hyperalgesia. Moreover, viral overexpression of REST in the same neurons in which its gene has been genetically deleted restored neuropathic hyperalgesia. Finally, sensory neuron specific Rest knockout prevented injury-induced downregulation of REST target genes in DRG neurons. This work identified REST as a major regulator of peripheral somatosensory neuron remodelling leading to chronic pain. The findings might help to develop a novel therapeutic approache to combat chronic pain.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Sylvain Gigout
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Yu Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Yiying Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Han Hao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Noel J. Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Ian C. Wood
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
29
|
Lauritano A, Moutton S, Longobardi E, Tran Mau‐Them F, Laudati G, Nappi P, Soldovieri MV, Ambrosino P, Cataldi M, Jouan T, Lehalle D, Maurey H, Philippe C, Miceli F, Vitobello A, Taglialatela M. A novel homozygous KCNQ3 loss-of-function variant causes non-syndromic intellectual disability and neonatal-onset pharmacodependent epilepsy. Epilepsia Open 2019; 4:464-475. [PMID: 31440727 PMCID: PMC6698674 DOI: 10.1002/epi4.12353] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 07/28/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Heterozygous variants in KCNQ2 or, more rarely, KCNQ3 genes are responsible for early-onset developmental/epileptic disorders characterized by heterogeneous clinical presentation and course, genetic transmission, and prognosis. While familial forms mostly include benign epilepsies with seizures starting in the neonatal or early-infantile period, de novo variants in KCNQ2 or KCNQ3 have been described in sporadic cases of early-onset encephalopathy (EOEE) with pharmacoresistant seizures, various age-related pathological EEG patterns, and moderate/severe developmental impairment. All pathogenic variants in KCNQ2 or KCNQ3 occur in heterozygosity. The aim of this work was to report the clinical, molecular, and functional properties of a new KCNQ3 variant found in homozygous configuration in a 9-year-old girl with pharmacodependent neonatal-onset epilepsy and non-syndromic intellectual disability. METHODS Exome sequencing was used for genetic investigation. KCNQ3 transcript and subunit expression in fibroblasts was analyzed with quantitative real-time PCR and Western blotting or immunofluorescence, respectively. Whole-cell patch-clamp electrophysiology was used for functional characterization of mutant subunits. RESULTS A novel single-base duplication in exon 12 of KCNQ3 (NM_004519.3:c.1599dup) was found in homozygous configuration in the proband born to consanguineous healthy parents; this frameshift variant introduced a premature termination codon (PTC), thus deleting a large part of the C-terminal region. Mutant KCNQ3 transcript and protein abundance was markedly reduced in primary fibroblasts from the proband, consistent with nonsense-mediated mRNA decay. The variant fully abolished the ability of KCNQ3 subunits to assemble into functional homomeric or heteromeric channels with KCNQ2 subunits. SIGNIFICANCE The present results indicate that a homozygous KCNQ3 loss-of-function variant is responsible for a severe phenotype characterized by neonatal-onset pharmacodependent seizures, with developmental delay and intellectual disability. They also reveal difference in genetic and pathogenetic mechanisms between KCNQ2- and KCNQ3-related epilepsies, a crucial observation for patients affected with EOEE and/or developmental disabilities.
Collapse
Affiliation(s)
- Anna Lauritano
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Sebastien Moutton
- Reference Center for Developmental Anomalies, Department of Medical GeneticsDijon University HospitalDijonFrance
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
| | - Elena Longobardi
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Frédéric Tran Mau‐Them
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Giusy Laudati
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Piera Nappi
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | | | - Paolo Ambrosino
- Division of Pharmacology, Department of Science and TechnologyUniversity of SannioBeneventoItaly
| | - Mauro Cataldi
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Thibaud Jouan
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Daphné Lehalle
- Reference Center for Developmental Anomalies, Department of Medical GeneticsDijon University HospitalDijonFrance
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
| | - Hélène Maurey
- Service de Neurologie PédiatriqueAPHP, Hôpital Universitaire BicêtreLe Kremlin‐BicêtreFrance
| | - Christophe Philippe
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Francesco Miceli
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Antonio Vitobello
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Maurizio Taglialatela
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| |
Collapse
|
30
|
Gómez K, Sandoval A, Barragán-Iglesias P, Granados-Soto V, Delgado-Lezama R, Felix R, González-Ramírez R. Transcription Factor Sp1 Regulates the Expression of Calcium Channel α 2δ-1 Subunit in Neuropathic Pain. Neuroscience 2019; 412:207-215. [PMID: 31220545 DOI: 10.1016/j.neuroscience.2019.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/15/2019] [Accepted: 06/09/2019] [Indexed: 01/08/2023]
Abstract
High voltage-activated (HVA) Ca2+ (CaV) channels are oligomeric complexes formed by an ion-conducting main subunit (Cavα1) and at least two auxiliary subunits (Cavβ and CaVα2δ). It has been reported that the expression of CaVα2δ1 increases in the dorsal root ganglia (DRGs) of animals with mechanical allodynia, and that the transcription factor Sp1 regulates the expression of the auxiliary subunit. Hence, the main aim of this work was to investigate the role of Sp1 as a molecular determinant of the exacerbated expression of CaVα2δ-1 in the nerve ligation-induced model of mechanical allodynia. Our results show that ligation of L5/L6 spinal nerves (SNL) produced allodynia and increased the expression of Sp1 and CaVα2δ-1 in the DRGs. Interestingly, intrathecal administration of the Sp1 inhibitor mithramycin A (Mth) prevented allodynia and decreased the expression of Sp1 and CaVα2δ-1. Likewise, electrophysiological recordings showed that incubation with Mth decreased Ca2+ current density in the DRG neurons, acting mostly on HVA channels. These results suggest that L5/L6 SNL produces mechanical allodynia and increases the expression of the transcription factor Sp1 and the subunit CaVα2δ-1 in the DRGs, while Mth decreases mechanical allodynia and Ca2+ currents through HVA channels in sensory neurons by reducing the functional expression of the CaVα2δ-1 subunit.
Collapse
Affiliation(s)
- Kimberly Gómez
- Department of Physiology, Biophysics and Neuroscience, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| | - Paulino Barragán-Iglesias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico
| | - Rodolfo Delgado-Lezama
- Department of Physiology, Biophysics and Neuroscience, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Ricardo Felix
- Department of Cell Biology, Cinvestav, Mexico City, Mexico.
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico.
| |
Collapse
|
31
|
Feng PF, Zhang B, Zhao L, Fang Q, Liu Y, Wang JN, Xu XQ, Xue H, Li Y, Yan CC, Zhao X, Li BX. Intracellular Mechanism of Rosuvastatin-Induced Decrease in Mature hERG Protein Expression on Membrane. Mol Pharm 2019; 16:1477-1488. [PMID: 30807184 DOI: 10.1021/acs.molpharmaceut.8b01102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pan-Feng Feng
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Bo Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Lei Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Qing Fang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Yan Liu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Jun-Nan Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Xue-Qi Xu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Hui Xue
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Yang Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Cai-Chuan Yan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Xin Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Bao-Xin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| |
Collapse
|
32
|
Lawson K. Pharmacology and clinical applications of flupirtine: Current and future options. World J Pharmacol 2019; 8:1-13. [DOI: 10.5497/wjp.v8.i1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/17/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023] Open
Abstract
Flupirtine is the first representative in a class of triaminopyridines that exhibits pharmacological properties leading to the suppression of over-excitability of neuronal and non-neuronal cells. Consequently, this drug has been used as a centrally acting analgesic in patients with a range of acute and persistent pain conditions without the adverse effects characteristic of opioids and non-steroidal anti-inflammatory drug and is well tolerated. The pharmacological profile exhibited involves actions on several cellular targets, including Kv7 channels, G-protein-regulated inwardly rectifying K channels and γ-aminobutyric acid type A receptors, but also there is evidence of additional as yet unidentified mechanisms of action involved in the effects of flupirtine. Flupirtine has exhibited effects in a range of cells and tissues related to the locations of these targets. In additional to analgesia, flupirtine has demonstrated pharmacological properties consistent with use as an anticonvulsant, a neuroprotectant, skeletal and smooth muscle relaxant, in treatment of auditory and visual disorders, and treatment of memory and cognitive impairment. Flupirtine is providing important information and clues regarding novel mechanistic approaches to the treatment of a range of clinical conditions involving hyper-excitability of cells. Identification of molecules exhibiting specificity for the pharmacological targets (e.g., Kv7 isoforms) involved in the actions of flupirtine will provide further insight into clinical applications. Whether the broad-spectrum pharmacology of flupirtine or target-specific actions is preferential to gain benefit, especially in complex clinical conditions, requires further investigation. This review will consider recent advancement in understanding of the pharmacological profile and related clinical applications of flupirtine.
Collapse
Affiliation(s)
- Kim Lawson
- Department of Biosciences and Chemistry, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| |
Collapse
|
33
|
Gq-Coupled Muscarinic Receptor Enhancement of KCNQ2/3 Channels and Activation of TRPC Channels in Multimodal Control of Excitability in Dentate Gyrus Granule Cells. J Neurosci 2018; 39:1566-1587. [PMID: 30593498 DOI: 10.1523/jneurosci.1781-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
KCNQ (Kv7, "M-type") K+ channels and TRPC (transient receptor potential, "canonical") cation channels are coupled to neuronal discharge properties and are regulated via Gq/11-protein-mediated signals. Stimulation of Gq/11-coupled receptors both consumes phosphatidylinositol 4,5-bisphosphate (PIP2) via phosphalipase Cβ hydrolysis and stimulates PIP2 synthesis via rises in Ca2+ i and other signals. Using brain-slice electrophysiology and Ca2+ imaging from male and female mice, we characterized threshold K+ currents in dentate gyrus granule cells (DGGCs) and CA1 pyramidal cells, the effects of Gq/11-coupled muscarinic M1 acetylcholine (M1R) stimulation on M current and on neuronal discharge properties, and elucidated the intracellular signaling mechanisms involved. We observed disparate signaling cascades between DGGCs and CA1 neurons. DGGCs displayed M1R enhancement of M-current, rather than suppression, due to stimulation of PIP2 synthesis, which was paralleled by increased PIP2-gated G-protein coupled inwardly rectifying K+ currents as well. Deficiency of KCNQ2-containing M-channels ablated the M1R-induced enhancement of M-current in DGGCs. Simultaneously, M1R stimulation in DGGCs induced robust increases in [Ca2+]i, mostly due to TRPC currents, consistent with, and contributing to, neuronal depolarization and hyperexcitability. CA1 neurons did not display such multimodal signaling, but rather M current was suppressed by M1R stimulation in these cells, similar to the previously described actions of M1R stimulation on M-current in peripheral ganglia that mostly involves PIP2 depletion. Therefore, these results point to a pleiotropic network of cholinergic signals that direct cell-type-specific, precise control of hippocampal function with strong implications for hyperexcitability and epilepsy.SIGNIFICANCE STATEMENT At the neuronal membrane, protein signaling cascades consisting of ion channels and metabotropic receptors govern the electrical properties and neurotransmission of neuronal networks. Muscarinic acetylcholine receptors are G-protein-coupled metabotropic receptors that control the excitability of neurons through regulating ion channels, intracellular Ca2+ signals, and other second-messenger cascades. We have illuminated previously unknown actions of muscarinic stimulation on the excitability of hippocampal principal neurons that include M channels, TRPC (transient receptor potential, "canonical") cation channels, and powerful regulation of lipid metabolism. Our results show that these signaling pathways, and mechanisms of excitability, are starkly distinct between peripheral ganglia and brain, and even between different principal neurons in the hippocampus.
Collapse
|
34
|
NRSF and Its Epigenetic Effectors: New Treatments for Neurological Disease. Brain Sci 2018; 8:brainsci8120226. [PMID: 30572571 PMCID: PMC6316267 DOI: 10.3390/brainsci8120226] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/02/2022] Open
Abstract
The Neuron Restrictive Silencer Factor (NRSF) is the well-known master transcriptional repressor of the neuronal phenotype. Research to date has shown that it is an important player in the growth and development of the nervous system. Its role in the maturation of neural precursor cells to adult neurons has been well characterized in stem cell models. While much has been characterized from a developmental perspective, research is revealing that NRSF plays a role in various neurological diseases, ranging from neurodegenerative, neuropsychiatric, to cancer. Dysregulation of NRSF activity disrupts downstream gene expression that is responsible for neuronal cell homeostasis in several models that contribute to pathologic states. Interestingly, it is now becoming apparent that the dysregulation of NRSF contributes to neurological disease through epigenetic mechanisms. Although NRSF itself is a transcription factor, its major effectors are chromatin modifiers. At the level of epigenetics, changes in NRSF activity have been well characterized in models of neuropathic pain and epilepsy. Better understanding of the epigenetic basis of brain diseases has led to design and use of small molecules that can prevent NRSF from repressing gene expression by neutralizing its interactions with its chromatin remodelers. This review will address the basic function of NRSF and its cofactors, investigate their mechanisms, then explore how their dysfunction can cause disease states. This review will also address research on NRSF as a therapeutic target and delve into new therapeutic strategies that focus on disrupting NRSF’s ability to recruit chromatin remodelers.
Collapse
|
35
|
Masuda K, Takanari H, Morishima M, Ma F, Wang Y, Takahashi N, Ono K. Testosterone-mediated upregulation of delayed rectifier potassium channel in cardiomyocytes causes abbreviation of QT intervals in rats. J Physiol Sci 2018; 68:759-767. [PMID: 29332211 PMCID: PMC10717990 DOI: 10.1007/s12576-017-0590-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/26/2017] [Indexed: 12/01/2022]
Abstract
Men have shorter rate-corrected QT intervals (QTc) than women, especially at the period of adolescence or later. The aim of this study was to elucidate the long-term effects of testosterone on cardiac excitability parameters including electrocardiogram (ECG) and potassium channel current. Testosterone shortened QT intervals in ECG in castrated male rats, not immediately after, but on day 2 or later. Expression of Kv7.1 (KCNQ1) mRNA was significantly upregulated by testosterone in cardiomyocytes of male and female rats. Short-term application of testosterone was without effect on delayed rectifier potassium channel current (IKs), whereas IKs was significantly increased in cardiomyocytes treated with dihydrotestosterone for 24 h, which was mimicked by isoproterenol (24 h). Gene-selective inhibitors of a transcription factor SP1, mithramycin, abolished the effects of testosterone on Kv7.1. Testosterone increases Kv7.1-IKs possibly through a pathway related to a transcription factor SP1, suggesting a genomic effect of testosterone as an active factor for cardiac excitability.
Collapse
Affiliation(s)
- Kimiko Masuda
- Department of Cardiology and Clinical Examination, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
- Department of Pathophysiology, Oita University School of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Hiroki Takanari
- Department of Pathophysiology, Oita University School of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Masaki Morishima
- Department of Pathophysiology, Oita University School of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - FangFang Ma
- Department of Pathophysiology, Oita University School of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Yan Wang
- Department of Cardiology and Clinical Examination, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
- Department of Pathophysiology, Oita University School of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Katsushige Ono
- Department of Pathophysiology, Oita University School of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan.
| |
Collapse
|
36
|
Du X, Gao H, Jaffe D, Zhang H, Gamper N. M-type K + channels in peripheral nociceptive pathways. Br J Pharmacol 2018; 175:2158-2172. [PMID: 28800673 PMCID: PMC5980636 DOI: 10.1111/bph.13978] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/17/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
Pathological pain is a hyperexcitability disorder. Since the excitability of a neuron is set and controlled by a complement of ion channels it expresses, in order to understand and treat pain, we need to develop a mechanistic insight into the key ion channels controlling excitability within the mammalian pain pathways and how these ion channels are regulated and modulated in various physiological and pathophysiological settings. In this review, we will discuss the emerging data on the expression in pain pathways, functional role and modulation of a family of voltage-gated K+ channels called 'M channels' (KCNQ, Kv 7). M channels are increasingly recognized as important players in controlling pain signalling, especially within the peripheral somatosensory system. We will also discuss the therapeutic potential of M channels as analgesic drug targets. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc/.
Collapse
Affiliation(s)
- Xiaona Du
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of EducationHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyShijiazhuangHebei ProvinceChina
| | - Haixia Gao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of EducationHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyShijiazhuangHebei ProvinceChina
- School of Biomedical Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsUK
| | - David Jaffe
- Department of Biology, UTSA Neurosciences InstituteUniversity of Texas at San AntonioSan AntonioTXUSA
| | - Hailin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of EducationHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyShijiazhuangHebei ProvinceChina
| | - Nikita Gamper
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of EducationHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyShijiazhuangHebei ProvinceChina
- School of Biomedical Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
37
|
Valdor M, Wagner A, Röhrs V, Berg J, Fechner H, Schröder W, Tzschentke TM, Bahrenberg G, Christoph T, Kurreck J. RNA interference-based functional knockdown of the voltage-gated potassium channel Kv7.2 in dorsal root ganglion neurons after in vitro and in vivo gene transfer by adeno-associated virus vectors. Mol Pain 2017; 14:1744806917749669. [PMID: 29212407 PMCID: PMC5805000 DOI: 10.1177/1744806917749669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activation of the neuronal potassium channel Kv7.2 encoded by the KCNQ2 gene has recently been shown to be an attractive mechanism to inhibit nociceptive transmission. However, potent, selective, and clinically proven activators of Kv7.2/Kv7.3 currents with analgesic properties are still lacking. An important prerequisite for the development of new drugs is a model to test the selectivity of novel agonists by abrogating Kv7.2/Kv7.3 function. Since constitutive knockout mice are not viable, we developed a model based on RNA interference-mediated silencing of KCNQ2. By delivery of a KCNQ2-specific short hairpin RNA with adeno-associated virus vectors, we completely abolished the activity of the specific Kv7.2/Kv7.3-opener ICA-27243 in rat sensory neurons. Results obtained in the silencing experiments were consistent between freshly prepared and cryopreserved dorsal root ganglion neurons, as well as in dorsal root ganglion neurons dissociated and cultured after in vivo administration of the silencing vector by intrathecal injections into rats. Interestingly, the tested associated virus serotypes substantially differed with respect to their transduction capability in cultured neuronal cell lines and primary dorsal root ganglion neurons and the in vivo transfer of transgenes by intrathecal injection of associated virus vectors. However, our study provides the proof-of-concept that RNA interference-mediated silencing of KCNQ2 is a suitable approach to create an ex vivo model for testing the specificity of novel Kv7.2/Kv7.3 agonists.
Collapse
Affiliation(s)
- Markus Valdor
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | - Anke Wagner
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Viola Röhrs
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Johanna Berg
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Henry Fechner
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| | - Wolfgang Schröder
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | - Thomas M Tzschentke
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | | | - Thomas Christoph
- 1 14938 Grünenthal GmbH , Pharmacology and Biomarker Development, Aachen, Germany
| | - Jens Kurreck
- 2 Department of Applied Biochemistry, Institute of Biotechnology, Berlin University of Technology, Berlin, Germany
| |
Collapse
|
38
|
Dong Z, Shi Y, Feng L, Shen Z, Fang L, Zheng S, Hai X, Li B. (-)-Epicatechin rescues the As 2 O 3 -induced HERG K + channel deficiency possibly through upregulating transcription factor SP1 expression. J Biochem Mol Toxicol 2017; 31. [PMID: 28768059 DOI: 10.1002/jbt.21966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022]
Abstract
(-)-Epicatechin (EPI) has beneficial effects on the cardiovascular disease. The human ether-a-go-go-related gene (HERG) potassium channel is crucial for repolarization of cardiac action potential. Dysfunction of the HERG channel can cause long QT syndrome type 2 (LQT2). Arsenic trioxide (As2 O3 ) has shown efficacy in the treatment of acute promyelocytic leukemia. However, As2 O3 can induce the deficiency of HERG channel and cause LQT2. In this study, we examined whether EPI could rescue the As2 O3 -induced HERG channel deficiency. We found that 3 μM EPI obviously increased protein expression and current of HERG channel. EPI was able to recover the protein expression and current of HERG channel disrupted by As2 O3 . EPI was able to increase the expression of SP1 protein and recover the expression of SP1 protein disrupted by As2 O3 . In addition, EPI significantly shortened action potential duration prolonged by As2 O3 . Our data suggest that EPI rescues As2 O3 -induced HERG channel deficiency through upregulating SP1 expression.
Collapse
Affiliation(s)
- Zengxiang Dong
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanqi Shi
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lifang Feng
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Zhaoqian Shen
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Fang
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Sijia Zheng
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Hai
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baoxin Li
- Department of Pharmacology, Harbin Medical University, Harbin, China
| |
Collapse
|
39
|
Kang S, Li J, Zuo W, Fu R, Gregor D, Krnjevic K, Bekker A, Ye JH. Ethanol Withdrawal Drives Anxiety-Related Behaviors by Reducing M-type Potassium Channel Activity in the Lateral Habenula. Neuropsychopharmacology 2017; 42:1813-1824. [PMID: 28387223 PMCID: PMC5520788 DOI: 10.1038/npp.2017.68] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/17/2017] [Accepted: 03/26/2017] [Indexed: 02/04/2023]
Abstract
Alcohol use disorders (AUDs) and anxiety disorders (ADs) are often seen concurrently, but their underlying cellular basis is unclear. For unclear reasons, the lateral habenula (LHb), a key brain region involved in the pathophysiology of ADs, becomes hyperactive after ethanol withdrawal. M-type K+ channels (M-channels), important regulators of neuronal activity, are abundant in the LHb, yet little is known about their role in AUDs and associated ADs. We report here that in rats at 24 h withdrawal from systemic ethanol administration (either by intraperitoneal injection, 2 g/kg, twice/day, for 7 days; or intermittent drinking 20% ethanol in a two-bottle free choice protocol for 8 weeks), the basal firing rate and the excitability of LHb neurons in brain slices was higher, whereas the amplitude of medium afterhyperpolarization and M-type K+ currents were smaller, when compared to ethanol naive rats. Concordantly, M-channel blocker (XE991)-induced increase in the spontaneous firing rate in LHb neurons was smaller. The protein expression of M-channel subunits, KCNQ2/3 in the LHb was also smaller. Moreover, anxiety levels (tested in open field, marble burying, and elevated plus maze) were higher, which were alleviated by LHb inhibition either chemogenetically or by local infusion of the M-channel opener, retigabine. Intra-LHb infusion of retigabine also reduced ethanol consumption and preference. These findings reveal an important role of LHb M-channels in the expression of AUDs and ADs, and suggest that the M-channels could be a potential therapeutic target for alcoholics.
Collapse
Affiliation(s)
- Seungwoo Kang
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jing Li
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Rao Fu
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Danielle Gregor
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | | | - Alex Bekker
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA, Tel: 973 972 1866, Fax: 973 972 0582, E-mail:
| |
Collapse
|
40
|
Shah A, Zuo W, Kang S, Li J, Fu R, Zhang H, Bekker A, Ye JH. The lateral habenula and alcohol: Role of glutamate and M-type potassium channels. Pharmacol Biochem Behav 2017. [PMID: 28624587 DOI: 10.1016/j.pbb.2017.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder (AUD) or alcoholism is a chronic relapsing disorder. Our knowledge of alcoholism hinges on our understanding of its effects on the brain. This review will center on the effects of alcohol in the lateral habenula (LHb), an epithalamic structure that connects the forebrain with the midbrain and encodes aversive signaling. Like many addictive drugs, alcohol has both rewarding and aversive properties. While alcohol's euphoric property is believed to be important for the initiation of drinking, increasing evidence suggests that alcohol's negative affect plays a critical role in excessive drinking and alcohol dependence. During withdrawal and abstinence, alcoholics often experience anxiety and depressions, both of which have been implicated in relapse drinking. This review focuses on the recent accumulation of knowledge about the effects of acute and chronic alcohol exposure on the activity of and synaptic transmissions on LHb neurons, as well as the effects of manipulation of LHb function on alcohol consumption and related behaviors. Recent evidence highlights a critical role for the LHb in AUD and related psychiatric ailments. Multidisciplinary work in animals collectively suggests that LHb function and activity, including M-type potassium channels and glutamatergic transmission are altered by acute and repeated chronic alcohol exposure. We will also discuss how functional, pharmacological, and chemogenetic manipulation of the LHb affects ethanol drinking and psychiatric disorders occurring in animals withdrawn from chronic alcohol exposure. Conceivable mechanisms behind these effects and their potential as targets for therapies will also be discussed.
Collapse
Affiliation(s)
- Avi Shah
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Seungwoo Kang
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Jing Li
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Rao Fu
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Haifeng Zhang
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA.
| |
Collapse
|
41
|
Barkai O, Goldstein RH, Caspi Y, Katz B, Lev S, Binshtok AM. The Role of Kv7/M Potassium Channels in Controlling Ectopic Firing in Nociceptors. Front Mol Neurosci 2017; 10:181. [PMID: 28659757 PMCID: PMC5468463 DOI: 10.3389/fnmol.2017.00181] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Peripheral nociceptive neurons encode and convey injury-inducing stimuli toward the central nervous system. In normal conditions, tight control of nociceptive resting potential prevents their spontaneous activation. However, in many pathological conditions the control of membrane potential is disrupted, leading to ectopic, stimulus-unrelated firing of nociceptive neurons, which is correlated to spontaneous pain. We have investigated the role of KV7/M channels in stabilizing membrane potential and impeding spontaneous firing of nociceptive neurons. These channels generate low voltage-activating, noninactivating M-type K+ currents (M-current, IM ), which control neuronal excitability. Using perforated-patch recordings from cultured, rat nociceptor-like dorsal root ganglion neurons, we show that inhibition of M-current leads to depolarization of nociceptive neurons and generation of repetitive firing. To assess to what extent the M-current, acting at the nociceptive terminals, is able to stabilize terminals' membrane potential, thus preventing their ectopic activation, in normal and pathological conditions, we built a multi-compartment computational model of a pseudo-unipolar unmyelinated nociceptive neuron with a realistic terminal tree. The modeled terminal tree was based on the in vivo structure of nociceptive peripheral terminal, which we assessed by in vivo multiphoton imaging of GFP-expressing nociceptive neuronal terminals innervating mice hind paw. By modifying the conductance of the KV7/M channels at the modeled terminal tree (terminal gKV7/M) we have found that 40% of the terminal gKV7/M conductance is sufficient to prevent spontaneous firing, while ~75% of terminal gKV7/M is sufficient to inhibit stimulus induced activation of nociceptive neurons. Moreover, we showed that terminal M-current reduces susceptibility of nociceptive neurons to a small fluctuations of membrane potentials. Furthermore, we simulated how the interaction between terminal persistent sodium current and M-current affects the excitability of the neurons. We demonstrated that terminal M-current in nociceptive neurons impeded spontaneous firing even when terminal Na(V)1.9 channels conductance was substantially increased. On the other hand, when terminal gKV7/M was decreased, nociceptive neurons fire spontaneously after slight increase in terminal Na(V)1.9 conductance. Our results emphasize the pivotal role of M-current in stabilizing membrane potential and hereby in controlling nociceptive spontaneous firing, in normal and pathological conditions.
Collapse
Affiliation(s)
- Omer Barkai
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University-Hadassah School of MedicineJerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Robert H Goldstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University-Hadassah School of MedicineJerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Yaki Caspi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University-Hadassah School of MedicineJerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Ben Katz
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University-Hadassah School of MedicineJerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University-Hadassah School of MedicineJerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University-Hadassah School of MedicineJerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
42
|
Kobow K, Blümcke I. Epigenetics in epilepsy. Neurosci Lett 2017; 667:40-46. [PMID: 28111355 DOI: 10.1016/j.neulet.2017.01.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/02/2017] [Accepted: 01/06/2017] [Indexed: 11/19/2022]
Abstract
Approximately 50 million people have epilepsy, making it the most common chronic and severe neurological disease worldwide, with increased risk of mortality and psychological and socioeconomic consequences impairing quality of life. More than 30% of patients with epilepsy have inadequate control of their seizures with drug therapy. Any structural brain lesion can provoke epilepsy. However, progression of seizure activity as well as the development of drug-resistance remains difficult to predict, irrespective of the underlying epileptogenic condition, i.e., traumatic brain injury, developmental brain lesions, brain tumors or genetic inheritance. Mutated DNA sequences in genes encoding for ion channels or neurotransmitter receptors have been identified in hereditary focal or generalized epilepsies, but genotype-phenotype correlations are poor, arguing for additional factors determining the effect of a genetic predisposition. The dynamics of epigenetic mechanisms (e.g. DNA methylation, histone modifications, chromatin remodelling, and non-coding RNAs) provide likely explanations for common features in epilepsy and other complex diseases, including late onset, parent-of-origin effects, discordance of monozygotic twins, and fluctuation of symptoms. In addition, many focal epilepsies, including focal cortical dysplasias (FCDs), glio-neuronal tumors (e.g. ganglioglioma), or temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), do not seem to primarily associate with hereditary traits, suggesting other pathogenic mechanisms. Herein we will discuss the many faces of the epigenetic machinery, which provides powerful tools and mechanisms to propagate epileptogenicity and likely also contribute to the epileptogenic memory in chronic and difficult-to-treat epilepsies.
Collapse
Affiliation(s)
- K Kobow
- Department of Neuropathology, University Hospital Erlangen, Germany.
| | - I Blümcke
- Department of Neuropathology, University Hospital Erlangen, Germany
| |
Collapse
|
43
|
Ohya S, Kito H, Hatano N, Muraki K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacol Ther 2016; 160:11-43. [PMID: 26896566 DOI: 10.1016/j.pharmthera.2016.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of different ion channel types are involved in cell signaling networks, and homeostatic regulatory mechanisms contribute to the control of ion channel expression. Profiling of global gene expression using microarray technology has recently provided novel insights into the molecular mechanisms underlying the homeostatic and pathological control of ion channel expression. It has demonstrated that the dysregulation of ion channel expression is associated with the pathogenesis of neural, cardiovascular, and immune diseases as well as cancers. In addition to the transcriptional, translational, and post-translational regulation of ion channels, potentially important evidence on the mechanisms controlling ion channel expression has recently been accumulated. The regulation of alternative pre-mRNA splicing is therefore a novel therapeutic strategy for the treatment of dominant-negative splicing disorders. Epigenetic modification plays a key role in various pathological conditions through the regulation of pluripotency genes. Inhibitors of pre-mRNA splicing and histone deacetyalase/methyltransferase have potential as potent therapeutic drugs for cancers and autoimmune and inflammatory diseases. Moreover, membrane-anchoring proteins, lysosomal and proteasomal degradation-related molecules, auxiliary subunits, and pharmacological agents alter the protein folding, membrane trafficking, and post-translational modifications of ion channels, and are linked to expression-defect channelopathies. In this review, we focused on recent insights into the transcriptional, spliceosomal, epigenetic, and proteasomal regulation of ion channel expression: Ca(2+) channels (TRPC/TRPV/TRPM/TRPA/Orai), K(+) channels (voltage-gated, KV/Ca(2+)-activated, KCa/two-pore domain, K2P/inward-rectifier, Kir), and Ca(2+)-activated Cl(-) channels (TMEM16A/TMEM16B). Furthermore, this review highlights expression of these ion channels in expression-defect channelopathies.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan.
| |
Collapse
|
44
|
Nutter T, Johnson R, Cooper B. A delayed chronic pain like condition with decreased Kv channel activity in a rat model of Gulf War Illness pain syndrome. Neurotoxicology 2015; 51:67-79. [DOI: 10.1016/j.neuro.2015.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 12/26/2022]
|
45
|
Laumet G, Garriga J, Chen SR, Zhang Y, Li DP, Smith TM, Dong Y, Jelinek J, Cesaroni M, Issa JP, Pan HL. G9a is essential for epigenetic silencing of K(+) channel genes in acute-to-chronic pain transition. Nat Neurosci 2015; 18:1746-55. [PMID: 26551542 PMCID: PMC4661086 DOI: 10.1038/nn.4165] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/07/2015] [Indexed: 02/07/2023]
Abstract
Neuropathic pain is a debilitating clinical problem and difficult to treat. Nerve injury causes a long-lasting reduction in K+ channel expression in the dorsal root ganglion (DRG), but little is known about the epigenetic mechanisms involved. Here we show that nerve injury increased H3K9me2 occupancy at Kcna4, Kcnd2, Kcnq2 and Kcnma1 promoters but did not affect DNA methylation levels of these genes in DRGs. Nerve injury increased activity of G9a, histone deacetylases and EZH2, but only G9a inhibition consistently restored K+ channel expression. Selective G9a knockout in DRG neurons completely blocked K+ channel silencing and chronic pain development after nerve injury. Remarkably, RNA sequencing analysis revealed that G9a inhibition not only reactivated 40 of 42 silenced K+ channel genes but also normalized 638 genes down- or up-regulated by nerve injury. Thus G9a plays a dominant role in transcriptional repression of K+ channels and in acute-to-chronic pain transition after nerve injury.
Collapse
Affiliation(s)
- Geoffroy Laumet
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Judit Garriga
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuhao Zhang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - De-Pei Li
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Trevor M Smith
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yingchun Dong
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Anesthesiology, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
| | - Jaroslav Jelinek
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matteo Cesaroni
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jean-Pierre Issa
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
46
|
Barrese V, Taglialatela M, Greenwood IA, Davidson C. Protective role of Kv7 channels in oxygen and glucose deprivation-induced damage in rat caudate brain slices. J Cereb Blood Flow Metab 2015; 35:1593-600. [PMID: 25966943 PMCID: PMC4640310 DOI: 10.1038/jcbfm.2015.83] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/09/2015] [Accepted: 04/09/2015] [Indexed: 11/09/2022]
Abstract
Ischemic stroke can cause striatal dopamine efflux that contributes to cell death. Since Kv7 potassium channels regulate dopamine release, we investigated the effects of their pharmacological modulation on dopamine efflux, measured by fast cyclic voltammetry (FCV), and neurotoxicity, in Wistar rat caudate brain slices undergoing oxygen and glucose deprivation (OGD). The Kv7 activators retigabine and ICA27243 delayed the onset, and decreased the peak level of dopamine efflux induced by OGD; and also decreased OGD-induced damage measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Retigabine also reduced OGD-induced necrotic cell death evaluated by lactate dehydrogenase activity assay. The Kv7 blocker linopirdine increased OGD-evoked dopamine efflux and OGD-induced damage, and attenuated the effects of retigabine. Quantitative-PCR experiments showed that OGD caused an ~6-fold decrease in Kv7.2 transcript, while levels of mRNAs encoding for other Kv7 subunits were unaffected; western blot experiments showed a parallel reduction in Kv7.2 protein levels. Retigabine also decreased the peak level of dopamine efflux induced by L-glutamate, and attenuated the loss of TTC staining induced by the excitotoxin. These results suggest a role for Kv7.2 in modulating ischemia-evoked caudate damage.
Collapse
Affiliation(s)
- Vincenzo Barrese
- Division of Biomedical Sciences, St George's University of London, London, UK.,Department of Neuroscience Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy.,Department of Medicine and Health Science, University of Molise, Campobasso, Italy
| | - Iain A Greenwood
- Division of Biomedical Sciences, St George's University of London, London, UK
| | - Colin Davidson
- Division of Biomedical Sciences, St George's University of London, London, UK
| |
Collapse
|
47
|
Patil MJ, Henry MA, Akopian AN. Prolactin receptor in regulation of neuronal excitability and channels. Channels (Austin) 2015; 8:193-202. [PMID: 24758841 DOI: 10.4161/chan.28946] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Prolactin (PRL) activates PRL receptor isoforms to exert regulation of specific neuronal circuitries, and to control numerous physiological and clinically-relevant functions including; maternal behavior, energy balance and food intake, stress and trauma responses, anxiety, neurogenesis, migraine and pain. PRL controls these critical functions by regulating receptor potential thresholds, neuronal excitability and/or neurotransmission efficiency. PRL also influences neuronal functions via activation of certain neurons, resulting in Ca(2+) influx and/or electrical firing with subsequent release of neurotransmitters. Although PRL was identified almost a century ago, very little specific information is known about how PRL regulates neuronal functions. Nevertheless, important initial steps have recently been made including the identification of PRL-induced transient signaling pathways in neurons and the modulation of neuronal transient receptor potential (TRP) and Ca(2+) -dependent K(+) channels by PRL. In this review, we summarize current knowledge and recent progress in understanding the regulation of neuronal excitability and channels by PRL.
Collapse
|
48
|
Wolfart J, Laker D. Homeostasis or channelopathy? Acquired cell type-specific ion channel changes in temporal lobe epilepsy and their antiepileptic potential. Front Physiol 2015; 6:168. [PMID: 26124723 PMCID: PMC4467176 DOI: 10.3389/fphys.2015.00168] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/19/2015] [Indexed: 01/16/2023] Open
Abstract
Neurons continuously adapt the expression and functionality of their ion channels. For example, exposed to chronic excitotoxicity, neurons homeostatically downscale their intrinsic excitability. In contrast, the “acquired channelopathy” hypothesis suggests that proepileptic channel characteristics develop during epilepsy. We review cell type-specific channel alterations under different epileptic conditions and discuss the potential of channels that undergo homeostatic adaptations, as targets for antiepileptic drugs (AEDs). Most of the relevant studies have been performed on temporal lobe epilepsy (TLE), a widespread AED-refractory, focal epilepsy. The TLE patients, who undergo epilepsy surgery, frequently display hippocampal sclerosis (HS), which is associated with degeneration of cornu ammonis subfield 1 pyramidal cells (CA1 PCs). Although the resected human tissue offers insights, controlled data largely stem from animal models simulating different aspects of TLE and other epilepsies. Most of the cell type-specific information is available for CA1 PCs and dentate gyrus granule cells (DG GCs). Between these two cell types, a dichotomy can be observed: while DG GCs acquire properties decreasing the intrinsic excitability (in TLE models and patients with HS), CA1 PCs develop channel characteristics increasing intrinsic excitability (in TLE models without HS only). However, thorough examination of data on these and other cell types reveals the coexistence of protective and permissive intrinsic plasticity within neurons. These mechanisms appear differentially regulated, depending on the cell type and seizure condition. Interestingly, the same channel molecules that are upregulated in DG GCs during HS-related TLE, appear as promising targets for future AEDs and gene therapies. Hence, GCs provide an example of homeostatic ion channel adaptation which can serve as a primer when designing novel anti-epileptic strategies.
Collapse
Affiliation(s)
- Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| | - Debora Laker
- Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| |
Collapse
|
49
|
Kaminsky Z, Jones I, Verma R, Saleh L, Trivedi H, Guintivano J, Akman R, Zandi P, Lee RS, Potash JB. DNA methylation and expression of KCNQ3 in bipolar disorder. Bipolar Disord 2015; 17:150-9. [PMID: 25041603 DOI: 10.1111/bdi.12230] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/29/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Accumulating evidence implicates the potassium voltage-gated channel, KQT-like subfamily, member 2 and 3 (KCNQ2 and KCNQ3) genes in the etiology of bipolar disorder (BPD). Reduced KCNQ2 or KCNQ3 gene expression might lead to a loss of inhibitory M-current and an increase in neuronal hyperexcitability in disease. The goal of the present study was to evaluate epigenetic and gene expression associations of the KCNQ2 and KCNQ3 genes with BPD. METHODS DNA methylation and gene expression levels of alternative transcripts of KCNQ2 and KCNQ3 capable of binding the ankyrin G (ANK3) gene were evaluated using bisulfite pyrosequencing and the quantitative real-time polymerase chain reaction in the postmortem prefrontal cortex of subjects with BPD and matched controls from the McLean Hospital. Replication analyses of DNA methylation findings were performed using prefrontal cortical DNA obtained from the Stanley Medical Research Institute. RESULTS Significantly lower expression was observed in KCNQ3, but not KCNQ2. DNA methylation analysis of CpGs within an alternative exonic region of KCNQ3 exon 11 demonstrated significantly lower methylation in BPD, and correlated significantly with KCNQ3 mRNA levels. Lower KCNQ3 exon 11 DNA methylation was observed in the Stanley Medical Research Institute replication cohort, although only after correcting for mood stabilizer status. Mood stabilizer treatment in rats resulted in a slight DNA methylation increase at the syntenic KCNQ3 exon 11 region, which subsequent analyses suggested could be the result of alterations in neuronal proportion. CONCLUSION The results of the present study suggest that epigenetic alterations in the KCNQ3 gene may be important in the etiopathogenesis of BPD and highlight the importance of controlling for medication and cellular composition-induced heterogeneity in psychiatric studies of the brain.
Collapse
Affiliation(s)
- Zachary Kaminsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|