1
|
Serra SA, Gené GG, Elorza-Vidal X, Fernández-Fernández JM. Cross talk between β subunits, intracellular Ca 2+ signaling, and SNAREs in the modulation of Ca V 2.1 channel steady-state inactivation. Physiol Rep 2019; 6. [PMID: 29380539 PMCID: PMC5789719 DOI: 10.14814/phy2.13557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/23/2017] [Accepted: 12/03/2017] [Indexed: 01/05/2023] Open
Abstract
Modulation of CaV2.1 channel activity plays a key role in interneuronal communication and synaptic plasticity. SNAREs interact with a specific synprint site at the second intracellular loop (LII‐III) of the CaV2.1 pore‐forming α1A subunit to optimize neurotransmitter release from presynaptic terminals by allowing secretory vesicles docking near the Ca2+ entry pathway, and by modulating the voltage dependence of channel steady‐state inactivation. Ca2+ influx through CaV2.1 also promotes channel inactivation. This process seems to involve Ca2+‐calmodulin interaction with two adjacent sites in the α1A carboxyl tail (C‐tail) (the IQ‐like motif and the Calmodulin‐Binding Domain (CBD) site), and contributes to long‐term potentiation and spatial learning and memory. Besides, binding of regulatory β subunits to the α interaction domain (AID) at the first intracellular loop (LI‐II) of α1A determines the degree of channel inactivation by both voltage and Ca2+. Here, we explore the cross talk between β subunits, Ca2+, and syntaxin‐1A‐modulated CaV2.1 inactivation, highlighting the α1A domains involved in such process. β3‐containing CaV2.1 channels show syntaxin‐1A‐modulated but no Ca2+‐dependent steady‐state inactivation. Conversely, β2a‐containing CaV2.1 channels show Ca2+‐dependent but not syntaxin‐1A‐modulated steady‐state inactivation. A LI‐II deletion confers Ca2+‐dependent inactivation and prevents modulation by syntaxin‐1A in β3‐containing CaV2.1 channels. Mutation of the IQ‐like motif, unlike CBD deletion, abolishes Ca2+‐dependent inactivation and confers modulation by syntaxin‐1A in β2a‐containing CaV2.1 channels. Altogether, these results suggest that LI‐II structural modifications determine the regulation of CaV2.1 steady‐state inactivation either by Ca2+ or by SNAREs but not by both.
Collapse
Affiliation(s)
- Selma Angèlica Serra
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gemma G Gené
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Xabier Elorza-Vidal
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - José M Fernández-Fernández
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
2
|
Silva FR, Miranda AS, Santos RP, Olmo IG, Zamponi GW, Dobransky T, Cruz JS, Vieira LB, Ribeiro FM. N-type Ca2+ channels are affected by full-length mutant huntingtin expression in a mouse model of Huntington's disease. Neurobiol Aging 2017; 55:1-10. [DOI: 10.1016/j.neurobiolaging.2017.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/06/2017] [Accepted: 03/09/2017] [Indexed: 11/30/2022]
|
3
|
Toft-Bertelsen TL, Ziomkiewicz I, Houy S, Pinheiro PS, Sørensen JB. Regulation of Ca2+ channels by SNAP-25 via recruitment of syntaxin-1 from plasma membrane clusters. Mol Biol Cell 2016; 27:3329-3341. [PMID: 27605709 PMCID: PMC5170865 DOI: 10.1091/mbc.e16-03-0184] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
SNAP-25 regulates Ca2+ channels in an unknown manner. Endogenous and exogenous SNAP-25 inhibit Ca2+ currents indirectly by recruiting syntaxin-1 from clusters on the plasma membrane, thereby making it available for Ca2+ current inhibition. Thus the cell can regulate Ca2+ influx by expanding or contracting syntaxin-1 clusters. SNAP-25 regulates Ca2+ channels, with potentially important consequences for diseases involving an aberrant SNAP-25 expression level. How this regulation is executed mechanistically remains unknown. We investigated this question in mouse adrenal chromaffin cells and found that SNAP-25 inhibits Ca2+ currents, with the B-isoform being more potent than the A-isoform, but not when syntaxin-1 is cleaved by botulinum neurotoxin C. In contrast, syntaxin-1 inhibits Ca2+ currents independently of SNAP-25. Further experiments using immunostaining showed that endogenous or exogenous SNAP-25 expression recruits syntaxin-1 from clusters on the plasma membrane, thereby increasing the immunoavailability of syntaxin-1 and leading indirectly to Ca2+ current inhibition. Expression of Munc18-1, which recruits syntaxin-1 within the exocytotic pathway, does not modulate Ca2+ channels, whereas overexpression of the syntaxin-binding protein Doc2B or ubMunc13-2 increases syntaxin-1 immunoavailability and concomitantly down-regulates Ca2+ currents. Similar findings were obtained upon chemical cholesterol depletion, leading directly to syntaxin-1 cluster dispersal and Ca2+ current inhibition. We conclude that clustering of syntaxin-1 allows the cell to maintain a high syntaxin-1 expression level without compromising Ca2+ influx, and recruitment of syntaxin-1 from clusters by SNAP-25 expression makes it available for regulating Ca2+ channels. This mechanism potentially allows the cell to regulate Ca2+ influx by expanding or contracting syntaxin-1 clusters.
Collapse
Affiliation(s)
- Trine Lisberg Toft-Bertelsen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Iwona Ziomkiewicz
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Sébastien Houy
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Paulo S Pinheiro
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jakob B Sørensen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
4
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
5
|
Zhu L, McDavid S, Currie KPM. "Slow" Voltage-Dependent Inactivation of CaV2.2 Calcium Channels Is Modulated by the PKC Activator Phorbol 12-Myristate 13-Acetate (PMA). PLoS One 2015. [PMID: 26222492 PMCID: PMC4519294 DOI: 10.1371/journal.pone.0134117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
CaV2.2 (N-type) voltage-gated calcium channels (Ca2+ channels) play key roles in neurons and neuroendocrine cells including the control of cellular excitability, neurotransmitter / hormone secretion, and gene expression. Calcium entry is precisely controlled by channel gating properties including multiple forms of inactivation. “Fast” voltage-dependent inactivation is relatively well-characterized and occurs over the tens-to- hundreds of milliseconds timeframe. Superimposed on this is the molecularly distinct, but poorly understood process of “slow” voltage-dependent inactivation, which develops / recovers over seconds-to-minutes. Protein kinases can modulate “slow” inactivation of sodium channels, but little is known about if/how second messengers control “slow” inactivation of Ca2+ channels. We investigated this using recombinant CaV2.2 channels expressed in HEK293 cells and native CaV2 channels endogenously expressed in adrenal chromaffin cells. The PKC activator phorbol 12-myristate 13-acetate (PMA) dramatically prolonged recovery from “slow” inactivation, but an inactive control (4α-PMA) had no effect. This effect of PMA was prevented by calphostin C, which targets the C1-domain on PKC, but only partially reduced by inhibitors that target the catalytic domain of PKC. The subtype of the channel β-subunit altered the kinetics of inactivation but not the magnitude of slowing produced by PMA. Intracellular GDP-β-S reduced the effect of PMA suggesting a role for G proteins in modulating “slow” inactivation. We postulate that the kinetics of recovery from “slow” inactivation could provide a molecular memory of recent cellular activity and help control CaV2 channel availability, electrical excitability, and neurotransmission in the seconds-to-minutes timeframe.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sarah McDavid
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kevin P. M. Currie
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
6
|
Proft J, Weiss N. G protein regulation of neuronal calcium channels: back to the future. Mol Pharmacol 2014; 87:890-906. [PMID: 25549669 DOI: 10.1124/mol.114.096008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/30/2014] [Indexed: 11/22/2022] Open
Abstract
Neuronal voltage-gated calcium channels have evolved as one of the most important players for calcium entry into presynaptic endings responsible for the release of neurotransmitters. In turn, and to fine-tune synaptic activity and neuronal communication, numerous neurotransmitters exert a potent negative feedback over the calcium signal provided by G protein-coupled receptors. This regulation pathway of physiologic importance is also extensively exploited for therapeutic purposes, for instance in the treatment of neuropathic pain by morphine and other μ-opioid receptor agonists. However, despite more than three decades of intensive research, important questions remain unsolved regarding the molecular and cellular mechanisms of direct G protein inhibition of voltage-gated calcium channels. In this study, we revisit this particular regulation and explore new considerations.
Collapse
Affiliation(s)
- Juliane Proft
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Norbert Weiss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
7
|
Meriney SD, Umbach JA, Gundersen CB. Fast, Ca2+-dependent exocytosis at nerve terminals: shortcomings of SNARE-based models. Prog Neurobiol 2014; 121:55-90. [PMID: 25042638 DOI: 10.1016/j.pneurobio.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/14/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
Investigations over the last two decades have made major inroads in clarifying the cellular and molecular events that underlie the fast, synchronous release of neurotransmitter at nerve endings. Thus, appreciable progress has been made in establishing the structural features and biophysical properties of the calcium (Ca2+) channels that mediate the entry into nerve endings of the Ca2+ ions that trigger neurotransmitter release. It is now clear that presynaptic Ca2+ channels are regulated at many levels and the interplay of these regulatory mechanisms is just beginning to be understood. At the same time, many lines of research have converged on the conclusion that members of the synaptotagmin family serve as the primary Ca2+ sensors for the action potential-dependent release of neurotransmitter. This identification of synaptotagmins as the proteins which bind Ca2+ and initiate the exocytotic fusion of synaptic vesicles with the plasma membrane has spurred widespread efforts to reveal molecular details of synaptotagmin's action. Currently, most models propose that synaptotagmin interfaces directly or indirectly with SNARE (soluble, N-ethylmaleimide sensitive factor attachment receptors) proteins to trigger membrane fusion. However, in spite of intensive efforts, the field has not achieved consensus on the mechanism by which synaptotagmins act. Concurrently, the precise sequence of steps underlying SNARE-dependent membrane fusion remains controversial. This review considers the pros and cons of the different models of SNARE-mediated membrane fusion and concludes by discussing a novel proposal in which synaptotagmins might directly elicit membrane fusion without the intervention of SNARE proteins in this final fusion step.
Collapse
Affiliation(s)
- Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joy A Umbach
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Cameron B Gundersen
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Bachnoff N, Cohen-Kutner M, Trus M, Atlas D. Intra-membrane signaling between the voltage-gated Ca2+-channel and cysteine residues of syntaxin 1A coordinates synchronous release. Sci Rep 2014; 3:1620. [PMID: 23567899 PMCID: PMC3621091 DOI: 10.1038/srep01620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/26/2013] [Indexed: 11/28/2022] Open
Abstract
The interaction of syntaxin 1A (Sx1A) with voltage-gated calcium channels (VGCC) is required for depolarization-evoked release. However, it is unclear how the signal is transferred from the channel to the exocytotic machinery and whether assembly of Sx1A and the calcium channel is conformationally linked to triggering synchronous release. Here we demonstrate that depolarization-evoked catecholamine release was decreased in chromaffin cells infected with semliki forest viral vectors encoding Sx1A mutants, Sx1AC271V, or Sx1AC272V, or by direct oxidation of these Sx1A transmembrane (TM) cysteine residues. Mutating or oxidizing these highly conserved Sx1A Cys271 and Cys272 equally disrupted the Sx1A interaction with the channel. The results highlight the functional link between the VGCC and the exocytotic machinery, and attribute the redox sensitivity of the release process to the Sx1A TM C271 and C272. This unique intra-membrane signal-transduction pathway enables fast signaling, and triggers synchronous release by conformational-coupling of the channel with Sx1A.
Collapse
Affiliation(s)
- Niv Bachnoff
- The Hebrew University of Jerusalem, Institute of Life Sciences, Department of Biological Chemistry, Givat-Ram, Jerusalem, Israel
| | | | | | | |
Collapse
|
9
|
Regulation of voltage-gated calcium channels by synaptic proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:759-75. [PMID: 22453968 DOI: 10.1007/978-94-007-2888-2_33] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Calcium entry through neuronal voltage-gated calcium channels into presynaptic nerve terminal is a key step in synaptic exocytosis. In order to receive the calcium signal and trigger fast, efficient and spatially delimited neurotransmitter release, the vesicle-docking/release machinery must be located near the calcium source. In many cases, this close localization is achieved by a direct interaction of several members of the vesicle release machinery with the calcium channels. In turn, the binding of synaptic proteins to presynaptic calcium channels modulates channel activity to provide fine control over calcium entry, and thus modulates synaptic strength. In this chapter we summarize our present knowledge of the molecular mechanisms by which synaptic proteins regulate presynaptic calcium channel activity.
Collapse
|
10
|
Bipartite syntaxin 1A interactions mediate CaV2.2 calcium channel regulation. Biochem Biophys Res Commun 2011; 411:562-8. [DOI: 10.1016/j.bbrc.2011.06.185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 11/23/2022]
|
11
|
Schapire AL, Valpuesta V, Botella MA. Plasma membrane repair in plants. TRENDS IN PLANT SCIENCE 2009; 14:645-652. [PMID: 19819752 DOI: 10.1016/j.tplants.2009.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/01/2009] [Accepted: 09/09/2009] [Indexed: 05/28/2023]
Abstract
Resealing is the membrane-repair process that enables cells to survive disruption, preventing the loss of irreplaceable cell types and eliminating the cost of replacing injured cells. Given that failure in the resealing process in animal cells causes diverse types of muscular dystrophy, plasma membrane repair has been extensively studied in these systems. Animal proteins with Ca(2+)-binding domains such as synaptotagmins and dysferlin mediate Ca(2+)-dependent exocytosis to repair plasma membranes after mechanical damage. Until recently, no components or proof for membrane repair mechanisms have been discovered in plants. However, Arabidopsis SYT1 is now the first plant synaptotagmin demonstrated to participate in Ca(2+)-dependent repair of membranes. This suggests a conservation of membrane repair mechanisms between animal and plant cells.
Collapse
Affiliation(s)
- Arnaldo L Schapire
- Laboratorio de Bioquímica y Biotecnología Vegetal, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, Spain
| | | | | |
Collapse
|
12
|
Differences in biophysical properties of nucleus accumbens medium spiny neurons emerging from inactivation of inward rectifying potassium currents. J Comput Neurosci 2009; 27:453-70. [DOI: 10.1007/s10827-009-0161-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/25/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
|
13
|
Bassham DC, Blatt MR. SNAREs: cogs and coordinators in signaling and development. PLANT PHYSIOLOGY 2008; 147:1504-15. [PMID: 18678742 PMCID: PMC2492632 DOI: 10.1104/pp.108.121129] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 05/14/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Diane C Bassham
- Department of Genetics, Development, and Cell Biology and Plant Sciences Institute, Iowa State University, Ames, Iowa 50011, USA.
| | | |
Collapse
|
14
|
Sokolovski S, Hills A, Gay RA, Blatt MR. Functional interaction of the SNARE protein NtSyp121 in Ca2+ channel gating, Ca2+ transients and ABA signalling of stomatal guard cells. MOLECULAR PLANT 2008; 1:347-58. [PMID: 19825544 DOI: 10.1093/mp/ssm029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
There is now growing evidence that membrane vesicle trafficking proteins, especially of the superfamily of SNAREs, are critical for cellular signalling in plants. Work from this laboratory first demonstrated that a soluble, inhibitory (dominant-negative) fragment of the SNARE NtSyp121 blocked K+ and Cl- channel responses to the stress-related hormone abscisic acid (ABA), but left open a question about functional impacts on signal intermediates, especially on Ca2+-mediated signalling events. Here, we report one mode of action for the SNARE mediated directly through alterations in Ca2+ channel gating and its consequent effects on cytosolic-free [Ca2+] ([Ca2+]i) elevation. We find that expressing the same inhibitory fragment of NtSyp121 blocks ABA-evoked stomatal closure, but only partially suppresses stomatal closure in the presence of the NO donor, SNAP, which promotes [Ca2+]i elevation independently of the plasma membrane Ca2+ channels. Consistent with these observations, Ca2+ channel gating at the plasma membrane is altered by the SNARE fragment in a manner effective in reducing the potential for triggering a rise in [Ca2+]i, and we show directly that its expression in vivo leads to a pronounced suppression of evoked [Ca2+]i transients. These observations offer primary evidence for the functional coupling of the SNARE with Ca2+ channels at the plant cell plasma membrane and, because [Ca2+]i plays a key role in the control of K+ and Cl- channel currents in guard cells, they underscore an important mechanism for SNARE integration with ion channel regulation during stomatal closure.
Collapse
Affiliation(s)
- Sergei Sokolovski
- Laboratory of Plant Physiology and Biophysics, IBLS-Plant Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | |
Collapse
|
15
|
Buraei Z, Elmslie KS. The separation of antagonist from agonist effects of trisubstituted purines on CaV2.2 (N-type) channels. J Neurochem 2008; 105:1450-61. [PMID: 18221369 DOI: 10.1111/j.1471-4159.2008.05248.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dihydropyridines can affect L-type calcium channels (CaV1) as either agonists or antagonists. Seliciclib or R-roscovitine, a 2,6,9-trisubstituted purine, is a potent cyclin-dependent kinase inhibitor that induces both agonist and antagonist effects on CaV2 channels (N-, P/Q- and R-type). We studied the effects induced by various trisubstituted purines on CaV2.2 (N-type) channels to learn about chemical structure-function relationships. We found that S-roscovitine and R-roscovitine showed similar potency to inhibit, but agonist activity of S-roscovitine required at least a 20-fold higher concentration, suggesting stereospecificity of the agonist-binding site. The testing of other trisubstituted purines showed a correlation between CaV2.2 inhibition and cyclin-dependent kinase affinity that broke down after determining that a chemically unrelated inhibitor, kenpaullone, was a poor CaV2.2 inhibitor, and a kinase inactive analog (dimethylamino-olomoucine; DMAO) was a strong inhibitor, which together support a kinase independent effect. In fact, like dihydropyridine-induced L-channel inhibition, R-roscovitine left-shifted the closed-state inactivation versus voltage relationship, which suggests that inhibition results from CaV2 channels moving into the inactivated state. Trisubstituted purine antagonists could become clinically important drugs to treat diseases, such as heart failure and neuropathic pain that result from elevated CaV2 channel activity.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Physiology, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | | |
Collapse
|
16
|
Li Y, Wu Y, Zhou Y. Modulation of inactivation properties of CaV2.2 channels by 14-3-3 proteins. Neuron 2006; 51:755-71. [PMID: 16982421 DOI: 10.1016/j.neuron.2006.08.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 05/08/2006] [Accepted: 08/08/2006] [Indexed: 11/28/2022]
Abstract
Inactivation of presynaptic Ca(V)2.2 channels may play a role in regulating short-term synaptic plasticity. Here, we report a direct modulation of Ca(V)2.2 channel inactivation properties by 14-3-3, a family of signaling proteins involved in a wide range of biological processes. The structural elements critical for 14-3-3 binding and channel modulation lie in the carboxyl tail of the pore-forming alpha(1B) subunit, where we have identified two putative 14-3-3 interaction sites, including a phosphoserine-containing motif that directly binds to 14-3-3 and a second region near the EF hand and IQ domain. In transfected tsA 201 cells, 14-3-3 coexpression dramatically slows open-state inactivation and reduces cumulative inactivation of Ca(V)2.2 channels. In hippocampal neurons, interference with 14-3-3 binding accelerates Ca(V)2.2 channel inactivation and enhances short-term synaptic depression. These results demonstrate that 14-3-3 proteins are important regulators of Ca(V)2.2 channel activities and through this mechanism may contribute to their regulation of synaptic transmission and plasticity.
Collapse
MESH Headings
- 14-3-3 Proteins/genetics
- 14-3-3 Proteins/metabolism
- 14-3-3 Proteins/physiology
- Amino Acid Sequence
- Animals
- Binding Sites/genetics
- Binding, Competitive
- Blotting, Western
- Brain/cytology
- Brain/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Channels, N-Type/genetics
- Calcium Channels, N-Type/metabolism
- Calcium Channels, T-Type/genetics
- Calcium Channels, T-Type/metabolism
- Cell Line
- Cells, Cultured
- Glutathione Transferase/genetics
- Glutathione Transferase/metabolism
- Humans
- Neurons/cytology
- Neurons/metabolism
- Phosphorylation
- Protein Binding
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Rats
- Rats, Sprague-Dawley
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Synaptic Transmission/physiology
- Time Factors
Collapse
Affiliation(s)
- Yong Li
- Department of Neurobiology, Evelyn F. McKnight Brain Institute and Civitan International Research Center, School of Medicine, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
17
|
Broughman JR, Sun L, Umar S, Scott J, Sellin JH, Morris AP. Chronic PKC-beta activation in HT-29 Cl.19a colonocytes prevents cAMP-mediated ion secretion by inhibiting apical membrane current generation. Am J Physiol Gastrointest Liver Physiol 2006; 291:G318-30. [PMID: 16574993 DOI: 10.1152/ajpgi.00355.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated the effects of PKC-stimulating 12-deoxyphorbol 13-phenylacetate 20-acetate (DOPPA) and phorbol 12-myristate 13-acetate (PMA) phorbol esters on cAMP-dependent, forskolin (FSK)-stimulated, short-circuit Cl- current (ISC-cAMP) generation by colonocyte monolayers. These agonists elicited different actions depending on their dose and incubation time; PMA effects at the onset (<5 min) were independent of cAMP agonist and were characterized by transient anion-dependent transcellular and apical membrane ISC generation. DOPPA failed to elicit similar responses. Whereas chronic (24 h) exposure to both agents inhibited FSK-stimulated transcellular and apical membrane ISC-cAMP, the effects of DOPPA were more complex: this conventional PKC-beta-specific agonist also stimulated Ba2+-sensitive basolateral membrane-dependent facilitation of transcellular ISC-cAMP. PMA did not elicit a similar phenomenon. Prolonged exposure to high-dose PMA but not DOPPA led to apical membrane ISC-cAMP recovery. Changes in PKC alpha-, beta1-, gamma-, and epsilon-isoform membrane partitioning and expression correlated with these findings. PMA-induced transcellular ISC correlated with PKC-alpha membrane association, whereas low doses of both agents inhibited transcellular and apical membrane ISC-cAMP, increased PKC-beta1, decreased PKC-beta2 membrane association, and caused reciprocal changes in isoform mass. During the apical membrane ISC-cAMP recovery after prolonged high-dose PMA exposure, an almost-complete depletion of cellular PKC-beta1 and a significant reduction in PKC-epsilon mass occurred. Thus activated PKC-beta1 and/or PKC-epsilon prevented, whereas activated PKC-alpha facilitated, apical membrane ISC-cAMP. PKC-beta-dependent augmentation of transcellular ISC-cAMP at the level of the basolateral membrane demonstrated that transport events with geographically distinct subcellular membranes can be independently regulated by the PKC beta-isoform.
Collapse
Affiliation(s)
- James R Broughman
- Department of Integrative Biology, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
18
|
Ramakrishnan NA, Drescher MJ, Sheikhali SA, Khan KM, Hatfield JS, Dickson MJ, Drescher DG. Molecular identification of an N-type Ca2+ channel in saccular hair cells. Neuroscience 2006; 139:1417-34. [PMID: 16581196 DOI: 10.1016/j.neuroscience.2006.01.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Revised: 01/26/2006] [Accepted: 01/26/2006] [Indexed: 11/17/2022]
Abstract
We report new molecular evidence for the presence of an N-type (Ca(v)2.2, alpha1B) voltage-gated Ca(2+) channel in hair cells of the saccular epithelium of the rainbow trout. The Ca(v)2.2 amino-acid sequence shows 68% and 63% identity compared with chick and human Ca(v)2.2, respectively. This channel reveals features that are characteristic of an N-type Ca(2+) channel: an omega-conotoxin GVIA binding domain, G(betagamma) binding regions, and a synaptic protein interaction site. Immunohistochemical studies with a custom antibody show that immunoreactivity for the Ca(v)2.2 is concentrated in the basolateral and apical regions of hair cells. Whereas trout brain and saccular macula express an 11-amino-acid insert in the second G(betagamma) binding domain of the Ca(v)2.2 I-II loop, isolated hair cells appear not to express this variant. We constructed fusion polypeptides representing portions of the I-II loop, beta1 and beta2a auxiliary subunits, the II-III loop, and syntaxin, and examined their intermolecular interactions via immunoprecipitation and surface plasmon resonance. The I-II loop polypeptides bound both beta1 and beta2a subunits with a preference for beta1, and the II-III loop exhibited Ca(2+)-dependent syntaxin binding. We demonstrated syntaxin immunoreactivity near afferent endings in hair cells, at hair-cell apices, and in efferent endings on hair cells, the former two sites consistent with binding of syntaxin to Ca(v)2.2. The present molecular characterization of the Ca(v)2.2 channel provides novel biochemical evidence for an N-type channel in hair cells, and details molecular interactions of this channel that reflect hair-cell function, such as spontaneous activity and vesicular trafficking. The current work, to our knowledge, represents the first demonstration of a putative N-type channel in hair cells as documented by tissue-specific antibody immunoreactivity and hair-cell-specific cDNA sequence.
Collapse
Affiliation(s)
- N A Ramakrishnan
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Voltage-gated Ca2+ (Ca(v)) channels are found in all excitable cells and many nonexcitable cells, in which they govern Ca2+ influx, thereby contributing to determine a host of important physiological processes including gene transcription, muscle contraction, hormone secretion, and neurotransmitter release. The past years have seen some significant advances in our understanding of the functional, pharmacological, and molecular properties of Ca(v) channels. Molecular studies have revealed that several of these channels are oligomeric complexes consisting of an ion-conducting alpha1 subunit and auxiliary alpha2delta, beta, and gamma subunits. In addition, cloning of multiple Ca(v) channel alpha1 subunits has offered the opportunity to investigate the regulation of these proteins at the molecular level. The regulation of Ca(v) channels by intracellular second messengers constitutes a key mechanism for controlling Ca2+ influx. This review summarizes recent advances that have provided important clues to the underlying molecular mechanisms involved in the regulation of Ca(v) channels by protein phosphorylation, G-protein activation, and interactions with Ca(2+)-binding and SNARE proteins.
Collapse
Affiliation(s)
- Ricardo Felix
- Department of Physiology Biophysics, and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-IPN, Mexico City, Mexico.
| |
Collapse
|
20
|
Swayne LA, Chen L, Hameed S, Barr W, Charlesworth E, Colicos MA, Zamponi GW, Braun JEA. Crosstalk between huntingtin and syntaxin 1A regulates N-type calcium channels. Mol Cell Neurosci 2005; 30:339-51. [PMID: 16162412 DOI: 10.1016/j.mcn.2005.07.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 06/20/2005] [Accepted: 07/28/2005] [Indexed: 11/19/2022] Open
Abstract
We have identified a novel interaction between huntingtin (htt) and N-type calcium channels, a channel key in coupling calcium influx with synaptic vesicle exocytosis. Htt is a widely expressed 350-kDa cytosolic protein bearing an N-terminal polyglutamine tract. Htt is proteolytically cleaved by calpains and caspases and the resultant htt N-terminal fragments have been proposed to be biologically active; however, the cellular function of htt and/or the htt fragments remains enigmatic. We show that N-terminal fragments of htt (consisting of exon1) and full-length htt associate with the synaptic protein interaction (synprint) region of the N-type calcium channel. Given that synprint has previously been shown to bind syntaxin 1A and that this association elicits inhibition of N-type calcium channels, we tested whether htt(exon1) affects the modulation of these channels. Our data indicate that htt(exon1) enhances calcium influx by blocking syntaxin 1A inhibition of N-type calcium channels and attributes a key role for htt N-terminal fragments in the fine tuning of neurotransmission.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pan PY, Cai Q, Lin L, Lu PH, Duan S, Sheng ZH. SNAP-29-mediated modulation of synaptic transmission in cultured hippocampal neurons. J Biol Chem 2005; 280:25769-79. [PMID: 15890653 PMCID: PMC1864940 DOI: 10.1074/jbc.m502356200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Identifying the molecules that regulate both the recycling of synaptic vesicles and the SNARE components required for fusion is critical for elucidating the molecular mechanisms underlying synaptic plasticity. SNAP-29 was initially isolated as a syntaxin-binding and ubiquitously expressed protein. Previous studies have suggested that SNAP-29 inhibits SNARE complex disassembly, thereby reducing synaptic transmission in cultured superior cervical ganglion neurons in an activity-dependent manner. However, the role of SNAP-29 in regulating synaptic vesicle recycling and short-term plasticity in the central nervous system remains unclear. In the present study, we examined the effect of SNAP-29 on synaptic transmission in cultured hippocampal neurons by dual patch clamp whole-cell recording, FM dye imaging, and immunocytochemistry. Our results demonstrated that exogenous expression of SNAP-29 in presynaptic neurons significantly decreased the efficiency of synaptic transmission after repetitive firing within a few minutes under low and moderate frequency stimulations (0.1 and 1 Hz). In contrast, SNAP-29 did not affect the density of synapses and basal synaptic transmission. Whereas neurotransmitter release was unaffected during intensive stimulation, recovery after synaptic depression was impaired by SNAP-29. Furthermore, knockdown of SNAP-29 expression in neurons by small interfering RNA increased the efficiency of synaptic transmission during repetitive firing. These findings suggest that SNAP-29 acts as a negative modulator for neurotransmitter release, probably by slowing recycling of the SNARE-based fusion machinery and synaptic vesicle turnover.
Collapse
Affiliation(s)
- Ping-Yue Pan
- From the Department of Neurobiology, Shanghai Second Medical University, 280 Chong Qing Nan Road, 200025 Shanghai, China
- Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Synaptic Function Unit, The Porter Neuroscience Research Center, NINDS, National Institutes of Health, Bethesda, Maryland 20892-3701
| | - Qian Cai
- Synaptic Function Unit, The Porter Neuroscience Research Center, NINDS, National Institutes of Health, Bethesda, Maryland 20892-3701
| | - Lin Lin
- From the Department of Neurobiology, Shanghai Second Medical University, 280 Chong Qing Nan Road, 200025 Shanghai, China
| | - Pei-Hua Lu
- From the Department of Neurobiology, Shanghai Second Medical University, 280 Chong Qing Nan Road, 200025 Shanghai, China
| | - Shumin Duan
- Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zu-Hang Sheng
- Synaptic Function Unit, The Porter Neuroscience Research Center, NINDS, National Institutes of Health, Bethesda, Maryland 20892-3701
| |
Collapse
|
22
|
Yokoyama CT, Myers SJ, Fu J, Mockus SM, Scheuer T, Catterall WA. Mechanism of SNARE protein binding and regulation of Cav2 channels by phosphorylation of the synaptic protein interaction site. Mol Cell Neurosci 2005; 28:1-17. [PMID: 15607937 DOI: 10.1016/j.mcn.2004.08.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Revised: 06/02/2004] [Accepted: 08/02/2004] [Indexed: 11/30/2022] Open
Abstract
Ca(v)2.1 and Ca(v)2.2 channels conduct P/Q-type and N-type Ca(2+) currents that initiate neurotransmission and bind SNARE proteins through a synaptic protein interaction (synprint) site. PKC and CaMKII phosphorylate the synprint site and inhibit SNARE protein binding in vitro. Here we identify two separate microdomains that each bind syntaxin 1A and SNAP-25 in vitro and are regulated by PKC phosphorylation at serines 774 and 898 and CaMKII phosphorylation at serines 784 and 896. Activation of PKC resulted in its recruitment to and phosphorylation of Ca(V)2.2 channels, but PKC phosphorylation did not dissociate Ca(V)2.2 channel/syntaxin 1A complexes. Chimeric Ca(V)2.1a channels containing the synprint site of Ca(v)2.2 gain modulation by syntaxin 1A, which is blocked by PKC phosphorylation at the sites identified above. Our results support a bipartite model for the synprint site in which each SNARE-binding microdomain is controlled by a separate PKC and CaMKII phosphorylation site that regulates channel modulation by SNARE proteins.
Collapse
Affiliation(s)
- Charles T Yokoyama
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
23
|
Jarvis SE, Zamponi GW. Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels. Cell Calcium 2005; 37:483-8. [PMID: 15820397 DOI: 10.1016/j.ceca.2005.01.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 01/06/2005] [Indexed: 11/24/2022]
Abstract
Calcium entry through presynaptic voltage-gated calcium channels is essential for neurotransmitter release. The two major types of presynaptic calcium channels contain a synaptic protein interaction site that physically interacts with synaptic vesicle release proteins. This is thought to tighten the coupling between the sources of calcium entry and the neurotransmitter release machinery. Conversely, the binding of synaptic proteins to presynaptic calcium channels regulates calcium channel activity. Hence, presynaptic calcium channels act not only as the masters of the synaptic release process, but also as key targets for feedback inhibition.
Collapse
Affiliation(s)
- Scott E Jarvis
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr. NW, Calgary, Canada T2N 4N1
| | | |
Collapse
|
24
|
Liu J, Ernst SA, Gladycheva SE, Lee YYF, Lentz SI, Ho CS, Li Q, Stuenkel EL. Fluorescence Resonance Energy Transfer Reports Properties of Syntaxin1A Interaction with Munc18-1 in Vivo. J Biol Chem 2004; 279:55924-36. [PMID: 15489225 DOI: 10.1074/jbc.m410024200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Syntaxin1A, a neural-specific N-ethylmaleimide-sensitive factor attachment protein receptor protein essential to neurotransmitter release, in isolation forms a closed conformation with an N-terminal alpha-helix bundle folded upon the SNARE motif (H3 domain), thereby limiting interaction of the H3 domain with cognate SNAREs. Munc18-1, a neural-specific member of the Sec1/Munc18 protein family, binds to syntaxin1A, stabilizing this closed conformation. We used fluorescence resonance energy transfer (FRET) to characterize the Munc18-1/syntaxin1A interaction in intact cells. Enhanced cyan fluorescent protein-Munc18-1 and a citrine variant of enhanced yellow fluorescent protein-syntaxin1A, or mutants of these proteins, were expressed as donor and acceptor pairs in human embryonic kidney HEK293-S3 and adrenal chromaffin cells. Apparent FRET efficiency was measured using two independent approaches with complementary results that unambiguously verified FRET and provided a spatial map of FRET efficiency. In addition, enhanced cyan fluorescent protein-Munc18-1 and a citrine variant of enhanced yellow fluorescent protein-syntaxin1A colocalized with a Golgi marker and exhibited FRET at early expression times, whereas a strong plasma membrane colocalization, with similar FRET values, was apparent at later times. Trafficking of syntaxin1A to the plasma membrane was dependent on the presence of Munc18-1. Both syntaxin1A(L165A/E166A), a constitutively open conformation mutant, and syntaxin1A(I233A), an H3 domain point mutant, demonstrated apparent FRET efficiency that was reduced approximately 70% from control. In contrast, the H3 domain mutant syntaxin1A(I209A) had no effect. By using phosphomimetic mutants of Munc18-1, we also established that Ser-313, a Munc18-1 protein kinase C phosphorylation site, and Thr-574, a cyclin-dependent kinase 5 phosphorylation site, regulate Munc18-1/syntaxin1A interaction in HEK293-S3 and chromaffin cells. We conclude that FRET imaging in living cells may allow correlated regulation of Munc18-1/syntaxin1A interactions to Ca(2+)-regulated secretory events.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Molecular and Integrative Physiology, The Medical School, University of Michigan, 7808 Medical Sciences II Building, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hurley JH, Cahill AL, Wang M, Fox AP. Syntaxin 1A regulation of weakly inactivating N-type Ca2+ channels. J Physiol 2004; 560:351-63. [PMID: 15319413 PMCID: PMC1665260 DOI: 10.1113/jphysiol.2004.068817] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
N- and P/Q-type Ca2+ channels are abundant in nerve terminals where they interact with proteins of the release apparatus, including syntaxin 1A and SNAP-25. In previous studies on N- or P/Q-type Ca2+ channels, syntaxin 1A co-expression reduced current amplitudes, increased voltage-dependent inactivation and/or enhanced G-protein inhibition. However, these studies were conducted in Ca2+ channels that exhibited significant voltage-dependent inactivation. We previously reported that N-type current in bovine chromaffin cells exhibits very little voltage-dependent inactivation and we identified the Ca2+ channel subunits involved. This study was undertaken to determine the effect of syntaxin 1A on this weakly inactivating Ca2+ channel. Co-expression of syntaxin 1A with the weakly inactivating bovine N-type Ca2+ channels in Xenopus oocytes did not appear to alter inactivation but dramatically reduced current amplitudes, without changing cell surface expression. To further understand the mechanisms of syntaxin 1A regulation of this weakly inactivating channel, we examined mutants of the alpha1B subunit, beta2a subunit and syntaxin 1A. We determined that the synprint site of alpha1B and the C-terminal third of syntaxin 1A were necessary for the reduced current amplitude. In addition we show that enhanced G-protein-dependent modulation of the Ca2+ current by syntaxin 1A cannot explain the large suppression of Ca2+ current observed. Of most significance, syntaxin 1A increased voltage-dependent inactivation in channels containing mutant beta2a subunits that cannot be palmitoylated. Our data suggest that changes in inactivation can not explain the reduction in current amplitude produced by co-expressing syntaxin and a weakly inactivating Ca2+ channel.
Collapse
Affiliation(s)
- Joyce H Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
26
|
Gladycheva SE, Ho CS, Lee YYF, Stuenkel EL. Regulation of syntaxin1A-munc18 complex for SNARE pairing in HEK293 cells. J Physiol 2004; 558:857-71. [PMID: 15218059 PMCID: PMC1665022 DOI: 10.1113/jphysiol.2004.067249] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/26/2004] [Accepted: 06/11/2004] [Indexed: 11/08/2022] Open
Abstract
The formation and dissolution of SNARE protein complexes is essential for Ca(2+)-triggered fusion of neurotransmitter-filled vesicles at the presynaptic membrane. Among the pre-synaptic SNARE proteins, the activation of the Q-SNARE syntaxin1A is a critical event for SNARE complex formation. Activation requires syntaxin1A to transit from a munc18-bound non-interacting state to one competent for SNARE binding. The molecular mechanisms that regulate this transition remain unclear. The propensity of syntaxin1A to promote voltage-dependent steady-state inactivation of N-type Ca(2+) channels and accelerate their entry into inactivation was used in a heterologous cell expression system to elucidate regulation of syntaxin1A protein-protein interactions. We report that coexpression of munc18 eliminated the promoting effect of syntaxin1A on inactivation. This effect of munc18 was completely disrupted by coexpression of munc13-1, but not munc13-2 or munc13-3. Also, since expression of munc13-1 with syntaxin1A resulted in an inactivation phenotype identical to that of munc18 with syntaxin1A, the action of munc13-1 on the munc18-syntaxin1A complex was functionally unique and did not result from competitive binding interactions. Furthermore, munc13 expressed with syntaxin1A and munc18 promoted redistribution of a cytosolic SNAP25 mutant to the membrane, a result indicative of syntaxin1A-SNAP25 SNARE pairing. These data demonstrate an important role of munc13 to control the protein-protein interactions of syntaxin1A in vivo, and support munc13 as critical to dissociating syntaxin1A-munc18 complexes and making syntaxin1A available for SNARE interactions.
Collapse
Affiliation(s)
- Svetlana E Gladycheva
- 7804 Medical Sciences II Building, Department of Molecular and Integrative Physiology, The Medical School, University of Michigan, Ann Arbor, MI 48109-0622, USA.
| | | | | | | |
Collapse
|
27
|
Thaler C, Gray AC, Lipscombe D. Cumulative inactivation of N-type CaV2.2 calcium channels modified by alternative splicing. Proc Natl Acad Sci U S A 2004; 101:5675-9. [PMID: 15060274 PMCID: PMC397472 DOI: 10.1073/pnas.0303402101] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Ca(V)2 family of voltage-gated calcium channels, present in presynaptic nerve terminals, regulates exocytosis and synaptic transmission. Cumulative inactivation of these channels occurs during trains of action potentials, and this may control short-term dynamics at the synapse. Inactivation during brief, repetitive stimulation is primarily attributed to closed-state inactivation, and several factors modulate the susceptibility of voltage-gated calcium channels to this form of inactivation. We show that alternative splicing of an exon in a cytoplasmic region of the Ca(V)2.2 channel modulates its sensitivity to inactivation during trains of action potential waveforms. The presence of this exon, exon 18a, protects the Ca(V)2.2 channel from entry into closed-state inactivation specifically during short (10 ms to 3 s) and small depolarizations of the membrane potential (-60 mV to -50 mV). The reduced sensitivity to closed-state inactivation within this dynamic range likely underlies the differential responsiveness of Ca(V)2.2 splice isoforms to trains of action potential waveforms. Regulated alternative splicing of Ca(V)2.2 represents a possible mechanism for modulating short-term dynamics of synaptic efficacy in different regions of the nervous system.
Collapse
Affiliation(s)
- Christopher Thaler
- Laboratory of Molecular Physiology, Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852, USA
| | | | | |
Collapse
|
28
|
Yasuda T, Lewis RJ, Adams DJ. Overexpressed Ca(v)beta3 inhibits N-type (Cav2.2) calcium channel currents through a hyperpolarizing shift of ultra-slow and closed-state inactivation. ACTA ACUST UNITED AC 2004; 123:401-16. [PMID: 15024042 PMCID: PMC2217459 DOI: 10.1085/jgp.200308967] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been shown that β auxiliary subunits increase current amplitude in voltage-dependent calcium channels. In this study, however, we found a novel inhibitory effect of β3 subunit on macroscopic Ba2+ currents through recombinant N- and R-type calcium channels expressed in Xenopus oocytes. Overexpressed β3 (12.5 ng/cell cRNA) significantly suppressed N- and R-type, but not L-type, calcium channel currents at “physiological” holding potentials (HPs) of −60 and −80 mV. At a HP of −80 mV, coinjection of various concentrations (0–12.5 ng) of the β3 with Cav2.2α1 and α2δ enhanced the maximum conductance of expressed channels at lower β3 concentrations but at higher concentrations (>2.5 ng/cell) caused a marked inhibition. The β3-induced current suppression was reversed at a HP of −120 mV, suggesting that the inhibition was voltage dependent. A high concentration of Ba2+ (40 mM) as a charge carrier also largely diminished the effect of β3 at −80 mV. Therefore, experimental conditions (HP, divalent cation concentration, and β3 subunit concentration) approaching normal physiological conditions were critical to elucidate the full extent of this novel β3 effect. Steady-state inactivation curves revealed that N-type channels exhibited “closed-state” inactivation without β3, and that β3 caused an ∼40-mV negative shift of the inactivation, producing a second component with an inactivation midpoint of approximately −85 mV. The inactivation of N-type channels in the presence of a high concentration (12.5 ng/cell) of β3 developed slowly and the time-dependent inactivation curve was best fit by the sum of two exponential functions with time constants of 14 s and 8.8 min at −80 mV. Similar “ultra-slow” inactivation was observed for N-type channels without β3. Thus, β3 can have a profound negative regulatory effect on N-type (and also R-type) calcium channels by causing a hyperpolarizing shift of the inactivation without affecting “ultra-slow” and “closed-state” inactivation properties.
Collapse
|
29
|
Abstract
Soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) proteins have been at the fore-front of research on biological membrane fusion for some time. The subcellular localization of SNAREs and their ability to form the so-called SNARE complex may be integral to determining the specificity of intracellular fusion (the SNARE hypothesis) and/or serving as the minimal fusion machinery. Both the SNARE hypothesis and the idea of the minimal fusion machinery have been challenged by a number of experimental observations in various model systems, suggesting that SNAREs may have other functions. Considering recent advances in the SNARE literature, it appears that SNAREs may actually function as part of a complex fusion "machine." Their role in the machinery could be any one or a combination of roles, including establishing tight membrane contact, formation of a scaffolding on which to build the machine, binding of lipid surfaces, and many others. It is also possible that complexations other than the classic SNARE complex participate in membrane fusion.
Collapse
Affiliation(s)
- Joseph G Duman
- Department of Molecular and Cell Biology, Univ. of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
30
|
Spafford JD, Chen L, Feng ZP, Smit AB, Zamponi GW. Expression and modulation of an invertebrate presynaptic calcium channel alpha1 subunit homolog. J Biol Chem 2003; 278:21178-87. [PMID: 12672808 DOI: 10.1074/jbc.m302212200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we report the first assessment of the expression and modulation of an invertebrate alpha1 subunit homolog of mammalian presynaptic Cav2 calcium channels (N-type and P/Q-type) in mammalian cells. Our data show that molluscan channel (LCav2a) isolated from Lymnaea stagnalis is effectively membrane-targeted and electrophysiologically recordable in tsA-201 cells only when the first 44 amino acids of LCav2a are substituted for the corresponding region of rat Cav2.1. When coexpressed with rat accessory subunits, the biophysical properties of LCav2a-5'rbA resemble those of mammalian N-type calcium channels with respect to activation and inactivation, lack of pronounced calcium dependent inactivation, preferential permeation of barium ions, and cadmium block. Consistent with reports of native Lymnaea calcium currents, the LCav2a-5'rbA channel is insensitive to micromolar concentrations of omega-conotoxin GVIA and is not affected by nifedipine, thus confirming that it is not of the L-type. Interestingly, the LCav2a-5'rbA channel is almost completely and irreversibly inhibited by guanosine 5'-3-O-(thio)triphosphate but not regulated by syntaxin1, suggesting that invertebrate presynaptic calcium channels are differently modulated from their vertebrate counterparts.
Collapse
Affiliation(s)
- J David Spafford
- Department of Physiology and Biophysics, Cellular and Molecular Neurobiology Research Group, University of Calgary, Calgary, T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
31
|
Fletcher S, Bowden SEH, Marrion NV. False interaction of syntaxin 1A with a Ca(2+)-activated K(+) channel revealed by co-immunoprecipitation and pull-down assays: implications for identification of protein-protein interactions. Neuropharmacology 2003; 44:817-27. [PMID: 12681380 DOI: 10.1016/s0028-3908(03)00049-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The techniques of co-immunoprecipitation and immunocytochemical co-labelling are classically used to identify protein-protein interactions. We have used an antibody to the rat small conductance calcium-activated potassium channel subtype 1 (rSK1) to immunoprecipitate proteins from rat brain. A 35 kDa protein was recognized by two monoclonal antibodies to syntaxin 1 and a polyclonal antibody to syntaxin 1A, but not by antibodies to syntaxins 2, 3 or 4. These data suggested that syntaxin 1A is specifically associated with rSK1 in rat brain. A GST construct of the carboxyl terminus of rSK1 was able to pull-down syntaxin 1A from rat brain. Immunocytochemistry showed somatic labelling for both rSK1 and syntaxin 1A in acutely dissociated hippocampal CA1 neurons, confirming that these proteins could interact in vivo. However, control immunoprecipitations showed that antibodies to eight potassium channels could also immunoprecipitate syntaxin, even though some of these channels would not be expected to reside in the same subcellular compartment. Mock immunoprecipitations and pull-down assays showed that syntaxin 1 could directly interact with sepharose and agarose resins. Hence immunoprecipitation and pull-down assays do not provide evidence that syntaxin is specifically associating with a protein, placing doubt on a number of reported interactions with syntaxin 1A.
Collapse
Affiliation(s)
- S Fletcher
- Department of Pharmacology and the MRC Centre for Synaptic Plasticity, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
32
|
Stanley EF. Syntaxin I modulation of presynaptic calcium channel inactivation revealed by botulinum toxin C1. Eur J Neurosci 2003; 17:1303-5. [PMID: 12670319 DOI: 10.1046/j.1460-9568.2003.02536.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chick ciliary ganglion calyx-type nerve terminal was used to examine voltage-sensitive inactivation of presynaptic N-type Ca2+ channels and to test if this inactivation is modulated by the transmitter release-associated protein syntaxin I. We tested the role of this protein with botulinum toxin C1 (BtC1) which cleaves syntaxin I close to its membrane anchor. The presynaptic Ca2+ current inactivated as two distinct populations with approximately 75% inactivating at a depolarized potential, V1/2 approximately -15 mV, with the remainder inactivating at approximately -75 mV. BtC1 had no detectable effect on the latter component but resulted in a approximately 7 mV positive shift in the V1/2 of the -15 mV inactivating component. These results confirm that the bulk of presynaptic N-type Ca2+ channels are in general resistant to voltage dependent inactivation and provide the first direct evidence that the physiological properties of presynaptic nerve terminal Ca2+ channels are subject to modulation by release site-associated proteins.
Collapse
Affiliation(s)
- Elise F Stanley
- Cellular and Molecular Biology Division, MP14-320, Toronto Western Research Institute, University Health Network, 399 Bathurst Street, Toronto ON, Canada
| |
Collapse
|
33
|
Song H, Nie L, Rodriguez-Contreras A, Sheng ZH, Yamoah EN. Functional interaction of auxiliary subunits and synaptic proteins with Ca(v)1.3 may impart hair cell Ca2+ current properties. J Neurophysiol 2003; 89:1143-9. [PMID: 12574487 DOI: 10.1152/jn.00482.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We assessed the functional determinants of the properties of L-type Ca(2+) currents in hair cells by co-expressing the pore-forming Ca(V)1.3alpha(1) subunit with the auxiliary subunits beta(1A) and/or alpha(2delta). Because Ca(2+) channels in hair cells are poised to interact with synaptic proteins, we also co-expressed the Ca(V)1.3alpha(1) subunit with syntaxin, vesicle-associated membrane protein (VAMP), and synaptosome associated protein of 25 kDa (SNAP25). Expression of the Ca(V)1.3alpha(1) subunit in human embryonic kidney cells (HEK 293) produced a dihydropyridine (DHP)-sensitive Ca(2+) current (peak current density -2.0 +/- 0.2 pA/pF; n = 11). Co-expression with beta(1A) and alpha(2delta) subunits enhanced the magnitude of the current (peak current density: Ca(V)1.3alpha(1) + beta(1A) = -4.3 +/- 0.8 pA/pF, n = 10; Ca(V)1.3alpha(1) + beta(1A) + alpha(2delta) = -4.1 +/- 0.6 pA/pF, n = 9) and produced a leftward shift of approximately 9 mV in the voltage-dependent activation of the currents. Furthermore, co-expression of Ca(V)1.3alpha(1) with syntaxin/VAMP/SNAP resulted in at least a twofold increase in the peak current density (-4.7 +/- 0.2 pA/pF; n = 11) and reduced the extent of inactivation of the Ca(2+) currents. Botulinum toxin, an inhibitor of syntaxin, accelerated the inactivation profile of Ca(2+) currents in hair cells. Immunocytochemical data also indicated that the Ca(2+) channels and syntaxin are co-localized in hair cells, suggesting there is functional interaction of the Ca(V)1.3alpha(1) with auxiliary subunits and synaptic proteins, that may contribute to the distinct properties of the DHP-sensitive channels in hair cells.
Collapse
Affiliation(s)
- Haitao Song
- Center for Neuroscience, Department of Otolaryngology, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Jarvis SE, Barr W, Feng ZP, Hamid J, Zamponi GW. Molecular determinants of syntaxin 1 modulation of N-type calcium channels. J Biol Chem 2002; 277:44399-407. [PMID: 12221094 DOI: 10.1074/jbc.m206902200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that syntaxin 1A, a component of the presynaptic SNARE complex, directly modulates N-type calcium channel gating in addition to promoting tonic G-protein inhibition of the channels, whereas syntaxin 1B affects channel gating but does not support G-protein modulation (Jarvis, S. E., and Zamponi, G. W. (2001) J. Neurosci. 21, 2939-2948). Here, we have investigated the molecular determinants that govern the action of syntaxin 1 isoforms on N-type calcium channel function. In vitro evidence shows that both syntaxin 1 isoforms physically interact with the G-protein beta subunit and the synaptic protein interaction (synprint) site contained within the N-type calcium channel domain II-III linker region. Moreover, in vitro evidence suggests that distinct domains of syntaxin participate in each interaction, with the COOH-terminal SNARE domain (residues 183-230) binding to Gbeta and the N-terminal (residues 1-69) binding to the synprint motif of the channel. Electrophysiological analysis of chimeric syntaxin 1A/1B constructs reveals that the variable NH(2)-terminal domains of syntaxin 1 are responsible for the differential effects of syntaxin 1A and 1B on N-type calcium channel function. Because syntaxin 1 exists in both "open" and "closed" conformations during exocytosis, we produced a constitutively open form of syntaxin 1A and found that it still promoted G-protein inhibition of the channels, but it did not affect N-type channel availability. This state dependence of the ability of syntaxin 1 to mediate N-type calcium channel availability suggests that syntaxin 1 dynamically regulates N-type channel function during various steps of exocytosis. Finally, syntaxin 1A appeared to compete with Ggamma for the Gbeta subunit both in vitro and under physiological conditions, suggesting that syntaxin 1A may contain a G-protein gamma subunit-like domain.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Antigens, Surface/physiology
- Blotting, Western
- Brain/metabolism
- Calcium Channels, N-Type/metabolism
- Cattle
- Cloning, Molecular
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Glutathione Transferase/metabolism
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/physiology
- Patch-Clamp Techniques
- Polymerase Chain Reaction
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Rats
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- Syntaxin 1
- Transfection
Collapse
|
36
|
Helton TD, Kojetin DJ, Cavanagh J, Horne WA. Alternative splicing of a beta4 subunit proline-rich motif regulates voltage-dependent gating and toxin block of Cav2.1 Ca2+ channels. J Neurosci 2002; 22:9331-9. [PMID: 12417658 PMCID: PMC6758066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
Ca2+ channel beta subunits modify alpha1 subunit gating properties through direct interactions with intracellular linker domains. In a previous report (Helton and Horne, 2002), we showed that alternative splicing of the beta4 subunit had alpha1 subunit subtype-specific effects on Ca2+ channel activation and fast inactivation. We extend these findings in the present report to include effects on slow inactivation and block by the peptide toxin omega-conotoxin (CTx)-MVIIC. N-terminal deletion and site-directed mutagenesis experiments revealed that the effects of alternative splicing on toxin block and all aspects of gating could be attributed to a proline-rich motif found within N-terminal beta4b amino acids 10-20. Interestingly, this motif is conserved within the third postsynaptic density-95 (PSD-95)/Discs large/zona occludens-1 domain of the distantly related membrane-associated guanylate kinase homolog, PSD-95. Sequence identity of approximately 30% made possible the building of beta4a and beta4b three-dimensional structural models using PSD-95 as the target sequence. The models (1) reveal that alternative splicing of the beta4 N terminus results in dramatic differences in surface charge distribution and (2) localize the proline-rich motif of beta4b to an extended arm structure that flanks what would be the equivalent of a highly modified PSD-95 carboxylate binding loop. Northern blot analysis revealed a markedly different pattern of distribution for beta4a versus beta4b in the human CNS. Whereas beta4a is distributed throughout evolutionarily older regions of the CNS, beta4b is concentrated heavily in the forebrain. These results raise interesting questions about the functional role that alternative splicing of the beta4 subunit has played in the evolution of complex neural networks.
Collapse
Affiliation(s)
- Thomas D Helton
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina 27606, USA
| | | | | | | |
Collapse
|
37
|
Geelen D, Leyman B, Batoko H, Di Sansebastiano GP, Moore I, Blatt MR, Di Sansabastiano GP. The abscisic acid-related SNARE homolog NtSyr1 contributes to secretion and growth: evidence from competition with its cytosolic domain. THE PLANT CELL 2002; 14:387-406. [PMID: 11884682 PMCID: PMC152920 DOI: 10.1105/tpc.010328] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2001] [Accepted: 10/23/2001] [Indexed: 05/18/2023]
Abstract
Syntaxins and other SNARE proteins are crucial for intracellular vesicle trafficking, fusion, and secretion. Previously, we isolated the syntaxin-related protein NtSyr1 (NtSyp121) from tobacco in a screen for abscisic acid-related signaling elements, demonstrating its role in determining the abscisic acid sensitivity of K(+) and Cl(-) channels in stomatal guard cells. NtSyr1 is localized to the plasma membrane and is expressed normally throughout the plant, especially in root tissues, suggesting that it might contribute to cellular homeostasis as well as to signaling. To explore its functions in vivo further, we examined stably transformed lines of tobacco that expressed various constructs of NtSyr1, including the full-length protein and a truncated fragment, Sp2, corresponding to the cytosolic domain shown previously to be active in suppressing ion channel response to abscisic acid. Constitutively overexpressing NtSyr1 yielded uniformly high levels of protein (>10 times the wild-type levels) and was associated with a significant enhancement of root growth in seedlings but not with any obvious phenotype in mature, well-watered plants. Similar transformations with constructs encoding the Sp2 fragment of NtSyr1 showed altered leaf morphology but gave only low levels of Sp2 fragment, suggesting a strong selective pressure against plants expressing this protein. High expression of the Sp2 fragment was achieved in stable transformants under the control of a dexamethasone-inducible promoter. Sp2 expression was correlated positively with altered cellular and tissue morphology in leaves and roots and with a cessation of growth in seedlings. Overexpression of the full-length NtSyr1 protein rescued the wild-type phenotype, even in plants expressing high levels of the Sp2 fragment, supporting the idea that the Sp2 fragment interfered specifically with NtSyr1 function by competing with NtSyr1 for its binding partners. To explore NtSyr1 function in secretion, we used a green fluorescent protein (GFP)-based section assay. When a secreted GFP marker was coexpressed with Sp2 in tobacco leaves, GFP fluorescence was retained in cytosolic reticulate and punctate structures. In contrast, in plants coexpressing secreted GFP and NtSyr1 or secreted GFP alone, no GFP fluorescence accumulated within the cells. A new yellow fluorescent protein-based secretion marker was used to show that the punctate structures labeled in the presence of Sp2 colocalized with a Golgi marker. These structures were not labeled in the presence of a dominant Rab1 mutant that inhibited transport from the endoplasmic reticulum to the Golgi. We propose that NtSyr1 functions as an element in SNARE-mediated vesicle trafficking to the plasma membrane and is required for cellular growth and homeostasis.
Collapse
Affiliation(s)
- Danny Geelen
- Laboratory of Plant Physiology and Biophysics, Imperial College of Science, Technology, and Medicine at Wye, Kent TN25 5AH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
38
|
Chen S, Zheng X, Schulze KL, Morris T, Bellen H, Stanley EF. Enhancement of presynaptic calcium current by cysteine string protein. J Physiol 2002; 538:383-9. [PMID: 11790807 PMCID: PMC2290073 DOI: 10.1113/jphysiol.2001.013397] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The isolated chick ciliary neuron calyx synapse preparation was used to test cysteine string protein (CSP) action on presynaptic N-type Ca(2+) channels. Endogenous CSP was localized primarily to secretory vesicle clusters in the presynaptic nerve terminal. Introduction of recombinant CSP into the voltage clamped terminal resulted in a prominent increase in Ca(2+) current amplitude. However, this increase could not be attributed to a change in Ca(2+) channel kinetics, voltage dependence, prepulse inactivation, or G protein inhibition but was attributed to the recruitment of dormant channels. Secretory vesicle associated endogenous CSP may play an important role in enhancing Ca(2+) channel activity at the transmitter release site.
Collapse
Affiliation(s)
- Shan Chen
- Synaptic Mechanisms Section, NINDS, NIH, Bethesda, MD 20892-4156, USA
| | | | | | | | | | | |
Collapse
|
39
|
Sokolov S, Timin E, Hering S. On the role of Ca(2+)- and voltage-dependent inactivation in Ca(v)1.2 sensitivity for the phenylalkylamine (-)gallopamil. Circ Res 2001; 89:700-8. [PMID: 11597993 DOI: 10.1161/hh2001.098983] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
L-type calcium channels (Ca(v)1.m) inactivate in response to elevation of intracellular Ca(2+) (Ca(2+)-dependent inactivation) and additionally by conformational changes induced by membrane depolarization (fast and slow voltage-dependent inactivation). Molecular determinants of inactivation play an essential role in channel inhibition by phenylalkylamines (PAAs). The relative impacts, however, of Ca(2+)-dependent and voltage-dependent inactivation in Ca(v)1.2 sensitivity for PAAs remain unknown. In order to analyze the role of the different inactivation processes, we expressed Ca(v)1.2 constructs composed of different beta-subunits (beta(1a)-, beta(2a)-, or beta(3)-subunit) in Xenopus oocytes and estimated their (-)gallopamil sensitivity by means of the two-microelectrode voltage clamp with either Ba(2+) or Ca(2+) as charge carrier. Ca(v)1.2 consisting of the beta(2a)-subunit displayed the slowest inactivation and the lowest apparent sensitivity for the PAA (-)gallopamil. A significantly higher apparent (-)gallopamil-sensitivity with Ca(2+) as charge carrier was observed for all 3 beta-subunit compositions. The kinetics of Ca(2+)-dependent inactivation and slow voltage-dependent inactivation were not affected by drug. The higher sensitivity of the Ca(v)1.2 channels for (-)gallopamil with Ca(2+) as charge carrier results from slower recovery (tau(rec,Ca) approximately 15 seconds versus tau(rec,Ba) approximately 3 to 5 seconds) from a PAA-induced channel conformation. We propose a model where (-)gallopamil promotes a fast voltage-dependent component in Ca(v)1.2 inactivation. The model reproduces the higher drug sensitivity in Ca(2+) as well as the lower sensitivity of slowly inactivating Ca(v)1.2 composed of the beta(2a)-subunit.
Collapse
Affiliation(s)
- S Sokolov
- Institut für Biochemische Pharmakologie, Innsbruck, Austria
| | | | | |
Collapse
|
40
|
Jarvis SE, Zamponi GW. Interactions between presynaptic Ca2+ channels, cytoplasmic messengers and proteins of the synaptic vesicle release complex. Trends Pharmacol Sci 2001; 22:519-25. [PMID: 11583809 DOI: 10.1016/s0165-6147(00)01800-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Influx of Ca(2+) through presynaptic voltage-gated Ca(2+) channels is a key step in rapid neurotransmitter release. The amount of Ca(2+) entering through these channels is modulated by a plethora of intracellular messenger molecules, including betagamma-subunits of G proteins, and protein kinases. In addition, Ca(2+) channels bind physically to proteins of the vesicle-release machinery in a Ca(2+)-dependent manner, which can, in turn, regulate the activity of Ca(2+) channels. Recent evidence suggests that second messengers and presynaptic vesicle-release proteins do not regulate Ca(2+) channel activity as independent entities, but that there is extensive crosstalk between these two mechanisms. The complex interactions between second messengers, vesicle-release proteins and voltage-gated Ca(2+) channels might provide multiple avenues for fine-tuning Ca(2+) entry into the presynaptic terminal and, consequently, neurotransmission.
Collapse
Affiliation(s)
- S E Jarvis
- Dept. of Physiology and Biophysics, University of Calgary, 3330 Hospital Drive NW, T2N 4N1, Calgary, Canada
| | | |
Collapse
|
41
|
Trus M, Wiser O, Goodnough MC, Atlas D. The transmembrane domain of syntaxin 1A negatively regulates voltage-sensitive Ca(2+) channels. Neuroscience 2001; 104:599-607. [PMID: 11377859 DOI: 10.1016/s0306-4522(01)00083-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Syntaxin 1A has a pronounced inhibitory effect on the activation kinetics and current amplitude of voltage-gated Ca(2+) channels. This study explores the molecular basis of syntaxin interaction with N- and Lc-type Ca(2+) channels by way of functional assays of channel gating in a Xenopus oocytes expression system. A chimera of syntaxin 1A and syntaxin 2 in which the transmembrane domain of syntaxin 2 replaced the transmembrane of syntaxin 1A (Sx1-2), significantly reduced the rate of activation of N- and Lc-channels. This shows a similar effect to that demonstrated by syntaxin 1A, though the current was not inhibited. The major sequence differences at the transmembrane of the syntaxin isoforms are that the two highly conserved cysteines Cys 271 and Cys 272 in syntaxin 1A correspond to the valines Val 272 and Val 273 in syntaxin 2 transmembrane. Mutating either cysteines in Sx1-1 (syntaxin 1A) to valines, did not affect modulation of the channel while a double mutant C271/272V was unable to regulate inward current. Transfer of these two cysteines to the transmembrane of syntaxin 2 by mutating Val 272 and Val 273 to Cys 272 and Cys 273 led to channel inhibition. When cleaved by botulinum toxin, the syntaxin 1A fragments, amino acids 1-253 and 254-288, which includes the transmembrane domain, were both unable to inhibit current amplitude but retained the ability to modify the activation kinetics of the channel. A full-length syntaxin 1A and the integrity of the two cysteines within the transmembrane are crucial for coordinating Ca(2+) entry through the N- and Lc-channels. These results suggest that upon membrane depolarization, the voltage-gated N- and Lc-type Ca(2+)-channels signal the exocytotic machinery by interacting with syntaxin 1A at the transmembrane and the cytosolic domains. Cleavage with botulinum toxin disrupts the coupling of the N- and Lc-type channels with syntaxin 1A and abolishes exocytosis, supporting the hypothesis that these channels actively participate in Ca(2+) regulated secretion.
Collapse
Affiliation(s)
- M Trus
- Department of Biological Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | | | | | | |
Collapse
|
42
|
Lü Q, AtKisson MS, Jarvis SE, Feng ZP, Zamponi GW, Dunlap K. Syntaxin 1A supports voltage-dependent inhibition of alpha1B Ca2+ channels by Gbetagamma in chick sensory neurons. J Neurosci 2001; 21:2949-57. [PMID: 11312278 PMCID: PMC6762579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
N-type Ca(2+) channels are modulated by a variety of G-protein-coupled pathways. Some pathways produce a transient, voltage-dependent (VD) inhibition of N channel function and involve direct binding of G-protein subunits; others require the activation of intermediate enzymes and produce a longer-lasting, voltage-independent (VI) form of inhibition. The ratio of VD:VI inhibition differs significantly among cell types, suggesting that the two forms of inhibition play unique physiological roles in the nervous system. In this study, we explored mechanisms capable of altering the balance of VD and VI inhibition in chick dorsal root ganglion neurons. We report that (1) VD:VI inhibition is critically dependent on the Gbetagamma concentration, with VI inhibition dominant at low Gbetagamma concentrations, and (2) syntaxin-1A (but not syntaxin-1B) shifts the ratio in favor of VD inhibition by potentiating the VD effects of Gbetagamma. Variations in expression levels of G-proteins and/or syntaxin provide the means to alter over a wide range both the extent and the rate of Ca(2+) influx through N channels.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Antigens, Surface/pharmacology
- Calcium/metabolism
- Calcium Channels, N-Type/drug effects
- Calcium Channels, N-Type/metabolism
- Cell Compartmentation
- Cells, Cultured
- Chick Embryo
- Conserved Sequence
- Dose-Response Relationship, Drug
- GTP-Binding Protein beta Subunits
- GTP-Binding Protein gamma Subunits
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Gene Expression/genetics
- Heterotrimeric GTP-Binding Proteins/metabolism
- Heterotrimeric GTP-Binding Proteins/pharmacology
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Molecular Sequence Data
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/pharmacology
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Patch-Clamp Techniques
- Protein Subunits
- Rats
- Sequence Homology, Amino Acid
- Syntaxin 1
- Transfection
Collapse
Affiliation(s)
- Q Lü
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
43
|
Subramaniam S, Marcotte ER, Srivastava LK. Differential changes in synaptic terminal protein expression between nucleus accumbens core and shell in the amphetamine-sensitized rat. Brain Res 2001; 901:175-83. [PMID: 11368965 DOI: 10.1016/s0006-8993(01)02347-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Repeated, intermittent administration of psychostimulant drugs such as D-amphetamine (AMPH) produces a state of behavioral sensitization to the drug that can last up to weeks to months. The molecular basis of this enhanced sensitivity to AMPH is poorly understood; however, adaptive changes in the mesocorticolimbic dopamine system has been postulated to be of primary importance. In the present investigation we used Western blotting to examine the expression of candidate presynaptic proteins involved in regulating neurotransmitter release and synaptic plasticity. Specifically, syntaxin 1, synaptophysin and synapsin I protein levels were examined in the nucleus accumbens (Nacc) and ventral tegmental area (VTA) of Sprague-Dawley rats following AMPH-sensitization. Animals received five repeated administrations of AMPH (1.5 mg/kg, i.p. on alternate days) followed by 14 days of withdrawal. Levels of syntaxin 1 and synaptophysin were found to be significantly reduced in the Nacc core of sensitized animals compared to saline-treated and untreated controls. However, syntaxin 1 expression was significantly increased in the Nacc shell subregion of sensitized animals. No significant difference in the level of synapsin I was noted in any of the brain regions. Further, expression of none of the synaptic proteins was significantly altered in the VTA of sensitized animals. Given the importance of syntaxin and synaptophysin in learning and memory processes and in the regulation of neurotransmitter release, changes in these proteins suggest their involvement in the associative learning aspects of sensitization and differential neurotransmitter release in the Nacc subregions.
Collapse
Affiliation(s)
- S Subramaniam
- Departments of Psychiatry and Neurology and Neurosurgery, Douglas Hospital Research Centre, McGill University, 6875 LaSalle Boulevard, Verdun, Montreal, Quebec H4H 1R3, Canada
| | | | | |
Collapse
|
44
|
Jarvis SE, Zamponi GW. Distinct molecular determinants govern syntaxin 1A-mediated inactivation and G-protein inhibition of N-type calcium channels. J Neurosci 2001; 21:2939-48. [PMID: 11312277 PMCID: PMC6762580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
We have reported recently that syntaxin 1A mediates two effects on N-type channels transiently expressed in tsA-201 cells: a hyperpolarizing shift in the steady-state inactivation curve as well as a tonic inhibition of the channel by G-protein betagamma subunits (Jarvis et al., 2000). Here we have examined some of the molecular determinants and factors that modulate the action of syntaxin 1A on N-type calcium channels. With the additional coexpression of SNAP25, the syntaxin 1A-induced G-protein modulation of the channel became reduced in magnitude by approximately 50% but nonetheless remained significantly higher than the low levels of background inhibition seen with N-type channels alone. In contrast, coexpression of nSec-1 did not reduce the syntaxin 1A-mediated G-protein inhibition; however, interestingly, nSec-1 was able to induce tonic G-protein inhibition even in the absence of syntaxin 1A. Both SNAP25 and nSec-1 blocked the negative shift in half-inactivation potential that was induced by syntaxin 1A. Activation of protein kinase C via phorbol esters or site-directed mutagenesis of three putative PKC consensus sites in the syntaxin 1A binding region of the channel (S802, S896, S898) to glutamic acid (to mimic a permanently phosphorylated state) did not affect the syntaxin 1A-mediated G-protein modulation of the channel. However, in the S896E and S898E mutants, or after PKC-dependent phosphorylation of the wild-type channels, the susceptibility of the channel to undergo shifts in half-inactivation potential was removed. Thus, separate molecular determinants govern the ability of syntaxin 1A to affect N-type channel gating and its modulation by G-proteins.
Collapse
Affiliation(s)
- S E Jarvis
- Department of Physiology and Biophysics, Neuroscience and Smooth Muscle Research Groups, University of Calgary, Calgary, T2N 4N1, Canada
| | | |
Collapse
|
45
|
Bezprozvanny I, Zhong P, Scheller RH, Tsien RW. Molecular determinants of the functional interaction between syntaxin and N-type Ca2+ channel gating. Proc Natl Acad Sci U S A 2000; 97:13943-8. [PMID: 11087812 PMCID: PMC17680 DOI: 10.1073/pnas.220389697] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Syntaxin is a key presynaptic protein that binds to N- and P/Q-type Ca(2+) channels in biochemical studies and affects gating of these Ca(2+) channels in expression systems and in synaptosomes. The present study was aimed at understanding the molecular basis of syntaxin modulation of N-type channel gating. Mutagenesis of either syntaxin 1A or the pore-forming alpha(1B) subunit of N-type Ca(2+) channels was combined with functional assays of N-type channel gating in a Xenopus oocyte coexpression system and in biochemical binding experiments in vitro. Our analysis showed that the transmembrane region of syntaxin and a short region within the H3 helical cytoplasmic domain of syntaxin, containing residues Ala-240 and Val-244, appeared critical for the channel modulation but not for biochemical association with the "synprint site" in the II/III loop of alpha(1B). These results suggest that syntaxin and the alpha(1B) subunit engage in two kinds of interactions: an anchoring interaction via the II/III loop synprint site and a modulatory interaction via another site located elsewhere in the channel sequence. The segment of syntaxin H3 found to be involved in the modulatory interaction would lie hidden within the four-helix structure of the SNARE complex, supporting the hypothesis that syntaxin's ability to regulate N-type Ca(2+) channels would be enabled after SNARE complex disassembly after synaptic vesicle exocytosis.
Collapse
Affiliation(s)
- I Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | | | | | | |
Collapse
|
46
|
Hering S, Berjukow S, Sokolov S, Marksteiner R, Weiss RG, Kraus R, Timin EN. Molecular determinants of inactivation in voltage-gated Ca2+ channels. J Physiol 2000; 528 Pt 2:237-49. [PMID: 11034614 PMCID: PMC2270139 DOI: 10.1111/j.1469-7793.2000.t01-1-00237.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Evolution has created a large family of different classes of voltage-gated Ca2+ channels and a variety of additional splice variants with different inactivation properties. Inactivation controls the amount of Ca2+ entry during an action potential and is, therefore, believed to play an important role in tissue-specific Ca2+ signalling. Furthermore, mutations in a neuronal Ca2+ channel (Ca(v)2.1) that are associated with the aetiology of neurological disorders such as familial hemiplegic migraine and ataxia cause significant changes in the process of channel inactivation. Ca2+ channels of a given subtype may inactivate by three different conformational changes: a fast and a slow voltage-dependent inactivation process and in some channel types by an additional Ca2+-dependent inactivation mechanism. Inactivation kinetics of Ca2+ channels are determined by the intrinsic properties of their pore-forming alpha1-subunits and by interactions with other channel subunits. This review focuses on structural determinants of Ca2+ channel inactivation in different parts of Ca2+ channel alpha1-subunits, including pore-forming transmembrane segments and loops, intracellular domain linkers and the carboxyl terminus. Inactivation is also affected by the interaction of the alpha1-subunits with auxiliary beta-subunits and intracellular regulator proteins. The evidence shows that pore-forming S6 segments and conformational changes in extra- (pore loop) and intracellular linkers connected to pore-forming segments may play a principal role in the modulation of Ca2+ channel inactivation. Structural concepts of Ca2+ channel inactivation are discussed.
Collapse
Affiliation(s)
- S Hering
- Institut für Biochemische Pharmakologie, Peter-Mayr-Strasse 1, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Bergsman JB, Tsien RW. Syntaxin modulation of calcium channels in cortical synaptosomes as revealed by botulinum toxin C1. J Neurosci 2000; 20:4368-78. [PMID: 10844005 PMCID: PMC6772436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
When the presynaptic membrane protein syntaxin is coexpressed in Xenopus oocytes with N- or P/Q-type Ca(2+) channels, it promotes their inactivation (Bezprozvanny et al., 1995; Wiser et al., 1996, 1999; Degtiar et al., 2000) (I. B. Bezprozvanny, P. Zhong, R. H. Scheller, and R. W. Tsien, unpublished observations). These findings led to the hypothesis that syntaxin influences Ca(2+) channel function in presynaptic endings, in a reversal of the conventional flow of information from Ca(2+) channels to the release machinery. We examined this effect in isolated mammalian nerve terminals (synaptosomes). Botulinum neurotoxin type C1 (BoNtC1), which cleaves syntaxin, was applied to rat neocortical synaptosomes at concentrations that completely blocked neurotransmitter release. This treatment altered the pattern of Ca(2+) entry monitored with fura-2. Whereas the initial Ca(2+) rise induced by depolarization with K(+)-rich solution was unchanged, late Ca(2+) entry was strongly augmented by syntaxin cleavage. Similar results were obtained when Ca(2+) influx arose from repetitive firing induced by the K(+)-channel blocker 4-aminopyridine. Cleavage of vesicle-associated membrane protein with BoNtD or SNAP-25 with BoNtE failed to produce a significant change in Ca(2+) entry. The BoNtC1-induced alteration in Ca(2+) signaling was specific to voltage-gated Ca(2+) channels, not Ca(2+) extrusion or buffering, and it involved N-, P/Q- and R-type channels, the high voltage-activated channels most intimately associated with presynaptic release machinery. The modulatory effect of syntaxin was not immediately manifest when synaptosomes had been K(+)-predepolarized in the absence of external Ca(2+), but developed with a delay after admission of Ca(2+), suggesting that vesicular turnover may be necessary to make syntaxin available for its stabilizing effect on Ca(2+) channel inactivation.
Collapse
Affiliation(s)
- J B Bergsman
- Neurosciences Program, and Department of Molecular and Cellular Physiology, Beckman Center, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|