1
|
Sehatpour P, Kantrowitz JT. Finding the Right Dose: NMDA Receptor-Modulating Treatments for Cognitive and Plasticity Deficits in Schizophrenia and the Role of Pharmacodynamic Target Engagement. Biol Psychiatry 2024:S0006-3223(24)01552-X. [PMID: 39218136 DOI: 10.1016/j.biopsych.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Cognitive impairment associated with schizophrenia (CIAS) and related deficits in learning (plasticity) are among the leading causes of disability in schizophrenia. Despite this, there are no Food and Drug Administration-approved treatments for CIAS, and the development of treatments has been limited by numerous phase 2/3 failures of compounds that showed initial promise in small-scale studies. NMDA-type glutamate receptors (NMDARs) have been proposed to play an important role in schizophrenia; moreover, the NMDAR has a well-characterized role in cognition, learning, and neuroplasticity. We review previously published clinical trials in CIAS that focused on NMDAR modulator treatments, focusing on published and recent developments of the use of novel NMDAR-modulating treatments for CIAS both alone and combined with plasticity/learning paradigms to enhance learning. We use this discussion of previous studies to highlight the importance of incorporating pharmacodynamic target engagement biomarkers early in treatment development, which can help predict which compounds will succeed or fail in phase 3. A range of direct and indirect NMDAR modulators are covered, including D-serine, D-cycloserine, memantine, and glycine and first-generation glycine transport inhibitors (e.g., sarcosine and bitopertin), as well as recent positive studies of iclepertin, a novel glycine transport inhibitor, and luvadaxistat, a D-amino acid oxidase inhibitor that increases brain D-serine levels, and indirect noninvasive brain stimulation NMDAR-modulating treatments. Several examples of successful use of pharmacodynamic target engagement biomarkers for dose/drug discovery are emphasized, including the mismatch negativity, auditory steady state, and time-frequency event-related potential approaches.
Collapse
Affiliation(s)
- Pejman Sehatpour
- New York State Psychiatric Institute, New York, New York; College of Physicians and Surgeons, Columbia University, New York, New York; Nathan Kline Institute, Orangeburg, New York
| | - Joshua T Kantrowitz
- New York State Psychiatric Institute, New York, New York; College of Physicians and Surgeons, Columbia University, New York, New York; Nathan Kline Institute, Orangeburg, New York.
| |
Collapse
|
2
|
Ramos-Medina L, Rosas-Vidal LE, Patel S. Pharmacological diacylglycerol lipase inhibition impairs contextual fear extinction in mice. Psychopharmacology (Berl) 2024; 241:569-584. [PMID: 38182791 PMCID: PMC10884152 DOI: 10.1007/s00213-023-06523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Acquisition and extinction of associative fear memories are critical for guiding adaptive behavioral responses to environmental threats, and dysregulation of these processes is thought to represent important neurobehavioral substrates of trauma and stress-related disorders including posttraumatic stress disorder (PTSD). Endogenous cannabinoid (eCB) signaling has been heavily implicated in the extinction of aversive fear memories and we have recently shown that pharmacological inhibition of 2-arachidonoylglycerol (2-AG) synthesis, a major eCB regulating synaptic suppression, impairs fear extinction in an auditory cue conditioning paradigm. Despite these data, the role of 2-AG signaling in contextual fear conditioning is not well understood. Here, we show that systemic pharmacological blockade of diacylglycerol lipase, the rate-limiting enzyme catalyzing in the synthesis of 2-AG, enhances contextual fear learning and impairs within-session extinction. In sham-conditioned mice, 2-AG synthesis inhibition causes a small increase in unconditioned freezing behavior. No effects of 2-AG synthesis inhibition were noted in the Elevated Plus Maze in mice tested after fear extinction. These data provide support for 2-AG signaling in the suppression of contextual fear learning and the expression of within-session extinction of contextual fear memories.
Collapse
Affiliation(s)
| | - Luis E Rosas-Vidal
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Rossato JI, Radiske A, Gonzalez MC, Apolinário G, de Araújo RL, Bevilaqua LR, Cammarota M. NMDARs control object recognition memory destabilization and reconsolidation. Brain Res Bull 2023; 197:42-48. [PMID: 37011815 DOI: 10.1016/j.brainresbull.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
Object recognition memory (ORM) allows identification of previously encountered items and is therefore crucial for remembering episodic information. In rodents, reactivation during recall in the presence of a novel object destabilizes ORM and initiates a Zif268 and protein synthesis-dependent reconsolidation process in the hippocampus that links the memory of this object to the reactivated recognition trace. Hippocampal NMDA receptors (NMDARs) modulate Zif268 expression and protein synthesis and regulate memory stability but their possible involvement in the ORM destabilization/reconsolidation cycle has yet to be analyzed in detail. We found that, in adult male Wistar rats, intra dorsal-CA1 administration of the non-subunit selective NMDAR antagonist AP5, or of the GluN2A subunit-containing NMDAR antagonist TCN201, 5min after an ORM reactivation session in the presence of a novel object carried out 24h post-training impaired retention 24h later. In contrast, pre-reactivation administration of the GluN2B subunit-containing NMDAR antagonist RO25-6981 had no effect on ORM recall or retention but impeded the amnesia caused by Zif268 silencing and protein synthesis inhibition in dorsal CA1. Our results indicate that GluN2B-containing hippocampal NMDARs are necessary for ORM destabilization whereas GluN2A-containing NMDARs are involved in ORM reconsolidation, and suggest that modulation of the relative activity of these receptor subtypes during recall regulates ORM persistence.
Collapse
|
4
|
Lokshina Y, Sheynin J, Vogt GS, Liberzon I. Fear Extinction Learning in Posttraumatic Stress Disorder. Curr Top Behav Neurosci 2023; 64:257-270. [PMID: 37535308 DOI: 10.1007/7854_2023_436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Impairments in fear extinction processes have been implicated in the genesis and maintenance of debilitating psychopathologies, including Posttraumatic stress disorder (PTSD). PTSD, classified as a trauma- and stressor-related disorder, is characterized by four symptom clusters: intrusive recollections of trauma, avoidance of trauma-related stimuli, alterations in cognition and mood, and hyperarousal. One of the key pathological feature associated with the persistence of these symptoms is impaired fear extinction, as delineated in multiple studies employing Pavlovian fear-conditioning paradigms. These paradigms, comprising fear acquisition, extinction, extinction recall, and fear renewal phases, have illuminated the neurobiological substrates of PTSD. Dysfunctions in the neural circuits that mediate these fear learning and extinction processes can result in failure to extinguish fear responses and retain extinction memory, giving rise to enduring experience of fear and anxiety. The protective avoidance behaviors observed in individuals with PTSD further exacerbate intrusive symptoms and pose challenges to effective treatment strategies. A comprehensive analysis of fear conditioning and extinction processes, along with the underlying neurobiology, could significantly enhance our understanding of PTSD pathophysiology. This chapter delineates the role of fear extinction processes in PTSD, investigates the underlying neurobiological substrates, and underscores the therapeutic implications, while also identifying future research directions.
Collapse
Affiliation(s)
- Yana Lokshina
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Jony Sheynin
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Gregory S Vogt
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA.
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
5
|
Glavonic E, Mitic M, Francija E, Petrovic Z, Adzic M. Sex-specific role of hippocampal NMDA-Erk-mTOR signaling in fear extinction of adolescent mice. Brain Res Bull 2023; 192:156-167. [PMID: 36410566 DOI: 10.1016/j.brainresbull.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Adolescence is a key phase of development for perturbations in fear extinction, with inability to adequately manage fear a potent factor for developing psychiatric disorders in adulthood. However, while behavioral correlates of adolescent fear regulation are established to a degree, molecular mediators of extinction learning in adolescence remain largely unknown. In this study, we observed fear acquisition and fear extinction (across 4 and 7 days) of adolescent and adult mice of both sexes and investigated how hippocampal levels of different plasticity markers relate to extinction learning. While fear was acquired evenly in males and females of both ages, fear extinction was found to be impaired in adolescent males. We also observed lower levels of GluA1, GLUN2A and GLUN2B subunits in male adolescents following fear acquisition, with an increase in their expression, as well as the activity of Erk-mTOR pathway over subsequent extinction sessions, which was paralleled with improved extinction learning. On the other hand, we detected no changes in plasticity-related proteins after fear acquisition in females, with alterations in GluA1, GluA4 and GLUN2B levels across fear extinction sessions. Additionally, we did not discern any pattern regarding the Erk-mTOR activity in female mice associated with their extinction performance. Overall, our research identifies sex-specific synaptic properties in the hippocampus that underlie developmentally regulated differences in fear extinction learning. We also point out hippocampal NMDA-Erk-mTOR signaling as the driving force behind successful fear extinction in male adolescents, highlighting this pathway as a potential therapeutic target for fear-related disorders in the adolescent population.
Collapse
Affiliation(s)
- Emilija Glavonic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ester Francija
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zorica Petrovic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Randomized controlled experimental study of hydrocortisone and D-cycloserine effects on fear extinction in PTSD. Neuropsychopharmacology 2022; 47:1945-1952. [PMID: 34799682 PMCID: PMC9485259 DOI: 10.1038/s41386-021-01222-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Fear extinction underlies prolonged exposure, one of the most well-studied treatments for posttraumatic stress disorder (PTSD). There has been increased interest in exploring pharmacological agents to enhance fear extinction learning in humans and their potential as adjuncts to PE. The objective of such adjuncts is to augment the clinical impact of PE on the durability and magnitude of symptom reduction. In this study, we examined whether hydrocortisone (HC), a corticosteroid, and D-Cycloserine (DCS), an N-methyl-D-aspartate receptor partial agonist, enhance fear extinction learning and consolidation in individuals with PTSD. In a double-blind placebo-controlled 3-group experimental design, 90 individuals with full or subsyndromal PTSD underwent fear conditioning with stimuli that were paired (CS+) or unpaired (CS-) with shock. Extinction learning occurred 72 h later and extinction retention was tested one week after extinction. HC 25 mg, DCS 50 mg or placebo was administered one hour prior to extinction learning. During extinction learning, the DCS and HC groups showed a reduced differential CS+/CS- skin conductance response (SCR) compared to placebo (b = -0.19, CI = -0.01 to -37, p = 0.042 and b = -0.25, CI = -08 to -0.43, p = 0.005, respectively). A nonsignificant trend for a lower differential CS+/CS- SCR in the DCS group, compared to placebo, (b = -0.25, CI = 0.04 to -0.55, p = 0.089) was observed at retention testing, one week later. A single dose of HC and DCS facilitated fear extinction learning in participants with PTSD symptoms. While clinical implications have yet to be determined, our findings suggest that glucocorticoids and NMDA agonists hold promise for facilitating extinction learning in PTSD.
Collapse
|
7
|
Gong Z, Wang Z, Jiang L, Wang X, Zhang B, Vashisth MK, Zhou Q. Neuronal activity in the dorsal dentate gyrus during extinction regulates fear memory extinction and renewal. Exp Neurol 2022; 358:114224. [PMID: 36089058 DOI: 10.1016/j.expneurol.2022.114224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/16/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
Memory extinction and renewal are major factors that limits the efficacy of exposure therapy. The dorsal dentate gyrus (dDG) plays a crucial role in spatial memory, and epigenetic modifications in the dDG play an important role in fear memory renewal. However, whether dDG activity regulates fear memory extinction and renewal remains unclear. In this study, we showed that an extinction procedure that prevents fear memory renewal (extinction within the reconsolidation window) leads to increased c-fos expression in the dDG. Chemicogenetic activation of dDG excitatory neurons during extinction training elevated fear memory extinction and prevented renewal, whereas inhibition of dDG excitatory neurons inhibited fear memory extinction. We also demonstrated that inhibiting fear engram cells (neurons active during fear acquisition) during extinction training inhibits fear memory extinction. Therefore, dDG activity during fear extinction plays an important role in fear memory extinction and renewal.
Collapse
Affiliation(s)
- Zhiting Gong
- Department of Anatomy, College of Preclinical Medicine, Dali University, Dali, China
| | - Zongliang Wang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Le Jiang
- Department of Anatomy, College of Preclinical Medicine, Dali University, Dali, China
| | - Xiaobing Wang
- Department of Anatomy, College of Preclinical Medicine, Dali University, Dali, China
| | - Bensi Zhang
- Department of Anatomy, College of Preclinical Medicine, Dali University, Dali, China
| | - Manoj Kumar Vashisth
- Department of Anatomy, College of Preclinical Medicine, Dali University, Dali, China
| | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
| |
Collapse
|
8
|
Shan Q, Yu X, Tian Y. Reduction of excitatory synaptic transmission efficacy in the infralimbic prefrontal cortex potentially contributes to impairment of contextual fear memory extinction in aged mice. J Gerontol A Biol Sci Med Sci 2022; 78:930-937. [PMID: 35778266 DOI: 10.1093/gerona/glac137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Human beings are living longer than ever before and cognitive decline experienced by aged adults, such as compromise in cognitive flexibility, has been attracting more and more attention. One such example is the aging-related impairment of memory extinction. However, its underlying neural basis, especially the functional basis at the synapse level, is largely unknown. This study verifies that Pavlovian contextual fear memory extinction is impaired in aged mice. A large body of previous studies have shown that the infralimbic prefrontal cortex (ilPFC) plays a pivotal role in memory extinction. Correspondingly, this study reveals an aging-related reduction in the efficacy of excitatory synaptic transmission onto the ilPFC pyramidal neurons via electrophysiology recordings. This study further suggests that this reduced excitation potentially contributes to the aging-related impairment of contextual fear memory extinction: chemogenetically suppressing the activity of the ilPFC pyramidal neurons in young mice impairs contextual fear memory extinction, whereas chemogenetically compensating the reduced excitation of the ilPFC pyramidal neurons in aged mice restores contextual fear memory extinction. This study identifies a functional synaptic plasticity in the ilPFC pyramidal neurons that potentially contributes to the aging-related impairment of contextual fear memory extinction, which would potentially help to develop a therapy to treat related cognitive decline in aged human adults.
Collapse
Affiliation(s)
- Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoxuan Yu
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, China
| | - Yao Tian
- Chern Institute of Mathematics, Nankai University, Tianjin, China
| |
Collapse
|
9
|
Glavonic E, Mitic M, Adzic M. Hallucinogenic drugs and their potential for treating fear-related disorders: Through the lens of fear extinction. J Neurosci Res 2022; 100:947-969. [PMID: 35165930 DOI: 10.1002/jnr.25017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
Abstract
Fear-related disorders, mainly phobias and post-traumatic stress disorder, are highly prevalent, debilitating disorders that pose a significant public health problem. They are characterized by aberrant processing of aversive experiences and dysregulated fear extinction, leading to excessive expression of fear and diminished quality of life. The gold standard for treating fear-related disorders is extinction-based exposure therapy (ET), shown to be ineffective for up to 35% of subjects. Moreover, ET combined with traditional pharmacological treatments for fear-related disorders, such as selective serotonin reuptake inhibitors, offers no further advantage to patients. This prompted the search for ways to improve ET outcomes, with current research focused on pharmacological agents that can augment ET by strengthening fear extinction learning. Hallucinogenic drugs promote reprocessing of fear-imbued memories and induce positive mood and openness, relieving anxiety and enabling the necessary emotional engagement during psychotherapeutic interventions. Mechanistically, hallucinogens induce dynamic structural and functional neuroplastic changes across the fear extinction circuitry and temper amygdala's hyperreactivity to threat-related stimuli, effectively mitigating one of the hallmarks of fear-related disorders. This paper provides the first comprehensive review of hallucinogens' potential to alleviate symptoms of fear-related disorders by focusing on their effects on fear extinction and the underlying molecular mechanisms. We overview both preclinical and clinical studies and emphasize the advantages of hallucinogenic drugs over current first-line treatments. We highlight 3,4-methylenedioxymethamphetamine and ketamine as the most effective therapeutics for fear-related disorders and discuss the potential molecular mechanisms responsible for their potency with implications for improving hallucinogen-assisted psychotherapy.
Collapse
Affiliation(s)
- Emilija Glavonic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Faucher CR, Doherty RA, Philip NS, Harle ASM, Cole JJE, van ’t Wout-Frank M. Is there a neuroscience-based, mechanistic rationale for transcranial direct current stimulation as an adjunct treatment for posttraumatic stress disorder? Behav Neurosci 2021; 135:702-713. [PMID: 34338547 PMCID: PMC8648962 DOI: 10.1037/bne0000487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is well-known that there is considerable variation in the effectiveness of evidence-based treatments for psychiatric disorders, and a continued need to improve the real-world effectiveness of these treatments. In the last 20+ years the examination of noninvasive brain stimulation techniques for psychiatric treatment has increased dramatically. However, in order to test these techniques for effective therapeutic use, it is critical to understand (a) (what are) the key neural circuits to engage for specific disorders or clusters of symptoms, and (b) (how) can these circuits be reached effectively using neurostimulation? Here we focus on the research toward the application of transcranial direct current stimulation (tDCS) for posttraumatic stress disorder (PTSD). tDCS is a portable and inexpensive technique that lends itself well to be combined with, and thus potentially augment, exposure-based treatment for PTSD. In this review, we discuss the behavioral model of threat and safety learning and memory as it relates to PTSD, the underlying neurobiology of PTSD, as well as the current understandings of tDCS action, including its limitations and opportunities. Through this lens, we summarize the research on the application of tDCS to modulated threat and safety learning and memory to date, and propose new directions for its future research. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- C. R. Faucher
- Department of Psychiatry and Human Behavior, Warren Alpert Brown Medical School, Providence
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence
- COBRE Center for Neuromodulation, Butler Hospital, Providence
| | - R. A. Doherty
- Department of Psychiatry and Human Behavior, Warren Alpert Brown Medical School, Providence
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence
- COBRE Center for Neuromodulation, Butler Hospital, Providence
| | - N. S. Philip
- Department of Psychiatry and Human Behavior, Warren Alpert Brown Medical School, Providence
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence
- COBRE Center for Neuromodulation, Butler Hospital, Providence
| | - A. S. M Harle
- Department of Psychiatry and Human Behavior, Warren Alpert Brown Medical School, Providence
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence
- COBRE Center for Neuromodulation, Butler Hospital, Providence
| | - J. J. E. Cole
- Department of Psychiatry and Human Behavior, Warren Alpert Brown Medical School, Providence
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence
- COBRE Center for Neuromodulation, Butler Hospital, Providence
| | | |
Collapse
|
11
|
Stachowicz K, Bobula B, Kusek M, Lenda T, Tokarski K. Evidence for the interaction of COX-2 with mGluR5 in the regulation of EAAT1 and EAAT3 protein levels in the mouse hippocampus. The influence of oxidative stress mechanisms. Brain Res 2021; 1771:147660. [PMID: 34529964 DOI: 10.1016/j.brainres.2021.147660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022]
Abstract
Since we found that inhibition of cyclooxygenase-2 (COX-2) with concomitant application of a metabotropic glutamate receptor subtype 5 (mGluR5) antagonist (MTEP) down-regulates mGluR7 in the hippocampus (HC) and changes behavior of mice, our team decided to investigate the mechanism responsible for the observed changes. The amino acid glutamate (Glu) is a major excitatory neurotransmitter in the brain. Glu uptake is regulated by excitatory amino acid transporters (EAAT). There are five transporters with documented expression in neurons and glia in the central nervous system (CNS). EAATs, maintain the correct transmission of the Glu signal and prevent its toxic accumulation by removing Glu from the synapse. It has been documented that the toxic level of Glu is one of the main causes of mental and cognitive abnormalities. Given the above mechanisms involved in the functioning of the Glu synapse, we hypothesized modification of Glu uptake, involving EAATs as the cause of the observed changes. This study investigated the level of selected EAATs in the HC after chronic treatment with mGluR5 antagonist MTEP, NS398, and their combination using Western blot. Concomitant MTEP treatment with NS398 or a single administration of the above causes changes in LTP and modulation of EAAT levels in mouse HC. As EAATs are cellular markers of oxidative stress mechanisms, the E. coli lipopolysaccharide (LPS) challenge was performed. The modified Barnes maze test (MBM) revealed alterations in the mouse spatial learning abilities. This study reports an interaction between the mGluR5 and COX-2 in the HC, with EAAT1 and EAAT3 involvement.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Magdalena Kusek
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Tomasz Lenda
- Department of Neuro- and Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
12
|
Chen R, Capitão LP, Cowen PJ, Harmer CJ. Effect of the NMDA receptor partial agonist, d-cycloserine, on emotional processing and autobiographical memory. Psychol Med 2021; 51:2657-2665. [PMID: 32375905 DOI: 10.1017/s0033291720001221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Studies suggest that d-cycloserine (DCS) may have antidepressant potential through its interaction with the glycine site of the N-methyl-D-aspartate receptor; however, clinical evidence of DCS's efficacy as a treatment for depression is limited. Other evidence suggests that DCS affects emotional learning which may also be relevant for the treatment of depression and anxiety. The aim of the present investigation was to assess the effect of DCS on emotional processing in healthy volunteers and to further characterise its effects on emotional and autobiographical memory. METHODS Forty healthy volunteers were randomly allocated to a single dose of 250 mg DCS or placebo in a double-blind design. Three hours later, participants performed an Emotional Test Battery [including Facial Expression Recognition Task (FERT), Emotional Categorisation Task (ECAT), Emotional Recall Task (EREC), Facial Dot-Probe Task (FDOT) and Emotional Recognition Memory Task (EMEM)] and an Autobiographical Memory Test (AMT). Also, participants performed the FERT, EREC and AMT tasks again after 24 h in order to assess longer lasting effects of a single dose of DCS. RESULTS DCS did not significantly affect the FERT, EMEM and FDOT performance but significantly increased emotional memory and classification for positive words v. negative words. Also, DCS enhanced the retrieval of more specific autobiographical memories, and this effect persisted at 24 h. CONCLUSIONS These findings support the suggestion that low-dose DCS increases specific autobiographical memory retrieval and positive emotional memory. Such effects make it an intriguing agent for further investigation in clinical depression, which is characterised by decreased autobiographical memory specificity and increased negative bias in memory recall. It also underscores the potential role of DCS as an adjunct to cognitive behavioural therapy in depression.
Collapse
Affiliation(s)
- Runsen Chen
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, University of Oxford, Oxford, UK
| | - Liliana P Capitão
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, University of Oxford, Oxford, UK
| | - Philip J Cowen
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, University of Oxford, Oxford, UK
| | - Catherine J Harmer
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Reyes-García SE, Escobar ML. Calcineurin Participation in Hebbian and Homeostatic Plasticity Associated With Extinction. Front Cell Neurosci 2021; 15:685838. [PMID: 34220454 PMCID: PMC8242195 DOI: 10.3389/fncel.2021.685838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
In nature, animals need to adapt to constant changes in their environment. Learning and memory are cognitive capabilities that allow this to happen. Extinction, the reduction of a certain behavior or learning previously established, refers to a very particular and interesting type of learning that has been the basis of a series of therapies to diminish non-adaptive behaviors. In recent years, the exploration of the cellular and molecular mechanisms underlying this type of learning has received increasing attention. Hebbian plasticity (the activity-dependent modification of the strength or efficacy of synaptic transmission), and homeostatic plasticity (the homeostatic regulation of plasticity) constitute processes intimately associated with memory formation and maintenance. Particularly, long-term depression (LTD) has been proposed as the underlying mechanism of extinction, while the protein phosphatase calcineurin (CaN) has been widely related to both the extinction process and LTD. In this review, we focus on the available evidence that sustains CaN modulation of LTD and its association with extinction. Beyond the classic view, we also examine the interconnection among extinction, Hebbian and homeostatic plasticity, as well as emergent evidence of the participation of kinases and long-term potentiation (LTP) on extinction learning, highlighting the importance of the balance between kinases and phosphatases in the expression of extinction. Finally, we also integrate data that shows the association between extinction and less-studied phenomena, such as synaptic silencing and engram formation that open new perspectives in the field.
Collapse
Affiliation(s)
- Salma E Reyes-García
- Laboratorio de Neurobiología del Aprendizaje y la Memoria, División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Martha L Escobar
- Laboratorio de Neurobiología del Aprendizaje y la Memoria, División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
14
|
Bouton ME, Maren S, McNally GP. BEHAVIORAL AND NEUROBIOLOGICAL MECHANISMS OF PAVLOVIAN AND INSTRUMENTAL EXTINCTION LEARNING. Physiol Rev 2021; 101:611-681. [PMID: 32970967 PMCID: PMC8428921 DOI: 10.1152/physrev.00016.2020] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This article reviews the behavioral neuroscience of extinction, the phenomenon in which a behavior that has been acquired through Pavlovian or instrumental (operant) learning decreases in strength when the outcome that reinforced it is removed. Behavioral research indicates that neither Pavlovian nor operant extinction depends substantially on erasure of the original learning but instead depends on new inhibitory learning that is primarily expressed in the context in which it is learned, as exemplified by the renewal effect. Although the nature of the inhibition may differ in Pavlovian and operant extinction, in either case the decline in responding may depend on both generalization decrement and the correction of prediction error. At the neural level, Pavlovian extinction requires a tripartite neural circuit involving the amygdala, prefrontal cortex, and hippocampus. Synaptic plasticity in the amygdala is essential for extinction learning, and prefrontal cortical inhibition of amygdala neurons encoding fear memories is involved in extinction retrieval. Hippocampal-prefrontal circuits mediate fear relapse phenomena, including renewal. Instrumental extinction involves distinct ensembles in corticostriatal, striatopallidal, and striatohypothalamic circuits as well as their thalamic returns for inhibitory (extinction) and excitatory (renewal and other relapse phenomena) control over operant responding. The field has made significant progress in recent decades, although a fully integrated biobehavioral understanding still awaits.
Collapse
Affiliation(s)
- Mark E Bouton
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
15
|
Gunduz-Cinar O. The endocannabinoid system in the amygdala and modulation of fear. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110116. [PMID: 32976951 PMCID: PMC7511205 DOI: 10.1016/j.pnpbp.2020.110116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 01/01/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a persistent, trauma induced psychiatric condition characterized by lifelong complex cognitive, emotional and behavioral phenotype. Although many individuals that experience trauma are able to gradually diminish their emotional responding to trauma-related stimuli over time, known as extinction learning, individuals suffering from PTSD are impaired in this capacity. An inability to decline this initially normal and adaptive fear response, can be confronted with exposure-based therapies, often in combination with pharmacological treatments. Due to the complexity of PTSD, currently available pharmacotherapeutics are inadequate in treating the deficient extinction observed in many PTSD patients. To develop novel therapeutics, researchers have exploited the conserved nature of fear and stress-associated behavioral responses and neurocircuits across species in an attempt to translate knowledge gained from preclinical studies into the clinic. There is growing evidence on the endocannabinoid modulation of fear and stress due to their 'on demand' synthesis and degradation. Involvement of the endocannabinoids in fear extinction makes the endocannabinoid system very attractive for finding effective therapeutics for trauma and stress related disorders. In this review, a brief introduction on neuroanatomy and circuitry of fear extinction will be provided as a model to study PTSD. Then, the endocannabinoid system will be discussed as an important component of extinction modulation. In this regard, anandamide degrading enzyme, fatty acid amide hydrolase (FAAH) will be exemplified as a target identified and validated strongly from preclinical to clinical translational studies of enhancing extinction.
Collapse
Affiliation(s)
- Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse, NIH, Bethesda, MD, USA.
| |
Collapse
|
16
|
Vaverková Z, Milton AL, Merlo E. Retrieval-Dependent Mechanisms Affecting Emotional Memory Persistence: Reconsolidation, Extinction, and the Space in Between. Front Behav Neurosci 2020; 14:574358. [PMID: 33132861 PMCID: PMC7550798 DOI: 10.3389/fnbeh.2020.574358] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/03/2020] [Indexed: 01/20/2023] Open
Abstract
Maladaptive emotional memories contribute to the persistence of many mental health disorders, and therefore the prospect of disrupting these memories to produce long-term reductions in relapse is of great clinical appeal. Reducing the impact of maladaptive emotional memories on behaviour could be achieved by two retrieval-dependent manipulations that engage separate mnemonic processes: "reconsolidation disruption" and "extinction enhancement." Extinction occurs during a prolonged re-exposure session in the absence of the expected emotional outcome and is widely accepted as reflecting the formation of a new, inhibitory memory that prevents behavioural expression of the original trace. Reconsolidation, by contrast, involves the destabilisation of the original memory, allowing for subsequent updating and restabilisation in specific brain regions, unless the re-stabilization process is prevented through specific pharmacological or behavioural interventions. Both destabilisation of the original memory and memory extinction require that re-exposure induces prediction error-a mismatch between what is expected and what actually occurs-but the parameters that allow reconsolidation and extinction to occur, and control the transition between them, have not been well-characterised. Here, we review what is known about the induction of memory destabilisation and extinction, and the transition period that separates these mnemonic processes, drawing on preclinical and clinical examples. A deeper understanding of the processes that determine the alternative routes to memory persistence or inhibition is critical for designing new and more reliable clinical treatments targeting maladaptive emotional memories.
Collapse
Affiliation(s)
- Zuzana Vaverková
- School of Psychology, University of Sussex, Brighton, United Kingdom
| | - Amy L Milton
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Emiliano Merlo
- School of Psychology, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
17
|
Martín-Flores N, Pérez-Sisqués L, Creus-Muncunill J, Masana M, Ginés S, Alberch J, Pérez-Navarro E, Malagelada C. Synaptic RTP801 contributes to motor-learning dysfunction in Huntington's disease. Cell Death Dis 2020; 11:569. [PMID: 32732871 PMCID: PMC7392897 DOI: 10.1038/s41419-020-02775-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
RTP801/REDD1 is a stress-responsive protein that mediates mutant huntingtin (mhtt) toxicity in cellular models and is up regulated in Huntington's disease (HD) patients' putamen. Here, we investigated whether RTP801 is involved in motor impairment in HD by affecting striatal synaptic plasticity. To explore this hypothesis, ectopic mhtt was over expressed in cultured rat primary neurons. Moreover, the protein levels of RTP801 were assessed in homogenates and crude synaptic fractions from human postmortem HD brains and mouse models of HD. Finally, striatal RTP801 expression was knocked down with adeno-associated viral particles containing a shRNA in the R6/1 mouse model of HD and motor learning was then tested. Ectopic mhtt elevated RTP801 in synapses of cultured neurons. RTP801 was also up regulated in striatal synapses from HD patients and mouse models. Knocking down RTP801 in the R6/1 mouse striatum prevented motor-learning impairment. RTP801 silencing normalized the Ser473 Akt hyperphosphorylation by downregulating Rictor and it induced synaptic elevation of calcium permeable GluA1 subunit and TrkB receptor levels, suggesting an enhancement in synaptic plasticity. These results indicate that mhtt-induced RTP801 mediates motor dysfunction in a HD murine model, revealing a potential role in the human disease. These findings open a new therapeutic framework focused on the RTP801/Akt/mTOR axis.
Collapse
Affiliation(s)
- Núria Martín-Flores
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain.
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain.
| | - Leticia Pérez-Sisqués
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain
| | - Jordi Creus-Muncunill
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- IDIBAPS-Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Spain
| | - Mercè Masana
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- IDIBAPS-Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Spain
| | - Sílvia Ginés
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- IDIBAPS-Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Spain
| | - Jordi Alberch
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- IDIBAPS-Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Spain
| | - Esther Pérez-Navarro
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain
- IDIBAPS-Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Spain
| | - Cristina Malagelada
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain.
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08036, Barcelona, Spain.
| |
Collapse
|
18
|
Ebrahimi C, Gechter J, Lueken U, Schlagenhauf F, Wittchen HU, Hamm AO, Ströhle A. Augmenting extinction learning with D-cycloserine reduces return of fear: a randomized, placebo-controlled fMRI study. Neuropsychopharmacology 2020; 45:499-506. [PMID: 31634897 PMCID: PMC6969173 DOI: 10.1038/s41386-019-0552-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/22/2019] [Accepted: 10/14/2019] [Indexed: 11/08/2022]
Abstract
D-cycloserine (DCS), a partial NMDA-receptor agonist, seems to be a promising enhancer for exposure therapy in anxiety disorders. It has been tested successfully in animal models of fear extinction, where DCS enhanced extinction learning. Applied in clinical studies, results of DCS-augmented exposure therapy remain ambiguous, calling for a deeper understanding of the underlying mechanisms of DCS and its exact effect on extinction learning and return of fear (ROF) in humans. In the present study, we investigated the effect of DCS-augmented extinction learning on behavioral, psychophysiological, and neural indices of ROF during a 24-h delayed recall test. Thirty-seven participants entered a randomized, placebo-controlled, double-blind, 3-day fear conditioning and delayed extinction fMRI design. One hour before extinction training, participants received an oral dose of 50 mg of DCS or a placebo. Behavioral arousal ratings revealed a generalized ROF during extinction recall in the placebo but not DCS group. Furthermore, participants receiving DCS compared to placebo showed attenuated differential BOLD responses in left posterior hippocampus and amygdala from extinction learning to extinction recall, due to increased hippocampal recruitment in placebo and trendwise decreased amygdala responding in DCS subjects. Our finding that DCS reduces ROF in arousal ratings and neural structures subserving defensive reactions support a role for NMDA receptors in extinction memory consolidation and encourage further translational research.
Collapse
Affiliation(s)
- Claudia Ebrahimi
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Johanna Gechter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Ulrike Lueken
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Schlagenhauf
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Hans-Ulrich Wittchen
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Alfons O Hamm
- Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Andreas Ströhle
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
19
|
Hammoud MZ, Foa EB, Milad MR. Oestradiol, threat conditioning and extinction, post-traumatic stress disorder, and prolonged exposure therapy: A common link. J Neuroendocrinol 2020; 32:e12800. [PMID: 31595559 DOI: 10.1111/jne.12800] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/12/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022]
Abstract
The accumulating evidence regarding the impact of estradiol on learning and memory synergized studies to examine its influence on enhancing animal's ability to quell fear and anxiety. In this review, we first provide a foundational platform regarding the impact of oestradiol on cellular mechanisms of learning and memory and we review recent advances from rodent and human data showing that oestrogen enhances extinction learning across species. We then propose clinical application to these data. We discuss the potential role of oestradiol variance on the aetiology, maintenance and treatment for post-traumatic stress disorder. Specifically, we argue that the use of oestradiol as an adjunct to prolonged exposure (PE) therapy for PTSD may provide a new treatment approach for enhancing the efficacy of PE in women with PTSD. This could advance our understanding of the mechanisms of PTSD and help tailor sex-specific treatments for this disorder.
Collapse
Affiliation(s)
- Mira Z Hammoud
- Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Edna B Foa
- Department of Psychiatry, Center for the Treatment and Study of Anxiety, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohammed R Milad
- Department of Psychiatry, New York University Medical Center, New York, NY, USA
| |
Collapse
|
20
|
Adams T, Wesley M, Rippey C. Transcranial Electric Stimulation and the Extinction of Fear. THE CLINICAL PSYCHOLOGIST 2020; 73:5-14. [PMID: 35153300 PMCID: PMC8830604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
21
|
Effects of stress on the structure and function of the medial prefrontal cortex: Insights from animal models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 150:129-153. [PMID: 32204829 DOI: 10.1016/bs.irn.2019.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stress alters both cognitive and emotional function, and increases risk for a variety of psychological disorders, such as depression and posttraumatic stress disorder. The prefrontal cortex is critical for executive function and emotion regulation, is a target for stress hormones, and is implicated in many stress-influenced psychological disorders. Therefore, understanding how stress-induced changes in the structure and function of the prefrontal cortex are related to stress-induced changes in behavior may elucidate some of the mechanisms contributing to stress-sensitive disorders. This review focuses on data from rodent models to describe the effects of chronic stress on behaviors mediated by the medial prefrontal cortex, the effects of chronic stress on the morphology and physiology of the medial prefrontal cortex, mechanisms that may mediate these effects, and evidence for sex differences in the effects of stress on the prefrontal cortex. Understanding how stress influences prefrontal cortex and behaviors mediated by it, as well as sex differences in this effect, will elucidate potential avenues for novel interventions for stress-sensitive disorders characterized by deficits in executive function and emotion regulation.
Collapse
|
22
|
Stansley BJ, Fisher NM, Gogliotti RG, Lindsley CW, Conn PJ, Niswender CM. Contextual Fear Extinction Induces Hippocampal Metaplasticity Mediated by Metabotropic Glutamate Receptor 5. Cereb Cortex 2019; 28:4291-4304. [PMID: 29136107 DOI: 10.1093/cercor/bhx282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/05/2017] [Indexed: 12/28/2022] Open
Abstract
Dysregulated fear memory can lead to a broad spectrum of anxiety disorders. The brain systems underlying fear memory are manifold, with the hippocampus being prominently involved by housing fear-related spatial memories as engrams, which are created and stored through neural changes such as synaptic plasticity. Although metabotropic glutamate (mGlu) receptors contribute significantly to both fear behavior and hippocampal synaptic plasticity, the relationship between these two phenomena has not been fully elucidated. Here, we report that contextual fear extinction induces a novel form of metaplasticity mediated by mGlu5 at the hippocampal SC-CA1 synapse. Further, blockade of mGlu5 prevents both contextual fear extinction and expression of this metaplasticity. This form of metaplasticity was absent in a mouse model of MECP2-duplication syndrome, corresponding to a complete deficit in extinction learning. These findings suggest that mGlu5-dependent metaplasticity within the hippocampus may play a critical role in extinction of contextual fear.
Collapse
Affiliation(s)
- Branden J Stansley
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Nicole M Fisher
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Rocco G Gogliotti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
23
|
Carpenter JK, Pinaire M, Hofmann SG. From Extinction Learning to Anxiety Treatment: Mind the Gap. Brain Sci 2019; 9:brainsci9070164. [PMID: 31336700 PMCID: PMC6680899 DOI: 10.3390/brainsci9070164] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/27/2022] Open
Abstract
Laboratory models of extinction learning in animals and humans have the potential to illuminate methods for improving clinical treatment of fear-based clinical disorders. However, such translational research often neglects important differences between threat responses in animals and fear learning in humans, particularly as it relates to the treatment of clinical disorders. Specifically, the conscious experience of fear and anxiety, along with the capacity to deliberately engage top-down cognitive processes to modulate that experience, involves distinct brain circuitry and is measured and manipulated using different methods than typically used in laboratory research. This paper will identify how translational research that investigates methods of enhancing extinction learning can more effectively model such elements of human fear learning, and how doing so will enhance the relevance of this research to the treatment of fear-based psychological disorders.
Collapse
Affiliation(s)
- Joseph K Carpenter
- Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Ave, 2nd floor, Boston, MA 02215, USA
| | - Megan Pinaire
- Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Ave, 2nd floor, Boston, MA 02215, USA
| | - Stefan G Hofmann
- Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Ave, 2nd floor, Boston, MA 02215, USA.
| |
Collapse
|
24
|
Koek RJ, Roach J, Athanasiou N, van 't Wout-Frank M, Philip NS. Neuromodulatory treatments for post-traumatic stress disorder (PTSD). Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:148-160. [PMID: 30641094 DOI: 10.1016/j.pnpbp.2019.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/19/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022]
Abstract
Electroconvulsive therapy has been used successfully in some individuals with posttraumatic stress disorder (PTSD) whose symptoms have not improved with other treatments. But there are only a few reports. Meanwhile, an array of new neuromodulation strategies, including repetitive transcranial magnetic stimulation, transcranial direct current stimulation, vagus nerve stimulation, trigeminal nerve stimulation, and deep brain stimulation have been developed and applied experimentally in the treatment of other psychiatric disorders. This article will review the clinical evidence and mechanistic basis for their use in PTSD.
Collapse
Affiliation(s)
- Ralph J Koek
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at Los Angeles, CA, USA; Sepulveda Ambulatory Care Center, Veterans Administration Greater Los Angeles Healthcare System, North Hills, CA, USA.
| | - Janine Roach
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at Los Angeles, CA, USA; Oliveview Medical Center, Sylmar, CA, USA
| | - Nicholas Athanasiou
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at Los Angeles, CA, USA; San Fernando Mental Health Center, Granada Hills, CA, USA
| | - Mascha van 't Wout-Frank
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Noah S Philip
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, USA
| |
Collapse
|
25
|
Packheiser J, Güntürkün O, Pusch R. Renewal of extinguished behavior in pigeons (Columba livia) does not require memory consolidation of acquisition or extinction in a free-operant appetitive conditioning paradigm. Behav Brain Res 2019; 370:111947. [PMID: 31102600 DOI: 10.1016/j.bbr.2019.111947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/18/2019] [Accepted: 05/14/2019] [Indexed: 11/25/2022]
Abstract
Extinction learning is a fundamental capacity for adaptive and flexible behavior. As extinguished conditioned responding is prone to relapse under certain conditions, the necessity of memory consolidation for recovery phenomena to occur has been highlighted recently. Several studies have demonstrated that both acquisition and extinction training need to be properly consolidated for a relapse of the original acquired memory trace to occur. Does this imply that extinguished responses cannot relapse before memory consolidation? To answer this question, we investigated the renewal effect subsequent to an immediate or a delayed (24 h) extinction in a discriminative operant conditioning paradigm. In three different experiments, we could show (1) that acquisition learning does not need to be long-term consolidated for the occurrence of renewal, (2) that the offset of extinction training is a reliable marker for extinction recall in a free-operant extinction learning paradigm where organisms undergo consecutive acquisition training, extinction training as well as testing of conditioned responding and (3), that immediate and long-term consolidated renewal do not demonstrate any qualitative difference in terms of the behavioral output. Our results indicate on the behavioral level that the inhibitory nature of extinction is already present in free-operant learning paradigms and that it does not seem to be affected by the absence of long-term memory consolidation.
Collapse
Affiliation(s)
- Julian Packheiser
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University Bochum, Germany.
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University Bochum, Germany
| | - Roland Pusch
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University Bochum, Germany
| |
Collapse
|
26
|
Kantrowitz JT. N-methyl-d-aspartate-type glutamate receptor modulators and related medications for the enhancement of auditory system plasticity in schizophrenia. Schizophr Res 2019; 207:70-79. [PMID: 29459050 DOI: 10.1016/j.schres.2018.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/14/2022]
Abstract
Deficits in N-methyl-d-aspartate-type (NMDAR) function contribute to cognitive deficits in schizophrenia, particularly dysfunction in neuroplasticity, defined as reduced learning during training on exercises that place implicit, increasing demands on early sensory (auditory and visual) information processing. Auditory mismatch negativity (MMN) can be both a target engagement biomarker for the NMDAR and a proxy measure of neurophysiological plasticity. This review covers the evidence for using NMDAR modulator and related compounds for enhancement of cognition, with a particular focus on early auditory processing/plasticity. Compounds covered include glycine site agonists, glycine and system A-type transporter inhibitors, d-amino acid oxidase inhibitors, memantine and nicotinic alpha-7 acetylcholine receptor agonists. As opposed to daily treatment studies focusing on schizophrenia in general, intermittent, non-daily treatment combining NMDAR modulators with neuroplasticity-based paradigms, using MMN as target-engagement biomarkers show promise as treatments to both remediate plasticity deficits and overall functional deficits.
Collapse
Affiliation(s)
- Joshua T Kantrowitz
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
27
|
A model of amygdala function following plastic changes at specific synapses during extinction. Neurobiol Stress 2019; 10:100159. [PMID: 31193487 PMCID: PMC6535631 DOI: 10.1016/j.ynstr.2019.100159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/21/2022] Open
Abstract
The synaptic networks in the amygdala have been the subject of intense interest in recent times, primarily because of the role of this structure in emotion. Fear and its extinction depend on the workings of these networks, with particular interest in extinction because of its potential to ameliorate adverse symptoms associated with post-traumatic stress disorder. Here we place emphasis on the extinction networks revealed by recent techniques, and on the probable plasticity properties of their synaptic connections. We use modules of neurons representing each of the principal components identified as involved in extinction. Each of these modules consists of neural networks, containing specific ratios of excitatory and specialized inhibitory neurons as well as synaptic plasticity mechanisms appropriate for the component of the amygdala they represent. While these models can produce dynamic output, here we concentrate on the equilibrium outputs and do not model the details of the plasticity mechanisms. Pavlovian fear conditioning generates a fear memory in the lateral amygdala module that leads to activation of neurons in the basal nucleus fear module but not in the basal nucleus extinction module. Extinction protocols excite infralimbic medial prefrontal cortex neurons (IL) which in turn excite so-called extinction neurons in the amygdala, leading to the release of endocannabinoids from them and an increase in efficacy of synapses formed by lateral amygdala neurons on them. The model simulations show how such a mechanism could explain experimental observations involving the role of IL as well as endocannabinoids in different temporal phases of extinction.
Collapse
|
28
|
Bye CM, McDonald RJ. A Specific Role of Hippocampal NMDA Receptors and Arc Protein in Rapid Encoding of Novel Environmental Representations and a More General Long-Term Consolidation Function. Front Behav Neurosci 2019; 13:8. [PMID: 30863289 PMCID: PMC6399163 DOI: 10.3389/fnbeh.2019.00008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/14/2019] [Indexed: 11/27/2022] Open
Abstract
Activation of the NMDA receptor (NMDAR) has been proposed to be a key event responsible for the structural changes that occur in neurons during learning and memory formation. It has been extensively studied yet no consensus has been reached on its mnemonic role as both NMDAR dependent and independent forms of learning have been observed. We investigated the role that hippocampal NMDAR have in rapid spatial learning and memory across training environments. Hippocampal NMDAR was blocked via intra-hippocampal injection of the competitive antagonist CPP. Groups of rats were pre-trained on a spatial version of the Morris water task, and then mass reversal training under NMDAR blockade occurred in the same or different training environments as pre-training. We measured expression of Arc protein throughout the main hippocampal subfields, CA1, CA3, and dentate gyrus, after mass-training. We observed that NMDAR blockade allowed for rapid spatial learning, but not consolidation, when the SUBJECTS used previously acquired environmental information. Interestingly, NMDAR blockade impaired rapid spatial learning when rats were mass-trained in a novel context. Arc protein expression in the dentate gyrus followed this pattern of NMDAR dependent spatial behavior, with high levels of expression observed after being trained in the new environment, and low levels when trained in the same environment. CPP significantly reduced Arc expression in the dentate gyrus. These results implicate dentate NMDAR in the acquisition of novel environmental information.
Collapse
Affiliation(s)
- Cameron M Bye
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
29
|
Penha Farias C, Guerino Furini CR, Godfried Nachtigall E, Kielbovicz Behling JA, Silva de Assis Brasil E, Bühler L, Izquierdo I, de Carvalho Myskiw J. Extinction learning with social support depends on protein synthesis in prefrontal cortex but not hippocampus. Proc Natl Acad Sci U S A 2019; 116:1765-1769. [PMID: 30635411 PMCID: PMC6358673 DOI: 10.1073/pnas.1815893116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extinction of contextual fear conditioning (CFC) in the presence of a familiar nonfearful conspecific (social support), such as that of others tasks, can occur regardless of whether the original memory is retrieved during the extinction training. Extinction with social support is blocked by the protein synthesis inhibitors anisomycin and rapamycin and by the inhibitor of gene expression 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole infused immediately after extinction training into the ventromedial prefrontal cortex (vmPFC) but unlike regular CFC extinction not in the CA1 region of the dorsal hippocampus. So social support generates a form of learning that differs from extinction acquired without social support in terms of the brain structures involved. This finding may lead to a better understanding of the brain mechanisms involved in the social support of memories and in therapies for disorders related to dysfunctional fear memories. Thus, here we show that the consolidation of extinction memory with social support relies on vmPFC rather than hippocampus gene expression and ribosomal- and mammalian target of rapamycin-dependent protein synthesis. These results provide additional knowledge about the cellular mechanisms and brain structures involved on the effect of social support in changing behavior and fear extinction memory.
Collapse
Affiliation(s)
- Clarissa Penha Farias
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Eduarda Godfried Nachtigall
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Jonny Anderson Kielbovicz Behling
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Eduardo Silva de Assis Brasil
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Letícia Bühler
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil;
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil;
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Cahill EN, Milton AL. Neurochemical and molecular mechanisms underlying the retrieval-extinction effect. Psychopharmacology (Berl) 2019; 236:111-132. [PMID: 30656364 PMCID: PMC6373198 DOI: 10.1007/s00213-018-5121-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022]
Abstract
Extinction within the reconsolidation window, or 'retrieval-extinction', has received much research interest as a possible technique for targeting the reconsolidation of maladaptive memories with a behavioural intervention. However, it remains to be determined whether the retrieval-extinction effect-a long-term reduction in fear behaviour, which appears resistant to spontaneous recovery, renewal and reinstatement-depends specifically on destabilisation of the original memory (the 'reconsolidation-update' account) or represents facilitation of an extinction memory (the 'extinction-facilitation' account). We propose that comparing the neurotransmitter systems, receptors and intracellular signalling pathways recruited by reconsolidation, extinction and retrieval-extinction will provide a way of distinguishing between these accounts.
Collapse
Affiliation(s)
- Emma N Cahill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK.
| |
Collapse
|
31
|
Wellman CL, Moench KM. Preclinical studies of stress, extinction, and prefrontal cortex: intriguing leads and pressing questions. Psychopharmacology (Berl) 2019; 236:59-72. [PMID: 30225660 PMCID: PMC6374178 DOI: 10.1007/s00213-018-5023-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/03/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Stress is associated with cognitive and emotional dysfunction, and increases risk for a variety of psychological disorders, including depression and posttraumatic stress disorder. Prefrontal cortex is critical for executive function and emotion regulation, is a target for stress hormones, and is implicated in many stress-influenced psychological disorders. Extinction of conditioned fear provides an excellent model system for examining how stress-induced changes in corticolimbic structure and function are related to stress-induced changes in neural function and behavior, as the neural circuitry underlying this behavior is well characterized. OBJECTIVES This review examines how acute and chronic stress influences extinction and describes how stress alters the structure and function of the medial prefrontal cortex, a potential neural substrate for these effects. In addition, we identify important unanswered questions about how stress-induced change in prefrontal cortex may mediate extinction deficits and avenues for future research. KEY FINDINGS A substantial body of work demonstrates deficits in extinction after either acute or chronic stress. A separate and substantial literature demonstrates stress-induced neuronal remodeling in medial prefrontal cortex, along with several key neurohormonal contributors to this remodeling, and there is substantial overlap in prefrontal mechanisms underlying extinction and the mechanisms implicated in stress-induced dysfunction of-and neuronal remodeling in-medial prefrontal cortex. However, data directly examining the contribution of changes in prefrontal structure and function to stress-induced extinction deficits is currently lacking. CONCLUSIONS Understanding how stress influences extinction and its neural substrates as well as individual differences in this effect will elucidate potential avenues for novel interventions for stress-sensitive disorders characterized by deficits in extinction.
Collapse
Affiliation(s)
- Cara L. Wellman
- Department of Psychological & Brain Sciences, Indiana University,Department of Psychological, Center for the Integrative Study of Animal Behavior, Indiana University,Department of Psychological, Program in Neuroscience, Indiana University
| | - Kelly M. Moench
- Department of Psychological & Brain Sciences, Indiana University,Department of Psychological, Center for the Integrative Study of Animal Behavior, Indiana University,Department of Psychological, Program in Neuroscience, Indiana University
| |
Collapse
|
32
|
Pyrkosch L, Mumm J, Alt I, Fehm L, Fydrich T, Plag J, Ströhle A. Learn to forget: Does post-exposure administration of d-cycloserine enhance fear extinction in agoraphobia? J Psychiatr Res 2018; 105:153-163. [PMID: 30237105 DOI: 10.1016/j.jpsychires.2018.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/23/2022]
Abstract
The use of d-cycloserine (DCS) to augment exposure based therapy for anxiety disorders has shown mixed, although overall positive effects. Aim of the present study was to examine post-exposure administration of DCS in patients with agoraphobia with or without panic disorder. 73 patients with agoraphobia (with or without panic disorder) were treated with 12 sessions of cognitive behavioral therapy (CBT) including 3 exposures. Following successful exposure patients were given double blind either placebo or 50 mg of DCS. Primary outcome criterion was change in the Panic and Agoraphobia Scale (PAS) between CBT session t1, t4 (+∼2 months), t10 (+∼3 months) und t11 (+∼4 months). During the course of CBT the patients' symptomatology decreased significantly as measured by primary and secondary outcome criteria, however, without an additional benefit for DCS treated patients. Exploratory sub-group analyses for severely ill patients and patients with high anxiety and strong habituation during exposure showed that DCS administration was associated with increased improvement during the 1-month follow-up period (t10 - t11) with medium to large effect sizes (range in effect size η2p from .06 to .25). Our study results are consistent with recent research on DCS, indicating a beneficial augmentative effect for sub-groups of anxiety patients. The lack of an overall DCS effect for the whole patient sample might be explained by a dual mechanism in fear conditioning and extinction with different cognitive processes being involved during exposure depending on the degree of anxiety experienced by the patient.
Collapse
Affiliation(s)
- L Pyrkosch
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Germany.
| | - J Mumm
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Germany.
| | - I Alt
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Germany.
| | - L Fehm
- Centre of Psychotherapy at the Department of Psychology, Humboldt-Universität zu Berlin, Germany.
| | - T Fydrich
- Centre of Psychotherapy at the Department of Psychology, Humboldt-Universität zu Berlin, Germany.
| | - J Plag
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Germany.
| | - A Ströhle
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Germany.
| |
Collapse
|
33
|
Zhang JJ, Haubrich J, Bernabo M, Finnie PS, Nader K. Limits on lability: Boundaries of reconsolidation and the relationship to metaplasticity. Neurobiol Learn Mem 2018; 154:78-86. [DOI: 10.1016/j.nlm.2018.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/08/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
|
34
|
Inoue R, Talukdar G, Takao K, Miyakawa T, Mori H. Dissociated Role of D-Serine in Extinction During Consolidation vs. Reconsolidation of Context Conditioned Fear. Front Mol Neurosci 2018; 11:161. [PMID: 29872376 PMCID: PMC5972189 DOI: 10.3389/fnmol.2018.00161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/30/2018] [Indexed: 01/03/2023] Open
Abstract
Extinction-based exposure therapy is widely used for the treatment of anxiety disorders, such as post-traumatic stress disorder (PTSD). D-serine, an endogenous co-agonist at the glycine-binding site of the N-methyl-D-aspartate-type glutamate receptor (NMDAR), has been shown to be involved in extinction of fear memory. Recent findings suggest that the length of time between the initial learning and an extinction session is a determinant of neural mechanism involved in fear extinction. However, how D-serine is involved in extinction of fear memory at different timings remains unclear. In the present study, we investigated the role of D-serine in immediate, delayed and post-retrieval extinction (P-RE) of contextual fear memory using wild-type (WT) and serine racemase (SRR) knockout (KO) mice that exhibit 90% reduction in D-serine content in the hippocampus. We found that SRR disruption impairs P-RE, facilitates immediate extinction (IE), but has no effect on delayed extinction (DE) of contextual fear memories. The impaired P-RE of contextual fear memory in SRRKO mice was associated with increased expression of the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPAR) in the hippocampal synaptic membrane fraction after P-RE, and this increase of AMPAR and impaired P-RE were rescued by the administration of D-serine to SRRKO mice. Our findings suggest that D-serine is differentially involved in the regulation of contextual fear extinction depending on the timing of behavioral intervention, and that combining D-serine or other drugs, enhancing the NMDAR function, with P-RE may achieve optimal outcomes for the treatment of PTSD.
Collapse
Affiliation(s)
- Ran Inoue
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Gourango Talukdar
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Keizo Takao
- Life Science Research Center, University of Toyama, Toyama, Japan.,Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan.,Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan.,Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
35
|
Murkar ALA, De Koninck J. Consolidative mechanisms of emotional processing in REM sleep and PTSD. Sleep Med Rev 2018; 41:173-184. [PMID: 29628334 DOI: 10.1016/j.smrv.2018.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/19/2018] [Accepted: 03/05/2018] [Indexed: 12/30/2022]
Abstract
Research suggests sleep plays a role in the consolidation of recently acquired memories for long-term storage. rapid eye movement (REM) sleep has been shown to play a complex role in emotional-memory processing, and may be involved in subsequent waking-day emotional reactivity and amygdala responsivity. Interaction of the hippocampus and basolateral amygdala with the medial-prefrontal cortex is associated with sleep-dependent learning and emotional memory processing. REM is also implicated in post-traumatic stress disorder (PTSD), which is characterized by sleep disturbance, heightened reactivity to fearful stimuli, and nightmares. Many suffers of PTSD also exhibit dampened medial-prefrontal cortex activity. However, the effects of PTSD-related brain changes on REM-dependent consolidation or the notion of 'over-consolidation' (strengthening of memory traces to such a degree that they become resistant to extinction) have been minimally explored. Here, we posit that (in addition to sleep architecture changes) the memory functions of REM must also be altered in PTSD. We propose a model of REM-dependent consolidation of learned fear in PTSD and examine how PTSD-related brain changes might interact with fear learning. We argue that reduced efficacy of inhibitory medial-prefrontal pathways may lead to maladaptive processing of traumatic memories in the early stages of consolidation after trauma.
Collapse
Affiliation(s)
- Anthony L A Murkar
- School of Psychology, University of Ottawa, Canada; The Royal's Institute of Mental Health Research affiliated with the University of Ottawa, Canada.
| | - Joseph De Koninck
- School of Psychology, University of Ottawa, Canada; The Royal's Institute of Mental Health Research affiliated with the University of Ottawa, Canada.
| |
Collapse
|
36
|
Abstract
Ketamine, principally an antagonist of N-methyl-ᴅ-aspartate receptors, induces schizophrenia-like symptoms in adult humans, warranting its use in the investigation of psychosis-related phenotypes in animal models. Genomic studies further implicate N-methyl-ᴅ-aspartate receptor-mediated processes in schizophrenia pathology, together with more broadly-defined synaptic plasticity and associative learning processes. Strong pathophysiological links have been demonstrated between fear learning and psychiatric disorders such as schizophrenia. To further investigate the impact of ketamine on associative fear learning, we studied the effects of pre- and post-training ketamine on the consolidation and extinction of contextual fear memory in rats. Administration of 25 mg/kg ketamine prior to fear conditioning did not affect consolidation when potentially confounding effects of state dependency were controlled for. Pre-training ketamine (25 mg/kg) impaired the extinction of the conditioned fear response, which was mirrored with the use of a lower dose (8 mg/kg). Post-training ketamine (25 mg/kg) had no effect on the consolidation or extinction of conditioned fear. These observations implicate processes relating to the extinction of contextual fear memory in the manifestation of ketamine-induced phenotypes, and are consistent with existing hypotheses surrounding abnormal associative learning in schizophrenia.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
37
|
Mendoza C, Barreto GE, Iarkov A, Tarasov VV, Aliev G, Echeverria V. Cotinine: A Therapy for Memory Extinction in Post-traumatic Stress Disorder. Mol Neurobiol 2018; 55:6700-6711. [PMID: 29335846 DOI: 10.1007/s12035-018-0869-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/07/2018] [Indexed: 12/14/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a mental disorder that may develop after exposure to exceptionally threatening or unescapable horrifying events. Actual therapies fail to alleviate the emotional suffering and cognitive impairment associated with this disorder, mostly because they are ineffective in treating the failure to extinguish trauma memories in a great percentage of those affected. In this review, current behavioral, cellular, and molecular evidence supporting the use of cotinine for treating PTSD are reviewed. The role of the positive modulation by cotinine of the nicotinic acetylcholine receptors (nAChRs) and their downstream effectors, the protection of astroglia, and the inhibition of microglia in the PTSD brain are also discussed.
Collapse
Affiliation(s)
- Cristhian Mendoza
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Alexandre Iarkov
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile
| | - Vadim V Tarasov
- Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Severniy Proezd, Chernogolovka, Moscow Region, 1142432, Russia. .,"GALLY" International Biomedical Research Consulting LLC, San Antonio, TX, 78229, USA. .,School of Health Sciences and Healthcare Administration, University of Atlanta, Johns Creek, GA, 30097, USA.
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile. .,Bay Pines VA Healthcare System, Research and Development, Bay Pines, FL, 33744, USA.
| |
Collapse
|
38
|
Tumolo JM, Kutlu MG, Gould TJ. Chronic nicotine differentially alters spontaneous recovery of contextual fear in male and female mice. Behav Brain Res 2018; 341:176-180. [PMID: 29307664 DOI: 10.1016/j.bbr.2018.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 01/26/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a devastating disorder with symptoms such as flashbacks, hyperarousal, and avoidance of reminders of the traumatic event. Exposure therapy, which attempts to extinguish fear responses, is a commonly used treatment for PTSD but relapse following successful exposure therapy is a frequent problem. In rodents, spontaneous recovery (SR), where extinguished fear responses resurface following extinction treatment, is used as a model of fear relapse. Previous studies from our lab showed that chronic nicotine impaired fear extinction and acute nicotine enhanced SR of contextual fear in adult male mice. In addition, we showed that acute nicotine's effects were specific to SR as acute nicotine did not affect recall of contextual fear conditioning in the absence of extinction. However, effects of chronic nicotine administration on SR are not known. Therefore, in the present study, we investigated if chronic nicotine administration altered SR or recall of contextual fear in adult male and female C57BL/6J mice. Our results showed that chronic nicotine significantly enhanced SR in female mice and significantly decreased SR in males. Chronic nicotine had no effect on recall of contextual fear in males or females. Female sham mice also had significantly less baseline SR than male sham mice. Overall, these results demonstrate sex differences in SR of fear memories and that chronic nicotine modulates these effects on SR but nicotine does not alter recall of contextual fear.
Collapse
Affiliation(s)
- Jessica M Tumolo
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Munir Gunes Kutlu
- The Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
| | - Thomas J Gould
- The Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
39
|
Delamater AR. Experimental extinction in Pavlovian conditioning: Behavioural and neuroscience perspectives. ACTA ACUST UNITED AC 2018; 57:97-132. [PMID: 15204112 DOI: 10.1080/02724990344000097] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This paper reviews the behavioural and neuroscience literatures on extinction in Pavlovian conditioning with a view towards finding possible points of contact between these two often independent lines of investigation. Recent discoveries at the behavioural level indicate (1) that conditioned stimulus (CS)–unconditioned stimulus (US) associations specific in their sensory content are fully preserved during extinction, (2) that inhibitory stimulus-response associations appear to be learned during extinction, (3) that extinction is influenced by the level of activation of the US representation during nonreinforced trials, (4) that decreases in attention can influence conditioned performance during extinction, and (5) that contexts acquire an ability to modulate learning during both conditioning and extinction. Recent discoveries at the neural systems level suggest (1) that the hippocampus is important in context-specific learning during extinction, (2) that the prefrontal cortex is possibly important in long-term memory for extinction, (3) that the basolateral amygdala may be important in sustaining attention to a CS during extinction, (4) that NMDA receptors are important either in neural plasticity during extinction or by affecting the value of the US representation during extinction, and (5) that the GABAergic system may partially mediate inhibitory learning during extinction. It is concluded that both of these levels of analysis can benefit the other in the pursuit of a more comprehensive understanding of extinction.
Collapse
|
40
|
A return to the psychiatric dark ages with a two-system framework for fear. Behav Res Ther 2017; 100:24-29. [PMID: 29128585 DOI: 10.1016/j.brat.2017.10.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022]
Abstract
The past several decades has seen considerable progress in our understanding of the neurobiology of fear and anxiety. These advancements were spurred on by envisioning fear as emerging from the coordinated activation of brain and behavioral systems that evolved for the purpose of defense from environmental dangers. Recently, Joseph LeDoux, a previous proponent of this view, published a series of papers in which he challenges the value of this approach. As an alternative, he and colleagues propose that a 'two-system' framework for the study of responses to threat will expedite the advancement of medical treatments for fear disorders. This view suggests one system for autonomic and behavioral responses and a second for the subjective feeling of fear. They argue that these two systems operate orthogonally and thus inferences concerning the emotion of fear cannot be gleaned from physiological and behavioral measures; confounding these systems has impeded the mechanistic understanding and treatment of fear disorders. Counter to the claim that this view will advance scientific progress, it carries the frightening implication that we ought to reduce the study of fear to subjective report. Here, we outline why we believe that fear is best considered an integrated autonomic, behavioral, and cognitive-emotional response to danger emerging from a central fear generator whose evolutionarily conserved function is that of defense. Furthermore, we argue that although components of the fear response can be independently modulated and studied, common upstream brain regions dictate their genesis, and therefore inferences about a central fear state can be garnered from measures of each.
Collapse
|
41
|
Fox JH, Hassell JE, Siebler PH, Arnold MR, Lamb AK, Smith DG, Day HEW, Smith TM, Simmerman EM, Outzen AA, Holmes KS, Brazell CJ, Lowry CA. Preimmunization with a heat-killed preparation of Mycobacterium vaccae enhances fear extinction in the fear-potentiated startle paradigm. Brain Behav Immun 2017; 66:70-84. [PMID: 28888667 DOI: 10.1016/j.bbi.2017.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/02/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022] Open
Abstract
The hygiene hypothesis or "Old Friends" hypothesis proposes that inflammatory diseases are increasing in modern urban societies, due in part to reduced exposure to microorganisms that drive immunoregulatory circuits, and a failure to terminate inappropriate inflammatory responses. Inappropriate inflammation is also emerging as a risk factor for trauma-related, anxiety, and affective disorders, including posttraumatic stress disorder (PTSD), which is characterized as persistent re-experiencing of the trauma after a traumatic experience. Traumatic experiences can lead to long-lasting fear memories and exaggerated fear potentiation of the acoustic startle reflex. The acoustic startle reflex is an ethologically relevant reflex and can be potentiated in both humans and rats through Pavlovian conditioning. Mycobacterium vaccae NCTC 11659 is a soil-derived bacterium with immunoregulatory and anti-inflammatory properties that has been demonstrated to confer stress resilience in mice. Here we immunized adult male Sprague Dawley rats 3×, once per week, with a heat-killed preparation of M. vaccae NCTC 11659 (0.1mg, s.c., in 100µl borate-buffered saline) or vehicle, and, then, 3weeks following the final immunization, tested them in the fear-potentiated startle paradigm; controls were maintained under home cage control conditions throughout the experiment (n=11-12 per group). Rats were tested on days 1 and 2 for baseline acoustic startle, received fear conditioning on days 3 and 4, and underwent fear extinction training on days 5-10. Rats were euthanized on day 11 and brain tissue was sectioned for analysis of mRNA expression for genes important in control of brain serotonergic signaling, including tph2, htr1a, slc6a4, and slc22a3, throughout the brainstem dorsal and median raphe nuclei. Immunization with M. vaccae had no effect on baseline acoustic startle or fear expression on day 5. However, M. vaccae-immunized rats showed enhanced between-session and within-session extinction on day 6, relative to vehicle-immunized controls. Immunization with M. vaccae and fear-potentiated startle altered serotonergic gene expression in a gene- and subregion-specific manner. These data are consistent with the hypothesis that immunoregulatory strategies, such as preimmunization with M. vaccae, have potential for prevention of stress- and trauma-related psychiatric disorders.
Collapse
Affiliation(s)
- James H Fox
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - James E Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Philip H Siebler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Mathew R Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Andrew K Lamb
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - David G Smith
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Heidi E W Day
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Tessa M Smith
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Emma M Simmerman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Alexander A Outzen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Kaley S Holmes
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Christopher J Brazell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA; Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO 80220, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO 80220, USA.
| |
Collapse
|
42
|
d-Cycloserine facilitates extinction learning and enhances extinction-related brain activation. Neurobiol Learn Mem 2017; 144:235-247. [DOI: 10.1016/j.nlm.2017.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/13/2017] [Accepted: 08/10/2017] [Indexed: 11/23/2022]
|
43
|
Siddiqui SA, Singh S, Ranjan V, Ugale R, Saha S, Prakash A. Enhanced Histone Acetylation in the Infralimbic Prefrontal Cortex is Associated with Fear Extinction. Cell Mol Neurobiol 2017; 37:1287-1301. [PMID: 28097489 DOI: 10.1007/s10571-017-0464-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022]
Abstract
The molecular processes that establish fear memory are complex and involve a combination of genetic and epigenetic influences. Dysregulation of these processes can manifest in humans as a range of fear-related anxiety disorders like post-traumatic stress disorders (PTSD). In the present study, immunohistochemistry for acetyl H3, H4, c-fos, CBP (CREB-binding protein) in the infralimbic prefrontal cortex (IL-PFC) and prelimbic prefrontal cortex (PL-PFC) of mPFC (medial prefrontal cortex) and basal amygdala (BA), lateral amygdala (LA), centrolateral amygdala (CeL), centromedial amygdala (CeM) of the amygdala was performed to link region-specific histone acetylation to fear and extinction learning. It was found that the PL-PFC and IL-PFC along with the sub-regions of the amygdala responded differentially to the fear learning and extinction. Following fear learning, c-fos and CBP expression and acetylation of H3 and H4 increased in the BA, LA, CeM, and CeL and the PL-PFC but not in the IL-PFC as compared to the naive control. Similarly, following extinction learning, c-fos and CBP expression increased in BA, LA, CeL, and IL-PFC but not in PL-PFC and CeM as compared to the naive control and conditioned group. However, the acetylation of H3 increased in both IL and PL as opposed to H4 which increased only in the IL-PFC following extinction learning. Overall, region-specific activation in amygdala and PFC following fear and extinction learning as evident by the c-fos activation paralleled the H3/H4 acetylation in these regions. These results suggest that the differential histone acetylation in the PFC and amygdala subnuclei following fear learning and extinction may be associated with the region-specific changes in the neuronal activation pattern resulting in more fear/less fear.
Collapse
Affiliation(s)
| | - Sanjay Singh
- Department of Biotechnology, BabasahebBhimrao Ambedkar University, Lucknow, India
| | - Vandana Ranjan
- Department of Biotechnology, BabasahebBhimrao Ambedkar University, Lucknow, India
| | - Rajesh Ugale
- Department of Pharmaceutical Sciences, RTM Nagpur University, Nagpur, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, BabasahebBhimrao Ambedkar University, Lucknow, India
| | - Anand Prakash
- Department of Biotechnology, BabasahebBhimrao Ambedkar University, Lucknow, India.
| |
Collapse
|
44
|
Cassini LF, Flavell CR, Amaral OB, Lee JLC. On the transition from reconsolidation to extinction of contextual fear memories. Learn Mem 2017; 24:392-399. [PMID: 28814464 PMCID: PMC5580521 DOI: 10.1101/lm.045724.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/29/2017] [Indexed: 11/25/2022]
Abstract
Retrieval of an associative memory can lead to different phenomena. Brief reexposure sessions tend to trigger reconsolidation, whereas more extended ones trigger extinction. In appetitive and fear cued Pavlovian memories, an intermediate "null point" period has been observed where neither process seems to be engaged. Here we investigated whether this phenomenon extends to contextual fear memory. Adult rats were subjected to a contextual fear conditioning paradigm, reexposed to the context 2 d later for 3, 5, 10, 20, or 30 min, with immediate injections of MK-801 or saline following reexposure, and tested on the following day. We observed a significant effect of MK-801 with the 3- and 30-min sessions, impairing reconsolidation and extinction, respectively. However, it did not have significant effects with 5-, 10-, or 20-min sessions, even though freezing decreased from reexposure to test. Further analyses indicated that this is not likely to be due to a variable transition point at the population level. In conclusion, the results show that in contextual fear memories there is a genuine "null point" between the parameters that induce reconsolidation and extinction, as defined by the effects of MK-801, although NMDA receptor-independent decreases in freezing can still occur in these conditions.
Collapse
Affiliation(s)
- Lindsey F Cassini
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Charlotte R Flavell
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Olavo B Amaral
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jonathan L C Lee
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
45
|
Pennington ZT, Anderson AS, Fanselow MS. The ventromedial prefrontal cortex in a model of traumatic stress: fear inhibition or contextual processing? ACTA ACUST UNITED AC 2017; 24:400-406. [PMID: 28814465 PMCID: PMC5580532 DOI: 10.1101/lm.046110.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
The ventromedial prefrontal cortex (vmPFC) has consistently appeared altered in post-traumatic stress disorder (PTSD). Although the vmPFC is thought to support the extinction of learned fear responses, several findings support a broader role for this structure in the regulation of fear. To further characterize the relationship between vmPFC dysfunction and responses to traumatic stress, we examined the effects of pretraining vmPFC lesions on trauma reactivity and enhanced fear learning in a rodent model of PTSD. In Experiment 1, lesions did not produce differences in shock reactivity during an acute traumatic episode, nor did they alter the strength of the traumatic memory. However, when lesioned animals were subsequently given a single mild aversive stimulus in a novel context, they showed a blunting of the enhanced fear response to this context seen in traumatized animals. In order to address this counterintuitive finding, Experiment 2 assessed whether lesions also attenuated fear responses to discrete tone cues. Enhanced fear for discrete cues following trauma was preserved in lesioned animals, indicating that the deficit observed in Experiment 1 is limited to contextual stimuli. These findings further support the notion that the vmPFC contributes to the regulation of fear through its influence on context learning and contrasts the prevailing view that the vmPFC directly inhibits fear.
Collapse
Affiliation(s)
| | | | - Michael S Fanselow
- Department of Psychology, UCLA, Los Angeles, California 90095, USA.,Brain Research Institute, UCLA, Los Angeles, California 90095, USA
| |
Collapse
|
46
|
Domingos LB, Hott SC, Terzian ALB, Resstel LBM. P2X7 purinergic receptors participate in the expression and extinction processes of contextual fear conditioning memory in mice. Neuropharmacology 2017; 128:474-481. [PMID: 28802645 DOI: 10.1016/j.neuropharm.2017.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/27/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022]
Abstract
The purinergic system consists of two large receptor families - P2X and P2Y. Both are activated by adenosine triphosphate (ATP), although presenting different functions. These receptors are present in several brain regions, including those involved in emotion and stress-related behaviors. Hence, they seem to participate in fear- and anxiety-related responses. However, few studies have investigated the purinergic system in threatening situations, as observed in contextual fear conditioning (CFC). Therefore, this study investigated the involvement of purinergic receptors in the expression and extinction of aversive memories. C57Bl/6 background mice were submitted to the CFC protocol. Wildtype (WT) mice received i.p. injection of either a nonselective P2 receptor (P2R) antagonist, P178 (10 or 30 mg/kg); a selective P2X7 receptor (P2X7R) antagonist, A438079 (10 mg/kg); a selective P2Y1 receptor (P2Y1R) antagonist, MRS2179 (10 mg/kg); or vehicle 10 min prior to or immediately after the extinction session. Additionally, P2X7R KO mice were tested in the CFC protocol. After P2R antagonist treatment, contextual fear recall increased, while acquisition of extinction was impaired. Similar results were observed with the selective P2X7R antagonist, but not with the selective P2Y1R antagonist. Interestingly, P2X7R KO mice showed increased contextual fear recall, associated with impaired acquisition of extinction, in accordance with pharmacologic P2X7R antagonism. Our results suggest that specific pharmacological or genetic blockade of P2X7R promotes anxiogenic-like effects, along with deficits in extinction learning. Thus, these receptors could present an alternative treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- L B Domingos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - S C Hott
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - A L B Terzian
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - L B M Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
47
|
Shi YW, Fan BF, Xue L, Wen JL, Zhao H. Regulation of Fear Extinction in the Basolateral Amygdala by Dopamine D2 Receptors Accompanied by Altered GluR1, GluR1-Ser845 and NR2B Levels. Front Behav Neurosci 2017; 11:116. [PMID: 28676746 PMCID: PMC5476700 DOI: 10.3389/fnbeh.2017.00116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/30/2017] [Indexed: 01/17/2023] Open
Abstract
The amygdala, a critical structure for both Pavlovian fear conditioning and fear extinction, receives sparse but comprehensive dopamine innervation and contains dopamine D1 and D2 receptors. Fear extinction, which involves learning to suppress the expression of a previously learned fear, appears to require the dopaminergic system. The specific roles of D2 receptors in mediating associative learning underlying fear extinction require further study. Intra-basolateral amygdala (BLA) infusions of a D2 receptor agonist, quinpirole, and a D2 receptor antagonist, sulpiride, prior to fear extinction and extinction retention were tested 24 h after fear extinction training for long-term memory (LTM). LTM was facilitated by quinpirole and attenuated by sulpiride. In addition, A-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor glutamate receptor 1 (GluR1) subunit, GluR1 phospho-Ser845, and N-methyl-D-aspartic acid receptor NR2B subunit levels in the BLA were generally increased by quinpirole and down-regulated by sulpiride. The present study suggests that activation of D2 receptors facilitates fear extinction and that blockade of D2 receptors impairs fear extinction, accompanied by changes in GluR1, GluR1-Ser845 and NR2B levels in the amygdala.
Collapse
Affiliation(s)
- Yan-Wei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Bu-Fang Fan
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Li Xue
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Jia-Ling Wen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Hu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
48
|
Zhang B, Li CY, Wang XS. The effect of hippocampal NMDA receptor blockade by MK-801 on cued fear extinction. Behav Brain Res 2017; 332:200-203. [PMID: 28578988 DOI: 10.1016/j.bbr.2017.05.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/16/2022]
Abstract
Extinction of conditioned fear has been suggested to be a new form of learning instead of erasure of what was originally learned, and the process is NMDA (N-methyl d-aspartate) receptor (NMDAR) dependent. Most of studies have so far revealed the important roles of NMDARs in the amygdala and medial prefrontal cortex (mPFC) in cued fear extinction. Although the ventral hippocampus has intimately reciprocal connections with the amygdala and mPFC, the role of its NMDARs in cued fear extinction remains unclear. The present experiment explored the issue by bilateral pre-extinction microinjection of the noncompetitive NMDAR antagonist MK-801 into the ventral hippocampus. Four groups of rats were given habituation, tone cued fear conditioning, fear extinction training and extinction test. Prior to extinction training, rats received bilateral infusions of either MK-801 (1.5, 3, or 6μg/0.5μl) or saline. Our results showed that MK-801 reduced freezing on the first trial of extinction training with no impact on within-session acquisition of extinction, and that the lower doses of MK-801 resulted in increased freezing on the extinction retrieval test. These findings suggest that ventral hippocampal NMDARs are necessary for the consolidation of tone cued fear extinction.
Collapse
Affiliation(s)
- Bo Zhang
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Chuan-Yu Li
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xiu-Song Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, Department of Anatomy, Physiology and Development, College of Life Science, Shandong Normal University, Jinan 250000, China.
| |
Collapse
|
49
|
Starosta S, Bartetzko I, Stüttgen MC, Güntürkün O. Integration of contextual cues into memory depends on "prefrontal" N-methyl-D-aspartate receptors. Neurobiol Learn Mem 2017; 144:19-26. [PMID: 28559170 DOI: 10.1016/j.nlm.2017.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/12/2017] [Accepted: 05/18/2017] [Indexed: 02/05/2023]
Abstract
Every learning event is embedded in a context, but not always does the context become an integral part of the memory; however, for extinction learning it usually does, resulting in context-specific conditioned responding. The neuronal mechanisms underlying contextual control have been mainly investigated for Pavlovian fear extinction with a focus on hippocampal structures. However, the initial acquisition of novel responses can be subject to contextual control as well, although the neuronal mechanisms are mostly unknown. Here, we tested the hypothesis that contextual control of acquisition depends on glutamatergic transmission underlying executive functions in forebrain areas, e.g. by shifting attention to critical cues. Thus, we antagonized N-methyl-D-aspartate (NMDA) receptors with 2-amino-5-phosphonovaleric acid (AP5) in the pigeon nidopallium caudolaterale, the functional analogue of mammalian prefrontal cortex, during the concomitant acquisition and extinction of conditioned responding to two different stimuli. This paradigm has previously been shown to lead to contextual control over extinguished as well as non-extinguished responding. NMDA receptor blockade resulted in an impairment of extinction learning, but left the acquisition of responses to a novel stimulus unaffected. Critically, when responses were tested in a different context in the retrieval phase, we observed that NMDA receptor blockade led to the abolishment of contextual control over acquisition performance. This result is predicted by a model describing response inclination as the product of associative strength and contextual gain. In this model, learning under AP5 leads to a change in the contextual gain on the learned association, possibly via the modulation of attentional mechanisms.
Collapse
Affiliation(s)
- Sarah Starosta
- Faculty of Psychology, Department of Biopsychology, Ruhr University Bochum, 44780 Bochum, Germany.
| | - Isabelle Bartetzko
- Faculty of Psychology, Department of Biopsychology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Maik C Stüttgen
- Institute of Pathophysiology & Focus Program Translational Neurosciences, University Medical Center Mainz, 55128 Mainz, Germany
| | - Onur Güntürkün
- Faculty of Psychology, Department of Biopsychology, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
50
|
Kantrowitz JT, Epstein ML, Beggel O, Rohrig S, Lehrfeld JM, Revheim N, Lehrfeld NP, Reep J, Parker E, Silipo G, Ahissar M, Javitt DC. Neurophysiological mechanisms of cortical plasticity impairments in schizophrenia and modulation by the NMDA receptor agonist D-serine. Brain 2017; 139:3281-3295. [PMID: 27913408 DOI: 10.1093/brain/aww262] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/20/2016] [Accepted: 08/29/2016] [Indexed: 11/12/2022] Open
Abstract
Schizophrenia is associated with deficits in cortical plasticity that affect sensory brain regions and lead to impaired cognitive performance. Here we examined underlying neural mechanisms of auditory plasticity deficits using combined behavioural and neurophysiological assessment, along with neuropharmacological manipulation targeted at the N-methyl-D-aspartate type glutamate receptor (NMDAR). Cortical plasticity was assessed in a cohort of 40 schizophrenia/schizoaffective patients relative to 42 healthy control subjects using a fixed reference tone auditory plasticity task. In a second cohort (n = 21 schizophrenia/schizoaffective patients, n = 13 healthy controls), event-related potential and event-related time-frequency measures of auditory dysfunction were assessed during administration of the NMDAR agonist d-serine. Mismatch negativity was used as a functional read-out of auditory-level function. Clinical trials registration numbers were NCT01474395/NCT02156908 Schizophrenia/schizoaffective patients showed significantly reduced auditory plasticity versus healthy controls (P = 0.001) that correlated with measures of cognitive, occupational and social dysfunction. In event-related potential/time-frequency analyses, patients showed highly significant reductions in sensory N1 that reflected underlying impairments in θ responses (P < 0.001), along with reduced θ and β-power modulation during retention and motor-preparation intervals. Repeated administration of d-serine led to intercorrelated improvements in (i) auditory plasticity (P < 0.001); (ii) θ-frequency response (P < 0.05); and (iii) mismatch negativity generation to trained versus untrained tones (P = 0.02). Schizophrenia/schizoaffective patients show highly significant deficits in auditory plasticity that contribute to cognitive, occupational and social dysfunction. d-serine studies suggest first that NMDAR dysfunction may contribute to underlying cortical plasticity deficits and, second, that repeated NMDAR agonist administration may enhance cortical plasticity in schizophrenia.
Collapse
Affiliation(s)
- Joshua T Kantrowitz
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA .,2 Division of Experimental Therapeutics, Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA
| | - Michael L Epstein
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA.,3 Graduate Center, City University of New York, New York, NY, USA
| | - Odeta Beggel
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Stephanie Rohrig
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Jonathan M Lehrfeld
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Nadine Revheim
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Nayla P Lehrfeld
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Jacob Reep
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Emily Parker
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Gail Silipo
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Merav Ahissar
- 4 Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel C Javitt
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA.,2 Division of Experimental Therapeutics, Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA
| |
Collapse
|