1
|
Rhea EM, Leclerc M, Yassine HN, Capuano AW, Tong H, Petyuk VA, Macauley SL, Fioramonti X, Carmichael O, Calon F, Arvanitakis Z. State of the Science on Brain Insulin Resistance and Cognitive Decline Due to Alzheimer's Disease. Aging Dis 2024; 15:1688-1725. [PMID: 37611907 PMCID: PMC11272209 DOI: 10.14336/ad.2023.0814] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is common and increasing in prevalence worldwide, with devastating public health consequences. While peripheral insulin resistance is a key feature of most forms of T2DM and has been investigated for over a century, research on brain insulin resistance (BIR) has more recently been developed, including in the context of T2DM and non-diabetes states. Recent data support the presence of BIR in the aging brain, even in non-diabetes states, and found that BIR may be a feature in Alzheimer's disease (AD) and contributes to cognitive impairment. Further, therapies used to treat T2DM are now being investigated in the context of AD treatment and prevention, including insulin. In this review, we offer a definition of BIR, and present evidence for BIR in AD; we discuss the expression, function, and activation of the insulin receptor (INSR) in the brain; how BIR could develop; tools to study BIR; how BIR correlates with current AD hallmarks; and regional/cellular involvement of BIR. We close with a discussion on resilience to both BIR and AD, how current tools can be improved to better understand BIR, and future avenues for research. Overall, this review and position paper highlights BIR as a plausible therapeutic target for the prevention of cognitive decline and dementia due to AD.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Manon Leclerc
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
| | - Hussein N Yassine
- Departments of Neurology and Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Ana W Capuano
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Han Tong
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA.
| | - Xavier Fioramonti
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France.
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | - Frederic Calon
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
2
|
Rae CD, Baur JA, Borges K, Dienel G, Díaz-García CM, Douglass SR, Drew K, Duarte JMN, Duran J, Kann O, Kristian T, Lee-Liu D, Lindquist BE, McNay EC, Robinson MB, Rothman DL, Rowlands BD, Ryan TA, Scafidi J, Scafidi S, Shuttleworth CW, Swanson RA, Uruk G, Vardjan N, Zorec R, McKenna MC. Brain energy metabolism: A roadmap for future research. J Neurochem 2024; 168:910-954. [PMID: 38183680 PMCID: PMC11102343 DOI: 10.1111/jnc.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.
Collapse
Affiliation(s)
- Caroline D. Rae
- School of Psychology, The University of New South Wales, NSW 2052 & Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, & Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, Baltimore, Maryland, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dasfne Lee-Liu
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Región Metropolitana, Chile
| | - Britta E. Lindquist
- Department of Neurology, Division of Neurocritical Care, Gladstone Institute of Neurological Disease, University of California at San Francisco, San Francisco, California, USA
| | - Ewan C. McNay
- Behavioral Neuroscience, University at Albany, Albany, New York, USA
| | - Michael B. Robinson
- Departments of Pediatrics and System Pharmacology & Translational Therapeutics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas L. Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Benjamin D. Rowlands
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | - Joseph Scafidi
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque, Albuquerque, New Mexico, USA
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gökhan Uruk
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mary C. McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Todorovic S, Simeunovic V, Prvulovic M, Dakic T, Jevdjovic T, Sokanovic S, Kanazir S, Mladenovic A. Dietary restriction alters insulin signaling pathway in the brain. Biofactors 2024; 50:450-466. [PMID: 37975613 DOI: 10.1002/biof.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/07/2023] [Indexed: 11/19/2023]
Abstract
Insulin is known to be a key hormone in the regulation of peripheral glucose homeostasis, but beyond that, its effects on the brain are now undisputed. Impairments in insulin signaling in the brain, including changes in insulin levels, are thought to contribute significantly to declines in cognitive performance, especially during aging. As one of the most widely studied experimental interventions, dietary restriction (DR) is considered to delay the neurodegenerative processes associated with aging. Recently, however, data began to suggest that the onset and duration of a restrictive diet play a critical role in the putative beneficial outcome. Because the effects of DR on insulin signaling in the brain have been poorly studied, we decided to examine the effects of DR that differed in onset and duration: long-term DR (LTDR), medium-term DR (MTDR), and short-term DR (STDR) on the expression of proteins involved in insulin signaling in the hippocampus of 18- and 24-month-old male Wistar rats. We found that DR-induced changes in insulin levels in the brain may be independent of what happens in the periphery after restricted feeding. Significantly changed insulin content in the hippocampus, together with altered insulin signaling were found under the influence of DR, but the outcome was highly dependent on the onset and duration of DR.
Collapse
Affiliation(s)
- Smilja Todorovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Valentina Simeunovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Prvulovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Srdjan Sokanovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Selma Kanazir
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Mladenovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Liu S, Xu L, Shen Y, Wang L, Lai X, Hu H. Qingxin Kaiqiao Fang decreases Tau hyperphosphorylation in Alzheimer's disease via the PI3K/Akt/GSK3β pathway in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117031. [PMID: 37579924 DOI: 10.1016/j.jep.2023.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) belongs to the category of "senile dementia" in traditional Chinese medicine. AD is associated with brain emptiness or collaterals blocked by phlegm-heat. "Fumanjian" from Jingyue Quanshu treats dementia by promoting qi circulation, alleviating depression, eliminating turbidity, cultivating positivity, and dispelling evil spirits. Qingxin Kaiqiao Fang (QKF), derived from Fumanjian, is effective in treating AD owing to previously mentioned clinical effects. Elucidating the mechanism(s) of action of QKF on AD associated with phlegm-heat may be beneficial for therapeutic management; however, further research is needed. AIM OF THE STUDY This study aimed to determine the role of the PI3K/Akt pathway in AD, especially the specific effector protein involved, and explore the efficacy of QKF in treating AD by modulating the PI3K/Akt signal. MATERIALS AND METHODS High-performance liquid chromatography-Q-orbitrap-mass spectrometry was used to analyze the chemical components of QKF. Subsequently, APP/PS1 double-transgenic mice were used for behavioral tests, and hematoxylin-eosin and Nissl staining were used to assess the neuroprotective and cognitive effects of QKF. Cerebrospinal fluid pharmacology was used in in vitro validation, and Aβ25-35 was used to induce PC12 cells to establish the AD cell model. Various methods, including immunohistochemistry, Western blotting, quantitative real-time polymerase chain reaction, morphological assay, cell counting kit-8(CCK-8) assay, and terminal deoxynucleotide transferase (TdT)-mediated dUTP nick-end labeling (TUNEL)staining, were used to evaluate the effect of QKF on Tau hyperphosphorylation and anti-apoptosis. These methods also assessed the influence of QKF on the PI3K/Akt/GSK3β pathway involving the mRNA and protein expressions. Finally, the inhibitor - LY294002 was used for reverse validation. RESULTS We identified 295 chemical components in the water extract of QKF.QKF improved spatial cognition and learning memory in APP/PS1 mice, protected PC12 cell morphology, improved cell survival, reduced Aβ25-35-induced apoptosis, and inhibited the hyperphosphorylation of Tau protein via the PI3k/Akt/GSK3β signaling pathway. Furthermore, this protective effect of QKF was reduced by LY294002 in vitro. CONCLUSIONS QKF can improve spatial cognition, learning, and memory abilities in APP/PS1 mice and protect PC12 cells. Decreasing the Tau hyperphosphorylation in AD exhibits curative efficacy on AD via the PI3K/Akt/GSK3β pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Shuo Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Luting Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Yan Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Liuying Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Xiaoxiao Lai
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Haiyan Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China.
| |
Collapse
|
5
|
Pait MC, Kaye SD, Su Y, Kumar A, Singh S, Gironda SC, Vincent S, Anwar M, Carroll CM, Snipes JA, Lee J, Furdui CM, Deep G, Macauley SL. Novel method for collecting hippocampal interstitial fluid extracellular vesicles (EV ISF ) reveals sex-dependent changes in microglial EV proteome in response to Aβ pathology. J Extracell Vesicles 2024; 13:e12398. [PMID: 38191961 PMCID: PMC10774707 DOI: 10.1002/jev2.12398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
Brain-derived extracellular vesicles (EVs) play an active role in Alzheimer's disease (AD), relaying important physiological information about their host tissues. The internal cargo of EVs is protected from degradation, making EVs attractive AD biomarkers. However, it is unclear how circulating EVs relate to EVs isolated from disease-vulnerable brain regions. We developed a novel method for collecting EVs from the hippocampal interstitial fluid (ISF) of live mice. EVs (EVISF ) were isolated via ultracentrifugation and characterized by nanoparticle tracking analysis, immunogold labelling, and flow cytometry. Mass spectrometry and proteomic analyses were performed on EVISF cargo. EVISF were 40-150 nm in size and expressed CD63, CD9, and CD81. Using a model of cerebral amyloidosis (e.g., APPswe, PSEN1dE9 mice), we found protein concentration increased but protein diversity decreased with Aβ deposition. Genotype, age, and Aβ deposition modulated proteostasis- and immunometabolic-related pathways. Changes in the microglial EVISF proteome were sexually dimorphic and associated with a differential response of plaque associated microglia. We found that female APP/PS1 mice have more amyloid plaques, less plaque associated microglia, and a less robust- and diverse- EVISF microglial proteome. Thus, in vivo microdialysis is a novel technique for collecting EVISF and offers a unique opportunity to explore the role of EVs in AD.
Collapse
Affiliation(s)
- Morgan C. Pait
- Department of Physiology & PharmacologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Sarah D. Kaye
- Department of Physiology & PharmacologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Yixin Su
- Department of Cancer BiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Ashish Kumar
- Department of Cancer BiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Sangeeta Singh
- Department of Cancer BiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Stephen C. Gironda
- Department of Physiology & PharmacologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Samantha Vincent
- Department of Physiology & PharmacologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Maria Anwar
- Department of Physiology & PharmacologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Caitlin M. Carroll
- Department of Physiology & PharmacologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - James Andy Snipes
- Department of Physiology & PharmacologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jingyun Lee
- Department of Internal MedicineSection on Molecular MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Proteomics and Metabolomics Shared ResourceWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Cristina M. Furdui
- Department of Internal MedicineSection on Molecular MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Proteomics and Metabolomics Shared ResourceWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Atrium Health Wake Forest Baptist Comprehensive Cancer CenterWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Gagan Deep
- Department of Cancer BiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Atrium Health Wake Forest Baptist Comprehensive Cancer CenterWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Center for Research on Substance Use and AddictionWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- J Paul Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Shannon L. Macauley
- Department of Physiology & PharmacologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- J Paul Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Internal MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Alzheimer's Disease Research CenterWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Center for Diabetes and MetabolismWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Cardiovascular Sciences CenterWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
6
|
Xu Z, Chen J, Wang P, Li L, Hu S, Liu H, Huang Y, Mo X, Yan H, Shan Z, Wang D, Xu J, Liu L, Peng X. The role of peripheral β-amyloid in insulin resistance, insulin secretion, and prediabetes: in vitro and population-based studies. Front Endocrinol (Lausanne) 2023; 14:1195658. [PMID: 37538787 PMCID: PMC10394827 DOI: 10.3389/fendo.2023.1195658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Background Previous experimental studies have shown that mice overexpressing amyloid precursor protein, in which β-amyloid (Aβ) is overproduced, exhibit peripheral insulin resistance, pancreatic impairment, and hyperglycemia. We aimed to explore the effects of Aβ on insulin action and insulin secretion in vitro and the association of plasma Aβ with prediabetes in human. Methods We examined the effects of Aβ40 and Aβ42 on insulin-inhibited glucose production in HepG2 cells, insulin-promoted glucose uptake in C2C12 myotubes, and insulin secretion in INS-1 cells. Furthermore, we conducted a case-control study (N = 1142) and a nested case-control study (N = 300) within the prospective Tongji-Ezhou cohort. Odds ratios (ORs) and 95% confidence intervals (CIs) for prediabetes were estimated by using conditional logistic regression analyses. Results In the in vitro studies, Aβ40 and Aβ42 dose-dependently attenuated insulin-inhibited glucose production in HepG2 cells, insulin-promoted glucose uptake in C2C12 myotubes, and basal and glucose-stimulated insulin secretion in INS-1 cells. In the case-control study, plasma Aβ40 (adjusted OR: 2.00; 95% CI: 1.34, 3.01) and Aβ42 (adjusted OR: 1.94; 95% CI: 1.33, 2.83) were positively associated with prediabetes risk when comparing the extreme quartiles. In the nested case-control study, compared to the lowest quartile, the highest quartile of plasma Aβ40 and Aβ42 were associated with 3.51-fold (95% CI: 1.61, 7.62) and 2.75-fold (95% CI: 1.21, 6.22) greater odds of prediabetes, respectively. Conclusion Elevated plasma Aβ40 and Aβ42 levels were associated with increased risk of prediabetes in human subjects, which may be through impairing insulin sensitivity in hepatocytes and myotubes and insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Zihui Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Juan Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Pei Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Linyan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shan Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hongjie Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaoxing Mo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hong Yan
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Di Wang
- Xiangyang Key Laboratory of Public Health and Epidemic Prevention Materials Research, Xiangyang Public Inspection and Testing Center, Xiangyang, China
| | - Jian Xu
- Department of Elderly Health Management, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaobo Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
7
|
Grizzanti J, Moritz WR, Pait MC, Stanley M, Kaye SD, Carroll CM, Constantino NJ, Deitelzweig LJ, Snipes JA, Kellar D, Caesar EE, Pettit-Mee RJ, Day SM, Sens JP, Nicol NI, Dhillon J, Remedi MS, Kiraly DD, Karch CM, Nichols CG, Holtzman DM, Macauley SL. KATP channels are necessary for glucose-dependent increases in amyloid-β and Alzheimer's disease-related pathology. JCI Insight 2023; 8:e162454. [PMID: 37129980 PMCID: PMC10386887 DOI: 10.1172/jci.insight.162454] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/18/2023] [Indexed: 05/03/2023] Open
Abstract
Elevated blood glucose levels, or hyperglycemia, can increase brain excitability and amyloid-β (Aβ) release, offering a mechanistic link between type 2 diabetes and Alzheimer's disease (AD). Since the cellular mechanisms governing this relationship are poorly understood, we explored whether ATP-sensitive potassium (KATP) channels, which couple changes in energy availability with cellular excitability, play a role in AD pathogenesis. First, we demonstrate that KATP channel subunits Kir6.2/KCNJ11 and SUR1/ABCC8 were expressed on excitatory and inhibitory neurons in the human brain, and cortical expression of KCNJ11 and ABCC8 changed with AD pathology in humans and mice. Next, we explored whether eliminating neuronal KATP channel activity uncoupled the relationship between metabolism, excitability, and Aβ pathology in a potentially novel mouse model of cerebral amyloidosis and neuronal KATP channel ablation (i.e., amyloid precursor protein [APP]/PS1 Kir6.2-/- mouse). Using both acute and chronic paradigms, we demonstrate that Kir6.2-KATP channels are metabolic sensors that regulate hyperglycemia-dependent increases in interstitial fluid levels of Aβ, amyloidogenic processing of APP, and amyloid plaque formation, which may be dependent on lactate release. These studies identify a potentially new role for Kir6.2-KATP channels in AD and suggest that pharmacological manipulation of Kir6.2-KATP channels holds therapeutic promise in reducing Aβ pathology in patients with diabetes or prediabetes.
Collapse
Affiliation(s)
- John Grizzanti
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - William R. Moritz
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Morgan C. Pait
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Molly Stanley
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Biology, College of Arts and Sciences, University of Vermont, Burlington, Vermont, USA
| | - Sarah D. Kaye
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Caitlin M. Carroll
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Nicholas J. Constantino
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Lily J. Deitelzweig
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James A. Snipes
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Derek Kellar
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Emily E. Caesar
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | | | | | | - Noelle I. Nicol
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jasmeen Dhillon
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Maria S. Remedi
- Department of Physiology and Pharmacology and
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research
| | | | - Celeste M. Karch
- Department of Psychiatry
- Hope Center for Neurological Disorders
- Knight Alzheimer’s Disease Research Center, Department of Neurology; and
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Hope Center for Neurological Disorders
- Knight Alzheimer’s Disease Research Center, Department of Neurology; and
| | - Shannon L. Macauley
- Department of Physiology and Pharmacology and
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Alzheimer’s Disease Research Center
- Center on Diabetes, Obesity and Metabolism
- Center for Precision Medicine; and
- Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
8
|
Nguyen V, Thomas P, Pemberton S, Babin A, Noonan C, Weaver R, Banks WA, Rhea EM. Central nervous system insulin signaling can influence the rate of insulin influx into brain. Fluids Barriers CNS 2023; 20:28. [PMID: 37076875 PMCID: PMC10114367 DOI: 10.1186/s12987-023-00431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/10/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Insulin transport across the blood-brain barrier (BBB) is a highly regulated, saturable process, known to be affected by many peripheral substrates including insulin itself and triglycerides. This is in contrast to insulin leakage into peripheral tissues. Whether the central nervous system (CNS) can control the rate of insulin uptake by brain remains to be determined. Insulin BBB interactions are impaired in Alzheimer's disease (AD) and CNS insulin resistance is widely prevalent in AD. Therefore, if CNS insulin controls the rate of insulin transport across the BBB, then the defective transport of insulin seen in AD could be one manifestation of the resistance to CNS insulin observed in AD. METHODS We investigated whether enhancing CNS insulin levels or induction of CNS insulin resistance using an inhibitor of the insulin receptor altered the blood-to-brain transport of radioactively labeled insulin in young, healthy mice. RESULTS We found that insulin injected directly into the brain decreased insulin transport across the BBB for whole brain and the olfactory bulb in male mice, whereas insulin receptor blockade decreased transport in female mice for whole brain and hypothalamus. Intranasal insulin, currently being investigated as a treatment in AD patients, decreased transport across the BBB of the hypothalamus. CONCLUSIONS These results suggest CNS insulin can control the rate of insulin brain uptake, connecting CNS insulin resistance to the rate of insulin transport across the BBB.
Collapse
Affiliation(s)
- Van Nguyen
- School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Peter Thomas
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Sarah Pemberton
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
- University of Washington, Seattle, WA, 98195, USA
| | - Alice Babin
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Cassidy Noonan
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
- University of Washington, Seattle, WA, 98195, USA
| | - Riley Weaver
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA.
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
9
|
Ennis GE, Betthauser TJ, Koscik RL, Chin NA, Christian BT, Asthana S, Johnson SC, Bendlin BB. The relationship of insulin resistance and diabetes to tau PET SUVR in middle-aged to older adults. Alzheimers Res Ther 2023; 15:55. [PMID: 36932429 PMCID: PMC10022314 DOI: 10.1186/s13195-023-01180-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Insulin resistance (IR) and type 2 diabetes have been found to increase the risk for Alzheimer's clinical syndrome in epidemiologic studies but have not been associated with tau tangles in neuropathological research and have been inconsistently associated with cerebrospinal fluid P-tau181. IR and type 2 diabetes are well-recognized vascular risk factors. Some studies suggest that cardiovascular risk may act synergistically with cortical amyloid to increase tau measured using tau PET. Utilizing data from largely nondemented middle-aged and older adult cohorts enriched for AD risk, we investigated the association of IR and diabetes to tau PET and whether amyloid moderated those relationships. METHODS Participants were enrolled in either the Wisconsin Registry for Alzheimer's Prevention (WRAP) or Wisconsin Alzheimer's Disease Research Center (WI-ADRC) Clinical Core. Two partially overlapping samples were studied: a sample characterized using HOMA-IR (n=280 WRAP participants) and a sample characterized on diabetic status (n=285 WRAP and n=109 WI-ADRC). IR was measured using the homeostasis model assessment of insulin resistance (HOMA-IR). Tau PET employing the radioligand 18F-MK-6240 was used to detect AD-specific aggregated tau. Linear regression tested the relationship of IR and diabetic status to tau PET standardized uptake value ratio (SUVR) within the entorhinal cortex and whether relationships were moderated by amyloid assessed by amyloid PET distribution volume ratio (DVR) and amyloid PET positivity status. RESULTS Neither HOMA-IR nor diabetic status was significantly associated with tau PET SUVR. The relationship between IR and tau PET SUVR was not moderated by amyloid PET DVR or positivity status. The association between diabetic status and tau PET SUVR was not significantly moderated by amyloid PET DVR but was significantly moderated by amyloid PET positivity status. Among the amyloid PET-positive participants, the estimated marginal tau PET SUVR mean was higher in the diabetic (n=6) relative to the nondiabetic group (n=88). CONCLUSION Findings indicate that IR may not be related to tau in generally healthy middle-aged and older adults who are in the early stages of the AD clinicopathologic continuum but suggest the need for additional research to investigate whether a synergistic relationship between type 2 diabetes and amyloid is associated with increased tau levels.
Collapse
Affiliation(s)
- Gilda E Ennis
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| | - Tobey J Betthauser
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Rebecca Langhough Koscik
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Nathaniel A Chin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Bradley T Christian
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Hospital Department of Veterans Affairs, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Hospital Department of Veterans Affairs, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Hospital Department of Veterans Affairs, Madison, WI, USA
| |
Collapse
|
10
|
Day SM, Gironda SC, Clarke CW, Snipes JA, Nicol NI, Kamran H, Vaughan W, Weiner JL, Macauley SL. Ethanol exposure alters Alzheimer's-related pathology, behavior, and metabolism in APP/PS1 mice. Neurobiol Dis 2023; 177:105967. [PMID: 36535550 PMCID: PMC10010148 DOI: 10.1016/j.nbd.2022.105967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Epidemiological studies identified alcohol use disorder (AUD) as a risk factor for Alzheimer's disease (AD), yet there is conflicting evidence on how alcohol use promotes AD pathology. In this study, a 10-week moderate two-bottle choice drinking paradigm was used to identify how chronic ethanol exposure alters amyloid-β (Aβ)-related pathology, metabolism, and behavior. Ethanol-exposed APPswe/PSEN1dE9 (APP/PS1) mice showed increased brain atrophy and an increased number of amyloid plaques. Further analysis revealed that ethanol exposure led to a shift in the distribution of plaque size in the cortex and hippocampus. Ethanol-exposed mice developed a greater number of smaller plaques, potentially setting the stage for increased plaque proliferation in later life. Ethanol drinking APP/PS1 mice also exhibited deficits in nest building, a metric of self-care, as well as increased locomotor activity and central zone exploration in an open field test. Ethanol exposure also led to a diurnal shift in feeding behavior which was associated with changes in glucose homeostasis and glucose intolerance. Complementary in vivo microdialysis experiments were used to measure how acute ethanol directly modulates Aβ in the hippocampal interstitial fluid (ISF). Acute ethanol transiently increased hippocampal ISF glucose levels, suggesting that ethanol directly affects cerebral metabolism. Acute ethanol also selectively increased ISF Aβ40, but not ISF Aβ42, levels during withdrawal. Lastly, chronic ethanol drinking increased N-methyl-d-aspartate receptor (NMDAR) and decreased γ-aminobutyric acid type-A receptor (GABAAR) mRNA levels, indicating a potential hyperexcitable shift in the brain's excitatory/inhibitory (E/I) balance. Collectively, these experiments suggest that ethanol may increase Aβ deposition by disrupting metabolism and the brain's E/I balance. Furthermore, this study provides evidence that a moderate drinking paradigm culminates in an interaction between alcohol use and AD-related phenotypes with a potentiation of AD-related pathology, behavioral dysfunction, and metabolic impairment.
Collapse
Affiliation(s)
- Stephen M Day
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Stephen C Gironda
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States; Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Caitlin W Clarke
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - J Andy Snipes
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Noelle I Nicol
- Section on Gerontology & Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Hana Kamran
- Section on Gerontology & Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Warner Vaughan
- Section on Gerontology & Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Jeffrey L Weiner
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Shannon L Macauley
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States; Section on Gerontology & Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States.
| |
Collapse
|
11
|
Leclerc M, Bourassa P, Tremblay C, Caron V, Sugère C, Emond V, Bennett DA, Calon F. Cerebrovascular insulin receptors are defective in Alzheimer's disease. Brain 2023; 146:75-90. [PMID: 36280236 PMCID: PMC9897197 DOI: 10.1093/brain/awac309] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 01/11/2023] Open
Abstract
Central response to insulin is suspected to be defective in Alzheimer's disease. As most insulin is secreted in the bloodstream by the pancreas, its capacity to regulate brain functions must, at least partly, be mediated through the cerebral vasculature. However, how insulin interacts with the blood-brain barrier and whether alterations of this interaction could contribute to Alzheimer's disease pathophysiology both remain poorly defined. Here, we show that human and murine cerebral insulin receptors (INSRs), particularly the long isoform INSRα-B, are concentrated in microvessels rather than in the parenchyma. Vascular concentrations of INSRα-B were lower in the parietal cortex of subjects diagnosed with Alzheimer's disease, positively correlating with cognitive scores, leading to a shift towards a higher INSRα-A/B ratio, consistent with cerebrovascular insulin resistance in the Alzheimer's disease brain. Vascular INSRα was inversely correlated with amyloid-β plaques and β-site APP cleaving enzyme 1, but positively correlated with insulin-degrading enzyme, neprilysin and P-glycoprotein. Using brain cerebral intracarotid perfusion, we found that the transport rate of insulin across the blood-brain barrier remained very low (<0.03 µl/g·s) and was not inhibited by an insulin receptor antagonist. However, intracarotid perfusion of insulin induced the phosphorylation of INSRβ that was restricted to microvessels. Such an activation of vascular insulin receptor was blunted in 3xTg-AD mice, suggesting that Alzheimer's disease neuropathology induces insulin resistance at the level of the blood-brain barrier. Overall, the present data in post-mortem Alzheimer's disease brains and an animal model of Alzheimer's disease indicate that defects in the insulin receptor localized at the blood-brain barrier strongly contribute to brain insulin resistance in Alzheimer's disease, in association with β-amyloid pathology.
Collapse
Affiliation(s)
- Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
| | - Philippe Bourassa
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Vicky Caron
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Camille Sugère
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Vincent Emond
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
| |
Collapse
|
12
|
Wee AS, Nhu TD, Khaw KY, San Tang K, Yeong KY. Linking Diabetes to Alzheimer's Disease: Potential Roles of Glucose Metabolism and Alpha-Glucosidase. Curr Neuropharmacol 2023; 21:2036-2048. [PMID: 36372924 PMCID: PMC10556372 DOI: 10.2174/1570159x21999221111102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (DM) are more prevalent with ageing and cause a substantial global socio-economic burden. The biology of these two conditions is well elaborated, but whether AD and type 2 DM arise from coincidental roots in ageing or are linked by pathophysiological mechanisms remains unclear. Research findings involving animal models have identified mechanisms shared by both AD and type 2 DM. Deposition of β-amyloid peptides and formation of intracellular neurofibrillary tangles are pathological hallmarks of AD. Type 2 DM, on the other hand, is a metabolic disorder characterised by hyperglycaemia and insulin resistance. Several studies show that improving type 2 DM can delay or prevent the development of AD, and hence, prevention and control of type 2 DM may reduce the risk of AD later in life. Alpha-glucosidase is an enzyme that is commonly associated with hyperglycaemia in type 2 DM. However, it is uncertain if this enzyme may play a role in the progression of AD. This review explores the experimental evidence that depicts the relationship between dysregulation of glucose metabolism and AD. We also delineate the links between alpha-glucosidase and AD and the potential role of alpha-glucosidase inhibitors in treating AD.
Collapse
Affiliation(s)
- Ai Sze Wee
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
- Faculty of Medicine, SEGi University, Kota Damansara, 47810 Selangor, Malaysia
| | - Thao Dinh Nhu
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
| | - Kim San Tang
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 , Selangor, Malaysia
- Tropical Medicine and Biology (TMB) Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway 47500 Selangor, Malaysia
| |
Collapse
|
13
|
Banks WA, Noonan C, Rhea EM. Evidence for an alternative insulin transporter at the blood-brain barrier. AGING PATHOBIOLOGY AND THERAPEUTICS 2022; 4:100-108. [PMID: 36644126 PMCID: PMC9837797 DOI: 10.31491/apt.2022.12.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accumulating evidence suggests there is an alternative insulin transporter besides the insulin receptor at the blood-brain barrier (BBB), responsible for shuttling insulin from the circulation into the brain. In this review, we summarize key features of the BBB and what makes it unique compared to other capillary beds; summarize what we know about insulin BBB transport; provide an extensive list of diseases, physiological states, and serum factors tested in modifying insulin BBB transport; and lastly, highlight potential alternative transport systems that may be involved in or have already been tested in mediating insulin BBB transport. Identifying the transport system for insulin at the BBB would aide in controlling central nervous system (CNS) insulin levels in multiple diseases and conditions including Alzheimer's disease (AD) and obesity, where availability of insulin to the CNS is limited.
Collapse
Affiliation(s)
- William A. Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Cassidy Noonan
- Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- University of Washington, Seattle, WA 98195, USA
| | - Elizabeth M. Rhea
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| |
Collapse
|
14
|
Woodfield A, Gonzales T, Helmerhorst E, Laws S, Newsholme P, Porter T, Verdile G. Current Insights on the Use of Insulin and the Potential Use of Insulin Mimetics in Targeting Insulin Signalling in Alzheimer's Disease. Int J Mol Sci 2022; 23:15811. [PMID: 36555450 PMCID: PMC9779379 DOI: 10.3390/ijms232415811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are chronic diseases that share several pathological mechanisms, including insulin resistance and impaired insulin signalling. Their shared features have prompted the evaluation of the drugs used to manage diabetes for the treatment of AD. Insulin delivery itself has been utilized, with promising effects, in improving cognition and reducing AD related neuropathology. The most recent clinical trial involving intranasal insulin reported no slowing of cognitive decline; however, several factors may have impacted the trial outcomes. Long-acting and rapid-acting insulin analogues have also been evaluated within the context of AD with a lack of consistent outcomes. This narrative review provided insight into how targeting insulin signalling in the brain has potential as a therapeutic target for AD and provided a detailed update on the efficacy of insulin, its analogues and the outcomes of human clinical trials. We also discussed the current evidence that warrants the further investigation of the use of the mimetics of insulin for AD. These small molecules may provide a modifiable alternative to insulin, aiding in developing drugs that selectively target insulin signalling in the brain with the aim to attenuate cognitive dysfunction and AD pathologies.
Collapse
Affiliation(s)
- Amy Woodfield
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Tatiana Gonzales
- Curtin Medical School, Curtin University, Bentley 6102, Australia
| | - Erik Helmerhorst
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Simon Laws
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Philip Newsholme
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Tenielle Porter
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Giuseppe Verdile
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| |
Collapse
|
15
|
Application of Nanoparticles: Diagnosis, Therapeutics, and Delivery of Insulin/Anti-Diabetic Drugs to Enhance the Therapeutic Efficacy of Diabetes Mellitus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122078. [PMID: 36556443 PMCID: PMC9783843 DOI: 10.3390/life12122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder of carbohydrates, lipids, and proteins due to a deficiency of insulin secretion or failure to respond to insulin secreted from pancreatic cells, which leads to high blood glucose levels. DM is one of the top four noncommunicable diseases and causes of death worldwide. Even though great achievements were made in the management and treatment of DM, there are still certain limitations, mainly related to the early diagnosis, and lack of appropriate delivery of insulin and other anti-diabetic agents. Nanotechnology is an emerging field in the area of nanomedicine and NP based anti-diabetic agent delivery is reported to enhance efficacy by increasing bioavailability and target site accumulation. Moreover, theranostic NPs can be used as diagnostic tools for the early detection and prevention of diseases owing to their unique biological, physiochemical, and magnetic properties. NPs have been synthesized from a variety of organic and inorganic materials including polysaccharides, dendrimers, proteins, lipids, DNA, carbon nanotubes, quantum dots, and mesoporous materials within the nanoscale size. This review focuses on the role of NPs, derived from organic and inorganic materials, in the diagnosis and treatment of DM.
Collapse
|
16
|
Ma X, Guo Y, Xu J, Wang X, Dong S, Gao Y, Van Halm-Lutterodt N, Yuan L. Effects of distinct n-6 to n-3 polyunsaturated fatty acid ratios on insulin resistant and AD-like phenotypes in high-fat diets-fed APP/PS1 mice. Food Res Int 2022; 162:112207. [DOI: 10.1016/j.foodres.2022.112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022]
|
17
|
Engel MG, Smith J, Mao K, Quipildor GF, Cui MH, Gulinello M, Branch CA, Gandy SE, Huffman DM. Evidence for preserved insulin responsiveness in the aging rat brain. GeroScience 2022; 44:2491-2508. [PMID: 35798912 PMCID: PMC9768080 DOI: 10.1007/s11357-022-00618-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/27/2022] [Indexed: 01/06/2023] Open
Abstract
Insulin appears to exert salutary effects in the central nervous system (CNS). Thus, brain insulin resistance has been proposed to play a role in brain aging and dementia but is conceptually complex and unlikely to fit classic definitions established in peripheral tissues. Thus, we sought to characterize brain insulin responsiveness in young (4-5 months) and old (24 months) FBN male rats using a diverse set of assays to determine the extent to which insulin effects in the CNS are impaired with age. When performing hyperinsulinemic-euglycemic clamps in rats, intracerebroventricular (ICV) infusion of insulin in old animals improved peripheral insulin sensitivity by nearly two-fold over old controls and comparable to young rats, suggesting preservation of this insulin-triggered response in aging per se (p < 0.05). We next used an imaging-based approach by comparing ICV vehicle versus insulin and performed resting state functional magnetic resonance imaging (rs-fMRI) to evaluate age- and insulin-related changes in network connectivity within the default mode network. In aging, lower connectivity between the mesial temporal (MT) region and other areas, as well as reduced MT signal complexity, was observed in old rats, which correlated with greater cognitive deficits in old. Despite these stark differences, ICV insulin failed to elicit any significant alteration to the BOLD signal in young rats, while a significant deviation of the BOLD signal was observed in older animals, characterized by augmentation in regions of the septal nucleus and hypothalamus, and reduction in thalamus and nucleus accumbens. In contrast, ex vivo stimulation of hippocampus with 10 nM insulin revealed increased Akt activation in young (p < 0.05), but not old rats. Despite similar circulating levels of insulin and IGF-1, cerebrospinal fluid concentrations of these ligands were reduced with age. Thus, these data highlight the complexity of capturing brain insulin action and demonstrate preserved or heightened brain responses to insulin with age, despite dampened canonical signaling, thereby suggesting impaired CNS input of these ligands may be a feature of reduced brain insulin action, providing further rationale for CNS replacement strategies.
Collapse
Affiliation(s)
- Matthew G Engel
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building Room 201, BronxBronx, NY, 10461, USA
| | - Jeremy Smith
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Kai Mao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building Room 201, BronxBronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gabriela Farias Quipildor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building Room 201, BronxBronx, NY, 10461, USA
| | - Min-Hui Cui
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maria Gulinello
- Dominick S. Purpura Department of Neuroscience, Behavioral Core Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Craig A Branch
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Samuel E Gandy
- Department of Neurology and the Mount Sinai Center for Cognitive Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry and the Mount Sinai Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Ave, Golding Building Room 201, BronxBronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
18
|
Falling Short: The Contribution of Central Insulin Receptors to Gait Dysregulation in Brain Aging. Biomedicines 2022; 10:biomedicines10081923. [PMID: 36009470 PMCID: PMC9405648 DOI: 10.3390/biomedicines10081923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Insulin resistance, which manifests as a reduction of insulin receptor signaling, is known to correlate with pathological changes in peripheral tissues as well as in the brain. Central insulin resistance has been associated with impaired cognitive performance, decreased neuronal health, and reduced brain metabolism; however, the mechanisms underlying central insulin resistance and its impact on brain regions outside of those associated with cognition remain unclear. Falls are a leading cause of both fatal and non-fatal injuries in the older population. Despite this, there is a paucity of work focused on age-dependent alterations in brain regions associated with ambulatory control or potential therapeutic approaches to target these processes. Here, we discuss age-dependent alterations in central modalities that may contribute to gait dysregulation, summarize current data supporting the role of insulin signaling in the brain, and highlight key findings that suggest insulin receptor sensitivity may be preserved in the aged brain. Finally, we present novel results showing that administration of insulin to the somatosensory cortex of aged animals can alter neuronal communication, cerebral blood flow, and the motivation to ambulate, emphasizing the need for further investigations of intranasal insulin as a clinical management strategy in the older population.
Collapse
|
19
|
Wu L, Zhao N, Jiang W, Wang F. Effects of heparan sulfate from porcine mucosa on Aβ 1-42-induced neurotoxicity in vitro and in vivo. Int J Biol Macromol 2022; 206:823-836. [PMID: 35307462 DOI: 10.1016/j.ijbiomac.2022.03.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
Abstract
Amyloid-β (Aβ) deposition and neurotoxicity play an important role in Alzheimer's disease (AD). Notably, the nonnegligible role of endogenous heparan sulfate (HS) in the release, uptake and misfolding of Aβ sheds light on the discovery of HS as an effective drug for AD. In this work, the effects of HS from porcine mucosa (PMHS) on Aβ1-42-induced neurotoxicity were investigated both in vitro and in vivo. The in vitro AD model was established in SH-SY5Y via treatment with oligomeric Aβ1-42, and the in vivo AD model was established by intracerebroventricular injection of Aβ1-42 to KM mice. The results showed that in vitro, PMHS could ameliorate the inflammation and apoptosis response of SH-SY5Y cells induced by Aβ1-42; in vivo, PMHS could not only improve the cognitive impairment induced by Aβ1-42 but also inhibit neuroinflammation and apoptosis in the brain. Furthermore, PMHS lowered the levels of Aβ1-42 in the peripheral circulation and brain by improving the phagocytosis function of neutrophils. This is the first report that PMHS enhances the phagocytosis function of neutrophils to alleviate Aβ-induced neurotoxicity. Moreover, our work verified the feasibility of peripheral Aβ clearance for improving neurotoxicity. Conclusively, we believe that PMHS could be developed into neuroprotective drugs for AD.
Collapse
Affiliation(s)
- Lidan Wu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Na Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Wenjie Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, National Glycoengineering Research Center, Shandong University, Jinan 250012, Shandong, China; Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250012, China.
| |
Collapse
|
20
|
Kumar M, Bansal N. A Revisit to Etiopathogenesis and Therapeutic Strategies in Alzheimer's Disease. Curr Drug Targets 2021; 23:486-512. [PMID: 34792002 DOI: 10.2174/1389450122666211118125233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 11/22/2022]
Abstract
Dementia is a cluster of brain abnormalities that trigger progressive memory deficits and other cognitive abilities such as skills, language, or executive function. Alzheimer's disease (AD) is the foremost type of age-associated dementia that involves progressive neurodegeneration accompanied by profound cognitive deficits in advanced stages that severely hamper social or occupational abilities with or without the involvement of any other psychiatric condition. The last two decades witnessed a sharp increase (~123%) in mortality due to AD type dementia, typically owing to a very low disclosure rate (~45%) and hence, the prophylactic, as well as the therapeutic cure of AD, has been a huge challenge. Although understanding of AD pathogenesis has witnessed a remarkable growth (e.g., tauopathy, oxidative stress, lipid transport, glucose uptake, apoptosis, synaptic dysfunction, inflammation, and immune system), still a dearth of an effective therapeutic agent in the management of AD prompts the quest for newer pharmacological targets in the purview of its growing epidemiological status. Most of the current therapeutic strategies focus on modulation of a single target, e.g., inhibition of acetylcholinesterase, glutamate excitotoxicity (memantine), or nootropics (piracetam), even though AD is a multifaceted neurological disorder. There is an impedance urgency to find not only symptomatic but effective disease-modifying therapies. The present review focuses on the risk / protective factors and pathogenic mechanisms involved in AD. In addition to the existing symptomatic therapeutic approach, a diverse array of possible targets linked to pathogenic cascades have been re-investigated to envisage the pharmacotherapeutic strategies in AD.
Collapse
Affiliation(s)
- Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Nitin Bansal
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University (CBLU), Bhiwani, Haryana 127021. India
| |
Collapse
|
21
|
Ochiai T, Sano T, Nagayama T, Kubota N, Kadowaki T, Wakabayashi T, Iwatsubo T. Differential involvement of insulin receptor substrate (IRS)-1 and IRS-2 in brain insulin signaling is associated with the effects on amyloid pathology in a mouse model of Alzheimer's disease. Neurobiol Dis 2021; 159:105510. [PMID: 34537327 DOI: 10.1016/j.nbd.2021.105510] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 01/03/2023] Open
Abstract
Insulin signaling has been implicated in the metabolism as well as aging and longevity. Type 2 diabetes mellitus and its core pathology, insulin resistance, has also been implicated in the development of Alzheimer's disease (AD) and amyloid-β deposition in humans. By contrast, genetic ablation of the insulin/IGF-1 signaling (IIS) pathway components, e.g. insulin receptor substrate (IRS)-2, has been documented to suppress amyloid-β accumulation in the brains of transgenic mice overexpressing AD mutant β-amyloid precursor protein (APP). Therefore, the brain IIS may be a key modifiable molecular target in the pathophysiology of AD. IRS-1 and IRS-2 are critical nodes in IIS as substrates for insulin receptor and IGF-1 receptor, although the functional differences between IRS-1 and IRS-2 in the adult brain are yet to be explored. To examine their relative contribution to the brain IIS activity and AD pathomechanism, we generated APP transgenic mice lacking either IRS-1 or IRS-2. IRS-1 deficiency had little effects on the brain IIS pathway associated with compensatory activation of IRS-2, whereas IRS-2 deficiency was not fully compensated by activation of IRS-1, and the downstream activation of Akt also was significantly compromised. Pathological analyses of the cortical tissues showed that the biochemical levels of soluble and insoluble amyloid-β, the amyloid-β histopathology, and tau phosphorylation were not affected by the absence of IRS-1, in contrast to the marked alteration in IRS-2 deleted mice. These results suggest the predominance of IRS-2 in the brain IIS, and support the hypothesis that reduced IIS exerts anti-amyloid effects in the brain.
Collapse
Affiliation(s)
- Toshitaka Ochiai
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Pharmacology Department, Drug Research Center, Kaken Pharmaceutical Co., LTD., Kyoto, Japan
| | - Toshiharu Sano
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeru Nagayama
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Clinical Nutrition Therapy, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Toranomon Hospital, Tokyo, Japan
| | - Tomoko Wakabayashi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Innovative Dementia Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
22
|
Romidepsin and metformin nanomaterials delivery on streptozocin for the treatment of Alzheimer's disease in animal model. Biomed Pharmacother 2021; 141:111864. [PMID: 34323698 DOI: 10.1016/j.biopha.2021.111864] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Brain insulin signal anomalies are implicated in Alzheimer's disease (AD) pathology. In this background, metformin, an insulin sensitizer's neuroprotective effectiveness, has been established in the prior findings. In the present investigation, combining an epigenetic modulator, romidepsin, and metformin will improve the gene expressions of neurotrophic factors and reduce AD-associated biochemical and cellular changes by loading them mainly into a nanocarrier surface-modified framework for improved therapeutic effectiveness and bioavailability. In the present investigation, the mediated intra-cerebroventricular streptozocin (3 mg/kg) AD of the model was loaded with metformin and romidepsin into a poloxamer stabilized polymer nanocarrier system. Free combination drug therapy (Romidepsin 25 mg/kg and metformin 5 mg/kg) reduced biochemical and cellular variations over three weeks, respectively, compared to either free treatment (Romidepsin 50 mg/kg and metformin 10 mg/kg). The nanoformulations (Romidepsin 25 mg/kg and Metformin 5 mg/kg), as shown by enhanced significantly reduce stress and high neurotrophic factors, has also exerted superior neurological effectiveness than the free combination of drugs. Eventually, through the Poloxamer stable polymeric nanocarrier framework, the synergistic neuroprotective efficacy of metformin and romidepsin has improved.
Collapse
|
23
|
Zhang S, Lachance BB, Mattson MP, Jia X. Glucose metabolic crosstalk and regulation in brain function and diseases. Prog Neurobiol 2021; 204:102089. [PMID: 34118354 DOI: 10.1016/j.pneurobio.2021.102089] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
Brain glucose metabolism, including glycolysis, the pentose phosphate pathway, and glycogen turnover, produces ATP for energetic support and provides the precursors for the synthesis of biological macromolecules. Although glucose metabolism in neurons and astrocytes has been extensively studied, the glucose metabolism of microglia and oligodendrocytes, and their interactions with neurons and astrocytes, remain critical to understand brain function. Brain regions with heterogeneous cell composition and cell-type-specific profiles of glucose metabolism suggest that metabolic networks within the brain are complex. Signal transduction proteins including those in the Wnt, GSK-3β, PI3K-AKT, and AMPK pathways are involved in regulating these networks. Additionally, glycolytic enzymes and metabolites, such as hexokinase 2, acetyl-CoA, and enolase 2, are implicated in the modulation of cellular function, microglial activation, glycation, and acetylation of biomolecules. Given these extensive networks, glucose metabolism dysfunction in the whole brain or specific cell types is strongly associated with neurologic pathology including ischemic brain injury and neurodegenerative disorders. This review characterizes the glucose metabolism networks of the brain based on molecular signaling and cellular and regional interactions, and elucidates glucose metabolism-based mechanisms of neurological diseases and therapeutic approaches that may ameliorate metabolic abnormalities in those diseases.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
24
|
K C S, Kakoty V, Krishna KV, Dubey SK, Chitkara D, Taliyan R. Neuroprotective Efficacy of Co-Encapsulated Rosiglitazone and Vorinostat Nanoparticle on Streptozotocin Induced Mice Model of Alzheimer Disease. ACS Chem Neurosci 2021; 12:1528-1541. [PMID: 33860663 DOI: 10.1021/acschemneuro.1c00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Anomalies in brain insulin signaling have been demonstrated to be involved in the pathology of Alzheimer disease (AD). In this context, the neuroprotective efficacy of an insulin sensitizer, rosiglitazone, has been confirmed in our previous study. In the present study, we hypothesize that a combination of an epigenetic modulator, vorinostat, along with rosiglitazone can impart improved gene expression of neurotrophic factors and attenuate biochemical and cellular alteration associated with AD mainly by loading these drugs in a surface modified nanocarrier system for enhanced bioavailability and enhanced therapeutic efficacy. Hence, in this study, rosiglitazone and vorinostat were loaded onto a poloxamer stabilized polymeric nanocarrier system and administered to mice in the intracerebroventricular streptozotocin (3 mg/kg) induced model of AD. Treatment with the free drug combination (rosiglitazone 5 mg/kg, vorinostat 25 mg/kg) for 3 weeks attenuated the behavioral, biochemical, and cellular alterations as compared to either treatment alone (rosiglitazone 10 mg/kg, vorinostat 50 mg/kg). Further, the coencapsulated nanoformulation (rosiglitazone 5 mg/kg, vorinostat 25 mg/kg) exerted better neuroprotective efficacy than the free drug combination as evidenced by improved behavioral outcome, reduced oxidative stress, and elevated levels of neurotrophic factors. In conclusion, the synergistic neuroprotective efficacy of rosiglitazone and vorinostat has been increased through the poloxamer stabilized polymeric nanocarrier system.
Collapse
Affiliation(s)
- Sarathlal K C
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Violina Kakoty
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | | | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| |
Collapse
|
25
|
Guo Y, Wang Q, Chen S, Xu C. Functions of amyloid precursor protein in metabolic diseases. Metabolism 2021; 115:154454. [PMID: 33248065 DOI: 10.1016/j.metabol.2020.154454] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Amyloid precursor protein (APP) is a transmembrane precursor protein that is widely expressed in the central nervous system and peripheral tissues in the liver and pancreas, adipose tissue, and myotubes. APP can be cleaved by proteases in two different ways to produce a variety of short peptides, each with different physiological properties and functions. APP peptides generated by non-amyloidogenic processing can positively influence metabolism, while the peptides produced by amyloidogenic processing have the opposite effects. Here, we summarize the regulatory effects of APP and its cleavage peptides on metabolism in the central nervous system and peripheral tissues. In addition, abnormal expression and function of APP and APP-derived peptides are associated with metabolic diseases, such as type 2 diabetes, obesity, non-alcoholic fatty liver disease, and cardiovascular disease, and cancers. Pharmacological intervention of APP function or reduction of the production of peptides derived from amyloidogenic processing may be effective strategies for the prevention and treatment of Alzheimer's disease, and they may also provide new guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qinqiu Wang
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shenghui Chen
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
26
|
Inflammation: major denominator of obesity, Type 2 diabetes and Alzheimer's disease-like pathology? Clin Sci (Lond) 2020; 134:547-570. [PMID: 32167154 DOI: 10.1042/cs20191313] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023]
Abstract
Adipose tissue is an active metabolic organ that contributes to processes such as energy storage and utilization and to the production of a number of metabolic agents, such as adipokines, which play a role in inflammation. In this review, we try to elucidate the connections between peripheral inflammation at obesity and Type 2 diabetes and the central inflammatory process. Multiple lines of evidence highlight the importance of peripheral inflammation and its link to neuroinflammation, which can lead to neurodegenerative diseases such as dementia, Alzheimer's disease (AD) and Parkinson's disease. In addition to the accumulation of misfolded amyloid beta (Aβ) peptide and the formation of the neurofibrillary tangles of hyperphosphorylated tau protein in the brain, activated microglia and reactive astrocytes are the main indicators of AD progression. They were found close to Aβ plaques in the brains of both AD patients and rodent models of Alzheimer's disease-like pathology. Cytokines are key players in pro- and anti-inflammatory processes and are also produced by microglia and astrocytes. The interplay of seemingly unrelated pathways between the periphery and the brain could, in fact, have a common denominator, with inflammation in general being a key factor affecting neuronal processes in the brain. An increased amount of white adipose tissue throughout the body seems to be an important player in pro-inflammatory processes. Nevertheless, other important factors should be studied to elucidate the pathological processes of and the relationship among obesity, Type 2 diabetes and neurodegenerative diseases.
Collapse
|
27
|
Söderbom G, Zeng BY. The NLRP3 inflammasome as a bridge between neuro-inflammation in metabolic and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:345-391. [PMID: 32739011 DOI: 10.1016/bs.irn.2020.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Evidence increasingly suggests that type 2 diabetes mellitus (T2DM) is a risk factor for neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD). These diseases share many pathological processes, including oxidative stress, local inflammation/neuroinflammation and chronic, low-grade (systemic) inflammation, which are exacerbated by aging, a common risk factor for T2DM and NDDs. Here, we focus on the link between chronic inflammation driven by peripheral metabolic disease and how this may impact neurodegeneration in AD and PD. We review the relationship between these common pathological processes in AD and PD from the perspective of the "pro-inflammatory" signaling of the nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat- (LRR)-, and pyrin domain-containing protein 3 (NLRP3) inflammasome complex. Since the need for effective disease-modifying therapies in T2DM, AD and PD is significant, the relationship between these diseases is important as a positive clinical impact on one may benefit the others. We briefly consider how novel strategies may target neuro-inflammation and provide potential therapies for AD and PD.
Collapse
Affiliation(s)
| | - Bai-Yun Zeng
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
28
|
Pitchaimani V, Arumugam S, Thandavarayan RA, Karuppagounder V, Afrin MR, Sreedhar R, Harima M, Nakamura M, Watanabe K, Kodama S, Fujihara K, Sone H. Brain adaptations of insulin signaling kinases, GLUT 3, p-BADser155 and nitrotyrosine expression in various hypoglycemic models of mice. Neurochem Int 2020; 137:104745. [DOI: 10.1016/j.neuint.2020.104745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 12/29/2022]
|
29
|
Tyagi A, Mirita C, Taher N, Shah I, Moeller E, Tyagi A, Chong T, Pugazhenthi S. Metabolic syndrome exacerbates amyloid pathology in a comorbid Alzheimer's mouse model. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165849. [PMID: 32485218 DOI: 10.1016/j.bbadis.2020.165849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) often coexists with other aging-associated diseases including obesity, diabetes, hypertension, and cardiovascular diseases. The early stage of these comorbidities is known as metabolic syndrome (MetS) which is highly prevalent in mid-life. An important cause of MetS is the deficiency of SIRT3, a mitochondrial deacetylase which enhances the functions of critical mitochondrial proteins, including metabolic enzymes, by deacetylation. Deletion of Sirt3 gene has been reported to result in the acceleration of MetS. In a recently published study, we demonstrated in the brain of Sirt3-/- mice, downregulation of metabolic enzymes, insulin resistance and elevation of inflammatory markers including microglial proliferation. These findings suggested a novel pathway that could link SIRT3 deficiency to neuroinflammation, an important cause of Alzheimer's pathogenesis. Therefore, we hypothesized that MetS and amyloid pathology may interact through converging pathways of insulin resistance and neuroinflammation in comorbid AD. To investigate these interactions, we crossed Sirt3-/- mice with APP/PS1 mice and successfully generated APP/PS1/Sirt3-/- mice with amyloid pathology and MetS. In these comorbid AD mice, we observed exacerbation of insulin resistance, glucose intolerance, amyloid plaque deposition, markers of neuroinflammation, including elevated expression of IL-1β, TNF-α and Cox-2 at 8 months of age. There was also increased microglial proliferation and activation. Our observations suggest a novel mechanism by which MetS may interact with amyloid pathology during the cellular phase of AD. Therapeutic targeting of SIRT3 in AD with comorbidities may produce beneficial effects.
Collapse
Affiliation(s)
- Alpna Tyagi
- Rocky Mountain Regional VA Medical Center, USA; Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Iman Shah
- Rocky Mountain Regional VA Medical Center, USA
| | | | - Anit Tyagi
- Rocky Mountain Regional VA Medical Center, USA; Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | | | - Subbiah Pugazhenthi
- Rocky Mountain Regional VA Medical Center, USA; Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
30
|
Peng X, Xu Z, Mo X, Guo Q, Yin J, Xu M, Peng Z, Sun T, Zhou L, Peng X, Xu S, Yang W, Bao W, Shan Z, Li X, Liu L. Association of plasma β-amyloid 40 and 42 concentration with type 2 diabetes among Chinese adults. Diabetologia 2020; 63:954-963. [PMID: 32034441 DOI: 10.1007/s00125-020-05102-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS There is evidence for a bidirectional association between type 2 diabetes and Alzheimer's disease. Plasma β-amyloid (Aβ) is a potential biomarker for Alzheimer's disease. We aimed to investigate the association of plasma Aβ40 and Aβ42 with risk of type 2 diabetes. METHODS We performed a case-control study and a nested case-control study within a prospective cohort study. In the case-control study, we included 1063 newly diagnosed individuals with type 2 diabetes and 1063 control participants matched by age (±3 years) and sex. In the nested case-control study, we included 121 individuals with incident type 2 diabetes and 242 matched control individuals. Plasma Aβ40 and Aβ42 concentrations were simultaneously measured with electrochemiluminescence immunoassay. Conditional logistic regression was used to evaluate the association of plasma Aβ40 and Aβ42 concentrations with the likelihood of type 2 diabetes. RESULTS In the case-control study, the multivariable-adjusted ORs for type 2 diabetes, comparing the highest with the lowest quartile of plasma Aβ concentrations, were 1.97 (95% CI 1.46, 2.66) for plasma Aβ40 and 2.01 (95% CI 1.50, 2.69) for plasma Aβ42. Each 30 ng/l increment of plasma Aβ40 was associated with 28% (95% CI 15%, 43%) higher odds of type 2 diabetes, and each 5 ng/l increment of plasma Aβ42 was associated with 37% (95% CI 21%, 55%) higher odds of type 2 diabetes. Individuals in the highest tertile for both plasma Aβ40 and Aβ42 concentrations had 2.96-fold greater odds of type 2 diabetes compared with those in the lowest tertile for both plasma Aβ40 and Aβ42 concentrations. In the nested case-control study, the multivariable-adjusted ORs for type 2 diabetes for the highest vs the lowest quartile were 3.79 (95% CI 1.81, 7.94) for plasma Aβ40 and 2.88 (95% CI 1.44, 5.75) for plasma Aβ42. The multivariable-adjusted ORs for type 2 diabetes associated with each 30 ng/l increment in plasma Aβ40 and each 5 ng/l increment in plasma Aβ42 were 1.44 (95% CI 1.18, 1.74) and 1.47 (95% CI 1.15, 1.88), respectively. CONCLUSIONS/INTERPRETATION Our findings suggest positive associations of plasma Aβ40 and Aβ42 concentration with risk of type 2 diabetes. Further studies are warranted to elucidate the underlying mechanisms and explore the potential roles of plasma Aβ in linking type 2 diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Xiaobo Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Zihui Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Xiaoxing Mo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Qianqian Guo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Jiawei Yin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Mengdai Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Taoping Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Li Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Xiaolin Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Shufang Xu
- Department of Clinical Nutrition, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
- Key Laboratory for Molecular Diagnosis of Hubei, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Xiaoqin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China.
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China.
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
31
|
Jiang R, Wu XF, Wang B, Guan RX, Lv LM, Li AP, Lei L, Ma Y, Li N, Li QF, Ma QH, Zhao J, Li S. Reduction of NgR in perforant path decreases amyloid-β peptide production and ameliorates synaptic and cognitive deficits in APP/PS1 mice. Alzheimers Res Ther 2020; 12:47. [PMID: 32331528 PMCID: PMC7181577 DOI: 10.1186/s13195-020-00616-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Amyloid beta (Aβ) which is recognized as a main feature of Alzheimer's disease (AD) has been proposed to "spread" through anatomically and functionally connected brain regions. The entorhinal cortex and perforant path are the earliest affected brain regions in AD. The perforant path is the most vulnerable circuit in the cortex with respect to both aging and AD. Previous data show that the origins and terminations of the perforant path are susceptible to amyloid deposition at the younger age in AD. Nogo receptor (NgR) plays an essential role in limiting injury-induced axonal growth and experience-dependent plasticity in the adult brain. It has been suggested that NgR is involved in AD pathological features, but the results have been conflicting and the detailed mechanism needs further investigation. In this study, the effect of NgR in the perforant path on the pathological and functional phenotype of APP/PS1 transgenic mice was studied. METHODS To genetically manipulate NgR expression, adeno-associated virus (AAV) with short hairpin (shRNA) against NgR was injected into the perforant path of APP/PS1 transgenic mice, followed by an assessment of behavioral, synaptic plasticity and neuropathological phenotypes. NgR was overexpressed or knockdown in neuroblastoma N2a cells and APPswe/HEK293 cells to investigate the interaction between NgR and amyloid precursor protein (APP). RESULTS It is shown that reduction of NgR in the perforant path rescued cognitive and synaptic deficits in APP/PS1 transgenic mice. Concurrently, Aβ production in the perforant path and levels of soluble Aβ and amyloid plaques in the hippocampus were significantly decreased. There was a positive correlation between the total APP protein level and NgR expression both in transgenic mice and in cultured cells, where the α-secretase and β-secretase cleavage products both changed with APP level in parallel. Finally, NgR might inhibit APP degradation through lysosome by Rho/Rho-associated protein kinases (ROCK) signaling pathway. CONCLUSIONS Our findings demonstrate that perforant path NgR plays an important role in regulating APP/Aβ level and cognitive functions in AD transgenic mice, which might be related to the suppression of APP degradation by NgR. Our study suggests that NgR in the perforant path could be a potential target for modulating AD progression.
Collapse
Affiliation(s)
- Rong Jiang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xue-Fei Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Rong-Xiao Guan
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Lang-Man Lv
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ai-Ping Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lei Lei
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Ye Ma
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Na Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qi-Fa Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Ou YN, Shen XN, Hu HY, Hu H, Wang ZT, Xu W, Dong Q, Tan L, Yu JT. Fasting blood glucose and cerebrospinal fluid Alzheimer's biomarkers in non-diabetic cognitively normal elders: the CABLE study. Aging (Albany NY) 2020; 12:4945-4952. [PMID: 32181754 PMCID: PMC7138563 DOI: 10.18632/aging.102921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/03/2020] [Indexed: 01/08/2023]
Abstract
It is unclear how blood glucose levels mediate the pathology of Alzheimer's disease (AD). This study aimed to investigate whether fasting blood glucose (FBG) levels are associated with cerebrospinal fluid (CSF) biomarkers preferentially affected by AD in non-diabetic cognitively normal elders. A total of 499 non-diabetic cognitively normal elders were from the Chinese Alzheimer's Biomarker and LifestyLE (CABLE) study. We detected the associations of FBG with individual CSF measures using multiple linear regression models controlling for age, sex, educational level, and apolipoprotein E (APOE) ε4 genotype. Fasting blood glucose level was positively correlated with CSF Aβ42 level (β = 0.045, p = 0.010), CSF Aβ42/Aβ40 ratio (β = 0.005, p < 0.001), Aβ42/P-tau ratio (β = 0.282, p = 0.013), and Aβ42/T-tau ratio (β = 0.050, p = 0.040). Interaction analysis indicated that gender affected the correlations of FBG level with CSF Aβ40 (p < 0.001) and Aβ42/Aβ40 ratio (p < 0.001). This study raises additional questions about the role of blood glucose in the predisposition to AD and supports the possibility of targeting these processes in pre-symptomatic AD trials in non-diabetic elders.
Collapse
Affiliation(s)
- Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Gralle M, Labrecque S, Salesse C, De Koninck P. Spatial dynamics of the insulin receptor in living neurons. J Neurochem 2020; 156:88-105. [PMID: 31886886 DOI: 10.1111/jnc.14950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022]
Abstract
Insulin signaling through the insulin receptor has long been studied in classic target organs, such as adipose tissue and skeletal muscle, where one of its effects is to increase glucose uptake. Insulin and insulin receptor are present in many areas of the brain, but the functions of brain insulin signaling outside feeding circuits are not well defined. It has been proposed that hippocampal insulin signaling is important for memory, that brain insulin signaling is deficient in Alzheimer's disease, and that intranasal insulin treatment improves cognition, but the mechanisms remain unclear and do not seem to involve increased glucose uptake by neurons. The molecular behavior of the insulin receptor itself is not well known in living neurons; therefore, we investigated the spatial dynamics of the insulin receptor on somatodendritic membranes of live rat hippocampal neurons in culture. Using single-molecule tracking of quantum dot-tagged insulin receptors and single-particle tracking photoactivation localization microscopy, we show that the insulin receptor is distributed over both dendritic shafts and spines. Using colocalization with synaptic markers, we also show that in contrast to the glutamate receptor subunit glutamate receptor subunit A1, the dynamics of the insulin receptor are not affected by association with excitatory synapses; however, the insulin receptor is immobilized by components of inhibitory synapses. The mobility of the insulin receptor is reduced both by low concentrations of the pro-inflammatory cytokine tumor necrosis factor α and by cholesterol depletion, suggesting an association with sphingolipid-rich membrane domains. On the other hand, the insulin receptor dynamics in hippocampal neurons are not affected by increased excitatory signaling. Finally, using real-time single-event quantification, we find evidence of strong insulin receptor exocytosis on dendritic shafts. Our results suggest an association of the neuronal insulin receptor with specific elements of the dendritic shaft, rather than excitatory synapses.
Collapse
Affiliation(s)
- Matthias Gralle
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,CERVO Brain Research Center, Québec, QC, Canada
| | | | | | - Paul De Koninck
- CERVO Brain Research Center, Québec, QC, Canada.,Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC, Canada
| |
Collapse
|
34
|
Kavanagh K, Day SM, Pait MC, Mortiz WR, Newgard CB, Ilkayeva O, Mcclain DA, Macauley SL. Type-2-Diabetes Alters CSF but Not Plasma Metabolomic and AD Risk Profiles in Vervet Monkeys. Front Neurosci 2019; 13:843. [PMID: 31555072 PMCID: PMC6722201 DOI: 10.3389/fnins.2019.00843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/26/2019] [Indexed: 12/26/2022] Open
Abstract
Epidemiological studies suggest that individuals with type 2 diabetes (T2D) have a twofold to fourfold increased risk for developing Alzheimer's disease (AD), however, the exact mechanisms linking the two diseases are unknown. In both conditions, the majority of pathophysiological changes, including glucose and insulin dysregulation, insulin resistance, and AD-related changes in Aβ and tau, occur decades before the onset of clinical symptoms and diagnosis. In this study, we investigated the relationship between metabolic biomarkers associated with T2D and amyloid pathology including Aβ levels, from cerebrospinal fluid (CSF) and fasting plasma of healthy, pre-diabetic (PreD), and T2D vervet monkeys (Chlorocebus aethiops sabaeus). Consistent with the human disease, T2D monkeys have increased plasma and CSF glucose levels as they transition from normoglycemia to PreD and diabetic states. Although plasma levels of acylcarnitines and amino acids remained largely unchanged, peripheral hyperglycemia correlated with decreased CSF acylcarnitines and CSF amino acids, including branched chain amino acid (BCAA) concentrations, suggesting profound changes in cerebral metabolism coincident with systemic glucose dysregulation. Moreover, CSF Aβ 40 and CSF Aβ 42 levels decreased in T2D monkeys, a phenomenon observed in the human course of AD which coincides with increased amyloid deposition within the brain. In agreement with previous studies in mice, CSF Aβ 40 and CSF Aβ 42 were highly correlated with CSF glucose levels, suggesting that glucose levels in the brain are associated with changes in Aβ metabolism. Interestingly, CSF Aβ 40 and CSF Aβ 42 levels were also highly correlated with plasma but not CSF lactate levels, suggesting that plasma lactate might serve as a potential biomarker of disease progression in AD. Moreover, CSF glucose and plasma lactate levels were correlated with CSF amino acid and acylcarnitine levels, demonstrating alterations in cerebral metabolism occurring with the onset of T2D. Together, these data suggest that peripheral metabolic changes associated with the development of T2D produce alterations in brain metabolism that lead to early changes in the amyloid cascade, similar to those observed in pre-symptomatic AD.
Collapse
Affiliation(s)
- Kylie Kavanagh
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Stephen M. Day
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Morgan C. Pait
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - William R. Mortiz
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Donald A. Mcclain
- Section of Endocrinology and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Shannon L. Macauley
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
35
|
Nakabeppu Y. Origins of Brain Insulin and Its Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:1-11. [PMID: 31062322 DOI: 10.1007/978-981-13-3540-2_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The brain or central nervous system (CNS) utilizes a vast amount of energy to sustain its basic functions, and most of the energy in the brain is derived from glucose. Whole-body energy and glucose homeostasis in the periphery of the human body are regulated by insulin, while the brain had been considered as an "insulin-insensitive" organ, because bulk brain glucose uptake is not affected by insulin in either rodents and humans. However, recently it has become clear that the actions of insulin are more widespread in the CNS and are a critical part of normal development, food intake, and energy balance, as well as plasticity throughout adulthood. Moreover, there are substantial evidence demonstrating that brain insulin is derived from pancreas, neurons, and astrocytes. In this chapter, I reviewed recent progress in roles of insulin in the brain, expression of insulin genes, and multiple origins of the brain insulin.
Collapse
Affiliation(s)
- Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
36
|
Clarke JR, Ribeiro FC, Frozza RL, De Felice FG, Lourenco MV. Metabolic Dysfunction in Alzheimer's Disease: From Basic Neurobiology to Clinical Approaches. J Alzheimers Dis 2019; 64:S405-S426. [PMID: 29562518 DOI: 10.3233/jad-179911] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinical trials have extensively failed to find effective treatments for Alzheimer's disease (AD) so far. Even after decades of AD research, there are still limited options for treating dementia. Mounting evidence has indicated that AD patients develop central and peripheral metabolic dysfunction, and the underpinnings of such events have recently begun to emerge. Basic and preclinical studies have unveiled key pathophysiological mechanisms that include aberrant brain stress signaling, inflammation, and impaired insulin sensitivity. These findings are in accordance with clinical and neuropathological data suggesting that AD patients undergo central and peripheral metabolic deregulation. Here, we review recent basic and clinical findings indicating that metabolic defects are central to AD pathophysiology. We further propose a view for future therapeutics that incorporates metabolic defects as a core feature of AD pathogenesis. This approach could improve disease understanding and therapy development through drug repurposing and/or identification of novel metabolic targets.
Collapse
Affiliation(s)
- Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rudimar L Frozza
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Zhu L, Huang Y, Edirisinghe I, Park E, Burton-Freeman B. Using the Avocado to Test the Satiety Effects of a Fat-Fiber Combination in Place of Carbohydrate Energy in a Breakfast Meal in Overweight and Obese Men and Women: A Randomized Clinical Trial. Nutrients 2019; 11:E952. [PMID: 31035472 PMCID: PMC6567160 DOI: 10.3390/nu11050952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
Abstract
This study aimed to investigate the satiety effects of isocalorically replacing carbohydrate energy in a meal with avocado-derived fats and fibers. In a randomized 3-arm, 6-h, crossover clinical trial, thirty-one overweight/obese adults consumed a low-fat control meal (CON, 76% carbohydrate, 14% fat as energy, 5 g fiber, ~640 kcal) or high-fat meals similar in total fat and energy, but increasing avocado-derived fat and fiber content from half (HA, 68 g; 51% carbohydrate, 40% fat as energy, 8.6 g fiber) or whole avocado (WA, 136 g; 50% carbohydrate, 43% fat as energy, 13.1 g fiber) on three separate occasions. Visual analog scales (VAS) assessed subjective satiety over 6 h. Hormones associated with satiety/appetite were measured in blood collected immediately after VAS. Stepwise multiple regression analysis was used to assess the relationship of VAS with hormones in WA and CON. Hunger suppression was enhanced after the WA compared to CON meal (p < 0.01). Subjects indicated feeling more satisfied after both HA and WA than CON (p < 0.05). Fullness was greater after CON and WA vs. HA (p < 0.005). PYY and GLP-1 were significantly elevated after WA vs. CON (p < 0.05), while insulin was significantly higher after CON vs. WA (p < 0.0001). Ghrelin was suppressed more by CON than WA (p < 0.05). Regression analysis indicated PYY was associated with subjective satiety after WA, whereas increased insulin predicted changes in subjective satiety after CON. Replacing carbohydrates in a high-carbohydrate meal with avocado-derived fat-fiber combination increased feelings of satiety mediated primarily by PYY vs. insulin. These findings may have important implications for addressing appetite management and metabolic concerns.
Collapse
Affiliation(s)
- Lanjun Zhu
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Yancui Huang
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Indika Edirisinghe
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Eunyoung Park
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Britt Burton-Freeman
- Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| |
Collapse
|
38
|
Wakabayashi T, Yamaguchi K, Matsui K, Sano T, Kubota T, Hashimoto T, Mano A, Yamada K, Matsuo Y, Kubota N, Kadowaki T, Iwatsubo T. Differential effects of diet- and genetically-induced brain insulin resistance on amyloid pathology in a mouse model of Alzheimer's disease. Mol Neurodegener 2019; 14:15. [PMID: 30975165 PMCID: PMC6460655 DOI: 10.1186/s13024-019-0315-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/15/2019] [Indexed: 12/21/2022] Open
Abstract
Background Based on epidemiological and experimental studies, type 2 diabetes mellitus (T2DM), especially insulin resistance that comprises the core mechanism of T2DM, has been recognized as a significant risk factor for Alzheimer’s disease (AD). Studies in humans and diabetic AD model mice have indicated a correlation between insulin resistance and increased amyloid deposition in the brain. Paradoxically, mice with targeted disruption of genes involved in the insulin signaling pathway showed protective effects against the AD-related pathology. These conflicting observations raise an issue as to the relationship between dysregulation of insulin signaling and AD pathophysiology. Methods To study the causal relations and molecular mechanisms underlying insulin resistance-induced exacerbation of amyloid pathology, we investigated the chronological changes in the development of insulin resistance and amyloid pathology in two independent insulin-resistant AD mouse models, i.e., long-term high-fat diet (HFD) feeding and genetic disruption of Irs2, in combination with dietary interventions. In addition to biochemical and histopathological analyses, we examined the in vivo dynamics of brain amyloid-β (Aβ) and insulin by microdialysis technique. Results HFD-fed diabetic AD model mice displayed a reduced brain response to peripheral insulin stimulation and a decreased brain to plasma ratio of insulin during the hyperinsulinemic clamp. Diet-induced defective insulin action in the brain was accompanied by a decreased clearance of the extracellular Aβ in vivo and an exacerbation of brain amyloid pathology. These noxious effects of the HFD both on insulin sensitivity and on Aβ deposition in brains were reversibly attenuated by dietary interventions. Importantly, HFD feeding accelerated Aβ deposition also in the brains of IRS-2-deficient AD mice. Conclusions Our results suggested a causal and reversible association of brain Aβ metabolism and amyloid pathology by diet-dependent, but not genetically-induced, insulin-resistance. These observations raise the possibility that the causal factors of insulin resistance, e.g., metabolic stress or inflammation induced by HFD feeding, but not impaired insulin signaling per se, might be directly involved in the acceleration of amyloid pathology in the brain. Electronic supplementary material The online version of this article (10.1186/s13024-019-0315-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomoko Wakabayashi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Innovative Dementia Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kazuki Yamaguchi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kentaro Matsui
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshiharu Sano
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuya Kubota
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, 230-0045, Japan
| | - Tadafumi Hashimoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Innovative Dementia Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ayako Mano
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kaoru Yamada
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuko Matsuo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Clinical Nutrition Therapy, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Metabolism and Nutrition, Mizonokuchi Hospital, Faculty of Medicine, Teikyo University, Tokyo, 213-8507, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
39
|
Frazier HN, Ghoweri AO, Anderson KL, Lin RL, Porter NM, Thibault O. Broadening the definition of brain insulin resistance in aging and Alzheimer's disease. Exp Neurol 2019; 313:79-87. [PMID: 30576640 PMCID: PMC6370304 DOI: 10.1016/j.expneurol.2018.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
Abstract
It has been >20 years since studies first revealed that the brain is insulin sensitive, highlighted by the expression of insulin receptors in neurons and glia, the presence of circulating brain insulin, and even localized insulin production. Following these discoveries, evidence of decreased brain insulin receptor number and function was reported in both clinical samples and animal models of aging and Alzheimer's disease, setting the stage for the hypothesis that neuronal insulin resistance may underlie memory loss in these conditions. The development of therapeutic insulin delivery to the brain using intranasal insulin administration has been shown to improve aspects of memory or learning in both humans and animal models. However, whether this approach functions by compensating for poorly signaling insulin receptors, for reduced insulin levels in the brain, or for reduced trafficking of insulin into the brain remains unclear. Direct measures of insulin's impact on cellular physiology and metabolism in the brain have been sparse in models of Alzheimer's disease, and even fewer studies have analyzed these processes in the aged brain. Nevertheless, recent evidence supports the role of brain insulin as a mediator of glucose metabolism through several means, including altering glucose transporters. Here, we provide a review of contemporary literature on brain insulin resistance, highlight the rationale for improving memory function using intranasal insulin, and describe initial results from experiments using a molecular approach to more directly measure the impact of insulin receptor activation and signaling on glucose uptake in neurons.
Collapse
Affiliation(s)
- Hilaree N Frazier
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Adam O Ghoweri
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Katie L Anderson
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Ruei-Lung Lin
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Nada M Porter
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| | - Olivier Thibault
- University of Kentucky, Department of Pharmacology and Nutritional Sciences, 800 Rose St., Lexington, KY 40536, United States.
| |
Collapse
|
40
|
Gabbouj S, Natunen T, Koivisto H, Jokivarsi K, Takalo M, Marttinen M, Wittrahm R, Kemppainen S, Naderi R, Posado-Fernández A, Ryhänen S, Mäkinen P, Paldanius KM, Doria G, Poutiainen P, Flores O, Haapasalo A, Tanila H, Hiltunen M. Intranasal insulin activates Akt2 signaling pathway in the hippocampus of wild-type but not in APP/PS1 Alzheimer model mice. Neurobiol Aging 2019; 75:98-108. [DOI: 10.1016/j.neurobiolaging.2018.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
|
41
|
Abstract
Population-based clinic-pathological studies have established that the most common pathological substrate of dementia in community-dwelling elderly people is mixed, especially Alzheimer's disease (AD) and cerebrovascular ischemic disease (CVID), rather than pure AD. While these could be just two frequent unrelated comorbidities in the elderly, epidemiological research has reinforced the idea that mid-life (age <65 years) vascular risk factors increase the risk of late-onset (age ≥ 65 years) dementia, and specifically AD. By contrast, healthy lifestyle choices such as leisure activities, physical exercise, and Mediterranean diet are considered protective against AD. Remarkably, several large population-based longitudinal epidemiological studies have recently indicated that the incidence and prevalence of dementia might be decreasing in Western countries. Although it remains unclear whether these positive trends are attributable to neuropathologically definite AD versus CVID, based on these epidemiological data it has been estimated that a sizable proportion of AD cases could be preventable. In this review, we discuss the current evidence about modifiable risk factors for AD derived from epidemiological, preclinical, and interventional studies, and analyze the opportunities for therapeutic and preventative interventions.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John H. Growdon
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Hiller AJ, Ishii M. Disorders of Body Weight, Sleep and Circadian Rhythm as Manifestations of Hypothalamic Dysfunction in Alzheimer's Disease. Front Cell Neurosci 2018; 12:471. [PMID: 30568576 PMCID: PMC6289975 DOI: 10.3389/fncel.2018.00471] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
While cognitive decline and memory loss are the major clinical manifestations of Alzheimer’s disease (AD), they are now recognized as late features of the disease. Recent failures in clinical drug trials highlight the importance of evaluating and treating patients with AD as early as possible and the difficulties in developing effective therapies once the disease progresses. Since the pathological hallmarks of AD including the abnormal aggregation of amyloid-beta (Aβ) and tau can occur decades before any significant cognitive decline in the preclinical stage of AD, it is important to identify the earliest clinical manifestations of AD and elucidate their underlying cellular and molecular mechanisms. Importantly, metabolic and non-cognitive manifestations of AD such as weight loss and alterations of peripheral metabolic signals can occur before the onset of cognitive symptoms and worsen with disease progression. Accumulating evidence suggests that the major culprit behind these early metabolic and non-cognitive manifestations of AD is AD pathology causing dysfunction of the hypothalamus, a brain region critical for integrating peripheral signals with essential homeostatic physiological functions. Here, we aim to highlight recent developments that address the role of AD pathology in the development of hypothalamic dysfunction associated with metabolic and non-cognitive manifestations seen in AD. Understanding the mechanisms underlying hypothalamic dysfunction in AD could give key new insights into the development of novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Abigail J Hiller
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Makoto Ishii
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States.,Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
43
|
Newcombe EA, Camats-Perna J, Silva ML, Valmas N, Huat TJ, Medeiros R. Inflammation: the link between comorbidities, genetics, and Alzheimer's disease. J Neuroinflammation 2018; 15:276. [PMID: 30249283 PMCID: PMC6154824 DOI: 10.1186/s12974-018-1313-3] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, most cases of which lack a clear causative event. This has made the disease difficult to characterize and, thus, diagnose. Although some cases are genetically linked, there are many diseases and lifestyle factors that can lead to an increased risk of developing AD, including traumatic brain injury, diabetes, hypertension, obesity, and other metabolic syndromes, in addition to aging. Identifying common factors and trends between these conditions could enhance our understanding of AD and lead to the development of more effective treatments. Although the immune system is one of the body’s key defense mechanisms, chronic inflammation has been increasingly linked with several age-related diseases. Moreover, it is now well accepted that chronic inflammation has an important role in the onset and progression of AD. In this review, the different inflammatory signals associated with AD and its risk factors will be outlined to demonstrate how chronic inflammation may be influencing individual susceptibility to AD. Our goal is to bring attention to potential shared signals presented by the immune system during different conditions that could lead to the development of successful treatments.
Collapse
Affiliation(s)
- Estella A Newcombe
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia.
| | - Judith Camats-Perna
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia
| | - Mallone L Silva
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia
| | - Nicholas Valmas
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Tee Jong Huat
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia.,Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Rodrigo Medeiros
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia.
| |
Collapse
|
44
|
Swaminathan SK, Ahlschwede KM, Sarma V, Curran GL, Omtri RS, Decklever T, Lowe VJ, Poduslo JF, Kandimalla KK. Insulin differentially affects the distribution kinetics of amyloid beta 40 and 42 in plasma and brain. J Cereb Blood Flow Metab 2018; 38:904-918. [PMID: 28569090 PMCID: PMC5987944 DOI: 10.1177/0271678x17709709] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Impaired brain clearance of amyloid-beta peptides (Aβ) 40 and 42 across the blood-brain barrier (BBB) is believed to be one of the pathways responsible for Alzheimer's disease (AD) pathogenesis. Hyperinsulinemia prevalent in type II diabetes was shown to damage cerebral vasculature and increase Aβ accumulation in AD brain. However, there is no clarity on how aberrations in peripheral insulin levels affect Aβ accumulation in the brain. This study describes, for the first time, an intricate relation between plasma insulin and Aβ transport at the BBB. Upon peripheral insulin administration in wild-type mice: the plasma clearance of Aβ40 increased, but Aβ42 clearance reduced; the plasma-to-brain influx of Aβ40 increased, and that of Aβ42 reduced; and the clearance of intracerebrally injected Aβ40 decreased, whereas Aβ42 clearance increased. In hCMEC/D3 monolayers (in vitro BBB model) exposed to insulin, the luminal uptake and luminal-to-abluminal permeability of Aβ40 increased and that of Aβ42 reduced; the abluminal-to-luminal permeability of Aβ40 decreased, whereas Aβ42 permeability increased. Moreover, Aβ cellular trafficking machinery was altered. In summary, Aβ40 and Aβ42 demonstrated distinct distribution kinetics in plasma and brain compartments, and insulin differentially modulated their distribution. Cerebrovascular disease and metabolic disorders may disrupt this intricate homeostasis and aggravate AD pathology.
Collapse
Affiliation(s)
- Suresh Kumar Swaminathan
- 1 Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.,2 Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kristen M Ahlschwede
- 1 Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.,3 Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Vidur Sarma
- 1 Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.,2 Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Geoffry L Curran
- 2 Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA.,3 Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Rajesh S Omtri
- 1 Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Teresa Decklever
- 2 Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Val J Lowe
- 2 Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Joseph F Poduslo
- 3 Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Karunya K Kandimalla
- 1 Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.,3 Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
45
|
Frazier HN, Anderson KL, Maimaiti S, Ghoweri AO, Kraner SD, Popa GJ, Hampton KK, Mendenhall MD, Norris CM, Craven RJ, Thibault O. Expression of a Constitutively Active Human Insulin Receptor in Hippocampal Neurons Does Not Alter VGCC Currents. Neurochem Res 2018; 44:269-280. [PMID: 29572644 DOI: 10.1007/s11064-018-2510-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 01/30/2023]
Abstract
Memory and cognitive decline are the product of numerous physiological changes within the aging brain. Multiple theories have focused on the oxidative, calcium, cholinergic, vascular, and inflammation hypotheses of brain aging, with recent evidence suggesting that reductions in insulin signaling may also contribute. Specifically, a reduction in insulin receptor density and mRNA levels has been implicated, however, overcoming these changes remains a challenge. While increasing insulin receptor occupation has been successful in offsetting cognitive decline, alternative molecular approaches should be considered as they could bypass the need for brain insulin delivery. Moreover, this approach may be favorable to test the impact of continued insulin receptor signaling on neuronal function. Here we used hippocampal cultures infected with lentivirus with or without IRβ, a constitutively active, truncated form of the human insulin receptor, to characterize the impact continued insulin receptor signaling on voltage-gated calcium channels. Infected cultures were harvested between DIV 13 and 17 (48 h after infection) for Western blot analysis on pAKT and AKT. These results were complemented with whole-cell patch-clamp recordings of individual pyramidal neurons starting 96 h post-infection. Results indicate that while a significant increase in neuronal pAKT/AKT ratio was seen at the time point tested, effects on voltage-gated calcium channels were not detected. These results suggest that there is a significant difference between constitutively active insulin receptors and the actions of insulin on an intact receptor, highlighting potential alternate mechanisms of neuronal insulin resistance and mode of activation.
Collapse
Affiliation(s)
- H N Frazier
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, 800 Rose Street, Lexington, KY, 40536, USA
| | - K L Anderson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, 800 Rose Street, Lexington, KY, 40536, USA
| | - S Maimaiti
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, 800 Rose Street, Lexington, KY, 40536, USA
| | - A O Ghoweri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, 800 Rose Street, Lexington, KY, 40536, USA
| | - S D Kraner
- Sanders Brown Center on Aging, University of Kentucky Medical Center, UKMC, 800 S. Limestone, Lexington, KY, 40536, USA
| | - G J Popa
- Department of Molecular and Cellular Biochemistry, University of Kentucky Medical Center, UKMC, 741 S. Limestone, Lexington, KY, 40536, USA
| | - K K Hampton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, 800 Rose Street, Lexington, KY, 40536, USA
| | - M D Mendenhall
- Department of Molecular and Cellular Biochemistry, University of Kentucky Medical Center, UKMC, 741 S. Limestone, Lexington, KY, 40536, USA
| | - C M Norris
- Sanders Brown Center on Aging, University of Kentucky Medical Center, UKMC, 800 S. Limestone, Lexington, KY, 40536, USA
| | - R J Craven
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, 800 Rose Street, Lexington, KY, 40536, USA
| | - O Thibault
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, 800 Rose Street, Lexington, KY, 40536, USA.
| |
Collapse
|
46
|
Frozza RL, Lourenco MV, De Felice FG. Challenges for Alzheimer's Disease Therapy: Insights from Novel Mechanisms Beyond Memory Defects. Front Neurosci 2018; 12:37. [PMID: 29467605 PMCID: PMC5808215 DOI: 10.3389/fnins.2018.00037] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/16/2018] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia in late life, will become even more prevalent by midcentury, constituting a major global health concern with huge implications for individuals and society. Despite scientific breakthroughs during the past decades that have expanded our knowledge on the cellular and molecular bases of AD, therapies that effectively halt disease progression are still lacking, and focused efforts are needed to address this public health challenge. Because AD is classically recognized as a disease of memory, studies have mainly focused on investigating memory-associated brain defects. However, compelling evidence has indicated that additional brain regions, not classically linked to memory, are also affected in the course of disease. In this review, we outline the current understanding of key pathophysiological mechanisms in AD and their clinical manifestation. We also highlight how considering the complex nature of AD pathogenesis, and exploring repurposed drug approaches can pave the road toward the development of novel therapeutics for AD.
Collapse
Affiliation(s)
- Rudimar L. Frozza
- Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Mychael V. Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G. De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Rio de Janeiro, Brazil
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
47
|
Marciniak E, Leboucher A, Caron E, Ahmed T, Tailleux A, Dumont J, Issad T, Gerhardt E, Pagesy P, Vileno M, Bournonville C, Hamdane M, Bantubungi K, Lancel S, Demeyer D, Eddarkaoui S, Vallez E, Vieau D, Humez S, Faivre E, Grenier-Boley B, Outeiro TF, Staels B, Amouyel P, Balschun D, Buee L, Blum D. Tau deletion promotes brain insulin resistance. J Exp Med 2017; 214:2257-2269. [PMID: 28652303 PMCID: PMC5551570 DOI: 10.1084/jem.20161731] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/20/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022] Open
Abstract
The molecular pathways underlying tau pathology-induced synaptic/cognitive deficits and neurodegeneration are poorly understood. One prevalent hypothesis is that hyperphosphorylation, misfolding, and fibrillization of tau impair synaptic plasticity and cause degeneration. However, tau pathology may also result in the loss of specific physiological tau functions, which are largely unknown but could contribute to neuronal dysfunction. In the present study, we uncovered a novel function of tau in its ability to regulate brain insulin signaling. We found that tau deletion leads to an impaired hippocampal response to insulin, caused by altered IRS-1 and PTEN (phosphatase and tensin homologue on chromosome 10) activities. Our data also demonstrate that tau knockout mice exhibit an impaired hypothalamic anorexigenic effect of insulin that is associated with energy metabolism alterations. Consistently, we found that tau haplotypes are associated with glycemic traits in humans. The present data have far-reaching clinical implications and raise the hypothesis that pathophysiological tau loss-of-function favors brain insulin resistance, which is instrumental for cognitive and metabolic impairments in Alzheimer's disease patients.
Collapse
Affiliation(s)
- Elodie Marciniak
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Antoine Leboucher
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Emilie Caron
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France
| | - Tariq Ahmed
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Anne Tailleux
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011EGID, Lille, France
| | - Julie Dumont
- LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France.,Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Tarik Issad
- INSERM U1016, CNRS UMR8104, Université Paris Descartes Sorbonne Paris Cité, Institut Cochin, Paris, France
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Goettingen, Goettingen, Germany
| | - Patrick Pagesy
- INSERM U1016, CNRS UMR8104, Université Paris Descartes Sorbonne Paris Cité, Institut Cochin, Paris, France
| | - Margaux Vileno
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Clément Bournonville
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Malika Hamdane
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Kadiombo Bantubungi
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011EGID, Lille, France
| | - Steve Lancel
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011EGID, Lille, France
| | - Dominique Demeyer
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Sabiha Eddarkaoui
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Emmanuelle Vallez
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011EGID, Lille, France
| | - Didier Vieau
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Sandrine Humez
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Emilie Faivre
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - Benjamin Grenier-Boley
- LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France.,Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Goettingen, Goettingen, Germany
| | - Bart Staels
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011EGID, Lille, France
| | - Philippe Amouyel
- LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France.,Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Detlef Balschun
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Luc Buee
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France.,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| | - David Blum
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, Lille, France .,LabEx DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease), Lille, France
| |
Collapse
|
48
|
Copani A. The underexplored question of β-amyloid monomers. Eur J Pharmacol 2017; 817:71-75. [PMID: 28577967 DOI: 10.1016/j.ejphar.2017.05.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/12/2017] [Accepted: 05/30/2017] [Indexed: 01/03/2023]
Abstract
Conceived more than 25 years ago, the amyloid cascade hypothesis of Alzheimer's disease has evolved to accommodate new findings, namely different forms of β-amyloid aggregates and downstream dysfunctions. Yet, the cascade does not mention its very beginning, the β-amyloid monomer. Here, I will discuss the monomer from a functional evolutionary perspective, highlighting the potential advantages of a native unfolded state that, however, involves an amyloidogenic risk. Finally, I will make a summary of what is known about its functional role in the brain and discuss the implications of its conceivable shortage in the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Agata Copani
- Department of Drug Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
49
|
Gralle M. The neuronal insulin receptor in its environment. J Neurochem 2016; 140:359-367. [PMID: 27889917 DOI: 10.1111/jnc.13909] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 01/01/2023]
Abstract
Insulin is known mainly for its effects in peripheral tissues, such as the liver, skeletal muscles and adipose tissue, where the activation of the insulin receptor (IR) has both short-term and long-term effects. Insulin and the IR are also present in the brain, and since there is evidence that neuronal insulin signaling regulates synaptic plasticity and that it is impaired in disease, this pathway might be the key to protection or reversal of symptoms, especially in Alzheimer's disease. However, there are controversies about the importance of the neuronal IR, partly because biophysical data on its activation and signaling are much less complete than for the peripheral IR. This review briefly summarizes the neuronal IR signaling in health and disease, and then focuses on known differences between the neuronal and peripheral IR with regard to alternative splicing and glycosylation, and lack of data with respect to phosphorylation and membrane subdomain localization. Particularities in the neuronal IR itself and its environment may have consequences for downstream signaling and impact synaptic plasticity. Furthermore, establishing the relative importance of insulin signaling through IR or through hybrids with its homolog, the insulin-like growth factor 1 receptor, is crucial for evaluating the consequences of brain IR activation. An improved biophysical understanding of the neuronal IR may help predict the consequences of insulin-targeted interventions.
Collapse
Affiliation(s)
- Matthias Gralle
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|