1
|
Rodríguez-Vázquez E, Aranda-Torrecillas Á, López-Sancho M, Castellano JM, Tena-Sempere M. Emerging roles of lipid and metabolic sensing in the neuroendocrine control of body weight and reproduction. Front Endocrinol (Lausanne) 2024; 15:1454874. [PMID: 39290326 PMCID: PMC11405246 DOI: 10.3389/fendo.2024.1454874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
The hypothalamus lies at the intersection of brain and hormonal mechanisms governing essential bodily functions, including metabolic/body weight homeostasis and reproduction. While metabolism and fertility are precisely regulated by independent neuroendocrine axes, these are tightly connected, as reflection of the bidirectional interplay between the energy status of the organisms and their capacity to reproduce; a connection with important pathophysiological implications in disorders affecting these two crucial systems. Beyond the well-characterized roles of key hormones (e.g., leptin, insulin, ghrelin) and neuropeptides (e.g., melanocortins, kisspeptins) in the integral control of metabolism and reproduction, mounting evidence has pointed out a relevant function of cell energy sensors and lipid sensing mechanisms in the hypothalamic control of metabolism, with prominent roles also for metabolic sensors, such as mTOR, AMPK and SIRT1, in the nutritional regulation of key aspects of reproduction, such as pubertal maturation. We provide herein a synoptic overview of these novel regulatory pathways, with a particular focus on their putative function in the metabolic control of puberty, and delineate new avenues for further exploration of the intricate mechanisms whereby metabolism and reproduction are tightly connected.
Collapse
Affiliation(s)
- Elvira Rodríguez-Vázquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | - Álvaro Aranda-Torrecillas
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | - María López-Sancho
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | - Juan M Castellano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofia, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofia, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| |
Collapse
|
2
|
Moran KM, Delville Y. A hamster model for stress-induced weight gain. Horm Behav 2024; 160:105488. [PMID: 38306877 DOI: 10.1016/j.yhbeh.2024.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
This review addresses the translational relevance of animal models of stress and their effects on body weight. In humans, stress, whether chronic or acute, has often been associated with increased food intake and weight gain. In view of the current obesity epidemic, this phenomenon is especially relevant. Such observations contrast with reports with commonly used laboratory animals, especially rats and mice. In these species, it is common to find individuals gaining less weight under stress, even with potent social stressors. However, there are laboratory species that present increased appetite and weight gain under stress, such as golden hamsters. Furthermore, these animals also include metabolic and behavioral similarities with humans, including hoarding behavior which is also enhanced under stress. Consequently, we propose that our comparative perspective provides useful insights for future research on the development of obesity in humans as a consequence of chronic stress exposure.
Collapse
Affiliation(s)
- Kevin M Moran
- Psychology Department, The University of Texas at Austin, USA.
| | - Yvon Delville
- Psychology Department, The University of Texas at Austin, USA
| |
Collapse
|
3
|
Sui K, Yasrebi A, Longoria CR, MacDonell AT, Jaffri ZH, Martinez SA, Fisher SE, Malonza N, Jung K, Tveter KM, Wiersielis KR, Uzumcu M, Shapses SA, Campbell SC, Roepke TA, Roopchand DE. Coconut Oil Saturated Fatty Acids Improved Energy Homeostasis but not Blood Pressure or Cognition in VCD-Treated Female Mice. Endocrinology 2023; 164:bqad001. [PMID: 36626144 PMCID: PMC11009791 DOI: 10.1210/endocr/bqad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Obesity, cardiometabolic disease, cognitive decline, and osteoporosis are symptoms of postmenopause, which can be modeled using 4-vinylcyclohexene diepoxide (VCD)-treated mice to induce ovarian failure and estrogen deficiency combined with high-fat diet (HFD) feeding. The trend of replacing saturated fatty acids (SFAs), for example coconut oil, with seed oils that are high in polyunsaturated fatty acids, specifically linoleic acid (LA), may induce inflammation and gut dysbiosis, and worsen symptoms of estrogen deficiency. To investigate this hypothesis, vehicle (Veh)- or VCD-treated C57BL/6J mice were fed a HFD (45% kcal fat) with a high LA:SFA ratio (22.5%: 8%), referred to as the 22.5% LA diet, or a HFD with a low LA:SFA ratio (1%: 31%), referred to as 1% LA diet, for a period of 23 to 25 weeks. Compared with VCD-treated mice fed the 22.5% LA diet, VCD-treated mice fed the 1% LA diet showed lower weight gain and improved glucose tolerance. However, VCD-treated mice fed the 1% LA diet had higher blood pressure and showed evidence of spatial cognitive impairment. Mice fed the 1% LA or 22.5% LA diets showed gut microbial taxa changes that have been associated with a mix of both beneficial and unfavorable cognitive and metabolic phenotypes. Overall, these data suggest that consuming different types of dietary fat from a variety of sources, without overemphasis on any particular type, is the optimal approach for promoting metabolic health regardless of estrogen status.
Collapse
Affiliation(s)
- Ke Sui
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ali Yasrebi
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Candace R Longoria
- Department of Kinesiology and Applied Physiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Avery T MacDonell
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zehra H Jaffri
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Savannah A Martinez
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Samuel E Fisher
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Natasha Malonza
- Department of Kinesiology and Applied Physiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Katie Jung
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Kevin M Tveter
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Kimberly R Wiersielis
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Mehmet Uzumcu
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Sue A Shapses
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Sara C Campbell
- Department of Kinesiology and Applied Physiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Troy A Roepke
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
4
|
Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother 2022; 156:113808. [DOI: 10.1016/j.biopha.2022.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
|
5
|
The Small Molecule PPARγ Agonist GL516 Induces Feeding-Stimulatory Effects in Hypothalamus Cells Hypo-E22 and Isolated Hypothalami. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154882. [PMID: 35956831 PMCID: PMC9369729 DOI: 10.3390/molecules27154882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022]
Abstract
PPARγ agonists are implicated in the regulation of diabetes and metabolic syndrome and have therapeutic potential in brain disorders. PPARγ modulates appetite through its central effects, especially on the hypothalamic arcuate nucleus (ARC). Previous studies demonstrated that the small molecule GL516 is a PPARγ agonist able to reduce oxidative stress and apoptosis with a potential neuroprotective role. Herein, we investigated the effects of GL516, in vitro and ex vivo, on the levels of hypothalamic dopamine (DA) and serotonin (5-HT). The gene expressions of neuropeptide Y, CART, AgRP, and POMC, which play master roles in the neuroendocrine regulation of feeding behavior and energy balance, were also evaluated. HypoE22 cells were treated with H2O2 (300 μM) for 2 h e 30’ and with different concentrations of GL516 (1 nM-100 µM). The cell viability was evaluated after 24 and 48 h of culturing using the MTT test. DA and 5-HT levels in the HypoE22 cell supernatants were analyzed through HPLC; an ex vivo study on isolated hypothalamic specimens challenged with scalar concentrations of GL516 (1–100 µM) and with pioglitazone (10 µM) was carried out. The gene expressions of CART, NPY, AgRP, and POMC were also determined by a quantitative real-time PCR. The results obtained showed that GL516 was able to reduce DA and 5-HT turnover; moreover, it was effective in stimulating NPY and AgRP gene expressions with a concomitant reduction in CART and POMC gene expressions. These results highlight the capability of GL516 to modulate neuropeptide pathways deeply involved in appetite control suggesting an orexigenic effect. These findings emphasize the potential use of GL516 as a promising candidate for therapeutical applications in neurodegenerative diseases associated with the reduction in food intake and stimulation of catabolic pathways.
Collapse
|
6
|
Gupta R, Wang M, Ma Y, Offermanns S, Whim MD. The β-Hydroxybutyrate-GPR109A Receptor Regulates Fasting-induced Plasticity in the Mouse Adrenal Medulla. Endocrinology 2022; 163:6590010. [PMID: 35595517 PMCID: PMC9188660 DOI: 10.1210/endocr/bqac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 11/19/2022]
Abstract
During fasting, increased sympathoadrenal activity leads to epinephrine release and multiple forms of plasticity within the adrenal medulla including an increase in the strength of the preganglionic → chromaffin cell synapse and elevated levels of agouti-related peptide (AgRP), a peptidergic cotransmitter in chromaffin cells. Although these changes contribute to the sympathetic response, how fasting evokes this plasticity is not known. Here we report these effects involve activation of GPR109A (HCAR2). The endogenous agonist of this G protein-coupled receptor is β-hydroxybutyrate, a ketone body whose levels rise during fasting. In wild-type animals, 24-hour fasting increased AgRP-ir in adrenal chromaffin cells but this effect was absent in GPR109A knockout mice. GPR109A agonists increased AgRP-ir in isolated chromaffin cells through a GPR109A- and pertussis toxin-sensitive pathway. Incubation of adrenal slices in nicotinic acid, a GPR109A agonist, mimicked the fasting-induced increase in the strength of the preganglionic → chromaffin cell synapse. Finally, reverse transcription polymerase chain reaction experiments confirmed the mouse adrenal medulla contains GPR109A messenger RNA. These results are consistent with the activation of a GPR109A signaling pathway located within the adrenal gland. Because fasting evokes epinephrine release, which stimulates lipolysis and the production of β-hydroxybutyrate, our results indicate that chromaffin cells are components of an autonomic-adipose-hepatic feedback circuit. Coupling a change in adrenal physiology to a metabolite whose levels rise during fasting is presumably an efficient way to coordinate the homeostatic response to food deprivation.
Collapse
Affiliation(s)
- Rajesh Gupta
- Department of Cell Biology & Anatomy, LSU Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Manqi Wang
- Department of Cell Biology & Anatomy, LSU Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Yunbing Ma
- Department of Cell Biology & Anatomy, LSU Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Matthew D Whim
- Correspondence: Matthew D. Whim, PhD, Department of Cell Biology and Anatomy, LSU Health Sciences Center, Medical Education Bldg (MEB 6142), 1901 Perdido St, New Orleans, LA 70112, USA.
| |
Collapse
|
7
|
Vail GM, Walley SN, Yasrebi A, Maeng A, Degroat TJ, Conde KM, Roepke TA. Implications of peroxisome proliferator-activated receptor gamma (PPARY) with the intersection of organophosphate flame retardants and diet-induced obesity in adult mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:381-396. [PMID: 35000574 PMCID: PMC8897244 DOI: 10.1080/15287394.2021.2023716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Previously, organophosphate flame retardants (OPFRs) were demonstrated to dysregulate homeostatic parameters of energy regulation within an adult mouse model of diet-induced obesity. Using the same OPFR mixture consisting of 1 mg/kg/day of each triphenyl phosphate, tricresyl phosphate, and tris(1,3-dichloro-2-propyl)phosphate, the current study examined the role of peroxisome proliferator-activated receptor gamma (PPARγ) in OPFR-induced disruption by utilizing mice with brain-specific deletion of PPARγ (PPARγKO) fed either a low-fat diet (LFD) or high-fat diet (HFD). Body weight and composition, feeding behavior, glucose and insulin tolerance, circulating peptide hormones, and expression of hypothalamic genes associated with energy homeostasis were recorded. When fed HFD, the effects of OPFR on body weight and feeding behavior observed in the previous wild-type (WT) study were absent in mice lacking neuronal PPARγ. This posits PPARγ as an important target for eliciting OPFR disruption in a diet-induced obesity model. Interestingly, female PPARγKO mice, but not males, experienced many novel OPFR effects not noted in WT mice, including decreased fat mass, altered feeding behavior and efficiency, improved insulin sensitivity, elevated plasma ghrelin and hypothalamic expression of its receptor. Taken together, these data suggest both direct roles for PPARγ in OPFR disruption of obese mice and indirect sensitization of pathways alternative to PPARγ when neuronal expression is deleted.
Collapse
Affiliation(s)
- Gwyndolin M. Vail
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Sabrina N. Walley
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Angela Maeng
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Thomas J. Degroat
- Graduate Program in Endocrinology and Animal Biosciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Kristie M. Conde
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Troy A. Roepke
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
- Graduate Program in Endocrinology and Animal Biosciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| |
Collapse
|
8
|
Role of PPARs in Progression of Anxiety: Literature Analysis and Signaling Pathways Reconstruction. PPAR Res 2020; 2020:8859017. [PMID: 33312191 PMCID: PMC7721491 DOI: 10.1155/2020/8859017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) group includes three isoforms encoded by PPARG, PPARA, and PPARD genes. High concentrations of PPARs are found in parts of the brain linked to anxiety development, including hippocampus and amygdala. Among three PPAR isoforms, PPARG demonstrates the highest expression in CNS, where it can be found in neurons, astrocytes, and glial cells. Herein, the highest PPARG expression occurs in amygdala. However, little is known considering possible connections between PPARs and anxiety behavior. We reviewed possible connections between PPARs and anxiety. We used the Pathway Studio software (Elsevier). Signal pathways were created according to previously developed algorithms. SNEA was performed in Pathway Studio. Current study revealed 14 PPAR-regulated proteins linked to anxiety. Possible mechanism of PPAR involvement in neuroinflammation protection is proposed. Signal pathway reconstruction and reviewing aimed to reveal possible connection between PPARG and CCK-ergic system was conducted. Said analysis revealed that PPARG-dependent regulation of MME and ACE peptidase expression may affect levels of nonhydrolysed, i.e., active CCK-4. Impairments in PPARG regulation and following MME and ACE peptidase expression impairments in amygdala may be the possible mechanism leading to pathological anxiety development, with brain CCK-4 accumulation being a key link. Literature data analysis and signal pathway reconstruction and reviewing revealed two possible mechanisms of peroxisome proliferator-activated receptors involvement in pathological anxiety: (1) cytokine expression and neuroinflammation mechanism and (2) regulation of peptidases targeted to anxiety-associated neuropeptides, primarily CCK-4, mechanism.
Collapse
|
9
|
Walley SN, Krumm EA, Yasrebi A, Wiersielis KR, O'Leary S, Tillery T, Roepke TA. Maternal organophosphate flame-retardant exposure alters offspring feeding, locomotor and exploratory behaviors in a sexually-dimorphic manner in mice. J Appl Toxicol 2020; 41:442-457. [PMID: 33280148 DOI: 10.1002/jat.4056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022]
Abstract
Increased usage of organophosphate flame retardants (OPFRs) has led to detectable levels in pregnant women and neonates, which is associated with negative neurological outcomes. Therefore, we investigated if maternal OPFR exposure altered adult offspring feeding, locomotor, and anxiety-like behaviors on a low-fat (LFD) or high-fat diet (HFD). Wild-type C57Bl/6J dams were orally dosed with vehicle (sesame oil) or an OPFR mixture (1 mg/kg combination each of tris(1,3-dichloro-2-propyl)phosphate, triphenyl phosphate and tricresyl phosphate) from gestation day 7 to postnatal day 14. After weaning, pups were fed either a LFD or HFD until 19 weeks of age. Locomotor and anxiety-like behaviors were evaluated with the open field test, elevated plus maze, and metabolic cages. Feeding behaviors and meal patterns were analyzed by a Biological Data Acquisition System. Anogenital distance was reduced in OPFR-exposed male pups, but no effect was detected on adult body weight. We observed interactions of OPFR exposure and HFD consumption on locomotor and anxiety-like behavior in males, suggesting an anxiogenic effect while reducing overall nighttime activity. We also observed an interaction of OPFR exposure and HFD on weekly food intake and feeding behaviors. OPFR-exposed males consumed more total HFD than oil-exposed males during the 72-hour trial. However, when arcuate gene expression was analyzed, OPFR exposure induced Agrp expression in females, which would suggest greater orexigenic tone. Collectively, the implications of our study are that the behavioral effects of OPFR exposure are modulated by adult HFD consumption, which may influence the metabolic and neurological consequences of maternal OPFR exposure.
Collapse
Affiliation(s)
- Sabrina N Walley
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Elizabeth A Krumm
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Kimberly R Wiersielis
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Sarah O'Leary
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Taylor Tillery
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
10
|
Krishnamurthy A, Gupta Y, Bhargava R, Sharan P, Tandon N, Jyotsna VP. Evaluation of eating disorders and their association with glycemic control and metabolic parameters in adult patients with type 2 diabetes mellitus. Diabetes Metab Syndr 2020; 14:1555-1561. [PMID: 32846368 DOI: 10.1016/j.dsx.2020.07.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND There is little data on the prevalence and effects of eating disorders in patients with T2DM. AIMS To evaluate the presence of eating disorders (ED) and their association with glycemic control and metabolic parameters in adult patients with type 2 diabetes mellitus (T2DM). METHODS A cross-sectional study was conducted in the endocrinology outpatient unit of our tertiary care centre between January 2017 to December 2018. Eating Attitudes Test (EAT-26) and Binge Eating Scale (BES) questionnaires were used to screen for ED in adults with T2DM (group 1) and controls without T2DM (group 2). Cut off scores ≥18 on BES was considered as a positive screen for Binge eating disorder in participants with and without T2DM. A score of ≥30 on EAT-26 was defined as abnormal for participants with T2DM and ≥20 for those without T2DM. Formal psychiatric assessment was done to diagnose ED in those who screened positive on the basis of scores on BES or EAT-26 or both. Demographic, anthropometric and relevant medical details like duration of treatment, glycemic control, complications were recorded. RESULTS A total of 512 individuals (256 in each group) participated in this study. Out of these, 10.9% of individuals with T2DM and 14.1% of those without T2DM screened positive for ED, with no significant difference in the two groups. After a detailed psychiatric assessment, two patients (0.8%) in each group were confirmed to have ED. Participants with T2DM who were on thiazolidinediones had higher odds (2.2) of screening positive for an ED.(p = 0.03). CONCLUSIONS Our study reveals that eating disorders are not very common in our clinical population of T2DM, and the prevalence is comparable to BMI matched individuals without T2DM. The prevalence rates of eating disorders are lower (in both controls and patients with T2DM) than those reported from developed western countries.
Collapse
Affiliation(s)
- Aishwarya Krishnamurthy
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Yashdeep Gupta
- Department of Department of Endocrinology and Metabolism, AIIMS, New Delhi, India
| | | | - Pratap Sharan
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Nikhil Tandon
- Department of Endocrinology and Metabolism, AIIMS, New Delhi, India
| | - Viveka P Jyotsna
- Department of Endocrinology and Metabolism, AIIMS, New Delhi, India.
| |
Collapse
|
11
|
Vail GM, Roepke TA. Organophosphate Flame Retardants Excite Arcuate Melanocortin Circuitry and Increase Neuronal Sensitivity to Ghrelin in Adult Mice. Endocrinology 2020; 161:5910086. [PMID: 32961558 PMCID: PMC7575050 DOI: 10.1210/endocr/bqaa168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022]
Abstract
Organophosphate flame retardants (OPFRs) are a class of chemicals that have become near ubiquitous in the modern environment. While OPFRs provide valuable protection against flammability of household items, they are increasingly implicated as an endocrine disrupting chemical (EDC). We previously reported that exposure to a mixture of OPFRs causes sex-dependent disruptions of energy homeostasis through alterations in ingestive behavior and activity in adult mice. Because feeding behavior and energy expenditure are largely coordinated by the hypothalamus, we hypothesized that OPFR disruption of energy homeostasis may occur through EDC action on melanocortin circuitry within the arcuate nucleus. To this end, we exposed male and female transgenic mice expressing green fluorescent protein in either neuropeptide Y (NPY) or proopiomelanocortin (POMC) neurons to a common mixture of OPFRs (triphenyl phosphate, tricresyl phosphate, and tris(1,3-dichloro-2-propyl)phosphate; each 1 mg/kg bodyweight/day) for 4 weeks. We then electrophysiologically examined neuronal properties using whole-cell patch clamp technique. OPFR exposure depolarized the resting membrane of NPY neurons and dampened a hyperpolarizing K+ current known as the M-current within the same neurons from female mice. These neurons were further demonstrated to have increased sensitivity to ghrelin excitation, which more potently reduced the M-current in OPFR-exposed females. POMC neurons from female mice exhibited elevated baseline excitability and are indicated in receiving greater excitatory synaptic input when exposed to OPFRs. Together, these data support a sex-selective effect of OPFRs to increase neuronal output from the melanocortin circuitry governing feeding behavior and energy expenditure, and give reason for further examination of OPFR impact on human health.
Collapse
Affiliation(s)
- Gwyndolin M Vail
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Troy A Roepke
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Rutgers Center for Lipid Research, Center for Nutrition, Microbiome, and Health, and New Jersey Institute of Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
12
|
Vail GM, Walley SN, Yasrebi A, Maeng A, Conde KN, Roepke TA. The interactions of diet-induced obesity and organophosphate flame retardant exposure on energy homeostasis in adult male and female mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:438-455. [PMID: 32546061 PMCID: PMC7337410 DOI: 10.1080/15287394.2020.1777235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Previously, sex-dependent alterations in energy homeostasis were reported in adult mice fed a standard chow attributed to exposure to a mixture of organophosphate flame retardants (OPFRs) via estrogen receptors (ERα). In this study, adult male and female mice (C57BL/6J; Taconic) were treated with the same mixture of OPFRs (1 mg/kg each of tricresyl phosphate (TCP), triphenyl phosphate (TPP), and tris(1-3-dichloro-2propyl)phosphate (TDCPP)) for 7 weeks on a low-fat diet (LFD, 10% kcal fat) or a high fat (HFD, 45% kcal fat) in a diet-induced obesity model. Consistent with our previous observations, OPFRs altered weight gain in males, differentially with diet, while females remained unaffected. OPFR treatment also revealed sex-dependent perturbations in metabolic activity. During the night (approximately 0100-0400 hr), males exhibited elevated activity and oxygen consumption, while in females these parameters were decreased, irrespective of diet. OPFR disrupted feeding behavior and abolished diurnal water intake patterns in females while increasing nighttime fluid consumption in males. Despite no marked effect of OPFRs on glucose or insulin tolerance, OPFR treatment altered circulating insulin and leptin in females and ghrelin in males. Data indicate that adult OPFR exposure might influence, and perhaps exacerbate, the effects of diet-induced obesity in adult mice by altering activity, ingestive behavior, and metabolism.
Collapse
Affiliation(s)
- Gwyndolin M. Vail
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Sabrina N. Walley
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Angela Maeng
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Kristie N. Conde
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Troy A. Roepke
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| |
Collapse
|
13
|
Li Q, Yu Q, Lin L, Zhang H, Peng M, Jing C, Xu G. Hypothalamic peroxisome proliferator-activated receptor gamma regulates ghrelin production and food intake. Neuropeptides 2018; 69:39-45. [PMID: 29655655 DOI: 10.1016/j.npep.2018.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023]
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) regulates fatty acid storage, glucose metabolism, and food intake. Ghrelin, a gastric hormone, provides a hunger signal to the central nervous system to stimulate appetite. However, the effects of PPARγ on ghrelin production are still unclear. In the present study, the effects of PPARγ on ghrelin production were examined in lean- or high-fat diet-induced obese (DIO) C57BL/6J mice and mHypoE-42 cells, a hypothalamic cell line. 3rd intracerebroventricular injection of adenoviral-directed overexpression of PPARγ (Ad-PPARγ) reduced hypothalamic and plasma ghrelin, food intake in both lean C57BL/6J mice and diet-induced obese mice. These changes were associated with a significant increase in mechanistic target of rapamycin complex 1 (mTORC1) activity. Overexpression of PPARγ enhanced mTORC1 signaling and suppressed ghrelin production in cultured mHypoE-42 cells. Our results suggest that hypothalamic PPARγ plays a vital role in ghrelin production and food intake in mice.
Collapse
Affiliation(s)
- Qingjie Li
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Quan Yu
- Central Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Li Lin
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Heng Zhang
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Miao Peng
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Geyang Xu
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
14
|
Krumm EA, Patel VJ, Tillery TS, Yasrebi A, Shen J, Guo GL, Marco SM, Buckley BT, Roepke TA. Organophosphate Flame-Retardants Alter Adult Mouse Homeostasis and Gene Expression in a Sex-Dependent Manner Potentially Through Interactions With ERα. Toxicol Sci 2018; 162:212-224. [PMID: 29112739 PMCID: PMC6735580 DOI: 10.1093/toxsci/kfx238] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Flame retardants (FRs) such as polybrominated diphenyl ethers and organophosphate FR (OPFR) persist in the environment and interact with multiple nuclear receptors involved in homeostasis, including estrogen receptors (ERs). However, little is known about the effects of FR, especially OPFR, on mammalian neuroendocrine functions. Therefore, we investigated if exposure to FR alters hypothalamic gene expression and whole-animal physiology in adult wild-type (WT) and ERα KO mice. Intact WT and KO males and ovariectomized WT and KO females were orally dosed daily with vehicle (oil), 17α-ethynylestradiol (2.5 μg/kg), 2,2', 4,4-tetrabromodiphenyl ether (BDE-47, 1 or 10 mg/kg), or an OPFR mixture {1 or 10 mg/kg of tris(1, 3-dichloro-2-propyl)phosphate, triphenyl phosphate, and tricresyl phosphate each} for 28 days. Body weight, food intake, body composition, glucose and insulin tolerance, plasma hormone levels, and hypothalamic and liver gene expression were measured. Expression of neuropeptides, receptors, and cation channels was differentially altered between WT males and females. OPFR suppressed body weight and energy intake in males. FR increased fasting glucose levels in males, and BDE-47 augmented glucose clearance in females. Liver gene expression indicated FXR activation by BDE-47 and PXR and CAR activation by OPFR. In males, OPFR increased ghrelin but decreased leptin and insulin independent of body weight. The loss of ERα reduced the effects of both FR on hypothalamic and liver gene expression and plasma hormone levels. The physiological implications are that males are more sensitive than ovariectomized females to OPFR exposure and that these effects are mediated, in part, by ERα.
Collapse
Affiliation(s)
- Elizabeth A Krumm
- Department of Animal Sciences, School of Environmental & Biological Sciences
- Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Vipa J Patel
- Department of Animal Sciences, School of Environmental & Biological Sciences
| | - Taylor S Tillery
- Department of Animal Sciences, School of Environmental & Biological Sciences
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences
- Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Jianliang Shen
- Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Grace L Guo
- Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | | | - Brian T Buckley
- Environmental and Occupational Health Science Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental & Biological Sciences
- Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Joint Graduate Program in Toxicology
| |
Collapse
|
15
|
Marques VB, Faria RA, Dos Santos L. Overview of the Pathophysiological Implications of Organotins on the Endocrine System. Front Endocrinol (Lausanne) 2018; 9:101. [PMID: 29615977 PMCID: PMC5864858 DOI: 10.3389/fendo.2018.00101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/01/2018] [Indexed: 12/29/2022] Open
Abstract
Organotins (OTs) are pollutants that are used widely by industry as disinfectants, pesticides, and most frequently as biocides in antifouling paints. This mini-review presents the main evidences from the literature about morphophysiological changes induced by OTs in the mammal endocrine system, focusing on the metabolism and reproductive control. Similar to other toxic compounds, the main effects with potential health risks to humans and experimental animals are not only related to dose and time of exposure but also to age, gender, and tissue/cell exposed. Regarding the underlying mechanisms, current literature indicates that OTs can directly damage endocrine glands, as well as interfere with neurohormonal control of endocrine function (i.e., in the hypothalamic-pituitary axis), altering hormone synthesis and/or bioavailability or activity of hormone receptors in the target cells. Importantly, OTs induces biochemical and morphological changes in gonads, abnormal steroidogenesis, both associated with reproductive dysfunctions such as irregular estrous cyclicity in female or spermatogenic disorders in male animals. Additionally, due to their role on endocrine systems predisposing to obesity, OTs are also included in the metabolism disrupting chemical hypothesis, either by central (e.g., accurate nucleus and lateral hypothalamus) or peripheral (e.g., adipose tissue) mechanisms. Thus, OTs should be indeed considered a major endocrine disruptor, being indispensable to understand the main toxic effects on the different tissues and its causative role for endocrine, metabolic, and reproductive dysfunctions observed.
Collapse
Affiliation(s)
- Vinicius Bermond Marques
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
- Pitagoras College, Guarapari, Brazil
| | - Rodrigo Alves Faria
- Department of Health Sciences, Federal University of Espirito Santo, São Mateus, Brazil
| | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
- *Correspondence: Leonardo Dos Santos,
| |
Collapse
|
16
|
Thomas MA, Xue B. Mechanisms for AgRP neuron-mediated regulation of appetitive behaviors in rodents. Physiol Behav 2017; 190:34-42. [PMID: 29031550 DOI: 10.1016/j.physbeh.2017.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/29/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022]
Abstract
The obesity epidemic is a major health and economic burden facing both developed and developing countries worldwide. Interrogation of the central and peripheral mechanisms regulating ingestive behaviors have primarily focused on food intake, and in the process uncovered a detailed neuroanatomical framework controlling this behavior. However, these studies have largely ignored the behaviors that bring animals, including humans, in contact with food. It is therefore useful to dichotomize ingestive behaviors as appetitive (motivation to find and store food) and consummatory (consumption of food once found), and utilize an animal model that naturally displays these behaviors. Recent advances in genetics have facilitated the identification of several neuronal populations critical for regulating ingestive behaviors in mice, and novel functions of these neurons and neuropeptides in regulating appetitive behaviors in Siberian hamsters, a natural model of food foraging and food hoarding, have been identified. To this end, hypothalamic agouti-related protein/neuropeptide Y expressing neurons (AgRP neurons) have emerged as a critical regulator of ingestive behaviors. Recent studies by Dr. Timothy Bartness and others have identified several discrete mechanisms through which peripheral endocrine signals regulate AgRP neurons to control food foraging, food hoarding, and food intake. We review here recent advances in our understanding of the neuroendocrine control of ingestive behaviors in Siberian hamsters and other laboratory rodents, and identify novel mechanisms through which AgRP neurons mediate appetitive and consummatory behaviors.
Collapse
Affiliation(s)
- M Alex Thomas
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
17
|
Thomas MA, Tran V, Ryu V, Xue B, Bartness TJ. AgRP knockdown blocks long-term appetitive, but not consummatory, feeding behaviors in Siberian hamsters. Physiol Behav 2017; 190:61-70. [PMID: 29031552 DOI: 10.1016/j.physbeh.2017.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/24/2017] [Accepted: 10/06/2017] [Indexed: 12/25/2022]
Abstract
Arcuate hypothalamus-derived agouti-related protein (AgRP) and neuropeptide Y (NPY) are critical for maintaining energy homeostasis. Fasting markedly upregulates AgRP/NPY expression and circulating ghrelin, and exogenous ghrelin treatment robustly increases acute food foraging and food intake, and chronic food hoarding behaviors in Siberian hamsters. We previously demonstrated that 3rd ventricular AgRP injection robustly stimulates acute and chronic food hoarding, largely independent of food foraging and intake. By contrast, 3rd ventricular NPY injection increases food foraging, food intake, and food hoarding, but this effect is transient and gone by 24h post-injection. Because of this discrepancy in AgRP/NPY-induced ingestive behaviors, we tested whether selective knockdown of AgRP blocks fasting and ghrelin-induced increases in food hoarding. AgRP gene knockdown by a novel DICER small interfering RNA (AgRP-DsiRNA) blocked food-deprivation induced increases in AgRP expression, but had no effect on NPY expression. AgRP-DsiRNA attenuated acute (1day), and significantly decreased chronic (4-6days), food deprivation-induced increases in food hoarding. In addition, AgRP-DsiRNA treatment blocked exogenous ghrelin-induced increases in food hoarding through day 3, but had no effect on basal food foraging, food intake, or food hoarding prior to ghrelin treatment. Lastly, chronic AgRP knockdown had no effect on body mass, fat mass, or lean mass in either food deprived or ad libitum fed hamsters. These data collectively suggest that the prolonged increase in food hoarding behavior following energetic challenges, and food deprivation especially, is primarily regulated by downstream AgRP signaling.
Collapse
Affiliation(s)
- M Alex Thomas
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA
| | - Vy Tran
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA
| | - Vitaly Ryu
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA; Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA.
| | - Timothy J Bartness
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA; Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA
| |
Collapse
|
18
|
Fu SP, Hong H, Lu SF, Hu CJ, Xu HX, Li Q, Yu ML, Ou C, Meng JZ, Wang TL, Hennighausen L, Zhu BM. Genome-wide regulation of electro-acupuncture on the neural Stat5-loss-induced obese mice. PLoS One 2017; 12:e0181948. [PMID: 28806763 PMCID: PMC5555711 DOI: 10.1371/journal.pone.0181948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 07/10/2017] [Indexed: 02/05/2023] Open
Abstract
Acupuncture is reported to be effective in treating obesity related illnesses, but its mechanism is still unclear. To investigate this mechanism we applied electro-acupuncture (EA) in a mouse model of obesity and used RNA-seq to identify molecular consequences. Deletion of the transcription factor STAT5 from neurons (Stat5NKO) led to obesity. Acupuncture, in turn, reduced body weight and the ratio of epididymal white adipose tissue (Epi-WAT) to body weight, and it also decreased plasma concentrations of glucose, triglyceride, and cholesterol. In addition, EA increased cold endurance of Stat5NKO obese mice. EA reversed altered gene expressions in the hypothalamus and Epi-WAT, especially in the hypothalamus in Stat5NKO obese mice. This study provides, for the first time, insight into genomic networks of obesity and their modulation by electro-acupuncture, which in turn reveals potential mechanisms that explain acupuncture-induced weight-loss.
Collapse
Affiliation(s)
- Shu-Ping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Hong
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng-Feng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen-Jun Hu
- School of Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hou-Xi Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei-Ling Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Ou
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Zhong Meng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tian-Lin Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
19
|
Saul MC, Seward CH, Troy JM, Zhang H, Sloofman LG, Lu X, Weisner PA, Caetano-Anolles D, Sun H, Zhao SD, Chandrasekaran S, Sinha S, Stubbs L. Transcriptional regulatory dynamics drive coordinated metabolic and neural response to social challenge in mice. Genome Res 2017; 27:959-972. [PMID: 28356321 PMCID: PMC5453329 DOI: 10.1101/gr.214221.116] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/24/2017] [Indexed: 12/22/2022]
Abstract
Agonistic encounters are powerful effectors of future behavior, and the ability to learn from this type of social challenge is an essential adaptive trait. We recently identified a conserved transcriptional program defining the response to social challenge across animal species, highly enriched in transcription factor (TF), energy metabolism, and developmental signaling genes. To understand the trajectory of this program and to uncover the most important regulatory influences controlling this response, we integrated gene expression data with the chromatin landscape in the hypothalamus, frontal cortex, and amygdala of socially challenged mice over time. The expression data revealed a complex spatiotemporal patterning of events starting with neural signaling molecules in the frontal cortex and ending in the modulation of developmental factors in the amygdala and hypothalamus, underpinned by a systems-wide shift in expression of energy metabolism-related genes. The transcriptional signals were correlated with significant shifts in chromatin accessibility and a network of challenge-associated TFs. Among these, the conserved metabolic and developmental regulator ESRRA was highlighted for an especially early and important regulatory role. Cell-type deconvolution analysis attributed the differential metabolic and developmental signals in this social context primarily to oligodendrocytes and neurons, respectively, and we show that ESRRA is expressed in both cell types. Localizing ESRRA binding sites in cortical chromatin, we show that this nuclear receptor binds both differentially expressed energy-related and neurodevelopmental TF genes. These data link metabolic and neurodevelopmental signaling to social challenge, and identify key regulatory drivers of this process with unprecedented tissue and temporal resolution.
Collapse
Affiliation(s)
- Michael C Saul
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Christopher H Seward
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Joseph M Troy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Illinois Informatics Institute, Urbana, Illinois 61801, USA
| | - Huimin Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Laura G Sloofman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Xiaochen Lu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Patricia A Weisner
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Derek Caetano-Anolles
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hao Sun
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sihai Dave Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sriram Chandrasekaran
- Harvard Society of Fellows, Harvard University, Cambridge, Massachusetts 02138, USA
- Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Computer Science
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lisa Stubbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
20
|
Matias JA, Gilbert ER, Denbow DM, Cline MA. Effects of intracerebroventricular injection of rosiglitazone on appetite-associated parameters in chicks. Gen Comp Endocrinol 2017; 246:99-104. [PMID: 26723189 DOI: 10.1016/j.ygcen.2015.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/25/2015] [Accepted: 12/22/2015] [Indexed: 11/22/2022]
Abstract
Rosiglitazone, a thiazolidinedione, is a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist that increases insulin sensitivity. A documented side effect of this diabetes drug is increased appetite, although the mechanism mediating this response is unknown. To better understand effects on food intake regulation, we evaluated the appetite-associated effects of rosiglitazone in an alternative vertebrate and agriculturally-relevant model, the domesticated chick. Four day-old chicks received intracerebroventricular (ICV) injections of 0, 5, 10 or 20nmol rosiglitazone and food and water intake were measured. Chicks that received 5 and 10nmol rosiglitazone increased food intake during the 2h observation period, with no effect on water intake. In the next experiment, chicks were ICV-injected with 10nmol rosiglitazone and hypothalamus was collected at 1h post-injection for total RNA isolation. Real-time PCR was performed to measure mRNA abundance of appetite- and glucose regulation-associated factors. Neuropeptide Y (NPY) and proopiomelanocortin (POMC) mRNA decreased while NPY receptor 1 (NPYr1) mRNA increased in rosiglitazone-injected chicks compared to the controls. Results show that central effects of rosiglitazone on appetite are conserved between birds and mammals, and that increases in food intake might be mediated through NPY and POMC neurons in the hypothalamus.
Collapse
Affiliation(s)
- Justin A Matias
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - D Michael Denbow
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
21
|
Fernandez MO, Sharma S, Kim S, Rickert E, Hsueh K, Hwang V, Olefsky JM, Webster NJG. Obese Neuronal PPARγ Knockout Mice Are Leptin Sensitive but Show Impaired Glucose Tolerance and Fertility. Endocrinology 2017; 158:121-133. [PMID: 27841948 PMCID: PMC5412981 DOI: 10.1210/en.2016-1818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 11/19/2022]
Abstract
The peroxisome-proliferator activated receptor γ (PPARγ) is expressed in the hypothalamus in areas involved in energy homeostasis and glucose metabolism. In this study, we created a deletion of PPARγ brain-knockout (BKO) in mature neurons in female mice to investigate its involvement in metabolism and reproduction. We observed that there was no difference in age at puberty onset between female BKOs and littermate controls, but the BKOs gave smaller litters when mated and fewer oocytes when ovulated. The female BKO mice had regular cycles but showed an increase in the number of cycles with prolonged estrus. The mice also had increased luteinizing hormone (LH) levels during the LH surge and histological examination showed hemorrhagic corpora lutea. The mice were challenged with a 60% high-fat diet (HFD). Metabolically, the female BKO mice showed normal body weight, glucose and insulin tolerance, and leptin levels but were protected from obesity-induced leptin resistance. The neuronal knockout also prevented the reduction in estrous cycles due to the HFD. Examination of ovarian histology showed a decrease in the number of primary and secondary follicles in both genotypes due to the HFD, but the BKO ovaries showed an increase in the number of hemorrhagic follicles. In summary, our results show that neuronal PPARγ is required for optimal female fertility but is also involved in the adverse effects of diet-induced obesity by creating leptin resistance potentially through induction of the repressor Socs3.
Collapse
Affiliation(s)
| | | | - Sun Kim
- Department of Medicine, School of Medicine, and
| | | | | | - Vicky Hwang
- Department of Medicine, School of Medicine, and
| | | | - Nicholas J G Webster
- Department of Medicine, School of Medicine, and
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093; and
- Medical Research Service, VA San Diego Healthcare System, San Diego, California 92161
| |
Collapse
|
22
|
Rijnsburger M, Belegri E, Eggels L, Unmehopa UA, Boelen A, Serlie MJ, la Fleur SE. The effect of diet interventions on hypothalamic nutrient sensing pathways in rodents. Physiol Behav 2016; 162:61-8. [PMID: 27083123 DOI: 10.1016/j.physbeh.2016.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/25/2016] [Accepted: 04/07/2016] [Indexed: 12/13/2022]
Abstract
The hypothalamus plays a fundamental role in regulating homeostatic processes including regulation of food intake. Food intake is driven in part by energy balance, which is sensed by specific brain structures through signaling molecules such as nutrients and hormones. Both circulating glucose and fatty acids decrease food intake via a central mechanism involving the hypothalamus and brain stem. Besides playing a role in signaling energy status, glucose and fatty acids serve as fuel for neurons. This review focuses on the effects of glucose and fatty acids on hypothalamic pathways involved in regulation of energy metabolism as well as on the role of the family of peroxisome proliferator activated receptors (PPARs) which are implicated in regulation of central energy homeostasis. We further discuss the effects of different hypercaloric diets on these pathways.
Collapse
Affiliation(s)
- Merel Rijnsburger
- Department of Endocrinology & Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Evita Belegri
- Department of Endocrinology & Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Leslie Eggels
- Department of Endocrinology & Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Unga A Unmehopa
- Department of Endocrinology & Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Anita Boelen
- Department of Endocrinology & Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Mireille J Serlie
- Department of Endocrinology & Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology & Metabolism, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Abstract
Dysregulation of peroxisome proliferator-activated receptor gamma (PPARγ) activity leads to significant alterations in cardiovascular and metabolic regulation. This is most keenly observed by the metabolic syndrome-like phenotypes exhibited by patients carrying mutations in PPARγ. We will summarize recent findings regarding mechanisms of PPARγ regulation in the cardiovascular and nervous systems focusing largely on PPARγ in the smooth muscle, endothelium, and brain. Canonically, PPARγ exerts its effects by regulating the expression of target genes in these cells, and we will discuss mechanisms by which PPARγ targets in the vasculature regulate cardiovascular function. We will also discuss emerging evidence that PPARγ in the brain is a mediator of appetite and obesity. Finally, we will briefly review how novel PPARγ activators control posttranslational modifications of PPARγ and their prospects to offer new therapeutic options for treatment of metabolic diseases without the adverse side effects of thiazolidinediones which strongly activate transcriptional activity of PPARγ.
Collapse
Affiliation(s)
- Madeliene Stump
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
- Graduate Program in Neuroscience, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
| | - Masashi Mukohda
- Department of Pharmacology and Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
| | - Chunyan Hu
- Department of Pharmacology and Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA
| | - Curt D Sigmund
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
- Graduate Program in Neuroscience, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
- Department of Pharmacology and Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
- UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-340 BSB, Iowa City, IA, 52242, USA.
| |
Collapse
|
24
|
Liu Y, Huang Y, Lee S, Bookout AL, Castorena CM, Wu H, Gautron L. PPARγ mRNA in the adult mouse hypothalamus: distribution and regulation in response to dietary challenges. Front Neuroanat 2015; 9:120. [PMID: 26388745 PMCID: PMC4558427 DOI: 10.3389/fnana.2015.00120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/20/2015] [Indexed: 11/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor that was originally identified as a regulator of peroxisome proliferation and adipocyte differentiation. Emerging evidence suggests that functional PPARγ signaling also occurs within the hypothalamus. However, the exact distribution and identities of PPARγ-expressing hypothalamic cells remains under debate. The present study systematically mapped PPARγ mRNA expression in the adult mouse brain using in situ hybridization histochemistry. PPARγ mRNA was found to be expressed at high levels outside the hypothalamus including the neocortex, the olfactory bulb, the organ of the vasculosum of the lamina terminalis (VOLT), and the subfornical organ. Within the hypothalamus, PPARγ was present at moderate levels in the suprachiasmatic nucleus (SCh) and the ependymal of the 3rd ventricle. In all examined feeding-related hypothalamic nuclei, PPARγ was expressed at very low levels that were close to the limit of detection. Using qPCR techniques, we demonstrated that PPARγ mRNA expression was upregulated in the SCh in response to fasting. Double in situ hybridization further demonstrated that PPARγ was primarily expressed in neurons rather than glia. Collectively, our observations provide a comprehensive map of PPARγ distribution in the intact adult mouse hypothalamus.
Collapse
Affiliation(s)
- Yang Liu
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA ; Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Ying Huang
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Syann Lee
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Angie L Bookout
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Carlos M Castorena
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Laurent Gautron
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
25
|
Apigenin Attenuates β-Receptor-Stimulated Myocardial Injury Via Safeguarding Cardiac Functions and Escalation of Antioxidant Defence System. Cardiovasc Toxicol 2015; 16:286-97. [DOI: 10.1007/s12012-015-9336-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Palomba L, Silvestri C, Imperatore R, Morello G, Piscitelli F, Martella A, Cristino L, Di Marzo V. Negative Regulation of Leptin-induced Reactive Oxygen Species (ROS) Formation by Cannabinoid CB1 Receptor Activation in Hypothalamic Neurons. J Biol Chem 2015; 290:13669-77. [PMID: 25869131 DOI: 10.1074/jbc.m115.646885] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Indexed: 01/15/2023] Open
Abstract
The adipocyte-derived, anorectic hormone leptin was recently shown to owe part of its regulatory effects on appetite-regulating hypothalamic neuropeptides to the elevation of reactive oxygen species (ROS) levels in arcuate nucleus (ARC) neurons. Leptin is also known to exert a negative regulation on hypothalamic endocannabinoid levels and hence on cannabinoid CB1 receptor activity. Here we investigated the possibility of a negative regulation by CB1 receptors of leptin-mediated ROS formation in the ARC. Through pharmacological and molecular biology experiments we report data showing that leptin-induced ROS accumulation is 1) blunted by arachidonyl-2'-chloroethylamide (ACEA) in a CB1-dependent manner in both the mouse hypothalamic cell line mHypoE-N41 and ARC neuron primary cultures, 2) likewise blocked by a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, troglitazone, in a manner inhibited by T0070907, a PPAR-γ antagonist that also inhibited the ACEA effect on leptin, 3) blunted under conditions of increased endocannabinoid tone due to either pharmacological or genetic inhibition of endocannabinoid degradation in mHypoE-N41 and primary ARC neuronal cultures from MAGL(-/-) mice, respectively, and 4) associated with reduction of both PPAR-γ and catalase activity, which are reversed by both ACEA and troglitazone. We conclude that CB1 activation reverses leptin-induced ROS formation and hence possibly some of the ROS-mediated effects of the hormone by preventing PPAR-γ inhibition by leptin, with subsequent increase of catalase activity. This mechanism might underlie in part CB1 orexigenic actions under physiopathological conditions accompanied by elevated hypothalamic endocannabinoid levels.
Collapse
Affiliation(s)
- Letizia Palomba
- From the Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino 61029, Italy and Endocannabinoid Research Group
| | - Cristoforo Silvestri
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| | - Roberta Imperatore
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| | - Giovanna Morello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| | - Andrea Martella
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| |
Collapse
|