1
|
Jung J, Park J, Park S, Kim CH, Jung H. Protocadherin 19 regulates axon guidance in the developing Xenopus retinotectal pathway. Mol Brain 2024; 17:58. [PMID: 39175067 PMCID: PMC11342623 DOI: 10.1186/s13041-024-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
Protocadherin 19 (Pcdh19) is a homophilic cell adhesion molecule and is involved in a variety of neuronal functions. Here, we tested whether Pcdh19 has a regulatory role in axon guidance using the developing Xenopus retinotectal system. We performed targeted microinjections of a translation blocking antisense morpholino oligonucleotide to knock down the expression of Pcdh19 selectively in the central nervous system. Knocking down Pcdh19 expression resulted in navigational errors of retinal ganglion cell (RGC) axons specifically at the optic chiasm. Instead of projecting to the contralateral optic tectum, RGC axons in the Pcdh19-depleted embryo misprojected ipsilaterally. Although incorrectly delivered into the ipsilateral brain hemisphere, these axons correctly reached the optic tectum. These data suggest that Pcdh19 has a critical role in preventing mixing of RGC axons originating from the opposite eyes at the optic chiasm, highlighting the importance of cell adhesion in bundling of RGC axons.
Collapse
Affiliation(s)
- Jane Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jugeon Park
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sihyeon Park
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| | - Hosung Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
2
|
Hu L, Liu XY, Zhao L, Hu ZB, Li ZX, Liu WT, Song NN, Hu YQ, Jiang LP, Zhang L, Tao YC, Zhang Q, Chen JY, Lang B, Wang YB, Yue L, Ding YQ. Ventricular Netrin-1 deficiency leads to defective pyramidal decussation and mirror movement in mice. Cell Death Dis 2024; 15:343. [PMID: 38760361 PMCID: PMC11101614 DOI: 10.1038/s41419-024-06719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
The corticospinal tract (CST) is the principal neural pathway responsible for conducting voluntary movement in the vertebrate nervous system. Netrin-1 is a well-known guidance molecule for midline crossing of commissural axons during embryonic development. Families with inherited Netrin-1 mutations display congenital mirror movements (CMM), which are associated with malformations of pyramidal decussation in most cases. Here, we investigated the role of Netrin-1 in CST formation by generating conditional knockout (CKO) mice using a Gfap-driven Cre line. A large proportion of CST axons spread laterally in the ventral medulla oblongata, failed to decussate and descended in the ipsilateral spinal white matter of Ntn1Gfap CKO mice. Netrin-1 mRNA was expressed in the ventral ventricular zone (VZ) and midline, while Netrin-1 protein was transported by radial glial cells to the ventral medulla, through which CST axons pass. The level of transported Netrin-1 protein was significantly reduced in Ntn1Gfap CKO mice. In addition, Ntn1Gfap CKO mice displayed increased symmetric movements. Our findings indicate that VZ-derived Netrin-1 deletion leads to an abnormal trajectory of the CST in the spinal cord due to the failure of CST midline crossing and provides novel evidence supporting the idea that the Netrin-1 signalling pathway is involved in the pathogenesis of CMM.
Collapse
Affiliation(s)
- Ling Hu
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
| | - Xi-Yue Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Li Zhao
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Zhi-Bin Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ze-Xuan Li
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Wei-Tang Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Yun-Qing Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Luo-Peng Jiang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yun-Chao Tao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Qiong Zhang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Jia-Yin Chen
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Bing Lang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410083, China
| | - Yu-Bing Wang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Lei Yue
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Poulopoulos A, Davis P, Brandenburg C, Itoh Y, Galazo MJ, Greig LC, Romanowski AJ, Budnik B, Macklis JD. Symmetry in levels of axon-axon homophilic adhesion establishes topography in the corpus callosum and development of connectivity between brain hemispheres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587108. [PMID: 38585721 PMCID: PMC10996634 DOI: 10.1101/2024.03.28.587108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Specific and highly diverse connectivity between functionally specialized regions of the nervous system is controlled at multiple scales, from anatomically organized connectivity following macroscopic axon tracts to individual axon target-finding and synapse formation. Identifying mechanisms that enable entire subpopulations of related neurons to project their axons with regional specificity within stereotyped tracts to form appropriate long-range connectivity is key to understanding brain development, organization, and function. Here, we investigate how axons of the cerebral cortex form precise connections between the two cortical hemispheres via the corpus callosum. We identify topographic principles of the developing trans-hemispheric callosal tract that emerge through intrinsic guidance executed by growing axons in the corpus callosum within the first postnatal week in mice. Using micro-transplantation of regionally distinct neurons, subtype-specific growth cone purification, subcellular proteomics, and in utero gene manipulation, we investigate guidance mechanisms of transhemispheric axons. We find that adhesion molecule levels instruct tract topography and target field guidance. We propose a model in which transcallosal axons in the developing brain perform a "handshake" that is guided through co-fasciculation with symmetric contralateral axons, resulting in the stereotyped homotopic connectivity between the brain's hemispheres.
Collapse
Affiliation(s)
- Alexandros Poulopoulos
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore, MD, USA
| | - Patrick Davis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Cheryl Brandenburg
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore, MD, USA
| | - Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Maria J. Galazo
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Luciano C. Greig
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Andrea J. Romanowski
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore, MD, USA
| | - Bogdan Budnik
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA, USA
| | - Jeffrey D. Macklis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
4
|
Lemieux M, Thiry L, Laflamme OD, Bretzner F. Role of DSCAM in the Development of Neural Control of Movement and Locomotion. Int J Mol Sci 2021; 22:ijms22168511. [PMID: 34445216 PMCID: PMC8395195 DOI: 10.3390/ijms22168511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022] Open
Abstract
Locomotion results in an alternance of flexor and extensor muscles between left and right limbs generated by motoneurons that are controlled by the spinal interneuronal circuit. This spinal locomotor circuit is modulated by sensory afferents, which relay proprioceptive and cutaneous inputs that inform the spatial position of limbs in space and potential contacts with our environment respectively, but also by supraspinal descending commands of the brain that allow us to navigate in complex environments, avoid obstacles, chase prey, or flee predators. Although signaling pathways are important in the establishment and maintenance of motor circuits, the role of DSCAM, a cell adherence molecule associated with Down syndrome, has only recently been investigated in the context of motor control and locomotion in the rodent. DSCAM is known to be involved in lamination and delamination, synaptic targeting, axonal guidance, dendritic and cell tiling, axonal fasciculation and branching, programmed cell death, and synaptogenesis, all of which can impact the establishment of motor circuits during development, but also their maintenance through adulthood. We discuss herein how DSCAM is important for proper motor coordination, especially for breathing and locomotion.
Collapse
Affiliation(s)
- Maxime Lemieux
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
| | - Louise Thiry
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
| | - Olivier D. Laflamme
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
| | - Frédéric Bretzner
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC G1V 4G2, Canada
- Correspondence:
| |
Collapse
|
5
|
Pan X, Zhou Y, Hotulainen P, Meunier FA, Wang T. The axonal radial contractility: Structural basis underlying a new form of neural plasticity. Bioessays 2021; 43:e2100033. [PMID: 34145916 DOI: 10.1002/bies.202100033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022]
Abstract
Axons are the longest cellular structure reaching over a meter in the case of human motor axons. They have a relatively small diameter and contain several cytoskeletal elements that mediate both material and information exchange within neurons. Recently, a novel type of axonal plasticity, termed axonal radial contractility, has been unveiled. It is represented by dynamic and transient diameter changes of the axon shaft to accommodate the passages of large organelles. Mechanisms underpinning this plasticity are not fully understood. Here, we first summarised recent evidence of the functional relevance for axon radial contractility, then discussed the underlying structural basis, reviewing nanoscopic evidence of the subtle changes. Two models are proposed to explain how actomyosin rings are organised. Possible roles of non-muscle myosin II (NM-II) in axon degeneration are discussed. Finally, we discuss the concept of periodic functional nanodomains, which could sense extracellular cues and coordinate the axonal responses. Also see the video abstract here: https://youtu.be/ojCnrJ8RCRc.
Collapse
Affiliation(s)
- Xiaorong Pan
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Yimin Zhou
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Tong Wang
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| |
Collapse
|
6
|
Aizawa S, Okada T, Keino-Masu K, Doan TH, Koganezawa T, Akiyama M, Tamaoka A, Masu M. Abnormal Pyramidal Decussation and Bilateral Projection of the Corticospinal Tract Axons in Mice Lacking the Heparan Sulfate Endosulfatases, Sulf1 and Sulf2. Front Mol Neurosci 2020; 12:333. [PMID: 32038163 PMCID: PMC6985096 DOI: 10.3389/fnmol.2019.00333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/27/2019] [Indexed: 11/13/2022] Open
Abstract
The corticospinal tract (CST) plays an important role in controlling voluntary movement. Because the CST has a long trajectory throughout the brain toward the spinal cord, many axon guidance molecules are required to navigate the axons correctly during development. Previously, we found that double-knockout (DKO) mouse embryos lacking the heparan sulfate endosulfatases, Sulf1 and Sulf2, showed axon guidance defects of the CST owing to the abnormal accumulation of Slit2 protein on the brain surface. However, postnatal development of the CST, especially the pyramidal decussation and spinal cord projection, could not be assessed because DKO mice on a C57BL/6 background died soon after birth. We recently found that Sulf1/2 DKO mice on a mixed C57BL/6 and CD-1/ICR background can survive into adulthood and therefore investigated the anatomy and function of the CST in the adult DKO mice. In Sulf1/2 DKO mice, abnormal dorsal deviation of the CST fibers on the midbrain surface persisted after maturation of the CST. At the pyramidal decussation, some CST fibers located near the midline crossed the midline, whereas others located more laterally extended ipsilaterally. In the spinal cord, the crossed CST fibers descended in the dorsal funiculus on the contralateral side and entered the contralateral gray matter normally, whereas the uncrossed fibers descended in the lateral funiculus on the ipsilateral side and entered the ipsilateral gray matter. As a result, the CST fibers that originated from 1 side of the brain projected bilaterally in the DKO spinal cord. Consistently, microstimulation of 1 side of the motor cortex evoked electromyogram responses only in the contralateral forelimb muscles of the wild-type mice, whereas the same stimulation evoked bilateral responses in the DKO mice. The functional consequences of the CST defects in the Sulf1/2 DKO mice were examined using the grid-walking, staircase, and single pellet-reaching tests, which have been used to evaluate motor function in mice. Compared with the wild-type mice, the Sulf1/2 DKO mice showed impaired performance in these tests, indicating deficits in motor function. These findings suggest that disruption of Sulf1/2 genes leads to both anatomical and functional defects of the CST.
Collapse
Affiliation(s)
- Satoshi Aizawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Molecular Neurobiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takuya Okada
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Molecular Neurobiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Keino-Masu
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Molecular Neurobiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tri Huu Doan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Physiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tadachika Koganezawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Physiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masahiro Akiyama
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Tamaoka
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masayuki Masu
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Molecular Neurobiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
7
|
Remarkable complexity and variability of corticospinal tract defects in adult Semaphorin 6A knockout mice. Brain Res 2018; 1710:209-219. [PMID: 30599138 DOI: 10.1016/j.brainres.2018.12.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 12/30/2022]
Abstract
The corticospinal tract (CST) has a complex and long trajectory that originates in the cerebral cortex and ends in the spinal cord. Semaphorin 6A (Sema6A), a member of the semaphorin family, is an important regulator of CST axon guidance. Previous studies have shown that postnatal Sema6A mutant mice have CST defects at the midbrain-hindbrain boundary and medulla. However, the routes the aberrant fibers take throughout the Sema6A mutant brain remain unknown. In this study, we performed 3D reconstruction of immunostained CST fibers to reevaluate the details of the abnormal CST trajectories in the brains of adult Sema6A mutant mice. Our results showed that the axon guidance defects reported in early postnatal mutants were consistently observed in adulthood. Those abnormal trajectories revealed by 3D analysis of brain sections were, however, more complex and variable than previously thought. In addition, 3D analysis allowed us to identify a few new patterns of aberrant projections. First, a subset of fibers that separated from and descended in parallel to the main bundle projected laterally at the caudal pons, subsequently changed direction by turning caudally, and extended to the medulla. Second, some abnormal fibers returned to the correct trajectory after deviating substantially from the original tract. Third, some fibers reached the pyramidal decussation normally but did not enter the dorsal funiculus. Section immunostaining combined with 3D reconstruction is a powerful method to track long projection fibers and to examine the entire nerve tracts of both normal and abnormal animals.
Collapse
|
8
|
Welniarz Q, Dusart I, Roze E. The corticospinal tract: Evolution, development, and human disorders. Dev Neurobiol 2016; 77:810-829. [PMID: 27706924 DOI: 10.1002/dneu.22455] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 01/22/2023]
Abstract
The corticospinal tract (CST) plays a major role in cortical control of spinal cord activity. In particular, it is the principal motor pathway for voluntary movements. Here, we discuss: (i) the anatomic evolution and development of the CST across mammalian species, focusing on its role in motor functions; (ii) the molecular mechanisms regulating corticospinal tract formation and guidance during mouse development; and (iii) human disorders associated with abnormal CST development. A comparison of CST anatomy and development across mammalian species first highlights important similarities. In particular, most CST axons cross the anatomical midline at the junction between the brainstem and spinal cord, forming the pyramidal decussation. Reorganization of the pattern of CST projections to the spinal cord during evolution led to improved motor skills. Studies of the molecular mechanisms involved in CST formation and guidance in mice have identified several factors that act synergistically to ensure proper formation of the CST at each step of development. Human CST developmental disorders can result in a reduction of the CST, or in guidance defects associated with abnormal CST anatomy. These latter disorders result in altered midline crossing at the pyramidal decussation or in the spinal cord, but spare the rest of the CST. Careful appraisal of clinical manifestations associated with CST malformations highlights the critical role of the CST in the lateralization of motor control. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 810-829, 2017.
Collapse
Affiliation(s)
- Quentin Welniarz
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, F-75013, Paris, France.,Institut de Biologie Paris Seine, Neuroscience Paris Seine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, F-75005, Paris, France
| | - Isabelle Dusart
- Institut de Biologie Paris Seine, Neuroscience Paris Seine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, F-75005, Paris, France
| | - Emmanuel Roze
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, F-75013, Paris, France.,Département des Maladies du Système Nerveux, AP-HP, Hôpital de la Salpêtrière, Paris, France
| |
Collapse
|
9
|
Welniarz Q, Dusart I, Gallea C, Roze E. One hand clapping: lateralization of motor control. Front Neuroanat 2015; 9:75. [PMID: 26082690 PMCID: PMC4451425 DOI: 10.3389/fnana.2015.00075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022] Open
Abstract
Lateralization of motor control refers to the ability to produce pure unilateral or asymmetric movements. It is required for a variety of coordinated activities, including skilled bimanual tasks and locomotion. Here we discuss the neuroanatomical substrates and pathophysiological underpinnings of lateralized motor outputs. Significant breakthroughs have been made in the past few years by studying the two known conditions characterized by the inability to properly produce unilateral or asymmetric movements, namely human patients with congenital “mirror movements” and model rodents with a “hopping gait”. Whereas mirror movements are associated with altered interhemispheric connectivity and abnormal corticospinal projections, abnormal spinal cord interneurons trajectory is responsible for the “hopping gait”. Proper commissural axon guidance is a critical requirement for these mechanisms. Interestingly, the analysis of these two conditions reveals that the production of asymmetric movements involves similar anatomical and functional requirements but in two different structures: (i) lateralized activation of the brain or spinal cord through contralateral silencing by cross-midline inhibition; and (ii) unilateral transmission of this activation, resulting in lateralized motor output.
Collapse
Affiliation(s)
- Quentin Welniarz
- Neuroscience Paris Seine, CNRS UMR8246, Inserm U1130, Sorbonne Universités, UPMC UM119 Paris, France ; Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM Paris, France
| | - Isabelle Dusart
- Neuroscience Paris Seine, CNRS UMR8246, Inserm U1130, Sorbonne Universités, UPMC UM119 Paris, France
| | - Cécile Gallea
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM Paris, France
| | - Emmanuel Roze
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM Paris, France ; Département des Maladies du Système Nerveux, AP-HP, Hôpital Pitié Salpêtrière Paris, France
| |
Collapse
|
10
|
Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 2014; 94:461-518. [PMID: 24692354 DOI: 10.1152/physrev.00033.2013] [Citation(s) in RCA: 531] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity, including regeneration. Together, vertebrate brain sialoglycans are key regulatory components that contribute to proper development, maintenance, and health of the nervous system.
Collapse
|
11
|
Lack of adenylate cyclase 1 (AC1): Consequences on corticospinal tract development and on locomotor recovery after spinal cord injury. Brain Res 2014; 1549:1-10. [DOI: 10.1016/j.brainres.2014.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 12/07/2013] [Accepted: 01/03/2014] [Indexed: 01/14/2023]
|
12
|
Leyva-Díaz E, López-Bendito G. In and out from the cortex: development of major forebrain connections. Neuroscience 2013; 254:26-44. [PMID: 24042037 DOI: 10.1016/j.neuroscience.2013.08.070] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/21/2022]
Abstract
In this review we discuss recent advances in the understanding of the development of forebrain projections attending to their origin, fate determination, and axon guidance. Major forebrain connections include callosal, corticospinal, corticothalamic and thalamocortical projections. Although distinct transcriptional programs specify these subpopulations of projecting neurons, the mechanisms involved in their axonal development are similar. Guidance by short- and long-range molecular cues, interaction with intermediate target populations and activity-dependent mechanisms contribute to their development. Moreover, some of these connections interact with each other showing that the development of these axonal tracts is a well-orchestrated event. Finally, we will recapitulate recent discoveries that challenge the field of neural wiring that show that these forebrain connections can be changed once formed. The field of reprogramming has arrived to postmitotic cortical neurons and has showed us that forebrain connectivity is not immutable and might be changed by manipulations in the transcriptional program of matured cells.
Collapse
Affiliation(s)
- E Leyva-Díaz
- Instituto de Neurociencias de Alicante, CSIC & Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.
| | | |
Collapse
|
13
|
Jakovcevski I, Djogo N, Hölters LS, Szpotowicz E, Schachner M. Transgenic overexpression of the cell adhesion molecule L1 in neurons facilitates recovery after mouse spinal cord injury. Neuroscience 2013; 252:1-12. [PMID: 23933311 DOI: 10.1016/j.neuroscience.2013.07.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/27/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022]
Abstract
It has been shown that the X-chromosome-linked neural cell adhesion molecule L1 plays a beneficial role in regeneration after spinal cord injury (SCI) in young adult rodents when applied in various molecular and cellular forms. In an attempt to further characterize the multiple functions of L1 after severe SCI we analyzed locomotor functions and measured axonal regrowth/sprouting and sparing, glial scarring, and synaptic remodeling at 6 weeks after severe spinal cord compression injury at the T7-9 levels of L1-deficient mice (L1-/y) and their wild-type (L1+/y) littermates, as well as mice that overexpress L1 under the control of the neuron-specific Thy-1 promoter (L1tg) and their wild-type littermates (L1+/+). No differences were found in the locomotor scale score and single frame motion analysis between L1-/y and L1+/y mice during 6 weeks after SCI, most likely due to the very low expression of L1 in the adult spinal cord of wild-type mice. L1tg mice, however, showed better locomotor recovery than their L1+/+ littermates, being associated with enhanced numbers of catecholaminergic axons in the lumbar spinal cord, but not of cholinergic, GABAergic or glutamatergic terminals around motoneuron cell bodies in the lumbar spinal cord. Additionally, no difference between L1tg and L1+/+ mice was detectable in dieback of corticospinal tract axons. Neuronal L1 overexpression did not influence the size of the glial fibrillary acidic protein-immunoreactive astrocytic scar 6 weeks after injury. We conclude that neuronal overexpression of L1 improves functional recovery from SCI by increasing catecholaminergic axonal regrowth/sprouting and/or sparing of severed axons without affecting the glial scar size.
Collapse
Affiliation(s)
- I Jakovcevski
- Center for Molecular Neurobiology Hamburg, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
14
|
Gnanapavan S, Ho P, Heywood W, Jackson S, Grant D, Rantell K, Keir G, Mills K, Steinman L, Giovannoni G. Progression in multiple sclerosis is associated with low endogenous NCAM. J Neurochem 2013; 125:766-73. [PMID: 23495921 PMCID: PMC4298029 DOI: 10.1111/jnc.12236] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is a CNS disorder characterized by demyelination and neurodegeneration. Although hallmarks of recovery (remyelination and repair) have been documented in early MS, the regenerative capacity of the adult CNS per se remains uncertain with the wide held belief that it is either limited or non-existent. The neural cell adhesion molecule (NCAM) is a cell adhesion molecule that has been widely implicated in axonal outgrowth, guidance and fasciculation. Here, we used in vitro and in vivo of MS to investigate the role of NCAM in disease progression. We show that in health NCAM levels decrease over time, but this occurs acutely after demyelination and remains reduced in chronic disease. Our findings suggest that depletion of NCAM is one of the factors associated with or possibly responsible for disease progression in MS.
Collapse
|
15
|
|
16
|
Huang Z, Yu Y, Shimoda Y, Watanabe K, Liu Y. Loss of neural recognition molecule NB-3 delays the normal projection and terminal branching of developing corticospinal tract axons in the mouse. J Comp Neurol 2012; 520:1227-45. [PMID: 21935948 DOI: 10.1002/cne.22772] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neural recognition molecule NB-3 is involved in neural development and synapse formation. However, its role in axon tract formation is unclear. In this study, we found that the temporal expression of NB-3 in the deep layers of the motor cortex in mice was coincident with the development of the corticospinal tract (CST). Clear NB-3 immunoreactivity in the CST trajectory strongly suggested that NB-3 was expressed specifically in projecting CST axons. By tracing CST axons in NB-3−/− mice at different developmental stages, we found that these axons were capable of projecting and forming a normal trajectory. However, the projection was greatly delayed in NB-3−/− mice compared with wild-type (WT) mice from the embryonic to postnatal stages, a period that is coincident with the completion of the CST projection in mice. Subsequently, although their projection was delayed, CST axons in NB-3−/− mice gradually completed a normal projection. By stage P21, the characteristics of CST projections in NB-3−/− mice were not statistically different from those in WT mice. In addition, we found that the branching of CST axons into spinal gray matter also was delayed in NB-3−/− mice. The CST innervation area in the spinal gray matter of NB-3−/− mice was greatly reduced in comparison with WT mice until P30 and gradually became normal by P45. These data suggest that NB-3 is involved in the normal projection and terminal branching of developing CST axons.
Collapse
Affiliation(s)
- Zhenhui Huang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
17
|
Abstract
Cell adhesion molecules of the immunoglobulin-super-family (IgSF-CAMs) do not only have a physical effect, mediating merely attachment between cell surfaces. For navigating axons, IgSF-CAMs also exert an instructive impact: Upon activation, they elicit intracellular signalling cascades in the tip of the axon, the growth cone, which regulate in a spatio-temporally concerted action both speed and direction of the axon. Density and distribution of IgSF-CAMs in the growth cone plasma membrane play important roles for the activation of IgSF-CAMs, their clustering, and the adhesive forces they acquire, as well as for the local restriction and effective propagation of their intracellular signals.
Collapse
|
18
|
Neural cell adhesion molecules in brain plasticity and disease. Mult Scler Relat Disord 2012; 2:13-20. [PMID: 25877450 DOI: 10.1016/j.msard.2012.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 12/14/2022]
Abstract
Neural cell adhesion molecule (NCAM) has been studied extensively. But it is only in recent times that interest in this molecule has shifted to conditions such as Alzheimer's disease, Multiple Sclerosis and Schizophrenia, focusing on its role in neurodegeneration and abnormal neurodevelopment. NCAM is important in neurite outgrowth, long-term potentiation in the hippocampus and synaptic plasticity. Reduced as well as increased levels in NCAM have been linked to pathology in the brain suggesting that a shift in the equilibrium may be the key. Hence, increasing our understanding of the role of NCAM in health and disease should clear some of the ambiguity surrounding the molecule and even lead to newer potential therapeutic targets. This review consolidates our current understanding of NCAM, focusing on the consequences of dysregulation, its role in neurodegenerative and neurodevelopmental disorders, and the future of NCAM plus potential options for therapy.
Collapse
|
19
|
Peng J, Charron F. Lateralization of motor control in the human nervous system: genetics of mirror movements. Curr Opin Neurobiol 2012; 23:109-18. [PMID: 22989473 DOI: 10.1016/j.conb.2012.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 08/21/2012] [Accepted: 08/26/2012] [Indexed: 01/10/2023]
Abstract
Mirror movements (MM) are a peculiar motor defect in humans where the intended unilateral movement of a body part results in involuntary movement of the same body part on the opposite side. This loss in the lateralization of motor control can be caused by genetic mutations that result in an aberrant projection of the corticospinal tract. However, recent evidence suggests that the same genes controlling corticospinal tract development also play roles in the development of other circuits involved in motor control, including local spinal circuits and the corpus callosum. These recent studies in humans and mouse models of MM will be discussed to provide an overview of the basis of MM and the molecular mechanisms underlying the lateralization of motor control.
Collapse
Affiliation(s)
- Jimmy Peng
- Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | | |
Collapse
|
20
|
Tereshchenko Y, Morellini F, Dityatev A, Schachner M, Irintchev A. Neural cell adhesion molecule ablation in mice causes hippocampal dysplasia and loss of septal cholinergic neurons. J Comp Neurol 2011; 519:2475-92. [DOI: 10.1002/cne.22636] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Vitureira N, Andrés R, Pérez-Martínez E, Martínez A, Bribián A, Blasi J, Chelliah S, López-Doménech G, De Castro F, Burgaya F, McNagny K, Soriano E. Podocalyxin is a novel polysialylated neural adhesion protein with multiple roles in neural development and synapse formation. PLoS One 2010; 5:e12003. [PMID: 20706633 PMCID: PMC2919383 DOI: 10.1371/journal.pone.0012003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Accepted: 06/30/2010] [Indexed: 12/21/2022] Open
Abstract
Neural development and plasticity are regulated by neural adhesion proteins, including the polysialylated form of NCAM (PSA-NCAM). Podocalyxin (PC) is a renal PSA-containing protein that has been reported to function as an anti-adhesin in kidney podocytes. Here we show that PC is widely expressed in neurons during neural development. Neural PC interacts with the ERM protein family, and with NHERF1/2 and RhoA/G. Experiments in vitro and phenotypic analyses of podxl-deficient mice indicate that PC is involved in neurite growth, branching and axonal fasciculation, and that PC loss-of-function reduces the number of synapses in the CNS and in the neuromuscular system. We also show that whereas some of the brain PC functions require PSA, others depend on PC per se. Our results show that PC, the second highly sialylated neural adhesion protein, plays multiple roles in neural development.
Collapse
Affiliation(s)
- Nathalia Vitureira
- Institute for Research in Biomedicine, Parc Cientific de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Richter MW, Roskams AJ. Corticospinal neurons respond differentially to neurotrophins and myelin-associated glycoprotein in vitro. J Neurosci Res 2009; 87:2222-36. [PMID: 19301432 DOI: 10.1002/jnr.22053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Elucidating the mechanisms that regulate the survival and outgrowth of corticospinal tract (CST) neurons and other CNS tracts will be a key component in developing novel approaches for the treatment of central nervous system (CNS) disorders, including stroke, spinal cord injury (SCI), and motor neuron disease (MND). However, the in vivo complexities of these diseases make a systematic evaluation of potential therapeutics that directly affect corticospinal regeneration or survival very challenging. Here, we use Thy1.2 transgenic mice expressing yellow fluorescent protein (YFP) in postnatal day 8 (P8) corticospinal neurons, as a source of CST neurons that have already established synapses in the spinal cord, to assess factors that influence neurite outgrowth and survival of axotomized CST neurons. After culture, YFP-positive corticospinal neurons represent an enriched neuronal population over other glia and interneurons, survive, and extend processes over time. YFP-positive CST neurons also continue to express the corticospinal markers CTIP2 and Otx1. CST neurons display different degrees of axon extension, dendritic branch length and elaboration, and neurite elongation in response to neurotrophin-3 and ciliary neurotrophic factor, and an inhibitory outgrowth response when cultured on myelin-associated glycoprotein. Some CST neurons are lost with extended culture, which provides a baseline from which we can also assess factors that enhance CST neuron survival. This assay thus allows us to assess independent aspects of CST axonal and dendritic outgrowth kinetics, which allows for the rapid and sensitive investigation of new therapies to address corticospinal neuron outgrowth in the context of CNS injury and neurodegenerative disorders.
Collapse
Affiliation(s)
- Miranda W Richter
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
23
|
Schwarz V, Pan J, Voltmer-Irsch S, Hutter H. IgCAMs redundantly control axon navigation in Caenorhabditis elegans. Neural Dev 2009; 4:13. [PMID: 19341471 PMCID: PMC2672934 DOI: 10.1186/1749-8104-4-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 04/02/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) form one of the largest and most diverse families of adhesion molecules and receptors in the nervous system. Many members of this family mediate contact and communication among neurons during development. The Caenorhabditis elegans genome contains a comparatively small number of IgCAMs, most of which are evolutionarily conserved and found across all animal phyla. Only some of these have been functionally characterized so far. RESULTS We systematically analyzed previously uncharacterized IgCAMs in C. elegans. Green fluorescent protein reporter constructs of 12 IgCAMs revealed that expression generally is not confined to a single tissue and that all tissues express at least one of the IgCAMs. Most IgCAMs were expressed in neurons. Within the nervous system significant overlap in expression was found in central components of the motor circuit, in particular the command interneurons, ventral cord motoneurons as well as motoneurons innervating head muscles. Sensory neurons are underrepresented among the cells expressing these IgCAMs. We isolated mutations for eight of the genes showing neuronal expression. Phenotypic analysis of single mutants revealed limited neuronal defects, in particular axon navigation defects in some of the mutants. Systematic genetic interaction studies uncovered two cases of functional overlap among three and four genes, respectively. A strain combining mutations in all eight genes is viable and shows no additional defects in the neurons that were analyzed, suggesting that genetic interactions among those genes are limited. CONCLUSION Genetic interactions involving multiple IgCAMs affecting axon outgrowth demonstrate functional overlap among IgCAMs during nervous system development.
Collapse
|
24
|
Rünker AE, Little GE, Suto F, Fujisawa H, Mitchell KJ. Semaphorin-6A controls guidance of corticospinal tract axons at multiple choice points. Neural Dev 2008; 3:34. [PMID: 19063725 PMCID: PMC2647909 DOI: 10.1186/1749-8104-3-34] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 12/08/2008] [Indexed: 11/30/2022] Open
Abstract
Background The trajectory of corticospinal tract (CST) axons from cortex to spinal cord involves a succession of choice points, each of which is controlled by multiple guidance molecules. To assess the involvement of transmembrane semaphorins and their plexin receptors in the guidance of CST axons, we have examined this tract in mutants of Semaphorin-6A (Sema6A), Plexin-A2 (PlxnA2) and Plexin-A4 (PlxnA4). Results We describe defects in CST guidance in Sema6A mutants at choice points at the mid-hindbrain boundary (MHB) and in navigation through the pons that dramatically affect how many axons arrive to the hindbrain and spinal cord and result in hypoplasia of the CST. We also observe defects in guidance within the hindbrain where a proportion of axons aberrantly adopt a ventrolateral position and fail to decussate. This function in the hindbrain seems to be mediated by the known Sema6A receptor PlxnA4, which is expressed by CST axons. Guidance at the MHB, however, appears independent of this and of the other known receptor, PlxnA2, and may depend instead on Sema6A expression on CST axons themselves at embryonic stages. Conclusion These data identify Sema6A as a major contributor to the guidance of CST axons at multiple choice points. They highlight the active control of guidance at the MHB and also implicate the inferior olive as an important structure in the guidance of CST axons within the hindbrain. They also suggest that Sema6A, which is strongly expressed by oligodendrocytes, may affect CST regeneration in adults.
Collapse
Affiliation(s)
- Annette E Rünker
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
25
|
Brackenbury WJ, Isom LL. Voltage-gated Na+ channels: potential for beta subunits as therapeutic targets. Expert Opin Ther Targets 2008; 12:1191-203. [PMID: 18694383 DOI: 10.1517/14728222.12.9.1191] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Voltage gated Na(+) channels (VGSCs) contain a pore-forming alpha subunit and one or more beta subunits. VGSCs are involved in a wide variety of pathophysiologies, including epilepsy, cardiac arrhythmia, multiple sclerosis, periodic paralysis, migraine, neuropathic and inflammatory pain, Huntington's disease and cancer. Increasing evidence implicates the beta subunits as key players in these disorders. OBJECTIVE To review the recent literature describing the multifunctional roles of VGSC beta subunits in the context of their role(s) in disease. METHODS An extensive review of the literature on beta subunits. RESULTS/CONCLUSION beta subunits are multifunctional. As components of VGSC complexes, beta subunits mediate signaling processes regulating electrical excitability, adhesion, migration, pathfinding and transcription. beta subunits may prove useful in disease diagnosis and therapy.
Collapse
Affiliation(s)
- William J Brackenbury
- University of Michigan, School of Medicine, Department of Pharmacology, 1150 W. Medical Center Dr, 1301 MSRB III, Ann Arbor, MI 48109-0632, USA
| | | |
Collapse
|
26
|
Faulkner RL, Low LK, Liu XB, Coble J, Jones EG, Cheng HJ. Dorsal turning of motor corticospinal axons at the pyramidal decussation requires plexin signaling. Neural Dev 2008; 3:21. [PMID: 18727829 PMCID: PMC2532682 DOI: 10.1186/1749-8104-3-21] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 08/26/2008] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The development of the corticospinal tract (CST) in higher vertebrates relies on a series of axon guidance decisions along its long projection pathway. Several guidance molecules are known to be involved at various decision points to regulate the projection of CST axons. However, previous analyses of the CST guidance defects in mutant mice lacking these molecules have suggested that there are other molecules involved in CST axon guidance that are yet to be identified. In this study, we investigate the role of plexin signaling in the guidance of motor CST axons in vivo. RESULTS Expression pattern studies show that plexin-A3, plexin-A4, and neuropilin-1 are expressed in the developing cerebral cortex when the motor CST axons originating from layer V cortical neurons are guided down to the spinal cord. By analyzing mutant mice, we show that motor CST axons that turn dorsally to cross the midline at the pyramidal decussation require plexin-A3 and plexin-A4 signaling. Although other CST guidance defects are found in neuropilin-1 mutants, this dorsal turning defect is not observed in either neuropilin-1 or neuropilin-2 mutants, suggesting that the local cues that activate plexin signaling at the dorsal turning point are membrane-bound semaphorins. Further expression pattern study and mutant analysis indicate that Sema6A is one of the local cues for motor CST axon turning at the pyramidal decussation. CONCLUSION Dorsal turning and midline crossing at the pyramidal decussation is a crucial step to properly direct CST axons into the dorsal spinal cord. We show that the signaling of plexin-A3, plexin-A4, and Sema6A is at least partially required for dorsal turning of the CST axons, while neuropilin-1 is required for proper fasciculation of the tract at midline crossing. Together with previous reports, these results demonstrate that several guidance cues are specifically utilized to regulate the dorsal turning and midline crossing of developing CST axons.
Collapse
Affiliation(s)
- Regina L Faulkner
- Center for Neuroscience, University of California, Davis, California, 95618, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Canty A, Murphy M. Molecular mechanisms of axon guidance in the developing corticospinal tract. Prog Neurobiol 2008; 85:214-35. [DOI: 10.1016/j.pneurobio.2008.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 12/11/2007] [Accepted: 02/08/2008] [Indexed: 02/04/2023]
|
28
|
Hildebrandt H, Mühlenhoff M, Weinhold B, Gerardy-Schahn R. Dissecting polysialic acid and NCAM functions in brain development. J Neurochem 2008; 103 Suppl 1:56-64. [PMID: 17986140 DOI: 10.1111/j.1471-4159.2007.04716.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The unique modification of the neural cell adhesion molecule (NCAM) by polysialic acid (polySia) is tightly associated with nervous system development and plasticity. The prevailing view that this large carbohydrate polymer acts as an anti-adhesive factor seems straightforward at first sight. However, during almost 25 years of polySia research it became increasingly clear that the impact of polySia on cell surface interactions can not be explained by one unifying mechanism. Recent progress in the generation of mouse models, which partially or completely lack polySia due to ablation of one or both of the two polySia synthesizing enzymes, provides novel insights into the function of this unique post-translational modification. The present review is focused on a phenotype comparison between the newly established mouse strains which combine polySia-deficiency with normal NCAM expression and the well-characterized NCAM negative mouse model. Analysis of shared and individual phenotypes allows a clear distinction between NCAM and polySia functions and revealed that polySia plays a vital role as a specific control element of NCAM-mediated interactions.
Collapse
Affiliation(s)
- Herbert Hildebrandt
- Zelluläre Chemie, Zentrum Biochemie, Medizinische Hochschule Hannover, Hannover, Germany.
| | | | | | | |
Collapse
|
29
|
Sibbe M, Taniguchi M, Schachner M, Bartsch U. Development of the corticospinal tract in Semaphorin3A- and CD24-deficient mice. Neuroscience 2007; 150:898-904. [DOI: 10.1016/j.neuroscience.2007.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2007] [Revised: 10/12/2007] [Accepted: 10/16/2007] [Indexed: 11/15/2022]
|
30
|
Maness PF, Schachner M. Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 2007; 10:19-26. [PMID: 17189949 DOI: 10.1038/nn1827] [Citation(s) in RCA: 656] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recognition molecules of the immunoglobulin superfamily have important roles in neuronal interactions during ontogeny, including migration, survival, axon guidance and synaptic targeting. Their downstream signal transduction events specify whether a cell changes its place of residence or projects axons and dendrites to targets in the brain, allowing the construction of a dynamic neural network. A wealth of recent discoveries shows that cell adhesion molecules interact with attractant and repellent guidance receptors to control growth cone and cell motility in a coordinate fashion. We focus on the best-studied subclasses, the neural cell adhesion molecule NCAM and the L1 family of adhesion molecules, which share important structural and functional features. We have chosen these paradigmatic molecules and their interactions with other recognition molecules as instructive for elucidating the mechanisms by which other recognition molecules may guide cell interactions during development or modify their function as a result of injury, learning and memory.
Collapse
Affiliation(s)
- Patricia F Maness
- Department of Biochemistry and Biophysics and Neuroscience Research Center, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599-7260, USA.
| | | |
Collapse
|
31
|
Vohra BP, Tsuji K, Nagashimada M, Uesaka T, Wind D, Armon J, Enomoto H, Heuckeroth RO. Differential gene expression and functional analysis implicate novel mechanisms in enteric nervous system precursor migration and neuritogenesis. Dev Biol 2006; 298:259-71. [PMID: 16904662 PMCID: PMC1952185 DOI: 10.1016/j.ydbio.2006.06.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 05/17/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
Enteric nervous system (ENS) development requires complex interactions between migrating neural-crest-derived cells and the intestinal microenvironment. Although some molecules influencing ENS development are known, many aspects remain poorly understood. To identify additional molecules critical for ENS development, we used DNA microarray, quantitative real-time PCR and in situ hybridization to compare gene expression in E14 and P0 aganglionic or wild type mouse intestine. Eighty-three genes were identified with at least two-fold higher expression in wild type than aganglionic bowel. ENS expression was verified for 39 of 42 selected genes by in situ hybridization. Additionally, nine identified genes had higher levels in aganglionic bowel than in WT animals suggesting that intestinal innervation may influence gene expression in adjacent cells. Strikingly, many synaptic function genes were expressed at E14, a time when the ENS is not needed for survival. To test for developmental roles for these genes, we used pharmacologic inhibitors of Snap25 or vesicle-associated membrane protein (VAMP)/synaptobrevin and found reduced neural-crest-derived cell migration and decreased neurite extension from ENS precursors. These results provide an extensive set of ENS biomarkers, demonstrate a role for SNARE proteins in ENS development and highlight additional candidate genes that could modify Hirschsprung's disease penetrance.
Collapse
Affiliation(s)
- Bhupinder P.S. Vohra
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| | - Keiji Tsuji
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mayumi Nagashimada
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiro Uesaka
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Daniel Wind
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| | - Jennifer Armon
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| | - Hideki Enomoto
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Robert O. Heuckeroth
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| |
Collapse
|
32
|
Weinhold B, Seidenfaden R, Röckle I, Mühlenhoff M, Schertzinger F, Conzelmann S, Marth JD, Gerardy-Schahn R, Hildebrandt H. Genetic Ablation of Polysialic Acid Causes Severe Neurodevelopmental Defects Rescued by Deletion of the Neural Cell Adhesion Molecule. J Biol Chem 2005; 280:42971-7. [PMID: 16267048 DOI: 10.1074/jbc.m511097200] [Citation(s) in RCA: 229] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly-alpha2,8-sialic acid (polySia) is a unique modification of the neural cell adhesion molecule, NCAM, tightly associated with neural development and plasticity. However, the vital role attributed to this carbohydrate polymer has been challenged by the mild phenotype of mice lacking polySia due to NCAM-deficiency. To dissect polySia and NCAM functions, we generated polySia-negative but NCAM-positive mice by simultaneous deletion of the two polysialyltransferase genes, St8sia-II and St8sia-IV. Beyond features shared with NCAM-null animals, a severe phenotype with specific brain wiring defects, progressive hydrocephalus, postnatal growth retardation, and precocious death was observed. These drastic defects were selectively rescued by additional deletion of NCAM, demonstrating that they originate from a gain of NCAM functions because of polySia deficiency. The data presented in this study reveal that the essential role of polySia resides in the control and coordination of NCAM interactions during mouse brain development. Moreover, this first demonstration in vivo that a highly specific glycan structure is more important than the glycoconjugate as a whole provides a novel view on the relevance of protein glycosylation for the complex process of building the vertebrate brain.
Collapse
Affiliation(s)
- Birgit Weinhold
- Zelluläre Chemie, Zentrum Biochemie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jaworski DM, Boone J, Caterina J, Soloway P, Falls WA. Prepulse inhibition and fear-potentiated startle are altered in tissue inhibitor of metalloproteinase-2 (TIMP-2) knockout mice. Brain Res 2005; 1051:81-9. [PMID: 15979591 DOI: 10.1016/j.brainres.2005.05.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 05/23/2005] [Accepted: 05/27/2005] [Indexed: 11/22/2022]
Abstract
The ability to discriminate between potential dangers and recall those stimuli is essential for survival. This emotional learning requires the involvement of higher brain structures, including the amygdala, hippocampus and related cortical structures. Long-term changes in synaptic transmission and structure are important for the establishment and consolidation of fear memory. The structural changes associated with this synaptic plasticity likely require alterations in the composition of the extracellular matrix (ECM). ECM integrity is maintained by the opposing action of matrix metalloproteinases (MMPs) and their specific inhibitors, tissue inhibitors of metalloproteinases (TIMPs). To date, no studies have examined the role of MMPs or TIMPs in conditioned fear. Here, we show that neither male nor female mice deficient in TIMP-2 (knockout) exhibit prepulse inhibition of the startle reflex, suggesting deficits in pre-attentional sensorimotor gating. In addition, knockout mice and mice expressing a mutant truncated TIMP-2 (knock-down) show deficits in fear-potentiated startle. This is the first report of a phenotype for the TIMP-2(-/-) mice and suggests that TIMP-2 may play a role in the synaptic plasticity underlying learning and memory.
Collapse
Affiliation(s)
- Diane M Jaworski
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, 149 Beaumont Avenue, HSRF 418, Burlington, VT 05405, USA.
| | | | | | | | | |
Collapse
|
34
|
Kubasak MD, Hedlund E, Roy RR, Carpenter EM, Edgerton VR, Phelps PE. L1 CAM expression is increased surrounding the lesion site in rats with complete spinal cord transection as neonates. Exp Neurol 2005; 194:363-75. [PMID: 16022864 DOI: 10.1016/j.expneurol.2005.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 02/14/2005] [Accepted: 02/17/2005] [Indexed: 11/24/2022]
Abstract
L1 is a cell adhesion molecule associated with axonal outgrowth, fasciculation, and guidance during development and injury. In this study, we examined the long-term effects of spinal cord injury with and without exercise on the re-expression of L1 throughout the rat spinal cord. Spinal cords from control rats were compared to those from rats receiving complete mid-thoracic spinal cord transections at postnatal day 5, daily treadmill step training for up to 8 weeks, or both transection and step training. Three months after spinal cord transection, we observed substantially higher levels of L1 expression by both Western blot analysis and immunocytochemistry in rats with and without step training. Higher expression levels of L1 were seen in the dorsal gray matter and in the dorsal lateral funiculus both above and below the lesion site. In addition, L1 was re-expressed on the descending fibers of the corticospinal tract above the lesion. L1-labeled axons also expressed GAP-43, a protein associated with axon outgrowth and regeneration. Treadmill step training had no effect on L1 expression in either control or transected rats despite the fact that spinal transected rats displayed improved stepping patterns indicative of spinal learning. Thus, spinal cord transection at an early age induced substantial L1 expression on axons near the lesion site, but was not additionally augmented by exercise.
Collapse
Affiliation(s)
- M D Kubasak
- Department of Physiological Science, UCLA, Los Angeles, CA 90095-1606, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The crossing of nerve tracts from one hemisphere in the brain to the contralateral sense organ or limb is a common pattern throughout the CNS, which occurs at specialised bridging points called decussations or commissures. Evolutionary and teleological arguments suggest that midline crossing emerged in response to distinct physiological and anatomical constraints. Several genetic and developmental disorders involve crossing defects or mirror movements, including Kallmann's and Klippel-Feil syndrome, and further defects can also result from injury. Crossed pathways are also involved in recovery after CNS lesions and may allow for compensation for damaged areas. The development of decussation is under the control of a host of signalling molecules. Growing understanding of the molecular processes underlying the formation of these structures offers hope for new diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Serge Vulliemoz
- Neurology Department, Geneva University Hospital, Geneva, Switzerland
| | | | | |
Collapse
|
36
|
Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD. Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo. Neuron 2005; 45:207-21. [PMID: 15664173 DOI: 10.1016/j.neuron.2004.12.036] [Citation(s) in RCA: 879] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 09/08/2004] [Accepted: 12/15/2004] [Indexed: 11/29/2022]
Abstract
Within the vertebrate nervous system, the presence of many different lineages of neurons and glia complicates the molecular characterization of single neuronal populations. In order to elucidate molecular mechanisms underlying the specification and development of corticospinal motor neurons (CSMN), we purified CSMN at distinct stages of development in vivo and compared their gene expression to two other pure populations of cortical projection neurons: callosal projection neurons and corticotectal projection neurons. We found genes that are potentially instructive for CSMN development, as well as genes that are excluded from CSMN and are restricted to other populations of neurons, even within the same cortical layer. Loss-of-function experiments in null mutant mice for Ctip2 (also known as Bcl11b), one of the newly characterized genes, demonstrate that it plays a critical role in the development of CSMN axonal projections to the spinal cord in vivo, confirming that we identified central genetic determinants of the CSMN population.
Collapse
Affiliation(s)
- Paola Arlotta
- MGH-HMS Center for Nervous System Repair, Departments of Neurosurgery and Neurology, Program in Neuroscience and Harvard Stem Cell Institute, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
37
|
Molin DGM, Poelmann RE, DeRuiter MC, Azhar M, Doetschman T, Gittenberger-de Groot AC. Transforming Growth Factor β–SMAD2 Signaling Regulates Aortic Arch Innervation and Development. Circ Res 2004; 95:1109-17. [PMID: 15528466 DOI: 10.1161/01.res.0000150047.16909.ab] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aortic arch interruptions in humans and animal models are mainly caused by aberrant development of the fourth pharyngeal arch artery. Little is known about the maturation of this vessel during normal and abnormal development, which is the subject of this study. Tgfbeta2 knockout mice that present with fourth artery defects have been associated with defective neural crest cell migration. In this study, we concentrated on pharyngeal arch artery development during developmental days 12.5 to 18.5, focusing on neural crest cell migration using a Wnt1-Cre by R26R neural crest cell reporter mouse. Fourth arch artery maturation was studied with antibodies directed against smooth muscle alpha-actin and neural NCAM-1 and RMO-270. For diminished transforming growth factor beta (TGF-beta) signaling, SMAD2 and fibronectin have been analyzed. Neural crest migration and differentiation into smooth muscle cells is unaltered in mutants, regardless of the cardiovascular defect found; however, innervation of the fourth arch artery is affected. Absent staining for nuclear SMAD2, NCAM-1, and RMO-270 in the fourth artery in mutant coincides with severe defects of this segment. Likewise, fibronectin expression is diminished in these cases. From these data we conclude the following: (1) neural crest cell migration is not a common denominator in cardiovascular defects of Tgfbeta2-/- mice; (2) fourth arch artery maturation is a complex process involving innervation; and (3) TGF-beta2 depletion diminishes SMAD2-signaling in the fourth arch artery and coincides with reduced vascular NCAM-1 expression and neural innervation of this artery. We hypothesize that disturbed maturation of the fourth pharyngeal arch artery, and especially abrogated vascular innervation, will result in fourth arch interruptions.
Collapse
MESH Headings
- Abnormalities, Multiple/embryology
- Abnormalities, Multiple/genetics
- Animals
- Aorta, Thoracic/abnormalities
- Aorta, Thoracic/embryology
- Aorta, Thoracic/innervation
- Biomarkers
- CD56 Antigen/biosynthesis
- Cell Differentiation
- Cell Lineage
- Cell Movement
- DNA-Binding Proteins/physiology
- Double Outlet Right Ventricle/embryology
- Double Outlet Right Ventricle/genetics
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neural Crest/cytology
- Neurons, Afferent/cytology
- Signal Transduction
- Smad2 Protein
- Subclavian Artery/abnormalities
- Subclavian Artery/embryology
- Trans-Activators/physiology
- Transforming Growth Factor beta/deficiency
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/physiology
- Transforming Growth Factor beta2
Collapse
Affiliation(s)
- Daniel G M Molin
- Department of Anatomy and Embryology, Leiden University Medical Center, PO Box 9602, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Davis TH, Chen C, Isom LL. Sodium channel beta1 subunits promote neurite outgrowth in cerebellar granule neurons. J Biol Chem 2004; 279:51424-32. [PMID: 15452131 DOI: 10.1074/jbc.m410830200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many immunoglobulin superfamily members are integral in development through regulation of processes such as growth cone guidance, cell migration, and neurite outgrowth. We demonstrate that homophilic interactions between voltage-gated sodium channel beta1 subunits promote neurite extension in cerebellar granule neurons. Neurons isolated from wild-type or beta1(-/-) mice were plated on top of parental, mock-, or beta1-transfected fibroblasts. Wild-type neurons consistently showed increased neurite length when grown on beta1-transfected monolayers, whereas beta1(-/-) neurons showed no increase compared with control conditions. beta1-mediated neurite extension was mimicked using a soluble beta1 extracellular domain and was blocked by antibodies directed against the beta1 extracellular domain. Immunohistochemical analysis suggests that the beta1 and beta4 subunits, but not beta2 and beta3, are expressed in cerebellar Bergmann glia as well as granule neurons. These results suggest a novel role for beta1 during neuronal development and are the first demonstration of a functional role for sodium channel beta subunit-mediated cell adhesive interactions.
Collapse
Affiliation(s)
- Tigwa H Davis
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-0632, USA
| | | | | |
Collapse
|
39
|
Schellinck HM, Arnold A, Rafuse VF. Neural cell adhesion molecule (NCAM) null mice do not show a deficit in odour discrimination learning. Behav Brain Res 2004; 152:327-34. [PMID: 15196800 DOI: 10.1016/j.bbr.2003.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 10/08/2003] [Accepted: 10/10/2003] [Indexed: 10/26/2022]
Abstract
Polysialylated neural cell adhesion molecule (PSA-NCAM) is predominantly expressed during development where it regulates biological functions including axon targeting and neuronal precursor cell migration. Although dramatically down regulated after birth in most regions of the nervous system, PSA-NCAM remains highly expressed into adulthood in areas that have ongoing regeneration and plasticity such as in the olfactory bulb and hippocampus. Consequently, lack of PSA-NCAM in NCAM null mice results in distinct morphological changes to these areas. The functional correlates of these changes are not well defined although there have been reports that learning is impaired in NCAM null mice. In the present study, we assessed the ability of old and young NCAM null mice to learn an odour discrimination task. We tested male and female experimental and control animals of two different ages: 30-60 days and 12-15 months. During 4 days of training, NCAM null and C57BL/6J received trials where one odour (CS+) was paired with sugar while another odour (CS-) was not. In a subsequent preference test, conducted in the absence of sugar, all animals, regardless of strain or age, spent significantly more time digging in the CS+ odour than in the CS- odour. In addition, there was no significant difference in digging behaviour in the CS+ between the NCAM null and the control animals. These data indicate that deletion of the NCAM gene may change the morphology of the olfactory bulb but does not interfere with the ability to learn an odour discrimination task.
Collapse
Affiliation(s)
- Heather M Schellinck
- Department of Psychology, Life Sciences Centre, Dalhousie University, Halifax, NS, Canada B3H 4J1.
| | | | | |
Collapse
|