1
|
Weiner SP, Vasquez C, Song S, Zhao K, Ali O, Rosenkilde D, Froemke RC, Carr KD. Sex difference in the effect of environmental enrichment on food restriction-induced persistence of cocaine conditioned place preference and mechanistic underpinnings. ADDICTION NEUROSCIENCE 2024; 10:100142. [PMID: 38323217 PMCID: PMC10843874 DOI: 10.1016/j.addicn.2024.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Psychosocial and environmental factors, including loss of natural reward, contribute to the risk of drug abuse. Reward loss has been modeled in animals by removal from social or sexual contact, transfer from enriched to impoverished housing, or restriction of food. We previously showed that food restriction increases the unconditioned rewarding effects of abused drugs and the conditioned incentive effects of drug-paired environments. Mechanistic studies provided evidence of decreased basal dopamine (DA) transmission, adaptive upregulation of signaling downstream of D1 DA receptor stimulation, synaptic upscaling and incorporation of calcium-permeable AMPA receptors (CP-AMPARs) in medium spiny neurons (MSNs) of nucleus accumbens (NAc). These findings align with the still evolving 'reward deficiency' hypothesis of drug abuse. The present study tested whether a compound natural reward that is known to increase DA utilization, environmental enrichment, would prevent the persistent expression of cocaine conditioned place preference (CPP) otherwise observed in food restricted rats, along with the mechanistic underpinnings. Because nearly all prior investigations of both food restriction and environmental enrichment effects on cocaine CPP were conducted in male rodents, both sexes were included in the present study. Results indicate that environmental enrichment curtailed the persistence of CPP expression, decreased signaling downstream of the D1R, and decreased the amplitude and frequency of spontaneous excitatory postsynaptic currents (EPSCs) in NAc MSNs of food restricted male, but not female, rats. The failure of environmental enrichment to significantly decrease food restriction-induced synaptic insertion of CP-AMPARs, and how this may accord with previous pharmacological findings that blockade of CP-AMPARs reverses behavioral effects of food restriction is discussed. In addition, it is speculated that estrous cycle-dependent fluctuations in DA release, receptor density and MSN excitability may obscure the effect of increased DA signaling during environmental enrichment, thereby interfering with development of the cellular and behavioral effects that enrichment produced in males.
Collapse
Affiliation(s)
- Sydney P. Weiner
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Carolina Vasquez
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Diabetes Research Program, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Soomin Song
- Department of Pathology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Kaiyang Zhao
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Omar Ali
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Danielle Rosenkilde
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Robert C. Froemke
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Otolaryngology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Kenneth D. Carr
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| |
Collapse
|
2
|
Richardson BJ, Hamilton J, Roeder N, Thanos KZ, Marion M, Thanos PK. Fatty acid-binding protein 5 differentially impacts dopamine signaling independent of sex and environment. ADDICTION NEUROSCIENCE 2023; 8:100118. [PMID: 37664218 PMCID: PMC10470066 DOI: 10.1016/j.addicn.2023.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Epidermal/brain fatty acid-binding protein 5 (FABP5) plays an integral role in the intracellular trafficking of bioactive lipids/endocannabinoids and the subsequent initiation of cellular cascades affecting cannabinoid and dopamine (DA) systems. Social isolation (SI) and environmental enrichment (EE) during adolescence have been shown to impact DA signaling, and, specifically, DA transporter (DAT) and receptor levels of DA type 1 (D1) and 2 (D2); however, the relationship between FABP5, environment and DA signaling remains unclear. The present study quantified DAT and DA receptor levels in male/female FABP5-/- and FABP5+/+ mice raised in either SI or EE. Results showed that FABP5-/- mice had 6.09-8.81% greater D1 levels in striatal sub-regions of the caudal brain, independent of sex or environment. D1 levels were 8.03% greater only in the olfactory tubercle of enrichment-reared animals. In summary, these results supported that FABP5 plays an important function in regulating striatal DA signaling, and this may have important implications as a target with therapeutic potential for various psychiatric disorders.
Collapse
Affiliation(s)
- Brittany J. Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Nicole Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Kyriaki Z. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA
| | - Matthew Marion
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
3
|
Luo Q, Zheng J, Fan B, Liu J, Liao W, Zhang X. Enriched environment attenuates ferroptosis after cerebral ischemia/reperfusion injury by regulating iron metabolism. Brain Res Bull 2023; 203:110778. [PMID: 37812906 DOI: 10.1016/j.brainresbull.2023.110778] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Preventing neuronal death after ischemic stroke (IS) is crucial for neuroprotective treatment, yet current management options are limited. Enriched environment (EE) is an effective intervention strategy that promotes the recovery of neurological function after cerebral ischemia/reperfusion (I/R) injury. Ferroptosis has been identified as one of the mechanisms of neuronal death during IS, and inhibiting ferroptosis can reduce cerebral I/R injury. Our previous research has demonstrated that EE reduced ferroptosis by inhibiting lipid peroxidation, but the underlying mechanism still needs to be investigated. This study aims to explore the potential molecular mechanisms by which EE modulates iron metabolism to reduce ferroptosis. The experimental animals were randomly divided into four groups based on the housing environment and the procedure the animals received: the sham-operated + standard environment (SSE) group, the sham-operated + enriched environment (SEE) group, the ischemia/reperfusion + standard environment (ISE) group, and the ischemia/reperfusion + enriched environment (IEE) group. The results showed that EE reduced IL-6 expression during cerebral I/R injury, hence reducing JAK2-STAT3 pathway activation and hepcidin expression. Reduced hepcidin expression led to decreased DMT1 expression and increased FPN1 expression in neurons, resulting in lower neuronal iron levels and alleviated ferroptosis. In addition, EE also reduced the expression of TfR1 in neurons. Our research suggested that EE played a neuroprotective role by modulating iron metabolism and reducing neuronal ferroptosis after cerebral I/R injury, which might be achieved by inhibiting inflammatory response and down-regulating hepcidin expression.
Collapse
Affiliation(s)
- Qihang Luo
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Zheng
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bin Fan
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingying Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Weijing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xin Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Teil M, Dovero S, Bourdenx M, Arotcarena ML, Darricau M, Porras G, Thiolat ML, Trigo-Damas I, Perier C, Estrada C, Garcia-Carrillo N, Herrero MT, Vila M, Obeso JA, Bezard E, Dehay B. Cortical Lewy body injections induce long-distance pathogenic alterations in the non-human primate brain. NPJ Parkinsons Dis 2023; 9:135. [PMID: 37726343 PMCID: PMC10509171 DOI: 10.1038/s41531-023-00579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Aggregation of α-synuclein (α-syn) is the cornerstone of neurodegenerative diseases termed synucleinopathies, which include Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB), and Multiple System Atrophy (MSA). These synucleinopathies are characterized by the deposit of aggregated α-syn in intracellular inclusions observable in neurons and glial cells. In PD and DLB, these aggregates, predominantly located in neurons, are called Lewy Bodies (LBs). These LBs are one of the pathological hallmarks of PD and DLB, alongside dopaminergic neuron loss in the substantia nigra. Previous studies have demonstrated the ability of PD patient-derived LB fractions to induce nigrostriatal neurodegeneration and α-syn pathology when injected into the striatum or the enteric nervous system of non-human primates. Here, we report the pathological consequences of injecting these LB fractions into the cortex of non-human primates. To this end, we inoculated mesencephalic PD patient-derived LB fractions into the prefrontal cortex of baboon monkeys terminated one year later. Extensive analyses were performed to evaluate pathological markers known to be affected in LB pathologies. We first assessed the hypothesized presence of phosphorylated α-syn at S129 (pSyn) in the prefrontal cortices. Second, we quantified the neuronal, microglial, and astrocytic cell survival in the same cortices. Third, we characterized these cortical LB injections' putative impact on the integrity of the nigrostriatal system. Overall, we observed pSyn accumulation around the injection site in the dorsal prefrontal cortex, in connected cortical regions, and further towards the striatum, suggesting α-syn pathological propagation. The pathology was also accompanied by neuronal loss in these prefrontal cortical regions and the caudate nucleus, without, however, loss of nigral dopamine neurons. In conclusion, this pilot study provides novel data demonstrating the toxicity of patient-derived extracts, their potential to propagate from the cortex to the striatum in non-human primates, and a possible primate model of DLB.
Collapse
Affiliation(s)
- Margaux Teil
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Sandra Dovero
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Mathieu Bourdenx
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | | | | | - Gregory Porras
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | | | - Inés Trigo-Damas
- HM CINAC, HM Puerta del Sur, Fundación HM Hospitales and CIBERNED and CEU-San Pablo University Madrid, E-28938, Mostoles, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Celine Perier
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Cristina Estrada
- Clinical and Experimental Neuroscience Unit, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
- Institute of Research on Aging (IUIE), School of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Nuria Garcia-Carrillo
- Centro Experimental en Investigaciones Biomédica (CEIB), Universidad de Murcia, Murcia, Spain
| | - María Trinidad Herrero
- Clinical and Experimental Neuroscience Unit, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
- Institute of Research on Aging (IUIE), School of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Miquel Vila
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - José A Obeso
- HM CINAC, HM Puerta del Sur, Fundación HM Hospitales and CIBERNED and CEU-San Pablo University Madrid, E-28938, Mostoles, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- CEU, San Pablo University Madrid, E-28938 Mostoles, Spain 2 HM CINAC, HM Puerta del Sur and CIBERNED and CEU-San Pablo University Madrid, E-, 28938, Mostoles, Spain
| | - Erwan Bezard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Benjamin Dehay
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France.
| |
Collapse
|
5
|
Farmer AL, Lewis MH. Reduction of restricted repetitive behavior by environmental enrichment: Potential neurobiological mechanisms. Neurosci Biobehav Rev 2023; 152:105291. [PMID: 37353046 DOI: 10.1016/j.neubiorev.2023.105291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Restricted repetitive behaviors (RRB) are one of two diagnostic criteria for autism spectrum disorder and common in other neurodevelopmental and psychiatric disorders. The term restricted repetitive behavior refers to a wide variety of inflexible patterns of behavior including stereotypy, self-injury, restricted interests, insistence on sameness, and ritualistic and compulsive behavior. However, despite their prevalence in clinical populations, their underlying causes remain poorly understood hampering the development of effective treatments. Intriguingly, numerous animal studies have demonstrated that these behaviors are reduced by rearing in enriched environments (EE). Understanding the processes responsible for the attenuation of repetitive behaviors by EE should offer insights into potential therapeutic approaches, as well as shed light on the underlying neurobiology of repetitive behaviors. This review summarizes the current knowledge of the relationship between EE and RRB and discusses potential mechanisms for EE's attenuation of RRB based on the broader EE literature. Existing gaps in the literature and future directions are also discussed.
Collapse
Affiliation(s)
- Anna L Farmer
- Department of Psychology, University of Florida, Gainesville, FL, USA.
| | - Mark H Lewis
- Department of Psychology, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Li Y, Shi DD, Wang Z. Adolescent nonpharmacological interventions for early-life stress and their mechanisms. Behav Brain Res 2023; 452:114580. [PMID: 37453516 DOI: 10.1016/j.bbr.2023.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Those with a negative experience of psychosocial stress during the early stage of life not only have a high susceptibility of the psychiatric disorder in all phases of their life span, but they also demonstrate more severe symptoms and poorer response to treatment compared to those without a history of early-life stress. The interventions targeted to early-life stress may improve the effectiveness of treating and preventing psychiatric disorders. Brain regions associated with mood and cognition develop rapidly and own heightened plasticity during adolescence. So, manipulating nonpharmacological interventions in fewer side effects and higher acceptance during adolescence, which is a probable window of opportunity, may ameliorate or even reverse the constantly deteriorating impact of early-life stress. The present article reviews animal and people studies about adolescent nonpharmacological interventions for early-life stress. We aim to discuss whether those adolescent nonpharmacological interventions can promote individuals' psychological health who expose to early-life stress.
Collapse
Affiliation(s)
- Yi Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Grigoryan GA. The systemic effects of the enriched environment on the conditioned fear reaction. Front Behav Neurosci 2023; 17:1227575. [PMID: 37674611 PMCID: PMC10477375 DOI: 10.3389/fnbeh.2023.1227575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
In this review, a hypothesis is proposed to explain the beneficial effect of an enriched environment (EE) on the conditioned fear reaction (CFR) from the perspective of a functional system of behavioral control. According to the hypothesis, the EE affects all behavioral act components, including the processing of sensory information, memory, motivational and reinforcing systems, and motor activities, which weakens the CFR. Animals raised in the EE have effects that are comparable to those of context (CTX) and CS pre-exposures at latent inhibition. An abundance of stimuli in the EE and constant contact with them provide the formation of CS-noUS and CTX-noUS connections that later, during CFR learning, slow down and diminish fear. The EE also contributes to faster processing of information and habituation to it. As a result, many stimuli in the context lose their significance, and subjects simply ignore them. And finally, the EE affects the motivational and reinforcing brain mechanisms, induces an impairment of search activity, and worsens memory consolidation, which leads to a reduction of CFR.
Collapse
Affiliation(s)
- Grigory A. Grigoryan
- The Laboratory of Conditioned Reflexes and Physiology of Emotions, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Alarcón TA, Presti-Silva SM, Simões APT, Ribeiro FM, Pires RGW. Molecular mechanisms underlying the neuroprotection of environmental enrichment in Parkinson's disease. Neural Regen Res 2023; 18:1450-1456. [PMID: 36571341 PMCID: PMC10075132 DOI: 10.4103/1673-5374.360264] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Parkinson's disease is the most common movement disorder, affecting about 1% of the population over the age of 60 years. Parkinson's disease is characterized clinically by resting tremor, bradykinesia, rigidity and postural instability, as a result of the progressive loss of nigrostriatal dopaminergic neurons. In addition to this neuronal cell loss, Parkinson's disease is characterized by the accumulation of intracellular protein aggregates, Lewy bodies and Lewy neurites, composed primarily of the protein α-synuclein. Although it was first described almost 200 years ago, there are no disease-modifying drugs to treat patients with Parkinson's disease. In addition to conventional therapies, non-pharmacological treatment strategies are under investigation in patients and animal models of neurodegenerative disorders. Among such strategies, environmental enrichment, comprising physical exercise, cognitive stimulus, and social interactions, has been assessed in preclinical models of Parkinson's disease. Environmental enrichment can cause structural and functional changes in the brain and promote neurogenesis and dendritic growth by modifying gene expression, enhancing the expression of neurotrophic factors and modulating neurotransmission. In this review article, we focus on the current knowledge about the molecular mechanisms underlying environmental enrichment neuroprotection in Parkinson's disease, highlighting its influence on the dopaminergic, cholinergic, glutamatergic and GABAergic systems, as well as the involvement of neurotrophic factors. We describe experimental pre-clinical data showing how environmental enrichment can act as a modulator in a neurochemical and behavioral context in different animal models of Parkinson's disease, highlighting the potential of environmental enrichment as an additional strategy in the management and prevention of this complex disease.
Collapse
Affiliation(s)
- Tamara Andrea Alarcón
- Department of Physiological Sciences; Laboratory of Molecular and Behavioral Neurobiology, Health Science Center, Universidade Federal do Espirito Santo, Vitoria, Brazil
| | - Sarah Martins Presti-Silva
- Laboratory of Molecular and Behavioral Neurobiology, Health Science Center, Universidade Federal do Espirito Santo, Vitoria; Department of Biochemistry and Immunology, Institute o Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, Brazil
| | - Ana Paula Toniato Simões
- Department of Physiological Sciences; Laboratory of Molecular and Behavioral Neurobiology, Health Science Center, Universidade Federal do Espirito Santo, Vitoria, Brazil
| | - Fabiola Mara Ribeiro
- Department of Biochemistry and Immunology, Institute o Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, Brazil
| | - Rita Gomes Wanderley Pires
- Department of Physiological Sciences; Laboratory of Molecular and Behavioral Neurobiology, Health Science Center, Universidade Federal do Espirito Santo, Vitoria, Brazil
| |
Collapse
|
9
|
Vaquero-Rodríguez A, Razquin J, Zubelzu M, Bidgood R, Bengoetxea H, Miguelez C, Morera-Herreras T, Ruiz-Ortega JA, Lafuente JV, Ortuzar N. Efficacy of invasive and non-invasive methods for the treatment of Parkinson's disease: Nanodelivery and enriched environment. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:103-143. [PMID: 37833010 DOI: 10.1016/bs.irn.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder characterised by the loss of dopaminergic neurons in the substantia nigra pars compacta and the subsequent motor disability. The most frequently used treatments in clinics, such as L-DOPA, restore dopaminergic neurotransmission in the brain. However, these treatments are only symptomatic, have temporary efficacy, and produce side effects. Part of the side effects are related to the route of administration as the consumption of oral tablets leads to unspecific pulsatile activation of dopaminergic receptors. For this reason, it is necessary to not only find alternative treatments, but also to develop new administration systems with better security profiles. Nanoparticle delivery systems are new administration forms designed to reach the pharmacological target in a highly specific way, leading to better drug bioavailability, efficacy and safety. Some of these delivery systems have shown promising results in animal models of PD not only when dopaminergic drugs are administered, but even more when neurotrophic factors are released. These latter compounds promote maturation and survival of dopaminergic neurons and can be exogenously administered in the form of pharmacological therapy or endogenously generated by non-pharmacological methods. In this sense, experimental exposure to enriched environments, a non-invasive strategy based on the combination of social and inanimate stimuli, enhances the production of neurotrophic factors and produces a neuroprotective effect in parkinsonian animals. In this review, we will discuss new nanodelivery systems in PD with a special focus on therapies that increase the release of neurotrophic factors.
Collapse
Affiliation(s)
- Andrea Vaquero-Rodríguez
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Jone Razquin
- Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maider Zubelzu
- Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Raphaelle Bidgood
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Harkaitz Bengoetxea
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Cristina Miguelez
- Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Teresa Morera-Herreras
- Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jose Angel Ruiz-Ortega
- Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria, Spain
| | - José Vicente Lafuente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Naiara Ortuzar
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain.
| |
Collapse
|
10
|
Effects of lifespan-extending interventions on cognitive healthspan. Expert Rev Mol Med 2022; 25:e2. [PMID: 36377361 DOI: 10.1017/erm.2022.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ageing is known to be the primary risk factor for most neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Huntington's disease. They are currently incurable and worsen over time, which has broad implications in the context of lifespan and healthspan extension. Adding years to life and even to physical health is suboptimal or even insufficient, if cognitive ageing is not adequately improved. In this review, we will examine how interventions that have the potential to extend lifespan in animals affect the brain, and if they would be able to thwart or delay the development of cognitive dysfunction and/or neurodegeneration. These interventions range from lifestyle (caloric restriction, physical exercise and environmental enrichment) through pharmacological (nicotinamide adenine dinucleotide precursors, resveratrol, rapamycin, metformin, spermidine and senolytics) to epigenetic reprogramming. We argue that while many of these interventions have clear potential to improve cognitive health and resilience, large-scale and long-term randomised controlled trials are needed, along with studies utilising washout periods to determine the effects of supplementation cessation, particularly in aged individuals.
Collapse
|
11
|
Mieske P, Hobbiesiefken U, Fischer-Tenhagen C, Heinl C, Hohlbaum K, Kahnau P, Meier J, Wilzopolski J, Butzke D, Rudeck J, Lewejohann L, Diederich K. Bored at home?—A systematic review on the effect of environmental enrichment on the welfare of laboratory rats and mice. Front Vet Sci 2022; 9:899219. [PMID: 36061113 PMCID: PMC9435384 DOI: 10.3389/fvets.2022.899219] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Boredom is an emotional state that occurs when an individual has nothing to do, is not interested in the surrounding, and feels dreary and in a monotony. While this condition is usually defined for humans, it may very well describe the lives of many laboratory animals housed in small, barren cages. To make the cages less monotonous, environmental enrichment is often proposed. Although housing in a stimulating environment is still used predominantly as a luxury good and for treatment in preclinical research, enrichment is increasingly recognized to improve animal welfare. To gain insight into how stimulating environments influence the welfare of laboratory rodents, we conducted a systematic review of studies that analyzed the effect of enriched environment on behavioral parameters of animal well–being. Remarkably, a considerable number of these parameters can be associated with symptoms of boredom. Our findings show that a stimulating living environment is essential for the development of natural behavior and animal welfare of laboratory rats and mice alike, regardless of age and sex. Conversely, confinement and under-stimulation has potentially detrimental effects on the mental and physical health of laboratory rodents. We show that boredom in experimental animals is measurable and does not have to be accepted as inevitable.
Collapse
Affiliation(s)
- Paul Mieske
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Ute Hobbiesiefken
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Carola Fischer-Tenhagen
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Céline Heinl
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katharina Hohlbaum
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Pia Kahnau
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jennifer Meier
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jenny Wilzopolski
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Daniel Butzke
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Juliane Rudeck
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Lars Lewejohann
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Kai Diederich
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- *Correspondence: Kai Diederich
| |
Collapse
|
12
|
Becker G, Lespine LF, Bahri MA, Serrano ME, Lemaire C, Luxen A, Tirelli E, Plenevaux A. Exercise against cocaine sensitization in mice: a [18F]fallypride micro-PET study. Brain Commun 2022; 4:fcab294. [PMID: 35169698 PMCID: PMC8833578 DOI: 10.1093/braincomms/fcab294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/18/2021] [Accepted: 12/12/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Wheel-running exercise in laboratory rodents (animal model useful to study the neurobiology of aerobic exercise) decreases behavioural markers of vulnerability to addictive properties of various drugs of abuse including cocaine. However, neurobiological mechanisms underpinning this protective effect are far from fully characterized. Here, 28-day-old female C57BL/6J mice were housed with (n = 48) or without (n = 48) a running wheel for 6 weeks before being tested for acute locomotor responsiveness and initiation of locomotor sensitization to intraperitoneal injections of 8 mg/kg cocaine. The long-term expression of sensitization took place 3 weeks after the last session. On the day after, all mice underwent a micro-PET imaging session with [18F]fallypride radiotracer (dopamine 2/3 receptors antagonist). Exercised mice were less sensitive to acute and sensitized cocaine hyperlocomotor effects, such attenuation being particularly well marked for long-term expression of sensitization (η2P = 0.262). Chronic administration of cocaine was associated with a clear-cut increase of [18F]fallypride binding potential in mouse striatum (η2P = 0.170) while wheel-running exercise was associated with a moderate decrease in dopamine 2/3 receptors density in striatum (η2P = 0.075), a mechanism that might contribute to protective properties of exercise against drugs of abuse vulnerability.
Collapse
Affiliation(s)
- Guillaume Becker
- GIGA—Cyclotron Research Center—In Vivo Imaging, University of Liège, 4000 Liege, Belgium
| | - Louis-Ferdinand Lespine
- Department of Psychology, University of Liège, 4000 Liege, Belgium
- Pôle MOPHA, Pôle Est, Centre Hospitalier Le Vinatier, Bron, France
| | - Mohamed Ali Bahri
- GIGA—Cyclotron Research Center—In Vivo Imaging, University of Liège, 4000 Liege, Belgium
| | - Maria Elisa Serrano
- GIGA—Cyclotron Research Center—In Vivo Imaging, University of Liège, 4000 Liege, Belgium
| | - Christian Lemaire
- GIGA—Cyclotron Research Center—In Vivo Imaging, University of Liège, 4000 Liege, Belgium
| | - André Luxen
- GIGA—Cyclotron Research Center—In Vivo Imaging, University of Liège, 4000 Liege, Belgium
| | - Ezio Tirelli
- Department of Psychology, University of Liège, 4000 Liege, Belgium
| | - Alain Plenevaux
- GIGA—Cyclotron Research Center—In Vivo Imaging, University of Liège, 4000 Liege, Belgium
| |
Collapse
|
13
|
Gatto E, Bruzzone M, Maschio MD, Dadda M. Effects of environmental enrichment on recognition memory in zebrafish larvae. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Cutuli D, Landolfo E, Petrosini L, Gelfo F. Environmental Enrichment Effects on the Brain-Derived Neurotrophic Factor Expression in Healthy Condition, Alzheimer's Disease, and Other Neurodegenerative Disorders. J Alzheimers Dis 2021; 85:975-992. [PMID: 34897089 DOI: 10.3233/jad-215193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), a protein belonging to the neurotrophin family, is known to be heavily involved in synaptic plasticity processes that support brain development, post-lesion regeneration, and cognitive performances, such as learning and memory. Evidence indicates that BDNF expression can be epigenetically regulated by environmental stimuli and thus can mediate the experience-dependent brain plasticity. Environmental enrichment (EE), an experimental paradigm based on the exposure to complex stimulations, constitutes an efficient means to investigate the effects of high-level experience on behavior, cognitive processes, and neurobiological correlates, as the BDNF expression. In fact, BDNF exerts a key role in mediating and promoting EE-induced plastic changes and functional improvements in healthy and pathological conditions. This review is specifically aimed at providing an updated framework of the available evidence on the EE effects on brain and serum BDNF levels, by taking into account both changes in protein expression and regulation of gene expression. A further purpose of the present review is analyzing the potential of BDNF regulation in coping with neurodegenerative processes characterizing Alzheimer's disease (AD), given BDNF expression alterations are described in AD patients. Moreover, attention is also paid to EE effects on BDNF expression in other neurodegenerative disease. To investigate such a topic, evidence provided by experimental studies is considered. A deeper understanding of environmental ability in modulating BDNF expression in the brain may be fundamental in designing more tuned and effective applications of complex environmental stimulations as managing approaches to AD.
Collapse
Affiliation(s)
- Debora Cutuli
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Psychology, University Sapienza of Rome, Rome, Italy
| | | | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| |
Collapse
|
15
|
Salinas-Velarde ID, Bernal-Morales B, Pacheco-Cabrera P, Sánchez-Aparicio P, Pascual-Mathey LI, Venebra-Muñoz A. Lower ΔFosB expression in the dopaminergic system after stevia consumption in rats housed under environmental enrichment conditions. Brain Res Bull 2021; 177:172-180. [PMID: 34624462 DOI: 10.1016/j.brainresbull.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/12/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Environmental enrichment (EE) has been proven to reduce drug seeking and the development of addiction-related behaviors in rodent models, but the effects of EE on natural reward acquisition in the form of sweet beverages are poorly understood. Accumulating evidence shows that the intake of sugar, the main ingredient of sweet beverages, alters the dopaminergic system, leading to addiction-related physiological and molecular changes. Sugar in sweet beverages has been replaced with natural sweeteners, such as stevia extract, which has greater sweetener potential but no energy content. Our research group found that sucralose consumption increased the expression of ΔFosB in reward-related nuclei, suggesting activation of the dopaminergic system. The present study assessed the effects of EE on stevia consumption and the expression of ΔFosB in the nucleus accumbens, caudate putamen, and prefrontal cortex. Sixteen male Wistar rats, 21 days old, were randomly assigned to an EE group (n = 8) or standard environment (SE) group (n = 8) and reared for 30 days. On postnatal day 52 (PND52), the brains of four animals in each housing condition were extracted to determine basal ΔFosB levels. Stevia consumption with intermittent access and ΔFosB immunoreactivity were measured for 21 days in the remainder of the rats. Compared with SE animals, EE animals exhibited a reduction of stevia consumption and alterations of ΔFosB immunoreactivity in the reward system. These results indicate that EE reduces stevia consumption and the stevia-induced ΔFosB expression, suggesting addiction-related changes in dopaminergic nuclei, which may be interpreted as a neuroprotective effect.
Collapse
Affiliation(s)
- I Daniel Salinas-Velarde
- Laboratory of Neurobiology of Addiction and Brain Plasticity, Faculty of Sciences, Universidad Autónoma del Estado de México, State of Mexico, Mexico.
| | - Blandina Bernal-Morales
- Laboratory of Neuropharmacology, Institute for Neuroethology, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
| | - Pablo Pacheco-Cabrera
- Institute for Biomedical Research, Department of Cell Biology and Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico; Institute for Neuroethology, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
| | - Pedro Sánchez-Aparicio
- School of Veterinary Medicine and Zootechnics, Universidad Autónoma del Estado de México, Mexico.
| | - Luz I Pascual-Mathey
- School of Pharmaceutic Biological Chemistry, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
| | - Arturo Venebra-Muñoz
- Laboratory of Neurobiology of Addiction and Brain Plasticity, Faculty of Sciences, Universidad Autónoma del Estado de México, State of Mexico, Mexico.
| |
Collapse
|
16
|
Knorr S, Musacchio T, Paulat R, Matthies C, Endres H, Wenger N, Harms C, Ip CW. Experimental deep brain stimulation in rodent models of movement disorders. Exp Neurol 2021; 348:113926. [PMID: 34793784 DOI: 10.1016/j.expneurol.2021.113926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022]
Abstract
Deep brain stimulation (DBS) is the preferred treatment for therapy-resistant movement disorders such as dystonia and Parkinson's disease (PD), mostly in advanced disease stages. Although DBS is already in clinical use for ~30 years and has improved patients' quality of life dramatically, there is still limited understanding of the underlying mechanisms of action. Rodent models of PD and dystonia are essential tools to elucidate the mode of action of DBS on behavioral and multiscale neurobiological levels. Advances have been made in identifying DBS effects on the central motor network, neuroprotection and neuroinflammation in DBS studies of PD rodent models. The phenotypic dtsz mutant hamster and the transgenic DYT-TOR1A (ΔETorA) rat proved as valuable models of dystonia for preclinical DBS research. In addition, continuous refinements of rodent DBS technologies are ongoing and have contributed to improvement of experimental quality. We here review the currently existing literature on experimental DBS in PD and dystonia models regarding the choice of models, experimental design, neurobiological readouts, as well as methodological implications. Moreover, we provide an overview of the technical stage of existing DBS devices for use in rodent studies.
Collapse
Affiliation(s)
- Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany.
| | - Thomas Musacchio
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany.
| | - Raik Paulat
- Department of Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.
| | - Cordula Matthies
- Department of Neurosurgery, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany.
| | - Heinz Endres
- University of Applied Science Würzburg-Schweinfurt, Schweinfurt, Germany.
| | - Nikolaus Wenger
- Department of Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.
| | - Christoph Harms
- Department of Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany.
| |
Collapse
|
17
|
Smaga I, Wydra K, Suder A, Sanak M, Caffino L, Fumagalli F, Filip M. Enhancement of the GluN2B subunit of glutamatergic NMDA receptors in rat brain areas after cocaine abstinence. J Psychopharmacol 2021; 35:1226-1239. [PMID: 34587833 DOI: 10.1177/02698811211048283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cocaine use disorder is associated with compulsive drug-seeking and drug-taking, whereas relapse may be induced by several factors, including stress, drug-related places, people, and cues. Recent observations strongly support the involvement of the N-methyl-D-aspartate (NMDA) receptors in cocaine use disorders and abstinence, whereas withdrawal in different environments may affect the intensification of relapse. METHODS The aim of this study was to examine the GluN2B subunit expression and its association with the postsynaptic density protein 95 (PSD95) in several brain structures in rats with a history of cocaine self-administration and housed either in an enriched environment or in an isolated condition. Furthermore, a selective antagonist of the GluN2B subunit-CP 101,606 (10 and 20 mg/kg) administered during exposure to cocaine or a drug-associated conditional stimulus (a cue) was used to evaluate seeking behavior in rats. RESULTS In rats previously self-administering cocaine, we observed an increase in the GluN2B expression in the total homogenate from the dorsal hippocampus under both enriched environment and isolation. Cocaine abstinence under isolation conditions increased the GluN2B and GluN2B/PSD95 complex levels in the PSD fraction of the prelimbic cortex in rats previously self-administering cocaine. Administration of CP 101,606 attenuated cue-induced cocaine-seeking behavior only in isolation-housed rats. CONCLUSION In summary, in this study we showed region-specific changes in both the expression of GluN2B subunit and NMDA receptor trafficking during cocaine abstinence under different housing conditions. Furthermore, we showed that the pharmacological blockade of the GluN2B subunit may be useful in attenuating cocaine-seeking behavior.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Karolina Wydra
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Agata Suder
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
18
|
Grigoryan GA. Molecular-Cellular Mechanisms of Plastic Restructuring Produced by an Enriched Environment. Effects on Learning and Memory. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Amaral IM, Hofer A, El Rawas R. Is It Possible to Shift from Down to Top Rank? A Focus on the Mesolimbic Dopaminergic System and Cocaine Abuse. Biomedicines 2021; 9:877. [PMID: 34440081 PMCID: PMC8389638 DOI: 10.3390/biomedicines9080877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Impaired social behavior is a common feature of many psychiatric disorders, in particular with substance abuse disorders. Switching the preference of the substance-dependent individual toward social interaction activities remains one of the major challenges in drug dependence therapy. However, social interactions yield to the emergence of social ranking. In this review, we provide an overview of the studies that examined how social status can influence the dopaminergic mesolimbic system and how drug-seeking behavior is affected. Generally, social dominance is associated with an increase in dopamine D2/3 receptor binding in the striatum and a reduced behavioral response to drugs of abuse. However, it is not clear whether higher D2 receptor availability is a result of increased D2 receptor density and/or reduced dopamine release in the striatum. Here, we discuss the possibility of a potential shift from down to top rank via manipulation of the mesolimbic system. Identifying the neurobiology underlying a potential rank switch to a resilient phenotype is of particular interest in order to promote a positive coping behavior toward long-term abstinence from drugs of abuse and a protection against relapse to drugs. Such a shift may contribute to a more successful therapeutic approach to cocaine addiction.
Collapse
Affiliation(s)
- Inês M. Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University Innsbruck, 6020 Innsbruck, Austria; (A.H.); (R.E.R.)
| | | | | |
Collapse
|
20
|
Kida E, Walus M, Albertini G, Golabek AA. Long-term voluntary running modifies the levels of proteins of the excitatory/inhibitory system and reduces reactive astrogliosis in the brain of Ts65Dn mouse model for Down syndrome. Brain Res 2021; 1766:147535. [PMID: 34043998 DOI: 10.1016/j.brainres.2021.147535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 09/30/2022]
Abstract
We showed previously that voluntary long-term running improved cognition and motor skills, but in an age-dependent manner, in the Ts65Dn mouse model for Down syndrome (DS). Presently, we investigated the effect of running on the levels of some key proteins of the excitatory/inhibitory system, which is impaired in the trisomic brain, and on astroglia, a vital component of this system. Ts65Dn mice had free access to a running wheel for 9-13 months either from weaning or from the age of 7 months. Sedentary Ts65Dn mice served as controls. We found that running modified the levels of four of the seven proteins we tested that are associated with the glutamatergic/GABA-ergic system. Thus, Ts65Dn runners demonstrated increased levels of glutamine synthetase and metabotropic glutamate receptor 1 and decreased levels of glutamate transporter 1 and glutamic acid decarboxylase 65 (GAD65) versus sedentary mice, but of metabotropic glutamate receptor 1 and GAD65 only in the post-weaning cohort. GAD67, ionotropic N-methyl-D-aspartate type receptor subunit 1, and GABAAα5 receptors' levels were similar in runners and sedentary animals. The number of glial fibrillary acidic protein (GFAP)-positive astrocytes and the levels of GFAP were significantly reduced in runners relative to sedentary mice. Our study provides new insight into the mechanisms underlying the beneficial effect of voluntary, sustained running on function of the trisomic brain by identifying the involvement of proteins associated with glutamatergic and GABAergic systems and reduction in reactive astrogliosis.
Collapse
Affiliation(s)
- Elizabeth Kida
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Marius Walus
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Giorgio Albertini
- Child Development Department, IRCCS San Raffaele Pisana, Rome and San Raffaele Cassino, Italy
| | - Adam A Golabek
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| |
Collapse
|
21
|
Tucić M, Stamenković V, Andjus P. The Extracellular Matrix Glycoprotein Tenascin C and Adult Neurogenesis. Front Cell Dev Biol 2021; 9:674199. [PMID: 33996833 PMCID: PMC8117239 DOI: 10.3389/fcell.2021.674199] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Tenascin C (TnC) is a glycoprotein highly expressed in the extracellular matrix (ECM) during development and in the adult central nervous system (CNS) in regions of active neurogenesis, where neuron development is a tightly regulated process orchestrated by extracellular matrix components. In addition, newborn cells also communicate with glial cells, astrocytes and microglia, indicating the importance of signal integration in adult neurogenesis. Although TnC has been recognized as an important molecule in the regulation of cell proliferation and migration, complete regulatory pathways still need to be elucidated. In this review we discuss the formation of new neurons in the adult hippocampus and the olfactory system with specific reference to TnC and its regulating functions in this process. Better understanding of the ECM signaling in the niche of the CNS will have significant implications for regenerative therapies.
Collapse
Affiliation(s)
- Milena Tucić
- Center for Laser Microscopy, Institute for Physiology and Biochemistry "Jean Giaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vera Stamenković
- Center for Laser Microscopy, Institute for Physiology and Biochemistry "Jean Giaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Pavle Andjus
- Center for Laser Microscopy, Institute for Physiology and Biochemistry "Jean Giaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
22
|
Emerson B, Haden M. A public health based vision for the management and regulation of opioids. THE INTERNATIONAL JOURNAL OF DRUG POLICY 2021; 91:103201. [PMID: 33785246 DOI: 10.1016/j.drugpo.2021.103201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 12/01/2022]
Abstract
Prohibition of the possession of opioids for non-medical purposes and medical/pharmaceutical commercialization of opioids are important contributors to the current opioid overdose epidemic. A new model of regulation is urgently required. Within the context of a public health framework, we explore supply control, demand reduction, health promotion, and harm reduction and describe an alternative regulatory model that includes access for medical and non-medical purposes. Oversight of this proposed new system would include a control structure with an explicit public health mandate to minimize harms and maximize benefits of opioids. Medical access would be achieved through multi-disciplinary teams who would prescribe a range of opioids for 1) pain, 2) treatment for patients who develop opioid use disorder, and 3) other medical indications. Non-medical access could be achieved through models that would allow adults to purchase and use opioids for either supervised or take-home use. We describe three possible models to support jurisdiction specific discussions around the world. The first includes education and training that could result in certification with a basic or advanced license or a purchase authorization card. The second includes mandatory training that allows general access to opioids, but excludes people with problematic opioid use. The third model has optional training and excludes people with problematic opioid use. Allowing for inclusion of people dependent on the current illegal market during transition is highlighted. With any of these models, this approach, while attending to illegal market drivers, would result in a greatly reduced illegal opioid market and its attendant toxic products, reduced violence and corruption, and at the same time, provide a sharper focus for medical use with more appropriate prescribing and indications.
Collapse
Affiliation(s)
- Brian Emerson
- British Columbia Ministry of Health, PO Box 9648 Stn Prov Govt, Victoria, BC, V8W 9P1, Canada.
| | - Mark Haden
- School of Population and Public Health, University of British Columbia, 3155W 6th Ave, Vancouver, B.C., V6K 1 × 5, Canada
| |
Collapse
|
23
|
Lieggi C, Kalueff AV, Lawrence C, Collymore C. The Influence of Behavioral, Social, and Environmental Factors on Reproducibility and Replicability in Aquatic Animal Models. ILAR J 2020; 60:270-288. [PMID: 32400880 PMCID: PMC7743897 DOI: 10.1093/ilar/ilz019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/08/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
The publication of reproducible, replicable, and translatable data in studies utilizing animal models is a scientific, practical, and ethical necessity. This requires careful planning and execution of experiments and accurate reporting of results. Recognition that numerous developmental, environmental, and test-related factors can affect experimental outcomes is essential for a quality study design. Factors commonly considered when designing studies utilizing aquatic animal species include strain, sex, or age of the animal; water quality; temperature; and acoustic and light conditions. However, in the aquatic environment, it is equally important to consider normal species behavior, group dynamics, stocking density, and environmental complexity, including tank design and structural enrichment. Here, we will outline normal species and social behavior of 2 commonly used aquatic species: zebrafish (Danio rerio) and Xenopus (X. laevis and X. tropicalis). We also provide examples as to how these behaviors and the complexity of the tank environment can influence research results and provide general recommendations to assist with improvement of reproducibility and replicability, particularly as it pertains to behavior and environmental complexity, when utilizing these popular aquatic models.
Collapse
Affiliation(s)
- Christine Lieggi
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and Hospital for Special Surgery, New York, New York
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China, and Ural Federal University, Ekaterinburg, Russia
| | | | | |
Collapse
|
24
|
Environmental enrichment-inspired pharmacological tools for the treatment of addiction. Curr Opin Pharmacol 2020; 56:22-28. [PMID: 32966941 DOI: 10.1016/j.coph.2020.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Environmental enrichment (EE) has been shown to produce powerful beneficial effects in animal models of addiction. In particular, the ability of EE to promote abstinence and prevent relapse may allow for the identification of brain mechanisms responsible for the recovery from addiction. Indeed, the effects of EE on specific brain mechanisms could be mimicked by old or new molecules, which may become novel medications, called enviromimetics. Here, we review the best known enviromimetics for the treatment of addiction and suggest that, whereas these compounds may be relatively ineffective by themselves, they may be useful complements for existing therapeutic approaches to manage addiction which includes behavioural, environmental and pharmacological interventions.
Collapse
|
25
|
Environmental enrichment during forced abstinence from cocaine self-administration opposes gene network expression changes associated with the incubation effect. Sci Rep 2020; 10:11291. [PMID: 32647308 PMCID: PMC7347882 DOI: 10.1038/s41598-020-67966-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Environmental enrichment (EE) is a robust intervention for reducing cocaine-seeking behaviors in animals when given during forced abstinence. However, the mechanisms that underlie these effects are not well-established. We investigated the adult male rat transcriptome using RNA-sequencing (RNA-seq) following differential housing during forced abstinence from cocaine self-administration for either 1 or 21 days. Enriched, 21-day forced abstinence rats displayed a significant reduction in cocaine-seeking behavior compared to rats housed in isolation. RNA-seq of the nucleus accumbens shell revealed hundreds of differentially regulated transcripts between rats of different forced abstinence length and housing environment, as well as within specific contrasts such as enrichment (isolated 21 days vs. enriched 21 days) or incubation (isolated 1 day vs. isolated 21 days). Ingenuity Pathway Analysis affirmed several pathways as differentially enriched based on housing condition and forced abstinence length including RELN, the Eif2 signaling pathway, synaptogenesis and neurogenesis pathways. Numerous pathways showed upregulation with incubation, but downregulation with EE, suggesting that EE may prevent or reverse changes in gene expression associated with protracted forced abstinence. The findings reveal novel candidate mechanisms involved in the protective effects of EE against cocaine seeking, which may inform efforts to develop pharmacological and gene therapies for treating cocaine use disorders. Furthermore, the finding that EE opposes multiple pathway changes associated with incubation of cocaine seeking strongly supports EE as a therapeutic intervention and suggests EE is capable of preventing or reversing the widespread dysregulation of signaling pathways that occurs during cocaine forced abstinence.
Collapse
|
26
|
Rojas-Carvajal M, Sequeira-Cordero A, Brenes JC. Neurobehavioral Effects of Restricted and Unpredictable Environmental Enrichment in Rats. Front Pharmacol 2020; 11:674. [PMID: 32477137 PMCID: PMC7235364 DOI: 10.3389/fphar.2020.00674] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
To study how motivational factors modulate experience-dependent neurobehavioral plasticity, we modify a protocol of environmental enrichment (EE) in rats. We assumed that the benefits derived from EE might vary according to the level of incentive salience attributed to it. To enhance the rewarding properties of EE, access to the EE cage varied randomly from 2 to 48 h for 30 days (REE). The REE group was enriched only 50% of the time and was compared to standard housing and continuous EE (CEE) groups. As behavioral readout, we analyzed the spontaneous activity and the ultrasonic vocalizations (USVs) within the EE cage weekly, and in the open field test at the end of the experiment. In the cage, REE increased the utilization of materials, physical activity, and the rate of appetitive USVs. In the OF, the CEE-induced enhancements in novelty habituation and social signaling were equaled by the REE. At the neural level, we measured the expression of genes related to neural plasticity and epigenetic regulations in different brain regions. In the dorsal striatum and hippocampus, REE upregulated the expression of the brain-derived neurotrophic factor, its tropomyosin kinase B receptor, and the DNA methyltransferase 3A. Altogether, our results suggest that the higher activity within the cage and the augmented incentive motivation provoked by the REE boosted its neurobehavioral effects equaling or surpassing those observed in the CEE condition. As constant exposures to treatments or stimulating environments are virtually impossible for humans, restricted EE protocols would have greater translational value than traditional ones.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica.,Institute for Psychological Research, University of Costa Rica, San Pedro, Costa Rica
| | - Andrey Sequeira-Cordero
- Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica.,Institute for Health Research, University of Costa Rica, San Pedro, Costa Rica
| | - Juan C Brenes
- Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica.,Institute for Psychological Research, University of Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
27
|
Li R, Wang X, Lin F, Song T, Zhu X, Lei H. Mapping accumulative whole-brain activities during environmental enrichment with manganese-enhanced magnetic resonance imaging. Neuroimage 2020; 210:116588. [PMID: 32004718 DOI: 10.1016/j.neuroimage.2020.116588] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 11/17/2022] Open
Abstract
An enriched environment (EE) provides multi-dimensional stimuli to the brain. EE exposure for days to months induces functional and structural neuroplasticity. In this study, manganese-enhanced magnetic resonance imaging (MEMRI) was used to map the accumulative whole-brain activities associated with a 7-day EE exposure in freely-moving adult male mice, followed by c-Fos immunochemical assessments. Relative to the mice residing in a standard environment (SE), the mice subjected to EE treatment had significantly enhanced regional MEMRI signal intensities in the prefrontal cortex, somatosensory cortices, basal ganglia, amygdala, motor thalamus, lateral hypothalamus, ventral hippocampus and midbrain dopaminergic areas at the end of the 7-day exposure, likely attributing to enhanced Mn2+ uptake/transport associated with brain activities at both the regional and macroscale network levels. Some of, but not all, the brain regions in the EE-treated mice showing enhanced MEMRI signal intensity had accompanying increases in c-Fos expression. The EE-treated mice were also found to have significantly increased overall amount of food consumption, decreased body weight gain and upregulated tyrosine hydroxylase (TH) expression in the midbrain dopaminergic areas. Taken together, these results demonstrated that the 7-day EE exposure was associated with elevated cumulative activities in the nigrostriatal, mesolimbic and corticostriatal circuits underpinning reward, motivation, cognition, motor control and appetite regulation. Such accumulative activities might have served as the substrate of EE-related neuroplasticity and the beneficial effects of EE treatment on neurological/psychiatric conditions including drug addiction, Parkinson's disease and eating disorder.
Collapse
Affiliation(s)
- Ronghui Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Xuxia Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Fuchun Lin
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Tao Song
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Xutao Zhu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hao Lei
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
28
|
Neville V, Nakagawa S, Zidar J, Paul ES, Lagisz M, Bateson M, Løvlie H, Mendl M. Pharmacological manipulations of judgement bias: A systematic review and meta-analysis. Neurosci Biobehav Rev 2020; 108:269-286. [PMID: 31747552 PMCID: PMC6966323 DOI: 10.1016/j.neubiorev.2019.11.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 01/11/2023]
Abstract
Validated measures of animal affect are crucial to research spanning numerous disciplines. Judgement bias, which assesses decision-making under ambiguity, is a promising measure of animal affect. One way of validating this measure is to administer drugs with affect-altering properties in humans to non-human animals and determine whether the predicted judgement biases are observed. We conducted a systematic review and meta-analysis using data from 20 published research articles that use this approach, from which 557 effect sizes were extracted. Pharmacological manipulations overall altered judgement bias at the probe cues as predicted. However, there were several moderating factors including the neurobiological target of the drug, whether the drug induced a relatively positive or negative affective state in humans, dosage, and the presented cue. This may partially reflect interference from adverse effects of the drug which should be considered when interpreting results. Thus, the overall pattern of change in animal judgement bias appears to reflect the affect-altering properties of drugs in humans, and hence may be a valuable measure of animal affective valence.
Collapse
Affiliation(s)
- Vikki Neville
- Centre for Behavioural Biology, Bristol Veterinary School, University of Bristol, Langford BS40 5DU, United Kingdom.
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Sydney, NSW 2052, Australia
| | - Josefina Zidar
- The Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Elizabeth S Paul
- Centre for Behavioural Biology, Bristol Veterinary School, University of Bristol, Langford BS40 5DU, United Kingdom
| | - Malgorzata Lagisz
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Sydney, NSW 2052, Australia
| | - Melissa Bateson
- Institute of Neuroscience and Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Hanne Løvlie
- The Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Michael Mendl
- Centre for Behavioural Biology, Bristol Veterinary School, University of Bristol, Langford BS40 5DU, United Kingdom
| |
Collapse
|
29
|
Fu Y, Depue RA. A novel neurobehavioral framework of the effects of positive early postnatal experience on incentive and consummatory reward sensitivity. Neurosci Biobehav Rev 2019; 107:615-640. [DOI: 10.1016/j.neubiorev.2019.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
|
30
|
Kuhn BN, Kalivas PW, Bobadilla AC. Understanding Addiction Using Animal Models. Front Behav Neurosci 2019; 13:262. [PMID: 31849622 PMCID: PMC6895146 DOI: 10.3389/fnbeh.2019.00262] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Drug addiction is a neuropsychiatric disorder with grave personal consequences that has an extraordinary global economic impact. Despite decades of research, the options available to treat addiction are often ineffective because our rudimentary understanding of drug-induced pathology in brain circuits and synaptic physiology inhibits the rational design of successful therapies. This understanding will arise first from animal models of addiction where experimentation at the level of circuits and molecular biology is possible. We will review the most common preclinical models of addictive behavior and discuss the advantages and disadvantages of each. This includes non-contingent models in which animals are passively exposed to rewarding substances, as well as widely used contingent models such as drug self-administration and relapse. For the latter, we elaborate on the different ways of mimicking craving and relapse, which include using acute stress, drug administration or exposure to cues and contexts previously paired with drug self-administration. We further describe paradigms where drug-taking is challenged by alternative rewards, such as appetitive foods or social interaction. In an attempt to better model the individual vulnerability to drug abuse that characterizes human addiction, the field has also established preclinical paradigms in which drug-induced behaviors are ranked by various criteria of drug use in the presence of negative consequences. Separation of more vulnerable animals according to these criteria, along with other innate predispositions including goal- or sign-tracking, sensation-seeking behavior or impulsivity, has established individual genetic susceptibilities to developing drug addiction and relapse vulnerability. We further examine current models of behavioral addictions such as gambling, a disorder included in the DSM-5, and exercise, mentioned in the DSM-5 but not included yet due to insufficient peer-reviewed evidence. Finally, after reviewing the face validity of the aforementioned models, we consider the most common standardized tests used by pharmaceutical companies to assess the addictive potential of a drug during clinical trials.
Collapse
Affiliation(s)
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Ana-Clara Bobadilla
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
31
|
Therapeutic efficacy of environmental enrichment for substance use disorders. Pharmacol Biochem Behav 2019; 188:172829. [PMID: 31778722 DOI: 10.1016/j.pbb.2019.172829] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
Abstract
Addiction to drug and alcohol is regarded as a major health problem worldwide for which available treatments show limited effectiveness. The biggest challenge remains to enhance the capacities of interventions to reduce craving, prevent relapse and promote long-term recovery. New strategies to meet these challenges are being explored. Findings from preclinical work suggest that environmental enrichment (EE) holds therapeutic potential for the treatment of substance use disorders, as demonstrated in a number of animal models of drug abuse. The EE intervention introduced after drug exposure leads to attenuation of compulsive drug taking, attenuation of the rewarding (and reinforcing) effects of drugs, reductions in control of behavior by drug cues, and, very importantly, relapse prevention. Clinical work also suggests that multidimensional EE interventions (involving physical activity, social interaction, vocational training, recreational and community involvement) might produce similar therapeutic effects, if implemented continuously and rigorously. In this review we survey preclinical and clinical studies assessing the efficacy of EE as a behavioral intervention for substance use disorders and address related challenges. We also review work providing empirical evidence for EE-induced neuroplasticity within the mesocorticolimbic system that is believed to contribute to the seemingly therapeutic effects of EE on drug and alcohol-related behaviors.
Collapse
|
32
|
Lee PC, Artaud F, Cormier-Dequaire F, Rascol O, Durif F, Derkinderen P, Marques AR, Bourdain F, Brandel JP, Pico F, Lacomblez L, Bonnet C, Brefel-Courbon C, Ory-Magne F, Grabli D, Klebe S, Mangone G, You H, Mesnage V, Brice A, Vidailhet M, Corvol JC, Elbaz A. Examining the Reserve Hypothesis in Parkinson's Disease: A Longitudinal Study. Mov Disord 2019; 34:1663-1671. [PMID: 31518456 DOI: 10.1002/mds.27854] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whether reserve plays a role in Parkinson's disease (PD) patients has received less attention than in dementia and has been mainly examined in relation with cognitive function. OBJECTIVE To investigate whether reserve plays a role in the severity and progression of motor, cognitive, and nonmotor PD symptoms by examining whether education level (proxy of reserve) is associated with baseline performance and rate of progression. METHODS We used data from a longitudinal cohort of PD patients (≤5-year disease duration at baseline) annually followed up to 5 years (n = 393; 41% women; mean age = 62.3 years, standard deviation = 10.0; mean disease duration = 2.6 years, standard deviation = 1.5). We examined the relationship of education with time to reach Hoehn and Yahr stage ≥3 using Cox regression and with baseline severity and progression of motor (Movement Disorder Society-Unified Parkinson's Disease Rating Scale parts II and III, gait speed), cognitive (Mini-Mental State Examination), and nonmotor (depression, anxiety, nonmotor symptoms scale, quality of life) symptoms using mixed models. RESULTS Education level was not associated with age at onset or diagnosis. Compared with the low-education group, the incidence of Hoehn and Yahr ≥3.0 was 0.42 times lower (95% confidence interval, 0.22-0.82, P = 0.012) in the high-education group. Higher education was associated with better baseline motor function (P < 0.001), but not with the rate of motor decline (P > 0.15). Similar results were observed for cognition. Education was not associated with nonmotor symptoms. CONCLUSIONS Higher education is associated with better baseline motor/cognitive function in PD, but not with rate of decline, and with a lower risk of reaching Hoehn and Yahr ≥3 during the follow-up. Our observations are consistent with a passive reserve hypothesis for motor/cognitive symptoms. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Pei-Chen Lee
- Department of Health Care Management, College of Health Technology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.,Preventive Medicine Research Center, National Yang-Ming University, Taipei, Taiwan.,Taipei City Hospital, Taipei, Taiwan
| | - Fanny Artaud
- CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, 94805, Villejuif, France
| | - Florence Cormier-Dequaire
- Department of Neurology and Genetics, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, F-75013, Paris, France.,Sorbonne Université, INSERM, Institut du cerveau et de la Moelle, Centre d'Investigation Clinique Neurosciences, CNRS, Paris, France.,NS-PARK/FCRIN Network, Paris, France
| | - Olivier Rascol
- NS-PARK/FCRIN Network, Paris, France.,Universityof Toulouse 3, Centre Hospitalo-Universitaire de Toulouse and INSERM; Centre d'Investigation Clinique CIC1436, Départements de Neurosciences et de Pharmacologie Clinique, NeuroToul COEN center, Toulouse, France
| | - Franck Durif
- NS-PARK/FCRIN Network, Paris, France.,Department of Neurology, Centre Hospitalo-Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Pascal Derkinderen
- NS-PARK/FCRIN Network, Paris, France.,Department of Neurology, Centre Hospitalo-Universitaire de Nantes, Nantes, France
| | - Ana-Raquel Marques
- NS-PARK/FCRIN Network, Paris, France.,Department of Neurology, Centre Hospitalo-Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | | | | | - Fernando Pico
- Department of Neurology, Centre Hospitalier de Versailles; and Université Versailles Saint Quentin en Yvelines et Paris Saclay, Versailles, France
| | - Lucette Lacomblez
- Department of Neurology and Genetics, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, F-75013, Paris, France.,Sorbonne Université, INSERM, Institut du cerveau et de la Moelle, Centre d'Investigation Clinique Neurosciences, CNRS, Paris, France.,NS-PARK/FCRIN Network, Paris, France
| | - Cecilia Bonnet
- Department of Neurology and Genetics, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, F-75013, Paris, France.,Sorbonne Université, INSERM, Institut du cerveau et de la Moelle, Centre d'Investigation Clinique Neurosciences, CNRS, Paris, France.,NS-PARK/FCRIN Network, Paris, France
| | - Christine Brefel-Courbon
- NS-PARK/FCRIN Network, Paris, France.,Universityof Toulouse 3, Centre Hospitalo-Universitaire de Toulouse and INSERM; Centre d'Investigation Clinique CIC1436, Départements de Neurosciences et de Pharmacologie Clinique, NeuroToul COEN center, Toulouse, France
| | - Fabienne Ory-Magne
- NS-PARK/FCRIN Network, Paris, France.,Universityof Toulouse 3, Centre Hospitalo-Universitaire de Toulouse and INSERM; Centre d'Investigation Clinique CIC1436, Départements de Neurosciences et de Pharmacologie Clinique, NeuroToul COEN center, Toulouse, France
| | - David Grabli
- Department of Neurology and Genetics, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, F-75013, Paris, France.,Sorbonne Université, INSERM, Institut du cerveau et de la Moelle, Centre d'Investigation Clinique Neurosciences, CNRS, Paris, France.,NS-PARK/FCRIN Network, Paris, France
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Graziella Mangone
- Department of Neurology and Genetics, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, F-75013, Paris, France.,Sorbonne Université, INSERM, Institut du cerveau et de la Moelle, Centre d'Investigation Clinique Neurosciences, CNRS, Paris, France.,NS-PARK/FCRIN Network, Paris, France
| | - Hana You
- Department of Neurology and Genetics, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, F-75013, Paris, France.,Sorbonne Université, INSERM, Institut du cerveau et de la Moelle, Centre d'Investigation Clinique Neurosciences, CNRS, Paris, France.,NS-PARK/FCRIN Network, Paris, France
| | - Valérie Mesnage
- Department of Neurology, Centre Hospitalo-Universitaire Saint-Antoine, Paris, France
| | - Alexis Brice
- Department of Neurology and Genetics, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, F-75013, Paris, France.,Sorbonne Université, INSERM, Institut du cerveau et de la Moelle, Centre d'Investigation Clinique Neurosciences, CNRS, Paris, France.,NS-PARK/FCRIN Network, Paris, France
| | - Marie Vidailhet
- Department of Neurology and Genetics, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, F-75013, Paris, France.,Sorbonne Université, INSERM, Institut du cerveau et de la Moelle, Centre d'Investigation Clinique Neurosciences, CNRS, Paris, France.,NS-PARK/FCRIN Network, Paris, France
| | - Jean-Christophe Corvol
- Department of Neurology and Genetics, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, F-75013, Paris, France.,Sorbonne Université, INSERM, Institut du cerveau et de la Moelle, Centre d'Investigation Clinique Neurosciences, CNRS, Paris, France.,NS-PARK/FCRIN Network, Paris, France
| | - Alexis Elbaz
- CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, 94805, Villejuif, France
| | | |
Collapse
|
33
|
Li B, Xu P, Wu S, Jiang Z, Huang Z, Li Q, Chen D. Diosgenin Attenuates Lipopolysaccharide-Induced Parkinson's Disease by Inhibiting the TLR/NF-κB Pathway. J Alzheimers Dis 2019; 64:943-955. [PMID: 29966203 DOI: 10.3233/jad-180330] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease characterized by loss of dopaminergic neurons in the substantia nigra. Diosgenin is a natural steroid saponin which was shown to play a beneficial role in Alzheimer's disease. OBJECTIVE This study sought to investigate the potential effect of diosgenin on a rat model of PD. METHODS Sprague Dawley rats were subjected to intra-striatal injection of lipopolysaccharide (LPS) and treated with diosgenin. Stepping, Whisker, and Cylinder tests were carried out to determine the motor function, and the expression of tyrosine hydroxylase was detected by immunohistochemistry. The levels of multiple proinflammatory cytokines, oxidative stress related factors and proteins involved in Toll-like receptor (TLR)/nuclear factor kappa B (NF-κB) pathway were measured. The synergistic effect of environment enrichment on diosgenin was also investigated. RESULTS Intra-striatal injection of LPS caused motor deficits in rats, induced inflammatory response and oxidative stress response, and activated the TLR/NF-κB pathway both in vivo and in vitro. Diosgenin could attenuate the LPS-induced alterations. Enriched environment enhanced the effect of diosgenin to ameliorate the LPS-induced motor deficits in rats and decreased the protein levels of TLR2, TLR4, and nuclear NF-κB in diosgenin treated PD rats. CONCLUSION Diosgenin had a beneficial effect in LPS-induced rat PD models, by suppressing the TLR/NF-κB signaling pathway. Environmental enrichment could play a synergistic effect with diosgenin, by enhancing the inhibitory effect of diosgenin on the TLR/ NF-κB signaling pathway.
Collapse
|
34
|
Wassouf Z, Schulze-Hentrich JM. Alpha-synuclein at the nexus of genes and environment: the impact of environmental enrichment and stress on brain health and disease. J Neurochem 2019; 150:591-604. [PMID: 31165472 PMCID: PMC6771760 DOI: 10.1111/jnc.14787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Abstract
Accumulation of alpha‐synuclein protein aggregates is the hallmark neuropathologic feature of synucleinopathies such as Parkinson’s disease. Rare point mutations and multiplications in SNCA, the gene encoding alpha‐synuclein, as well as other genetic alterations are linked to familial Parkinson’s disease cases with high penetrance and hence constitute major genetic risk factors for Parkinson’s disease. However, the preponderance of cases seems sporadic, most likely based on a complex interplay between genetic predispositions, aging processes and environmental influences. Deciphering the impact of these environmental factors and their interactions with the individual genetic background in humans is challenging and often requires large cohorts, complicated study designs, and longitudinal set‐ups. In contrast, rodent models offer an ideal system to study the influence of individual environmental aspects under controlled genetic background and standardized conditions. In this review, we highlight findings from studies examining effects of environmental enrichment mimicking stimulation of the brain by its physical and social surroundings as well as of environmental stressors on brain health in the context of Parkinson’s disease. We discuss possible internal molecular transducers of such environmental cues in Parkinson’s disease rodent models and emphasize their potential in developing novel avenues to much‐needed therapies for this still incurable disease. ![]()
This article is part of the Special Issue “Synuclein”
Collapse
Affiliation(s)
- Zinah Wassouf
- German Center for Neurodegenerative Diseases, Göttingen, Germany.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
35
|
Solinas M, Belujon P, Fernagut PO, Jaber M, Thiriet N. Dopamine and addiction: what have we learned from 40 years of research. J Neural Transm (Vienna) 2018; 126:481-516. [PMID: 30569209 DOI: 10.1007/s00702-018-1957-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/17/2018] [Indexed: 12/22/2022]
Abstract
Among the neurotransmitters involved in addiction, dopamine (DA) is clearly the best known. The critical role of DA in addiction is supported by converging evidence that has been accumulated in the last 40 years. In the present review, first we describe the dopaminergic system in terms of connectivity, functioning and involvement in reward processes. Second, we describe the functional, structural, and molecular changes induced by drugs within the DA system in terms of neuronal activity, synaptic plasticity and transcriptional and molecular adaptations. Third, we describe how genetic mouse models have helped characterizing the role of DA in addiction. Fourth, we describe the involvement of the DA system in the vulnerability to addiction and the interesting case of addiction DA replacement therapy in Parkinson's disease. Finally, we describe how the DA system has been targeted to treat patients suffering from addiction and the result obtained in clinical settings and we discuss how these different lines of evidence have been instrumental in shaping our understanding of the physiopathology of drug addiction.
Collapse
Affiliation(s)
- Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France.
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pierre Olivier Fernagut
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Mohamed Jaber
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| |
Collapse
|
36
|
Leijser LM, Siddiqi A, Miller SP. Imaging Evidence of the Effect of Socio-Economic Status on Brain Structure and Development. Semin Pediatr Neurol 2018; 27:26-34. [PMID: 30293587 DOI: 10.1016/j.spen.2018.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Numerous studies have shown an association between children's socio-economic status (SES) and disparities in neurocognitive development, achievements, and function later in life. Research focus has recently shifted to imaging of the brain's response to the child's environment. This review summarizes the emerging studies on the influences of early-life SES on brain structure and development, and addresses the relation between brain development and enriched environments. The studies provide evidence of significant associations between SES and brain structure, growth and maturation, not only in healthy infants and children but also in infants with medical conditions. This suggests that the relation between SES and later-life function and achievements operates through alterations in brain maturation. Although the brain changes seem to persist without intervention, animal models of environmental enrichment show the potential of SES-related brain changes to be reversible and dynamic. This review underscores the critical need for reducing the impact of socio-economic disparities and early targeted and prolonged interventions, and highlights the potential of these interventions leading to optimal opportunities for our youngest.
Collapse
Affiliation(s)
- Lara Maria Leijser
- Department of Pediatrics, Division of Neurology, The Hospital for Sick Children and The University of Toronto, Toronto, Canada
| | - Arjumand Siddiqi
- Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Steven Paul Miller
- Department of Pediatrics, Division of Neurology, The Hospital for Sick Children and The University of Toronto, Toronto, Canada.
| |
Collapse
|
37
|
Lespine LF, Tirelli E. Evidence for a long-term protection of wheel-running exercise against cocaine psychomotor sensitization in adolescent but not in adult mice. Behav Brain Res 2018; 349:63-72. [DOI: 10.1016/j.bbr.2018.04.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
|
38
|
Volgin AD, Yakovlev OV, Demin KA, Abreu MSD, Rosemberg DB, Meshalkina DA, Alekseeva PA, Friend AJ, Amstislavskaya TG, Kalueff AV. Understanding the Role of Environmental Enrichment in Zebrafish Neurobehavioral Models. Zebrafish 2018; 15:425-432. [PMID: 30133416 DOI: 10.1089/zeb.2018.1592] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Environmental stimuli are critical in preclinical research that utilizes laboratory animals to model human brain disorders. The main goal of environmental enrichment (EE) is to provide laboratory animals with better choice of activity and greater control over social and spatial stressors. Thus, in addition to being a useful experimental tool, EE becomes an important strategy for increasing the validity and reproducibility of preclinical data. Although zebrafish (Danio rerio) is rapidly becoming a promising new organism for neuroscience research, the role of EE in zebrafish central nervous system (CNS) models remains poorly understood. Here we discuss EE in preclinical studies using zebrafish and its influence on brain physiology and behavior. Improving our understanding of EE effects in this organism may enhance zebrafish data validity and reliability. Paralleling rodent EE data, mounting evidence suggests the growing importance of EE in zebrafish neurobehavioral models.
Collapse
Affiliation(s)
- Andrey D Volgin
- 1 Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg, Russia .,2 Almazov National Medical Research Centre , St. Petersburg, Russia .,3 Military Medical Academy , St. Petersburg, Russia
| | - Oleg V Yakovlev
- 1 Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg, Russia .,2 Almazov National Medical Research Centre , St. Petersburg, Russia .,3 Military Medical Academy , St. Petersburg, Russia
| | - Konstantin A Demin
- 1 Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg, Russia .,2 Almazov National Medical Research Centre , St. Petersburg, Russia
| | - Murilo S de Abreu
- 4 Bioscience Institute, University of Passo Fundo (UPF) , Passo Fundo, Brazil .,5 Postgraduate Programs in Pharmacology and Biomedical Sciences, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Denis B Rosemberg
- 5 Postgraduate Programs in Pharmacology and Biomedical Sciences, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Darya A Meshalkina
- 1 Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg, Russia .,2 Almazov National Medical Research Centre , St. Petersburg, Russia
| | | | - Ashton J Friend
- 6 Tulane University School of Science and Engineering , New Orleans, Louisiana
| | - Tamara G Amstislavskaya
- 7 Laboratory of Translational Biopsychiatry, Scientific Research Institute of Physiology and Basic Medicine , Novosibirsk, Russia .,8 The International Zebrafish Neuroscience Research Consortium (ZNRC) , Slidell, Louisiana
| | - Allan V Kalueff
- 8 The International Zebrafish Neuroscience Research Consortium (ZNRC) , Slidell, Louisiana.,9 Ural Federal University , Ekaterinburg, Russia .,10 School of Pharmacy, Southwest University , Chongqing, China .,11 ZENEREI Research Center , Slidell, Louisiana.,12 Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg, Russia .,13 Institute of Experimental Medicine , Almazov National Medical Research Centre, St. Petersburg, Russia .,14 Scientific Research Institute of Physiology and Basic Medicine , Novosibirsk, Russia .,15 Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation , St. Petersburg, Russia
| |
Collapse
|
39
|
Vannan A, Powell GL, Scott SN, Pagni BA, Neisewander JL. Animal Models of the Impact of Social Stress on Cocaine Use Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:131-169. [PMID: 30193703 DOI: 10.1016/bs.irn.2018.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cocaine use disorders are strongly influenced by the social conditions prior, during, and after exposure to cocaine. In this chapter, we discuss how social factors such as early life stress, social rank stress, and environmental stress impact vulnerability and resilience to cocaine. The discussion of each animal model begins with a brief review of examples from the human literature, which provide the psychosocial background these models attempt to capture. We then discuss preclinical findings from use of each model, with emphasis on how social factors influence cocaine-related behaviors and how sex and age influence the behaviors and neurobiology. Models discussed include (1) early life social stress, such as maternal separation and neonatal isolation, (2) social defeat stress, (3) social hierarchies, and (4) social isolation and environmental enrichment. The cocaine-related behaviors reviewed for each of these animal models include cocaine-induced conditioned place preference, behavioral sensitization, and self-administration. Together, our review suggests that the degree of psychosocial stress experienced yields robust effects on cocaine-related behaviors and neurobiology, and these preclinical findings have translational impact for the future of cocaine use disorder treatment.
Collapse
Affiliation(s)
- Annika Vannan
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Gregory L Powell
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Samantha N Scott
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Broc A Pagni
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Janet L Neisewander
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
40
|
Bayne K. Environmental enrichment and mouse models: Current perspectives. Animal Model Exp Med 2018; 1:82-90. [PMID: 30891552 PMCID: PMC6388067 DOI: 10.1002/ame2.12015] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/19/2018] [Indexed: 11/28/2022] Open
Abstract
The provision of environmental enrichment to numerous species of laboratory animals is generally considered routine husbandry. However, mouse enrichment has proven to be very complex due to the often contradictory outcomes (animal health and welfare, variability in scientific data, etc.) associated with strain, age of the animal when enrichment is provided, gender of the animal, scientific use of the animal, and other housing attributes. While this has led to some suggesting that mice should not be provided enrichment, more recently opinion is trending toward acknowledging that enrichment actually normalizes the animal and data obtained from a mouse living in a barren environment are likely not to be representative or even reliable. This article offers an overview of the types of impact enrichment can have on various strains of mice and demonstrates that enrichment not only has a role in mouse husbandry, but also can lead to new areas of scientific enquiry in a number of different fields.
Collapse
|
41
|
Baker EP, Magnuson EC, Dahly AM, Siegel JA. The effects of enriched environment on the behavioral and corticosterone response to methamphetamine in adolescent and adult mice. Dev Psychobiol 2018; 60:664-673. [PMID: 29738077 DOI: 10.1002/dev.21633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022]
Abstract
Methamphetamine alters behavior and the stress response system. Relatively little research has examined the effects of methamphetamine in adolescents and compared these effects to those in adults. Housing in enriched environments has been explored as one way to protect against the effects of methamphetamine, but the findings are conflicting and no study has examined how enriched environment may alter the behavioral and corticosterone responses to methamphetamine in adolescent and adult rodents. We examined the long-term effects of methamphetamine exposure on anxiety, social behavior, behavioral despair, and corticosterone levels in adolescent and adult mice housed in enriched or isolated environments. Enriched environment did not alter the behavioral or corticosterone response to methamphetamine. Methamphetamine exposure decreased anxiety and increased behavioral despair in adult mice, but methamphetamine did not alter behavior in adolescent mice. There was no effect of methamphetamine on social behavior or corticosterone levels. Our findings demonstrate that the specific environmental enrichment paradigm used in this study was not sufficient to mitigate the behavioral effects of methamphetamine and that adolescent mice are relatively resistant to the effects of methamphetamine compared to adult mice.
Collapse
Affiliation(s)
- Elizabeth P Baker
- Department of Psychology, University of St. Thomas, Saint Paul, Minnesota
| | - Elliott C Magnuson
- Department of Psychology, University of St. Thomas, Saint Paul, Minnesota
| | - Ashley M Dahly
- Department of Psychology, University of St. Thomas, Saint Paul, Minnesota
| | - Jessica A Siegel
- Department of Psychology, University of St. Thomas, Saint Paul, Minnesota
| |
Collapse
|
42
|
Wassouf Z, Hentrich T, Samer S, Rotermund C, Kahle PJ, Ehrlich I, Riess O, Casadei N, Schulze-Hentrich JM. Environmental Enrichment Prevents Transcriptional Disturbances Induced by Alpha-Synuclein Overexpression. Front Cell Neurosci 2018; 12:112. [PMID: 29755323 PMCID: PMC5932345 DOI: 10.3389/fncel.2018.00112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
Onset and progression of neurodegenerative disorders, including synucleinopathies such as Parkinson's disease, have been associated with various environmental factors. A highly compelling association from a therapeutic point of view has been found between a physically active lifestyle and a significantly reduced risk for Parkinson's disease. Mimicking such conditions in animal models by promoting physical activity, social interactions, and novel surroundings yields in a so-called enriched environment known to enhance adult neurogenesis, increase synaptic plasticity, and decelerate neuronal loss. Yet, the genes that connect beneficial environmental cues to the genome and delay disease-related symptoms have remained largely unclear. To identify such mediator genes, we used a 2 × 2 factorial design opposing genotype and environment. Specifically, we compared wildtype to transgenic mice overexpressing human SNCA, a key gene in synucleinopathies encoding alpha-synuclein, and housed them in a standard and enriched environment from weaning to 12 months of age before profiling their hippocampal transcriptome using RNA-sequencing. Under standard environmental conditions, differentially expressed genes were overrepresented for calcium ion binding, membrane, synapse, and other Gene Ontology terms previously linked to alpha-synuclein biology. Upregulated genes were significantly enriched for genes attributed to astrocytes, microglia, and oligodendrocytes. These disturbances in gene activity were accompanied by reduced levels of several presynaptic proteins and the immediate early genes EGR1 and NURR1. Intriguingly, housing transgenic animals in the enriched environment prevented most of these perturbations in gene activity. In addition, a sustained activation specifically in transgenic animals housed in enriched conditions was observed for several immediate early genes including Egr1, Nr4a2/Nurr1, Arc, and Homer1a. These findings suggest a compensatory mechanism through an enriched environment-activated immediate early gene network that prevented most disturbances induced by alpha-synuclein overexpression. This regulatory framework might harbor attractive targets for novel therapeutic approaches that mimic beneficial environmental stimuli.
Collapse
Affiliation(s)
- Zinah Wassouf
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sebastian Samer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | | | - Philipp J Kahle
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ingrid Ehrlich
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurobiology, IBBS, University of Stuttgart, Stuttgart, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
43
|
Environmental enrichment, alone or in combination with various pharmacotherapies, confers marked benefits after traumatic brain injury. Neuropharmacology 2018; 145:13-24. [PMID: 29499273 DOI: 10.1016/j.neuropharm.2018.02.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is a significant health care issue that affects over ten million people worldwide. Treatment options are limited with numerous failures resulting from single therapies. Fortunately, several preclinical studies have shown that combination treatment strategies may afford greater improvement and perhaps can lead to successful clinical translation, particularly if one of the therapies is neurorehabilitation. The aim of this review is to highlight TBI studies that combined environmental enrichment (EE), a preclinical model of neurorehabilitation, with pharmacotherapies. A series of PubMed search strategies yielded only nine papers that fit the criteria. The consensus is that EE provides robust neurobehavioral, cognitive, and histological improvement after experimental TBI and that the combination of EE with some pharmacotherapies can lead to benefits beyond those revealed by single therapies. However, it is noted that EE can be challenged by drugs such as the acetylcholinesterase inhibitor, donepezil, and the antipsychotic drug, haloperidol, which attenuate its efficacy. These findings may help shape clinical neurorehabilitation strategies to more effectively improve patient outcome. Potential mechanisms for the EE and pharmacotherapy-induced effects are also discussed. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
|
44
|
Kelm-Nelson CA, Trevino MA, Ciucci MR. Quantitative Analysis of Catecholamines in the Pink1 -/- Rat Model of Early-onset Parkinson's Disease. Neuroscience 2018; 379:126-141. [PMID: 29496635 DOI: 10.1016/j.neuroscience.2018.02.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/14/2018] [Accepted: 02/17/2018] [Indexed: 10/17/2022]
Abstract
Parkinson's disease (PD) related to homozygous mutations in the Pink1 gene is associated with nigrostriatal dopamine depletion and a wide range of sensorimotor deficits. In humans and animal models of PD, not all sensorimotor deficits are levodopa-responsive. We hypothesized that the underlying mechanisms of locomotion, limb control, and vocal communication behavior include other pathologies. Here, Pink1 -/- rats were treated with an oral dose of levodopa and limb motor and vocal communication behaviors were measured. Levodopa significantly improved some aspects of locomotion but did not improve ultrasonic vocalization intensity or frequency. Catecholamine concentrations in the striatum (SR), substantia nigra (SN), and locus coeruleus (LC) were analyzed to test the hypothesis that behavioral deficits would correlate to altered protein levels. There were no differences in dopamine concentrations in the SR and SN of Pink1 -/- animals compared to wild-type controls. There was a significant increase in norepinephrine concentration in the SN of Pink1 -/- animals. Moreover, an observed decrease in norepinephrine concentrations in the LC is consistent with the hypothesis that early-stage PD includes noradrenergic loss in the brainstem, and is congruent with a significant increase in catechol-O-methyltransferase expression in the LC of Pink1 -/- animals. Pearson's correlations showed that increases in time to traverse a tapered balance beam are significantly associated with reductions in striatal dopamine. Ultrasonic vocalization complexity was positively correlated with LC norepinephrine concentrations. These data support the evolving hypothesis that differences in neural substrates and early-onset noradrenergic mechanisms in the brainstem may contribute to pathogenesis in the Pink1 -/- rat.
Collapse
Affiliation(s)
- Cynthia A Kelm-Nelson
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Michael A Trevino
- Department of Psychology, University of Illinois-Urbana Champaign, Urbana-Champaign, IL, USA.
| | - Michelle R Ciucci
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
45
|
Ewing S, Ranaldi R. Environmental enrichment facilitates cocaine abstinence in an animal conflict model. Pharmacol Biochem Behav 2018; 166:35-41. [PMID: 29407873 DOI: 10.1016/j.pbb.2018.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/28/2022]
Abstract
In this study, we sought to discover if housing in an enriched environment (EE) is an efficacious intervention for encouraging abstinence from cocaine seeking in an animal "conflict" model of abstinence. Sixteen Long-Evans rats were trained in 3-h daily sessions to self-administer a cocaine solution (1 mg/kg/infusion) until each demonstrated a stable pattern of drug-seeking. Afterward, half were placed in EE cages equipped with toys, obstacles, and a running wheel, while the other half were given clean, standard laboratory housing. All rats then completed daily 30-min sessions during which the 2/3 of flooring closest to the self-administration levers was electrified, causing discomfort should they approach the levers; current strength (mA) was increased after every day of drug seeking until the rat ceased activity on the active lever for 3 consecutive sessions (abstinence). Rats housed in EE abstained after fewer days and at lower current strengths than rats in standard housing. These results support the idea that EE administered after the development of a cocaine-taking habit may be an effective strategy to facilitate abstinence.
Collapse
Affiliation(s)
- Scott Ewing
- The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Robert Ranaldi
- The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; Department of Psychology, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
46
|
Marcon M, Mocelin R, Benvenutti R, Costa T, Herrmann AP, de Oliveira DL, Koakoski G, Barcellos LJG, Piato A. Environmental enrichment modulates the response to chronic stress in zebrafish. J Exp Biol 2018; 221:jeb.176735. [DOI: 10.1242/jeb.176735] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 12/25/2022]
Abstract
Several studies have shown that manipulations to the housing environment modulate the susceptibility to stress in laboratory animals, mainly in rodents. Environmental enrichment (EE) is one such manipulation that promotes neuroprotection and neurogenesis, besides affecting behaviors such as drug self-administration. Zebrafish are a popular and useful animal model for behavioral neuroscience studies; however, studies evaluating the impact of housing conditions in this species are scarce. In this study, we verified the effects of EE on behavioral (novel tank test) and biochemical (cortisol and reactive oxygen species (ROS)) parameters in zebrafish submitted to unpredictable chronic stress (UCS). Consistent with our previous findings, UCS increased anxiety-like behavior, cortisol and ROS levels in zebrafish. EE for 21 or 28 days attenuated the effects induced by UCS on behavior and cortisol, and prevented the effects on ROS levels. Our findings reinforce the idea that EE exerts neuromodulatory effects across species, reducing vulnerability to stress and its biochemical impact. Also, these results indicate that zebrafish is a suitable model animal to study the behavioral effects and neurobiological mechanisms related to EE.
Collapse
Affiliation(s)
- Matheus Marcon
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Av. Sarmento Leite 500/305, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Ricieri Mocelin
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Av. Sarmento Leite 500/305, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Radharani Benvenutti
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Av. Sarmento Leite 500/305, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Tales Costa
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Av. Sarmento Leite 500/305, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Ana P. Herrmann
- Grupo de Estudos Biológicos e Clínicos em Patologias Humanas, Universidade Federal da Fronteira Sul, Campus Chapecó, SC 484 km 02, Chapecó, Santa Catarina, 89815-899, Brazil
| | - Diogo L. de Oliveira
- Programa de Pós-graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Gessi Koakoski
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Leonardo J. G. Barcellos
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, Rio Grande do Sul 97105-900, Brazil
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, BR 285, Passo Fundo, Rio Grande do
Sul, 99052-900, Brazil
| | - Angelo Piato
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Av. Sarmento Leite 500/305, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
- Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| |
Collapse
|
47
|
Eitan S, Emery MA, Bates M, Horrax C. Opioid addiction: Who are your real friends? Neurosci Biobehav Rev 2017; 83:697-712. [DOI: 10.1016/j.neubiorev.2017.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 05/17/2017] [Accepted: 05/21/2017] [Indexed: 01/29/2023]
|
48
|
Beloate LN, Coolen LM. Influences of social reward experience on behavioral responses to drugs of abuse: Review of shared and divergent neural plasticity mechanisms for sexual reward and drugs of abuse. Neurosci Biobehav Rev 2017; 83:356-372. [DOI: 10.1016/j.neubiorev.2017.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 10/25/2022]
|
49
|
Requejo C, Ruiz-Ortega JA, Cepeda H, Sharma A, Sharma HS, Ozkizilcik A, Tian R, Moessler H, Ugedo L, Lafuente JV. Nanodelivery of Cerebrolysin and Rearing in Enriched Environment Induce Neuroprotective Effects in a Preclinical Rat Model of Parkinson’s Disease. Mol Neurobiol 2017; 55:286-299. [DOI: 10.1007/s12035-017-0741-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Gelfo F, Mandolesi L, Serra L, Sorrentino G, Caltagirone C. The Neuroprotective Effects of Experience on Cognitive Functions: Evidence from Animal Studies on the Neurobiological Bases of Brain Reserve. Neuroscience 2017; 370:218-235. [PMID: 28827089 DOI: 10.1016/j.neuroscience.2017.07.065] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022]
Abstract
Brain plasticity is the ability of the nervous system to change structurally and functionally in response to experience. By shaping brain structure and function, experience leads to the creation of a protective reserve that accounts for differences among individuals in susceptibility to age-related brain modifications and pathology. This review is aimed to address the biological bases of the experience-dependent "brain reserve" by describing the results of animal studies that focused on the neuroanatomical and molecular effects of environmental enrichment. More specifically, the effects at the cellular level are considered in terms of changes in neurogenesis, gliogenesis, angiogenesis, and synaptogenesis. Moreover, the effects at the molecular level are described, highlighting gene- and protein-level changes in neurotransmitter and neurotrophin expression. The experimental evidence for the basic biological consequences of environmental enrichment is described for healthy animals. Subsequently, by discussing the findings for animal models that mimic age-related diseases, the involvement of such plastic changes in supporting an organism as it copes with normal and pathological age-related cognitive decline is considered. On the whole, studies of the structural and molecular effects of environmental enrichment strongly support the neuroprotective action of a particularly stimulating lifestyle on cognitive functions. Our current level of understanding of these effects and mechanisms is such that additional and novel studies, systematic reviews, and meta-analyses are necessary to investigate the specific effects of the different components of environmental enrichment in both healthy and pathological models. Only in this way can comprehensive recommendations for proper life habits be developed.
Collapse
Affiliation(s)
- Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Systemic Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Laura Mandolesi
- IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Movement Sciences and Wellbeing, University "Parthenope", Naples, Italy
| | | | - Giuseppe Sorrentino
- Department of Movement Sciences and Wellbeing, University "Parthenope", Naples, Italy; Istituto di diagnosi e cura Hermitage Capodimonte, Naples, Italy
| | - Carlo Caltagirone
- IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Systemic Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|