1
|
Koren V, Malerba SB, Schwalger T, Panzeri S. Efficient coding in biophysically realistic excitatory-inhibitory spiking networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590955. [PMID: 38712237 PMCID: PMC11071478 DOI: 10.1101/2024.04.24.590955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The principle of efficient coding posits that sensory cortical networks are designed to encode maximal sensory information with minimal metabolic cost. Despite the major influence of efficient coding in neuroscience, it has remained unclear whether fundamental empirical properties of neural network activity can be explained solely based on this normative principle. Here, we derive the structural, coding, and biophysical properties of excitatory-inhibitory recurrent networks of spiking neurons that emerge directly from imposing that the network minimizes an instantaneous loss function and a time-averaged performance measure enacting efficient coding. We assumed that the network encodes a number of independent stimulus features varying with a time scale equal to the membrane time constant of excitatory and inhibitory neurons. The optimal network has biologically-plausible biophysical features, including realistic integrate-and-fire spiking dynamics, spike-triggered adaptation, and a non-specific excitatory external input. The excitatory-inhibitory recurrent connectivity between neurons with similar stimulus tuning implements feature-specific competition, similar to that recently found in visual cortex. Networks with unstructured connectivity cannot reach comparable levels of coding efficiency. The optimal ratio of excitatory vs inhibitory neurons and the ratio of mean inhibitory-to-inhibitory vs excitatory-to-inhibitory connectivity are comparable to those of cortical sensory networks. The efficient network solution exhibits an instantaneous balance between excitation and inhibition. The network can perform efficient coding even when external stimuli vary over multiple time scales. Together, these results suggest that key properties of biological neural networks may be accounted for by efficient coding.
Collapse
Affiliation(s)
- Veronika Koren
- Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
- Institute of Mathematics, Technische Universität Berlin, 10623 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Simone Blanco Malerba
- Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Tilo Schwalger
- Institute of Mathematics, Technische Universität Berlin, 10623 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Stefano Panzeri
- Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| |
Collapse
|
2
|
Boroujeni KB, Helfrich RF, Fiebelkorn IC, Bentley N, Lin JJ, Knight RT, Kastner S. Attentional Information Routing in The Human Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612548. [PMID: 39314423 PMCID: PMC11419049 DOI: 10.1101/2024.09.11.612548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Brain-wide communication supports behaviors that require coordination between sensory and associative regions. However, how large-scale brain networks route sensory information at fast timescales to guide upcoming actions remains unclear. Using spiking neural networks and human intracranial electrophysiology during spatial attention tasks, where participants detected a target at cued locations, we show that high-frequency activity bursts (HFAb) serve as information-carrying events, facilitating fast and long-range communications. HFAbs emerged as bouts of neural population spiking and were coordinated brain-wide through low-frequency rhythms. At the network-level, HFAb coordination identified distinct cue- and target-activated subnetworks. HFAbs following the cue onset in cue-subnetworks predicted successful target detection and preceded the information in target-subnetworks following target onset. Our findings suggest HFAbs as a neural mechanism for fast brain-wide information routing that supports attentional performance.
Collapse
|
3
|
Bian Y, Kawabata R, Enwright JF, Tsubomoto M, Okuda T, Kamikawa K, Kimoto S, Kikuchi M, Lewis DA, Hashimoto T. Expression of activity-regulated transcripts in pyramidal neurons across the cortical visuospatial working memory network in unaffected comparison individuals and individuals with schizophrenia. Psychiatry Res 2024; 339:116084. [PMID: 39033685 DOI: 10.1016/j.psychres.2024.116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Visuospatial working memory (vsWM), which is impaired in schizophrenia (SZ), is mediated by multiple cortical regions including the primary (V1) and association (V2) visual, posterior parietal (PPC) and dorsolateral prefrontal (DLPFC) cortices. In these regions, parvalbumin (PV) or somatostatin (SST) GABA neurons are altered in SZ as reflected in lower levels of activity-regulated transcripts. As PV and SST neurons receive excitatory inputs from neighboring pyramidal neurons, we hypothesized that levels of activity-regulated transcripts are also lower in pyramidal neurons in these regions. Thus, we quantified levels of four activity-regulated, pyramidal neuron-selective transcripts, namely adenylate cyclase-activating polypeptide-1 (ADCYAP1), brain-derived neurotrophic factor (BDNF), neuronal pentraxin-2 (NPTX2) and neuritin-1 (NRN1) mRNAs, in V1, V2, PPC and DLPFC from unaffected comparison and SZ individuals. In SZ, BDNF and NPTX2 mRNA levels were lower across all four regions, whereas ADCYAP1 and NRN1 mRNA levels were lower in V1 and V2. The regional pattern of deficits in BDNF and NPTX2 mRNAs was similar to that in transcripts in PV and SST neurons in SZ. These findings suggest that lower activity of pyramidal neurons expressing BDNF and/or NPTX2 mRNAs might contribute to alterations in PV and SST neurons across the vsWM network in SZ.
Collapse
Affiliation(s)
- Yufan Bian
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Rika Kawabata
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - John F Enwright
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Makoto Tsubomoto
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Takeshi Okuda
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Kohei Kamikawa
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, 634-8521, Japan
| | - Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, 634-8521, Japan; Department of Neuropsychiatry, Wakayama Medical University School of Medicine, Wakayama, 641-8509, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan; Research Center for Child Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Takanori Hashimoto
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; National Hospital Organization Hokuriku Hospital, Nanto, 939-1893, Japan.
| |
Collapse
|
4
|
Mahon S. Variation and convergence in the morpho-functional properties of the mammalian neocortex. Front Syst Neurosci 2024; 18:1413780. [PMID: 38966330 PMCID: PMC11222651 DOI: 10.3389/fnsys.2024.1413780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Man's natural inclination to classify and hierarchize the living world has prompted neurophysiologists to explore possible differences in brain organisation between mammals, with the aim of understanding the diversity of their behavioural repertoires. But what really distinguishes the human brain from that of a platypus, an opossum or a rodent? In this review, we compare the structural and electrical properties of neocortical neurons in the main mammalian radiations and examine their impact on the functioning of the networks they form. We discuss variations in overall brain size, number of neurons, length of their dendritic trees and density of spines, acknowledging their increase in humans as in most large-brained species. Our comparative analysis also highlights a remarkable consistency, particularly pronounced in marsupial and placental mammals, in the cell typology, intrinsic and synaptic electrical properties of pyramidal neuron subtypes, and in their organisation into functional circuits. These shared cellular and network characteristics contribute to the emergence of strikingly similar large-scale physiological and pathological brain dynamics across a wide range of species. These findings support the existence of a core set of neural principles and processes conserved throughout mammalian evolution, from which a number of species-specific adaptations appear, likely allowing distinct functional needs to be met in a variety of environmental contexts.
Collapse
Affiliation(s)
- Séverine Mahon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
5
|
Tsolias A, Zhou Y, Mojica CA, Sakharkar M, Tsolias MZ, Moore TL, Rosene DL, Medalla M. Neuroanatomical Substrates of Circuit-Specific Cholinergic Modulation across the Primate Anterior Cingulate Cortex. J Neurosci 2024; 44:e0953232024. [PMID: 38719447 PMCID: PMC11170673 DOI: 10.1523/jneurosci.0953-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024] Open
Abstract
Acetylcholine is a robust neuromodulator of the limbic system and a critical regulator of arousal and emotions. The anterior cingulate cortex (ACC) and the amygdala (AMY) are key limbic structures that are both densely innervated by cholinergic afferents and interact with each other for emotional regulation. The ACC is composed of functionally distinct dorsal (A24), rostral (A32), and ventral (A25) areas that differ in their connections with the AMY. The structural substrates of cholinergic modulation of distinct ACC microcircuits and outputs to AMY are thought to depend on the laminar and subcellular localization of cholinergic receptors. The present study examines the distribution of muscarinic acetylcholine receptors, m1 and m2, on distinct excitatory and inhibitory neurons and on AMY-targeting projection neurons within ACC areas, via immunohistochemistry and injections of neural tracers into the basolateral AMY in adult rhesus monkeys of both sexes. We found that laminar densities of m1+ and m2+ expressing excitatory and inhibitory neurons depended on area and cell type. Among the ACC areas, ventral subgenual ACC A25 exhibited greater m2+ localization on presynaptic inhibitory axon terminals and greater density of m1+ and m2+ expressing AMY-targeting (tracer+) pyramidal neurons. These patterns suggest robust cholinergic disinhibition and potentiation of amygdalar outputs from the limbic ventral ACC, which may be linked to the hyperexcitability of this subgenual ACC area in depression. These findings reveal the anatomical substrate of diverse cholinergic modulation of specific ACC microcircuits and amygdalar outputs that mediate cognitive-emotional integration and dysfunctions underlying stress and affective disorders.
Collapse
Affiliation(s)
- Alexandra Tsolias
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Yuxin Zhou
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Chromewell A Mojica
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Mitali Sakharkar
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Marianna Z Tsolias
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Tara L Moore
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
6
|
Magrou L, Joyce MKP, Froudist-Walsh S, Datta D, Wang XJ, Martinez-Trujillo J, Arnsten AFT. The meso-connectomes of mouse, marmoset, and macaque: network organization and the emergence of higher cognition. Cereb Cortex 2024; 34:bhae174. [PMID: 38771244 PMCID: PMC11107384 DOI: 10.1093/cercor/bhae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.
Collapse
Affiliation(s)
- Loïc Magrou
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Sean Froudist-Walsh
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, BS8 1QU, United Kingdom
| | - Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Xiao-Jing Wang
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Julio Martinez-Trujillo
- Departments of Physiology and Pharmacology, and Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
7
|
Yiling Y, Klon-Lipok J, Shapcott K, Lazar A, Singer W. Dynamic fading memory and expectancy effects in the monkey primary visual cortex. Proc Natl Acad Sci U S A 2024; 121:e2314855121. [PMID: 38354261 PMCID: PMC10895277 DOI: 10.1073/pnas.2314855121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
In order to investigate the involvement of the primary visual cortex (V1) in working memory (WM), parallel, multisite recordings of multi-unit activity were obtained from monkey V1 while the animals performed a delayed match-to-sample (DMS) task. During the delay period, V1 population firing rate vectors maintained a lingering trace of the sample stimulus that could be reactivated by intervening impulse stimuli that enhanced neuronal firing. This fading trace of the sample did not require active engagement of the monkeys in the DMS task and likely reflects the intrinsic dynamics of recurrent cortical networks in lower visual areas. This renders an active, attention-dependent involvement of V1 in the maintenance of WM contents unlikely. By contrast, population responses to the test stimulus depended on the probabilistic contingencies between sample and test stimuli. Responses to tests that matched expectations were reduced which agrees with concepts of predictive coding.
Collapse
Affiliation(s)
- Yang Yiling
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main60528, Germany
| | - Johanna Klon-Lipok
- Max Planck Institute for Brain Research, Frankfurt am Main60438, Germany
| | - Katharine Shapcott
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main60528, Germany
| | - Andreea Lazar
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main60528, Germany
| | - Wolf Singer
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main60528, Germany
- Max Planck Institute for Brain Research, Frankfurt am Main60438, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main60438, Germany
| |
Collapse
|
8
|
Medalla M, Mo B, Nasar R, Zhou Y, Park J, Luebke JI. Comparative features of calretinin, calbindin, and parvalbumin expressing interneurons in mouse and monkey primary visual and frontal cortices. J Comp Neurol 2023; 531:1934-1962. [PMID: 37357562 PMCID: PMC10749991 DOI: 10.1002/cne.25514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
Fundamental differences in excitatory pyramidal cells across cortical areas and species highlight the implausibility of extrapolation from mouse to primate neurons and cortical networks. Far less is known about comparative regional and species-specific features of neurochemically distinct cortical inhibitory interneurons. Here, we quantified the density, laminar distribution, and somatodendritic morphology of inhibitory interneurons expressing one or more of the calcium-binding proteins (CaBPs) (calretinin [CR], calbindin [CB], and/or parvalbumin [PV]) in mouse (Mus musculus) versus rhesus monkey (Macaca mulatta) in two functionally and cytoarchitectonically distinct regions-the primary visual and frontal cortical areas-using immunofluorescent multilabeling, stereological counting, and 3D reconstructions. There were significantly higher densities of CB+ and PV+ neurons in visual compared to frontal areas in both species. The main species difference was the significantly greater density and proportion of CR+ interneurons and lower extent of CaBP coexpression in monkey compared to mouse cortices. Cluster analyses revealed that the somatodendritic morphology of layer 2-3 inhibitory interneurons is more dependent on CaBP expression than on species and area. Only modest effects of species were observed for CB+ and PV+ interneuron morphologies, while CR+ neurons showed no difference. By contrast to pyramidal cells that show highly distinctive area- and species-specific features, here we found more subtle differences in the distribution and features of interneurons across areas and species. These data yield insight into how nuanced differences in the population organization and properties of neurons may underlie specializations in cortical regions to confer species- and area-specific functional capacities.
Collapse
Affiliation(s)
- Maria Medalla
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St. L10, Boston MA 02118
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215
| | - Bingxin Mo
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St. L10, Boston MA 02118
| | - Rakin Nasar
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St. L10, Boston MA 02118
| | - Yuxin Zhou
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St. L10, Boston MA 02118
| | - Junwoo Park
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St. L10, Boston MA 02118
| | - Jennifer I Luebke
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St. L10, Boston MA 02118
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215
| |
Collapse
|
9
|
Banaie Boroujeni K, Womelsdorf T. Routing states transition during oscillatory bursts and attentional selection. Neuron 2023; 111:2929-2944.e11. [PMID: 37463578 PMCID: PMC10529654 DOI: 10.1016/j.neuron.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/22/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023]
Abstract
Brain-wide information routing relies on the spatio-temporal dynamics of neural activity, but it remains unclear how routing states emerge at fast spiking timescales and relate to slower activity dynamics during cognitive processes. Here, we show that localized spiking events participate in directional routing states with spiking activity in distant brain areas that dynamically switch or amplify states during oscillatory bursts, attentional selection, and decision-making. Modeling and neural recordings from lateral prefrontal cortex (LPFC), anterior cingulate cortex (ACC), and striatum of nonhuman primates revealed that cross-regional routing states arise within 20 ms following individual neuron spikes, with LPFC spikes leading the activity in ACC and striatum. The baseline routing state amplified during LPFC beta bursts between LPFC and striatum and switched direction during ACC theta/alpha bursts between ACC and LPFC. Selective attention amplified theta-/alpha-band-specific lead ensembles in ACC, while decision-making increased the lead of ACC and LPFC spikes to the striatum.
Collapse
Affiliation(s)
- Kianoush Banaie Boroujeni
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
10
|
Mu J, Hao P, Duan H, Zhao W, Wang Z, Yang Z, Li X. Non-human primate models of focal cortical ischemia for neuronal replacement therapy. J Cereb Blood Flow Metab 2023; 43:1456-1474. [PMID: 37254891 PMCID: PMC10414004 DOI: 10.1177/0271678x231179544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/13/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Despite the high prevalence, stroke remains incurable due to the limited regeneration capacity in the central nervous system. Neuronal replacement strategies are highly diverse biomedical fields that attempt to replace lost neurons by utilizing exogenous stem cell transplants, biomaterials, and direct neuronal reprogramming. Although these approaches have achieved encouraging outcomes mostly in the rodent stroke model, further preclinical validation in non-human primates (NHP) is still needed prior to clinical trials. In this paper, we briefly review the recent progress of promising neuronal replacement therapy in NHP stroke studies. Moreover, we summarize the key characteristics of the NHP as highly valuable translational tools and discuss (1) NHP species and their advantages in terms of genetics, physiology, neuroanatomy, immunology, and behavior; (2) various methods for establishing NHP focal ischemic models to study the regenerative and plastic changes associated with motor functional recovery; and (3) a comprehensive analysis of experimentally and clinically accessible outcomes and a potential adaptive mechanism. Our review specifically aims to facilitate the selection of the appropriate NHP cortical ischemic models and efficient prognostic evaluation methods in preclinical stroke research design of neuronal replacement strategies.
Collapse
Affiliation(s)
- Jiao Mu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zijue Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Gonzalez-Burgos G, Miyamae T, Nishihata Y, Krimer OL, Lewis DA. Strength of Excitatory Inputs to Layer 3 Pyramidal Neurons During Synaptic Pruning in the Monkey Prefrontal Cortex: Relevance for the Pathogenesis of Schizophrenia. Biol Psychiatry 2023; 94:288-296. [PMID: 36736420 PMCID: PMC10394116 DOI: 10.1016/j.biopsych.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND In schizophrenia, layer 3 pyramidal neurons (L3PNs) of the dorsolateral prefrontal cortex exhibit deficits in markers of excitatory synaptic inputs that are thought to disrupt the patterns of neural network activity essential for cognitive function. These deficits are usually interpreted under Irwin Feinberg's hypothesis of altered synaptic pruning, which postulates that normal periadolescent pruning, thought to preferentially eliminate weak/immature synapses, is altered in schizophrenia. However, it remains unknown whether periadolescent pruning on L3PNs in the primate dorsolateral prefrontal cortex selectively eliminates weak excitatory synapses or uniformly eliminates excitatory synapses across the full distribution of synaptic strengths. METHODS To distinguish between these alternative models of synaptic pruning, we assessed the densities of dendritic spines, the site of most excitatory inputs to L3PNs, and the distributions of excitatory synaptic strengths in dorsolateral prefrontal cortex L3PNs from male and female monkeys across the periadolescent period of synaptic pruning. We used patch-clamp methods in acute brain slices to record miniature excitatory synaptic currents and intracellular filling with biocytin to quantify dendritic spines. RESULTS On L3PNs, dendritic spines exhibited the expected age-related decline in density, but mean synaptic strength and the shape of synaptic strength distributions remained stable with age. CONCLUSIONS The absence of age-related differences in mean synaptic strength and synaptic strength distributions supports the model of a uniform pattern of synaptic pruning across the full range of synaptic strengths. The implications of these findings for the pathogenesis and functional consequences of dendritic spine deficits in schizophrenia are discussed.
Collapse
Affiliation(s)
- Guillermo Gonzalez-Burgos
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Takeaki Miyamae
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yosuke Nishihata
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Olga L Krimer
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
12
|
Gonzalez-Burgos G, Miyamae T, Reddy N, Dawkins S, Chen C, Hill A, Enwright J, Ermentrout B, Lewis DA. Mechanisms regulating the properties of inhibition-based gamma oscillations in primate prefrontal and parietal cortices. Cereb Cortex 2023; 33:7754-7770. [PMID: 36971419 PMCID: PMC10267634 DOI: 10.1093/cercor/bhad077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 09/21/2024] Open
Abstract
In primates, the dorsolateral prefrontal (DLPFC) and posterior parietal (PPC) cortices are key nodes in the working memory network. The working memory-related gamma oscillations induced in these areas, predominantly in layer 3, exhibit higher frequency in DLPFC. Although these regional differences in oscillation frequency are likely essential for information transfer between DLPFC and PPC, the mechanisms underlying these differences remain poorly understood. We investigated, in rhesus monkey, the DLPFC and PPC layer 3 pyramidal neuron (L3PN) properties that might regulate oscillation frequency and assessed the effects of these properties simulating oscillations in computational models. We found that GABAAR-mediated synaptic inhibition synchronizes L3PNs in both areas, but analysis of GABAAR mRNA levels and inhibitory synaptic currents suggested similar mechanisms of inhibition-mediated synchrony in DLPFC and PPC. Basal dendrite spine density and AMPAR/NMDAR mRNA levels were higher in DLPFC L3PNs, whereas excitatory synaptic currents were similar between areas. Therefore, synaptically evoked excitation might be stronger in DLPFC L3PNs due to a greater quantity of synapses in basal dendrites, a main target of recurrent excitation. Simulations in computational networks showed that oscillation frequency and power increased with increasing recurrent excitation, suggesting a mechanism by which the DLPFC-PPC differences in oscillation properties are generated.
Collapse
Affiliation(s)
- Guillermo Gonzalez-Burgos
- Department of Psychiatry, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, United States
| | - Takeaki Miyamae
- Department of Psychiatry, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, United States
| | - Nita Reddy
- Department of Psychiatry, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, United States
| | - Sidney Dawkins
- Department of Psychiatry, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, United States
| | - Chloe Chen
- Department of Mathematics, University of Pittsburgh, 512 Thackeray, Pittsburgh, PA 15260, United States
| | - Avyi Hill
- Department of Mathematics, University of Pittsburgh, 512 Thackeray, Pittsburgh, PA 15260, United States
| | - John Enwright
- Department of Psychiatry, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, United States
| | - Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, 512 Thackeray, Pittsburgh, PA 15260, United States
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, United States
| |
Collapse
|
13
|
Moore TL, Medalla M, Ibañez S, Wimmer K, Mojica CA, Killiany RJ, Moss MB, Luebke JI, Rosene DL. Neuronal properties of pyramidal cells in lateral prefrontal cortex of the aging rhesus monkey brain are associated with performance deficits on spatial working memory but not executive function. GeroScience 2023:10.1007/s11357-023-00798-2. [PMID: 37106282 PMCID: PMC10400510 DOI: 10.1007/s11357-023-00798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Age-related declines in cognitive abilities occur as early as middle-age in humans and rhesus monkeys. Specifically, performance by aged individuals on tasks of executive function (EF) and working memory (WM) is characterized by greater frequency of errors, shorter memory spans, increased frequency of perseverative responses, impaired use of feedback and reduced speed of processing. However, how aging precisely differentially impacts specific aspects of these cognitive functions and the distinct brain areas mediating cognition are not well understood. The prefrontal cortex (PFC) is known to mediate EF and WM and is an area that shows a vulnerability to age-related alterations in neuronal morphology. In the current study, we show that performance on EF and WM tasks exhibited significant changes with age, and these impairments correlate with changes in biophysical properties of layer 3 (L3) pyramidal neurons in lateral LPFC (LPFC). Specifically, there was a significant age-related increase in excitability of L3 LPFC pyramidal neurons, consistent with previous studies. Further, this age-related hyperexcitability of LPFC neurons was significantly correlated with age-related decline on a task of WM, but not an EF task. The current study characterizes age-related performance on tasks of WM and EF and provides insight into the neural substrates that may underlie changes in both WM and EF with age.
Collapse
Affiliation(s)
- Tara L Moore
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA.
- Center for Systems Neuroscience, Boston University, MA, 02115, Boston, USA.
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA
- Center for Systems Neuroscience, Boston University, MA, 02115, Boston, USA
| | - Sara Ibañez
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193, Bellaterra, Spain
| | - Klaus Wimmer
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193, Bellaterra, Spain
| | - Chromewell A Mojica
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA
| | - Ronald J Killiany
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA
- Center for Systems Neuroscience, Boston University, MA, 02115, Boston, USA
| | - Mark B Moss
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA
- Center for Systems Neuroscience, Boston University, MA, 02115, Boston, USA
| | - Jennifer I Luebke
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA
- Center for Systems Neuroscience, Boston University, MA, 02115, Boston, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA
- Center for Systems Neuroscience, Boston University, MA, 02115, Boston, USA
| |
Collapse
|
14
|
Medalla M, Mo B, Nasar R, Zhou Y, Park J, Luebke JI. Comparative Features of Calretinin, Calbindin and Parvalbumin Expressing Interneurons in Mouse and Monkey Primary Visual and Frontal Cortices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530269. [PMID: 36909556 PMCID: PMC10002648 DOI: 10.1101/2023.02.27.530269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Much is known about differences in pyramidal cells across cortical areas and species, but studies of interneurons have focused on comparisons within single cortical areas and/or species. Here we quantified the distribution and somato-dendritic morphology of interneurons expressing one or more of the calcium binding proteins (CaBPs) calretinin (CR), calbindin (CB) and/or parvalbumin (PV) in mouse ( Mus musculus ) versus rhesus monkey ( Macaca mulatta ) in two functionally and cytoarchitectonically distinct regions- the primary visual and frontal cortical areas. The density, laminar distribution and morphology of interneurons were assessed in serial brain sections using immunofluorescent multi-labeling, stereological counting and 3D reconstructions. There were significantly higher densities of CB+ and PV+ neurons in visual compared to frontal areas in both species. The main species difference was the significantly greater density and proportion of CR+ interneurons and lower extent of CaBP co-expression in monkey compared to mouse cortices. Cluster analyses revealed that the somato-dendritic morphology of layer 2-3 inhibitory interneurons is more dependent on CaBP expression than on species and area. Only modest effects of species were observed for CB+ and PV+ interneuron morphologies, while CR+ neurons showed no difference. By contrast to pyramidal cells which show highly distinctive area- and species-specific features, here we found more subtle differences in the distribution and features of interneurons across areas and species. These data yield insight into how nuanced differences in the population organization and properties of neurons may underlie specializations in cortical regions to confer species and area-specific functional capacities. Key Points Somato-dendritic morphology of distinct interneurons did not substantially scale and vary across areas and species- differences were mainly dependent on CaBP expression.Cortical diversity in inhibitory function across areas and species is thus likely to be derived from differential laminar distribution and densities of distinct interneuron subclasses.In contrast to pyramidal cells which differ widely in distribution and morphology across areas and species, the features of interneurons appears to be relatively more conserved across areas and species.
Collapse
Affiliation(s)
- Maria Medalla
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St. L10, Boston MA 02118
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215
| | - Bingxin Mo
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St. L10, Boston MA 02118
| | - Rakin Nasar
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St. L10, Boston MA 02118
| | - Yuxin Zhou
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St. L10, Boston MA 02118
| | - Junwoo Park
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St. L10, Boston MA 02118
| | - Jennifer I Luebke
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord St. L10, Boston MA 02118
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215
| |
Collapse
|
15
|
Moore TL, Medalla M, Iba Ez S, Wimmer K, Mojica CA, Killiany RJ, Moss MB, Luebke JI, Rosene DL. Neuronal properties of pyramidal cells in lateral prefrontal cortex of the aging rhesus monkey brain are associated with performance deficits on spatial working memory but not executive function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527321. [PMID: 36798388 PMCID: PMC9934587 DOI: 10.1101/2023.02.07.527321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Age-related declines in cognitive abilities occur as early as middle-age in humans and rhesus monkeys. Specifically, performance by aged individuals on tasks of executive function (EF) and working memory (WM) is characterized by greater frequency of errors, shorter memory spans, increased frequency of perseverative responses, impaired use of feedback and reduced speed of processing. However, how aging precisely differentially impacts specific aspects of these cognitive functions and the distinct brain areas mediating cognition are not well understood. The prefrontal cortex (PFC) is known to mediate EF and WM and is an area that shows a vulnerability to age-related alterations in neuronal morphology. In the current study, we show that performance on EF and WM tasks exhibited significant changes with age and these impairments correlate with changes in biophysical properties of L3 pyramidal neurons in lateral LPFC (LPFC). Specifically, there was a significant age-related increase in excitability of Layer 3 LPFC pyramidal neurons, consistent with previous studies. Further, this age-related hyperexcitability of LPFC neurons was significantly correlated with age-related decline on a task of WM, but not an EF task. The current study characterizes age-related performance on tasks of WM and EF and provides insight into the neural substrates that may underlie changes in both WM and EF with age.
Collapse
|
16
|
Garnier Artiñano T, Andalibi V, Atula I, Maestri M, Vanni S. Biophysical parameters control signal transfer in spiking network. Front Comput Neurosci 2023; 17:1011814. [PMID: 36761840 PMCID: PMC9905747 DOI: 10.3389/fncom.2023.1011814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction Information transmission and representation in both natural and artificial networks is dependent on connectivity between units. Biological neurons, in addition, modulate synaptic dynamics and post-synaptic membrane properties, but how these relate to information transmission in a population of neurons is still poorly understood. A recent study investigated local learning rules and showed how a spiking neural network can learn to represent continuous signals. Our study builds on their model to explore how basic membrane properties and synaptic delays affect information transfer. Methods The system consisted of three input and output units and a hidden layer of 300 excitatory and 75 inhibitory leaky integrate-and-fire (LIF) or adaptive integrate-and-fire (AdEx) units. After optimizing the connectivity to accurately replicate the input patterns in the output units, we transformed the model to more biologically accurate units and included synaptic delay and concurrent action potential generation in distinct neurons. We examined three different parameter regimes which comprised either identical physiological values for both excitatory and inhibitory units (Comrade), more biologically accurate values (Bacon), or the Comrade regime whose output units were optimized for low reconstruction error (HiFi). We evaluated information transmission and classification accuracy of the network with four distinct metrics: coherence, Granger causality, transfer entropy, and reconstruction error. Results Biophysical parameters showed a major impact on information transfer metrics. The classification was surprisingly robust, surviving very low firing and information rates, whereas information transmission overall and particularly low reconstruction error were more dependent on higher firing rates in LIF units. In AdEx units, the firing rates were lower and less information was transferred, but interestingly the highest information transmission rates were no longer overlapping with the highest firing rates. Discussion Our findings can be reflected on the predictive coding theory of the cerebral cortex and may suggest information transfer qualities as a phenomenological quality of biological cells.
Collapse
Affiliation(s)
- Tomás Garnier Artiñano
- Helsinki University Hospital (HUS) Neurocenter, Neurology, Helsinki University Hospital, Helsinki, Finland,Department of Neurosciences, Clinicum, University of Helsinki, Helsinki, Finland
| | - Vafa Andalibi
- Department of Computer Science, Indiana University Bloomington, Bloomington, IN, United States
| | - Iiris Atula
- Helsinki University Hospital (HUS) Neurocenter, Neurology, Helsinki University Hospital, Helsinki, Finland,Department of Neurosciences, Clinicum, University of Helsinki, Helsinki, Finland
| | - Matteo Maestri
- Helsinki University Hospital (HUS) Neurocenter, Neurology, Helsinki University Hospital, Helsinki, Finland,Department of Neurosciences, Clinicum, University of Helsinki, Helsinki, Finland,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Simo Vanni
- Helsinki University Hospital (HUS) Neurocenter, Neurology, Helsinki University Hospital, Helsinki, Finland,Department of Neurosciences, Clinicum, University of Helsinki, Helsinki, Finland,Department of Physiology, Medicum, University of Helsinki, Helsinki, Finland,*Correspondence: Simo Vanni,
| |
Collapse
|
17
|
Kimoto S, Hashimoto T, Berry KJ, Tsubomoto M, Yamaguchi Y, Enwright JF, Chen K, Kawabata R, Kikuchi M, Kishimoto T, Lewis DA. Expression of actin- and oxidative phosphorylation-related transcripts across the cortical visuospatial working memory network in unaffected comparison and schizophrenia subjects. Neuropsychopharmacology 2022; 47:2061-2070. [PMID: 35034100 PMCID: PMC9556568 DOI: 10.1038/s41386-022-01274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/09/2022]
Abstract
Visuospatial working memory (vsWM), which is impaired in schizophrenia (SZ), is mediated by a distributed cortical network. In one node of this network, the dorsolateral prefrontal cortex (DLPFC), altered expression of transcripts for actin assembly and mitochondrial oxidative phosphorylation (OXPHOS) have been reported in SZ. To understand the relationship between these processes, and the extent to which similar alterations are present in other regions of vsWM network in SZ, a subset of actin- (CDC42, BAIAP2, ARPC3, and ARPC4) and OXPHOS-related (ATP5H, COX4I1, COX7B, and NDUFB3) transcripts were quantified in DLPFC by RNA sequencing in 139 SZ and unaffected comparison (UC) subjects, and in DLPFC and three other regions of the cortical vsWM network by qPCR in 20 pairs of SZ and UC subjects. By RNA sequencing, levels of actin- and OXPHOS-related transcripts were significantly altered in SZ, and robustly correlated in both UC and SZ subject groups. By qPCR, cross-regional expression patterns of these transcripts in UC subjects were consistent with greater actin assembly in DLPFC and higher OXPHOS activity in primary visual cortex (V1). In SZ, CDC42 and ARPC4 levels were lower in all regions, BAIAP2 levels higher only in V1, and ARPC3 levels unaltered across regions. All OXPHOS-related transcript levels were lower in SZ, with the disease effect decreasing from posterior to anterior regions. The differential alterations in markers of actin assembly and energy production across regions of the cortical vsWM network in SZ suggest that each region may make specific contributions to vsWM impairments in the illness.
Collapse
Affiliation(s)
- Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, 634-8521, Japan
- Department of Neuropsychiatry, Wakayama Medical University School of Medicine, Wakayama, 641-8509, Japan
| | - Takanori Hashimoto
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Research Center for Child Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Kimberly J Berry
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Makoto Tsubomoto
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yasunari Yamaguchi
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, 634-8521, Japan
- Department of Neuropsychiatry, Wakayama Medical University School of Medicine, Wakayama, 641-8509, Japan
| | - John F Enwright
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kehui Chen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Rika Kawabata
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
- Research Center for Child Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, 634-8521, Japan
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
18
|
Ljungquist B, Akram MA, Ascoli GA. Large scale similarity search across digital reconstructions of neural morphology. Neurosci Res 2022; 181:39-45. [PMID: 35580795 PMCID: PMC9960175 DOI: 10.1016/j.neures.2022.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/12/2022] [Accepted: 05/12/2022] [Indexed: 01/18/2023]
Abstract
Most functions of the nervous system depend on neuronal and glial morphology. Continuous advances in microscopic imaging and tracing software have provided an increasingly abundant availability of 3D reconstructions of arborizing dendrites, axons, and processes, allowing their detailed study. However, efficient, large-scale methods to rank neural morphologies by similarity to an archetype are still lacking. Using the NeuroMorpho.Org database, we present a similarity search software enabling fast morphological comparison of hundreds of thousands of neural reconstructions from any species, brain regions, cell types, and preparation protocols. We compared the performance of different morphological measurements: 1) summary morphometrics calculated by L-Measure, 2) persistence vectors, a vectorized descriptor of branching structure, 3) the combination of the two. In all cases, we also investigated the impact of applying dimensionality reduction using principal component analysis (PCA). We assessed qualitative performance by gauging the ability to rank neurons in order of visual similarity. Moreover, we quantified information content by examining explained variance and benchmarked the ability to identify occasional duplicate reconstructions of the same specimen. We also compared two different methods for selecting the number of principal components using this benchmark. The results indicate that combining summary morphometrics and persistence vectors with applied PCA using maximum likelihood based automatic dimensionality selection provides an information rich characterization that enables efficient and precise comparison of neural morphology. We have deployed the similarity search as open-source online software both through a user-friendly graphical interface and as an API for programmatic access.
Collapse
Affiliation(s)
- Bengt Ljungquist
- Center for Neural Informatics, Structures, & Plasticity and Bioengineering Department, George Mason University, Mail Stop 2A1, 4400 University Dr, Fairfax, VA, United States of America
| | - Masood A Akram
- Center for Neural Informatics, Structures, & Plasticity and Bioengineering Department, George Mason University, Mail Stop 2A1, 4400 University Dr, Fairfax, VA, United States of America
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures, & Plasticity and Bioengineering Department, George Mason University, Mail Stop 2A1, 4400 University Dr, Fairfax, VA, United States of America.
| |
Collapse
|
19
|
Scholtens LH, Pijnenburg R, de Lange SC, Huitinga I, van den Heuvel MP. Common Microscale and Macroscale Principles of Connectivity in the Human Brain. J Neurosci 2022; 42:4147-4163. [PMID: 35422441 PMCID: PMC9121834 DOI: 10.1523/jneurosci.1572-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
The brain requires efficient information transfer between neurons and large-scale brain regions. Brain connectivity follows predictable organizational principles. At the cellular level, larger supragranular pyramidal neurons have larger, more branched dendritic trees, more synapses, and perform more complex computations; at the macroscale, region-to-region connections display a diverse architecture with highly connected hub areas facilitating complex information integration and computation. Here, we explore the hypothesis that the branching structure of large-scale region-to-region connectivity follows similar organizational principles as the neuronal scale. We examine microscale connectivity of basal dendritic trees of supragranular pyramidal neurons (300+) across 10 cortical areas in five human donor brains (1 male, 4 female). Dendritic complexity was quantified as the number of branch points, tree length, spine count, spine density, and overall branching complexity. High-resolution diffusion-weighted MRI was used to construct white matter trees of corticocortical wiring. Examining complexity of the resulting white matter trees using the same measures as for dendritic trees shows heteromodal association areas to have larger, more complex white matter trees than primary areas (p < 0.0001) and macroscale complexity to run in parallel with microscale measures, in terms of number of inputs (r = 0.677, p = 0.032), branch points (r = 0.797, p = 0.006), tree length (r = 0.664, p = 0.036), and branching complexity (r = 0.724, p = 0.018). Our findings support the integrative theory that brain connectivity follows similar principles of connectivity at neuronal and macroscale levels and provide a framework to study connectivity changes in brain conditions at multiple levels of organization.SIGNIFICANCE STATEMENT Within the human brain, cortical areas are involved in a wide range of processes, requiring different levels of information integration and local computation. At the cellular level, these regional differences reflect a predictable organizational principle with larger, more complexly branched supragranular pyramidal neurons in higher order regions. We hypothesized that the 3D branching structure of macroscale corticocortical connections follows the same organizational principles as the cellular scale. Comparing branching complexity of dendritic trees of supragranular pyramidal neurons and of MRI-based regional white matter trees of macroscale connectivity, we show that macroscale branching complexity is larger in higher order areas and that microscale and macroscale complexity go hand in hand. Our findings contribute to a multiscale integrative theory of brain connectivity.
Collapse
Affiliation(s)
- Lianne H Scholtens
- Complex Traits Genetics Department, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Rory Pijnenburg
- Complex Traits Genetics Department, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Siemon C de Lange
- Complex Traits Genetics Department, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Martijn P van den Heuvel
- Complex Traits Genetics Department, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Child Psychiatry, Amsterdam Neuroscience, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
20
|
Medalla M, Chang W, Ibañez S, Guillamon-Vivancos T, Nittmann M, Kapitonava A, Busch SE, Moore TL, Rosene DL, Luebke JI. Layer-specific pyramidal neuron properties underlie diverse anterior cingulate cortical motor and limbic networks. Cereb Cortex 2022; 32:2170-2196. [PMID: 34613380 PMCID: PMC9113240 DOI: 10.1093/cercor/bhab347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
The laminar cellular and circuit mechanisms by which the anterior cingulate cortex (ACC) exerts flexible control of motor and affective information for goal-directed behavior have not been elucidated. Using multimodal tract-tracing, in vitro patch-clamp recording and computational approaches in rhesus monkeys (M. mulatta), we provide evidence that specialized motor and affective network dynamics can be conferred by layer-specific biophysical and structural properties of ACC pyramidal neurons targeting two key downstream structures -the dorsal premotor cortex (PMd) and the amygdala (AMY). AMY-targeting neurons exhibited significant laminar differences, with L5 more excitable (higher input resistance and action potential firing rates) than L3 neurons. Between-pathway differences were found within L5, with AMY-targeting neurons exhibiting greater excitability, apical dendritic complexity, spine densities, and diversity of inhibitory inputs than PMd-targeting neurons. Simulations using a pyramidal-interneuron network model predict that these layer- and pathway-specific single-cell differences contribute to distinct network oscillatory dynamics. L5 AMY-targeting networks are more tuned to slow oscillations well-suited for affective and contextual processing timescales, while PMd-targeting networks showed strong beta/gamma synchrony implicated in rapid sensorimotor processing. These findings are fundamental to our broad understanding of how layer-specific cellular and circuit properties can drive diverse laminar activity found in flexible behavior.
Collapse
Affiliation(s)
- Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Wayne Chang
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Sara Ibañez
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Teresa Guillamon-Vivancos
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Instituto de Neurociencias de Alicante, Alicante, Spain
| | - Mathias Nittmann
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Anastasia Kapitonava
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Silas E Busch
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Tara L Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Jennifer I Luebke
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
21
|
Jin L, Behabadi BF, Jadi MP, Ramachandra CA, Mel BW. Classical-Contextual Interactions in V1 May Rely on Dendritic Computations. Neuroscience 2022; 489:234-250. [PMID: 35272004 PMCID: PMC9049952 DOI: 10.1016/j.neuroscience.2022.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 12/20/2022]
Abstract
A signature feature of the neocortex is the dense network of horizontal connections (HCs) through which pyramidal neurons (PNs) exchange "contextual" information. In primary visual cortex (V1), HCs are thought to facilitate boundary detection, a crucial operation for object recognition, but how HCs modulate PN responses to boundary cues within their classical receptive fields (CRF) remains unknown. We began by "asking" natural images, through a structured data collection and ground truth labeling process, what function a V1 cell should use to compute boundary probability from aligned edge cues within and outside its CRF. The "answer" was an asymmetric 2-D sigmoidal function, whose nonlinear form provides the first normative account for the "multiplicative" center-flanker interactions previously reported in V1 neurons (Kapadia et al., 1995, 2000; Polat et al., 1998). Using a detailed compartmental model, we then show that this boundary-detecting classical-contextual interaction function can be computed by NMDAR-dependent spatial synaptic interactions within PN dendrites - the site where classical and contextual inputs first converge in the cortex. In additional simulations, we show that local interneuron circuitry activated by HCs can powerfully leverage the nonlinear spatial computing capabilities of PN dendrites, providing the cortex with a highly flexible substrate for integration of classical and contextual information.
Collapse
Affiliation(s)
- Lei Jin
- USC Neuroscience Graduate Program, United States
| | | | | | | | - Bartlett W Mel
- USC Neuroscience Graduate Program, United States; Department of Biomedical Engineering, University of Southern California, United States.
| |
Collapse
|
22
|
Enwright III JF, Arion D, MacDonald WA, Elbakri R, Pan Y, Vyas G, Berndt A, Lewis DA. Differential gene expression in layer 3 pyramidal neurons across 3 regions of the human cortical visual spatial working memory network. Cereb Cortex 2022; 32:5216-5229. [PMID: 35106549 PMCID: PMC9667185 DOI: 10.1093/cercor/bhac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/03/2023] Open
Abstract
Visual spatial working memory (vsWM) is mediated by a distributed cortical network composed of multiple nodes, including primary visual (V1), posterior parietal (PPC), and dorsolateral prefrontal (DLPFC) cortices. Feedforward and feedback information is transferred among these nodes via projections furnished by pyramidal neurons (PNs) located primarily in cortical layer 3. Morphological and electrophysiological differences among layer 3 PNs across these nodes have been reported; however, the transcriptional signatures underlying these differences have not been examined in the human brain. Here we interrogated the transcriptomes of layer 3 PNs from 39 neurotypical human subjects across 3 critical nodes of the vsWM network. Over 8,000 differentially expressed genes were detected, with more than 6,000 transcriptional differences present between layer 3 PNs in V1 and those in PPC and DLPFC. Additionally, over 600 other genes differed in expression along the rostral-to-caudal hierarchy formed by these 3 nodes. Moreover, pathway analysis revealed enrichment of genes in V1 related to circadian rhythms and in DLPFC of genes involved in synaptic plasticity. Overall, these results show robust regional differences in the transcriptome of layer 3 PNs, which likely contribute to regional specialization in their morphological and physiological features and thus in their functional contributions to vsWM.
Collapse
Affiliation(s)
- John F Enwright III
- Department of Psychiatry, University of Pittsburgh Thomas Detre Hall 3811 O'Hara Street Pittsburgh, PA 15213 United States
| | - Dominique Arion
- Department of Psychiatry, University of Pittsburgh Thomas Detre Hall 3811 O'Hara Street Pittsburgh, PA 15213 United States
| | - William A MacDonald
- Department of Pediatrics UPMC Children's Hospital of Pittsburgh 4401 Penn Avenue Pittsburgh, PA 15224-1334 United States,Health Sciences Sequencing Core 4401 Penn Avenue Rangos Research Building 8th Floor Pittsburgh, PA 15224 United States
| | - Rania Elbakri
- Department of Pediatrics UPMC Children's Hospital of Pittsburgh 4401 Penn Avenue Pittsburgh, PA 15224-1334 United States,Health Sciences Sequencing Core 4401 Penn Avenue Rangos Research Building 8th Floor Pittsburgh, PA 15224 United States
| | - Yinghong Pan
- The Institute for Precision Medicine 204 Craft Avenue, Room A412 Pittsburgh, PA 15213 United States
| | - Gopi Vyas
- The Institute for Precision Medicine 204 Craft Avenue, Room A412 Pittsburgh, PA 15213 United States
| | - Annerose Berndt
- The Institute for Precision Medicine 204 Craft Avenue, Room A412 Pittsburgh, PA 15213 United States
| | - David A Lewis
- Address correspondence to David A. Lewis, Department of Psychiatry, University of Pittsburgh, Biomedical Science Tower W1654, 3811 O’Hara Street, Pittsburgh, PA 15213-2593, United States.
| |
Collapse
|
23
|
Tsolias A, Medalla M. Muscarinic Acetylcholine Receptor Localization on Distinct Excitatory and Inhibitory Neurons Within the ACC and LPFC of the Rhesus Monkey. Front Neural Circuits 2022; 15:795325. [PMID: 35087381 PMCID: PMC8786743 DOI: 10.3389/fncir.2021.795325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Acetylcholine (ACh) can act on pre- and post-synaptic muscarinic receptors (mAChR) in the cortex to influence a myriad of cognitive processes. Two functionally-distinct regions of the prefrontal cortex-the lateral prefrontal cortex (LPFC) and the anterior cingulate cortex (ACC)-are differentially innervated by ascending cholinergic pathways yet, the nature and organization of prefrontal-cholinergic circuitry in primates are not well understood. Using multi-channel immunohistochemical labeling and high-resolution microscopy, we found regional and laminar differences in the subcellular localization and the densities of excitatory and inhibitory subpopulations expressing m1 and m2 muscarinic receptors, the two predominant cortical mAChR subtypes, in the supragranular layers of LPFC and ACC in rhesus monkeys (Macaca mulatta). The subset of m1+/m2+ expressing SMI-32+ pyramidal neurons labeled in layer 3 (L3) was denser in LPFC than in ACC, while m1+/m2+ SMI-32+ neurons co-expressing the calcium-binding protein, calbindin (CB) was greater in ACC. Further, we found between-area differences in laminar m1+ dendritic expression, and m2+ presynaptic localization on cortico-cortical (VGLUT1+) and sub-cortical inputs (VGLUT2+), suggesting differential cholinergic modulation of top-down vs. bottom-up inputs in the two areas. While almost all inhibitory interneurons-identified by their expression of parvalbumin (PV+), CB+, and calretinin (CR+)-expressed m1+, the localization of m2+ differed by subtype and area. The ACC exhibited a greater proportion of m2+ inhibitory neurons compared to the LPFC and had a greater density of presynaptic m2+ localized on inhibitory (VGAT+) inputs targeting proximal somatodendritic compartments and axon initial segments of L3 pyramidal neurons. These data suggest a greater capacity for m2+-mediated cholinergic suppression of inhibition in the ACC compared to the LPFC. The anatomical localization of muscarinic receptors on ACC and LPFC micro-circuits shown here contributes to our understanding of diverse cholinergic neuromodulation of functionally-distinct prefrontal areas involved in goal-directed behavior, and how these interactions maybe disrupted in neuropsychiatric and neurological conditions.
Collapse
Affiliation(s)
- Alexandra Tsolias
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
24
|
Efficient metadata mining of web-accessible neural morphologies. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 168:94-102. [PMID: 34022302 PMCID: PMC8602463 DOI: 10.1016/j.pbiomolbio.2021.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/09/2021] [Accepted: 05/12/2021] [Indexed: 01/03/2023]
Abstract
Advancements in neuroscience research have led to steadily accelerating data production and sharing. The online community repository of neural reconstructions NeuroMorpho.Org grew from fewer than 1000 digitally traced neurons in 2006 to more than 140,000 cells today, including glia that now constitute 10.1% of the content. Every reconstruction consists of a detailed 3D representation of branch geometry and connectivity in a standardized format, from which a collection of morphometric features is extracted and stored. Moreover, each entry in the database is accompanied by rich metadata annotation describing the animal subject, anatomy, and experimental details. The rapid expansion of this resource in the past decade was accompanied by a parallel rise in the complexity of the available information, creating both opportunities and challenges for knowledge mining. Here, we introduce a new summary reporting functionality, allowing NeuroMorpho.Org users to efficiently download digests of metadata and morphometrics from multiple groups of similar cells for further analysis. We demonstrate the capabilities of the tool for both glia and neurons and present an illustrative statistical analysis of the resulting data.
Collapse
|
25
|
Ahmadian Y, Miller KD. What is the dynamical regime of cerebral cortex? Neuron 2021; 109:3373-3391. [PMID: 34464597 PMCID: PMC9129095 DOI: 10.1016/j.neuron.2021.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 01/13/2023]
Abstract
Many studies have shown that the excitation and inhibition received by cortical neurons remain roughly balanced across many conditions. A key question for understanding the dynamical regime of cortex is the nature of this balancing. Theorists have shown that network dynamics can yield systematic cancellation of most of a neuron's excitatory input by inhibition. We review a wide range of evidence pointing to this cancellation occurring in a regime in which the balance is loose, meaning that the net input remaining after cancellation of excitation and inhibition is comparable in size with the factors that cancel, rather than tight, meaning that the net input is very small relative to the canceling factors. This choice of regime has important implications for cortical functional responses, as we describe: loose balance, but not tight balance, can yield many nonlinear population behaviors seen in sensory cortical neurons, allow the presence of correlated variability, and yield decrease of that variability with increasing external stimulus drive as observed across multiple cortical areas.
Collapse
Affiliation(s)
- Yashar Ahmadian
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Kenneth D Miller
- Center for Theoretical Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, and Department of Neuroscience, College of Physicians and Surgeons and Morton B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
26
|
Freire-Cobo C, Edler MK, Varghese M, Munger E, Laffey J, Raia S, In SS, Wicinski B, Medalla M, Perez SE, Mufson EJ, Erwin JM, Guevara EE, Sherwood CC, Luebke JI, Lacreuse A, Raghanti MA, Hof PR. Comparative neuropathology in aging primates: A perspective. Am J Primatol 2021; 83:e23299. [PMID: 34255875 PMCID: PMC8551009 DOI: 10.1002/ajp.23299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 12/27/2022]
Abstract
While humans exhibit a significant degree of neuropathological changes associated with deficits in cognitive and memory functions during aging, non-human primates (NHP) present with more variable expressions of pathological alterations among individuals and species. As such, NHP with long life expectancy in captivity offer an opportunity to study brain senescence in the absence of the typical cellular pathology caused by age-related neurodegenerative illnesses commonly seen in humans. Age-related changes at neuronal population, single cell, and synaptic levels have been well documented in macaques and marmosets, while age-related and Alzheimer's disease-like neuropathology has been characterized in additional species including lemurs as well as great apes. We present a comparative overview of existing neuropathologic observations across the primate order, including classic age-related changes such as cell loss, amyloid deposition, amyloid angiopathy, and tau accumulation. We also review existing cellular and ultrastructural data on neuronal changes, such as dendritic attrition and spine alterations, synaptic loss and pathology, and axonal and myelin pathology, and discuss their repercussions on cellular and systems function and cognition.
Collapse
Affiliation(s)
- Carmen Freire-Cobo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Melissa K Edler
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emily Munger
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Jessie Laffey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sophia Raia
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Selena S In
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Center for Systems Neuroscience, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Joseph M Erwin
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Elaine E Guevara
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Jennifer I Luebke
- Department of Anatomy and Neurobiology, Center for Systems Neuroscience, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Agnès Lacreuse
- Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mary A Raghanti
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
27
|
Postnatal development of inner lamina II interneurons of the rat medullary dorsal horn. Pain 2021; 163:984-998. [PMID: 34433770 DOI: 10.1097/j.pain.0000000000002459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Pain processing in young mammals is immature. Despite the central role of the medullary dorsal horn (MDH) in processing orofacial sensory information, the maturation of the neurons within the MDH has been largely overlooked. Combining in vitro electrophysiological recordings and 3D morphological analysis over the first postnatal month in rats, we investigated the age-dependent development of the neurons within the inner lamina II (IIi) of the MDH. We show the lamina IIi neuronal population transition into a more hyperpolarized state, with modification of the action potential waveform, and a shift from single spiking, at early postnatal ages, to tonic firing and initial bursting at later stages. These physiological changes are associated with a strong structural remodelling of the neuronal morphology with most of the modifications occurring after the third postnatal week. Among the lamina IIi neuronal population, the subpopulation of interneurons expressing the γ isoform of the protein kinase C (PKCγ+) are key elements for the circuits underlying facial mechanical allodynia. How do they develop from the rest of the lamina IIi constitute an important question that remained to be addressed. Here, we show that PKCγ+ interneurons display electrophysiological changes over time comparable with the PKCγ- population. However, they show a distinctive increase of the soma volume and primary branches length, as opposed to the PKCγ- population. Together, our data demonstrate a novel pattern of late postnatal maturation of lamina IIi interneurons, with a spotlight on PKCγ+ interneurons, that may be relevant for the development of orofacial sensitivity.
Collapse
|
28
|
Lee EK, Balasubramanian H, Tsolias A, Anakwe SU, Medalla M, Shenoy KV, Chandrasekaran C. Non-linear dimensionality reduction on extracellular waveforms reveals cell type diversity in premotor cortex. eLife 2021; 10:e67490. [PMID: 34355695 PMCID: PMC8452311 DOI: 10.7554/elife.67490] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Cortical circuits are thought to contain a large number of cell types that coordinate to produce behavior. Current in vivo methods rely on clustering of specified features of extracellular waveforms to identify putative cell types, but these capture only a small amount of variation. Here, we develop a new method (WaveMAP) that combines non-linear dimensionality reduction with graph clustering to identify putative cell types. We apply WaveMAP to extracellular waveforms recorded from dorsal premotor cortex of macaque monkeys performing a decision-making task. Using WaveMAP, we robustly establish eight waveform clusters and show that these clusters recapitulate previously identified narrow- and broad-spiking types while revealing previously unknown diversity within these subtypes. The eight clusters exhibited distinct laminar distributions, characteristic firing rate patterns, and decision-related dynamics. Such insights were weaker when using feature-based approaches. WaveMAP therefore provides a more nuanced understanding of the dynamics of cell types in cortical circuits.
Collapse
Affiliation(s)
- Eric Kenji Lee
- Psychological and Brain Sciences, Boston UniversityBostonUnited States
| | - Hymavathy Balasubramanian
- Bernstein Center for Computational Neuroscience, Bernstein Center for Computational NeuroscienceBerlinGermany
| | - Alexandra Tsolias
- Department of Anatomy and Neurobiology, Boston UniversityBostonUnited States
| | | | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston UniversityBostonUnited States
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford UniversityStanfordUnited States
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Department of Neurobiology, Stanford UniversityStanfordUnited States
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
- Bio-X Institute, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Chandramouli Chandrasekaran
- Psychological and Brain Sciences, Boston UniversityBostonUnited States
- Department of Anatomy and Neurobiology, Boston UniversityBostonUnited States
- Center for Systems Neuroscience, Boston UniversityBostonUnited States
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| |
Collapse
|
29
|
Benavides-Piccione R, Regalado-Reyes M, Fernaud-Espinosa I, Kastanauskaite A, Tapia-González S, León-Espinosa G, Rojo C, Insausti R, Segev I, DeFelipe J. Differential Structure of Hippocampal CA1 Pyramidal Neurons in the Human and Mouse. Cereb Cortex 2021; 30:730-752. [PMID: 31268532 DOI: 10.1093/cercor/bhz122] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Abstract
Pyramidal neurons are the most common cell type and are considered the main output neuron in most mammalian forebrain structures. In terms of function, differences in the structure of the dendrites of these neurons appear to be crucial in determining how neurons integrate information. To further shed light on the structure of the human pyramidal neurons we investigated the geometry of pyramidal cells in the human and mouse CA1 region-one of the most evolutionary conserved archicortical regions, which is critically involved in the formation, consolidation, and retrieval of memory. We aimed to assess to what extent neurons corresponding to a homologous region in different species have parallel morphologies. Over 100 intracellularly injected and 3D-reconstructed cells across both species revealed that dendritic and axonal morphologies of human cells are not only larger but also have structural differences, when compared to mouse. The results show that human CA1 pyramidal cells are not a stretched version of mouse CA1 cells. These results indicate that there are some morphological parameters of the pyramidal cells that are conserved, whereas others are species-specific.
Collapse
Affiliation(s)
- Ruth Benavides-Piccione
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28002, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain
| | - Mamen Regalado-Reyes
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain
| | - Isabel Fernaud-Espinosa
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain
| | - Asta Kastanauskaite
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain
| | - Silvia Tapia-González
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain
| | - Gonzalo León-Espinosa
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain.,Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo Centro de Estudios Universitarios (CEU), Madrid 28925, Spain
| | - Concepcion Rojo
- Sección Departamental de Anatomía y Embriología (veterinaria). Facultad de Veterinaria. Universidad Complutense de Madrid 28040, Spain
| | - Ricardo Insausti
- Laboratorio de Neuroanatomía Humana, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete 02008, Spain
| | - Idan Segev
- Department of Neurobiology, Hebrew University of Jerusalem, Jerusalem 9190501, Israel.,Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Javier DeFelipe
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28002, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain
| |
Collapse
|
30
|
Calderazzo SM, Busch SE, Moore TL, Rosene DL, Medalla M. Distribution and overlap of entorhinal, premotor, and amygdalar connections in the monkey anterior cingulate cortex. J Comp Neurol 2021; 529:885-904. [PMID: 32677044 PMCID: PMC8214921 DOI: 10.1002/cne.24986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/17/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022]
Abstract
The anterior cingulate cortex (ACC) is important for decision-making as it integrates motor plans with affective and contextual limbic information. Disruptions in these networks have been observed in depression, bipolar disorder, and post-traumatic stress disorder. Yet, overlap of limbic and motor connections within subdivisions of the ACC is not well understood. Hence, we administered a combination of retrograde and anterograde tracers into structures important for contextual memories (entorhinal cortex), affective processing (amygdala), and motor planning (dorsal premotor cortex) to assess overlap of labeled projection neurons from (outputs) and axon terminals to (inputs) the ACC of adult rhesus monkeys (Macaca mulatta). Our data show that entorhinal and dorsal premotor cortical (dPMC) connections are segregated across ventral (A25, A24a) and dorsal (A24b,c) subregions of the ACC, while amygdalar connections are more evenly distributed across subregions. Among all areas, the rostral ACC (A32) had the lowest relative density of connections with all three regions. In the ventral ACC, entorhinal and amygdalar connections strongly overlap across all layers, especially in A25. In the dorsal ACC, outputs to dPMC and the amygdala strongly overlap in deep layers. However, dPMC input to the dorsal ACC was densest in deep layers, while amygdalar inputs predominantly localized in upper layers. These connection patterns are consistent with diverse roles of the dorsal ACC in motor evaluation and the ventral ACC in affective and contextual memory. Further, distinct laminar circuits suggest unique interactions within specific ACC compartments that are likely important for the temporal integration of motor and limbic information during flexible goal-directed behavior.
Collapse
Affiliation(s)
- Samantha M. Calderazzo
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| | - Silas E. Busch
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Tara L. Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| | - Douglas L. Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| |
Collapse
|
31
|
Mihaljević B, Larrañaga P, Bielza C. Comparing the Electrophysiology and Morphology of Human and Mouse Layer 2/3 Pyramidal Neurons With Bayesian Networks. Front Neuroinform 2021; 15:580873. [PMID: 33679362 PMCID: PMC7930221 DOI: 10.3389/fninf.2021.580873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Pyramidal neurons are the most common neurons in the cerebral cortex. Understanding how they differ between species is a key challenge in neuroscience. We compared human temporal cortex and mouse visual cortex pyramidal neurons from the Allen Cell Types Database in terms of their electrophysiology and dendritic morphology. We found that, among other differences, human pyramidal neurons had a higher action potential threshold voltage, a lower input resistance, and larger dendritic arbors. We learned Gaussian Bayesian networks from the data in order to identify correlations and conditional independencies between the variables and compare them between the species. We found strong correlations between electrophysiological and morphological variables in both species. In human cells, electrophysiological variables were correlated even with morphological variables that are not directly related to dendritic arbor size or diameter, such as mean bifurcation angle and mean branch tortuosity. Cortical depth was correlated with both electrophysiological and morphological variables in both species, and its effect on electrophysiology could not be explained in terms of the morphological variables. For some variables, the effect of cortical depth was opposite in the two species. Overall, the correlations among the variables differed strikingly between human and mouse neurons. Besides identifying correlations and conditional independencies, the learned Bayesian networks might be useful for probabilistic reasoning regarding the morphology and electrophysiology of pyramidal neurons.
Collapse
Affiliation(s)
- Bojan Mihaljević
- Computational Intelligence Group, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Boadilla del Monte, Spain
| | | | | |
Collapse
|
32
|
Differential Circuit Mechanisms of Young and Aged Visual Cortex in the Mammalian Brain. NEUROSCI 2021. [DOI: 10.3390/neurosci2010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The main goal of this review is to summarize and discuss (1) age-dependent structural reorganization of mammalian visual cortical circuits underlying complex visual behavior functions in primary visual cortex (V1) and multiple extrastriate visual areas, and (2) current evidence supporting the notion of compensatory mechanisms in aged visual circuits as well as the use of rehabilitative therapy for the recovery of neural plasticity in normal and diseased aging visual circuit mechanisms in different species. It is well known that aging significantly modulates both the structural and physiological properties of visual cortical neurons in V1 and other visual cortical areas in various species. Compensatory aged neural mechanisms correlate with the complexity of visual functions; however, they do not always result in major circuit alterations resulting in age-dependent decline in performance of a visual task or neurodegenerative disorders. Computational load and neural processing gradually increase with age, and the complexity of compensatory mechanisms correlates with the intricacy of higher form visual perceptions that are more evident in higher-order visual areas. It is particularly interesting to note that the visual perceptual processing of certain visual behavior functions does not change with age. This review aims to comprehensively discuss the effect of normal aging on neuroanatomical alterations that underlie critical visual functions and more importantly to highlight differences between compensatory mechanisms in aged neural circuits and neural processes related to visual disorders. This type of approach will further enhance our understanding of inter-areal and cortico-cortical connectivity of visual circuits in normal aging and identify major circuit alterations that occur in different visual deficits, thus facilitating the design and evaluation of potential rehabilitation therapies as well as the assessment of the extent of their rejuvenation.
Collapse
|
33
|
Galvin VC, Yang S, Lowet AS, Datta D, Duque A, Arnsten AFT, Wang M. M1 receptors interacting with NMDAR enhance delay-related neuronal firing and improve working memory performance. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2. [PMID: 35098156 PMCID: PMC8794314 DOI: 10.1016/j.crneur.2021.100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The recurrent excitatory circuits in dlPFC underlying working memory are known to require activation of glutamatergic NMDA receptors (NMDAR). The neurons in these circuits also rely on acetylcholine to maintain persistent activity, with evidence for actions at both nicotinic α7 receptors and muscarinic M1 receptors (M1R). It is known that nicotinic α7 receptors interact with NMDAR in these circuits, but the interactions between M1R and NMDAR on dlPFC neuronal activity are unknown. Here, we investigated whether M1Rs contribute to the permissive effects of ACh in dlPFC circuitry underlying working memory via interactions with NMDA receptors. We tested interactions between M1Rs and NMDARs in vivo on single neuron activity in rhesus macaques performing a working memory task, as well as on working memory behavior in rodents following infusion of M1R and NMDAR compounds into mPFC. We report that M1R antagonists block the enhancing effects of NMDA application, consistent with M1R permissive actions. Conversely, M1R positive allosteric modulators prevented the detrimental effects of NMDAR blockade in single neurons in dlPFC and on working memory performance in rodents. These data support an interaction between M1R and NMDARs in working memory circuitry in both primates and rats, and suggest M1Rs contribute to the permissive actions of ACh in primate dlPFC. These results are consistent with recent data suggesting that M1R agonists may be helpful in the treatment of schizophrenia, a cognitive disorder associated with NMDAR dysfunction. Working memory-related persistent firing in primate prefrontal cortex relies on NMDAR. Unlike classic circuits, NMDAR transmission requires permissive acetylcholine actions. Muscarinic M1R blockade prevents the excitatory effects of NMDA on neuronal firing. M1R stimulation averts the harmful effects of NMDAR blockade on cell firing and memory.
Collapse
|
34
|
Dienel SJ, Ciesielski AJ, Bazmi HH, Profozich EA, Fish KN, Lewis DA. Distinct Laminar and Cellular Patterns of GABA Neuron Transcript Expression in Monkey Prefrontal and Visual Cortices. Cereb Cortex 2020; 31:2345-2363. [PMID: 33338196 DOI: 10.1093/cercor/bhaa341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/25/2022] Open
Abstract
The functional output of a cortical region is shaped by its complement of GABA neuron subtypes. GABA-related transcript expression differs substantially between the primate dorsolateral prefrontal cortex (DLPFC) and primary visual (V1) cortices in gray matter homogenates, but the laminar and cellular bases for these differences are unknown. Quantification of levels of GABA-related transcripts in layers 2 and 4 of monkey DLPFC and V1 revealed three distinct expression patterns: 1) transcripts with higher levels in DLPFC and layer 2 [e.g., somatostatin (SST)]; 2) transcripts with higher levels in V1 and layer 4 [e.g., parvalbumin (PV)], and 3) transcripts with similar levels across layers and regions [e.g., glutamic acid decarboxylase (GAD67)]. At the cellular level, these patterns reflected transcript- and cell type-specific differences: the SST pattern primarily reflected differences in the relative proportions of SST mRNA-positive neurons, the PV pattern primarily reflected differences in PV mRNA expression per neuron, and the GAD67 pattern reflected opposed patterns in the relative proportions of GAD67 mRNA-positive neurons and in GAD67 mRNA expression per neuron. These findings suggest that differences in the complement of GABA neuron subtypes and in gene expression levels per neuron contribute to the specialization of inhibitory neurotransmission across cortical circuits.
Collapse
Affiliation(s)
- Samuel J Dienel
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andrew J Ciesielski
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Holly H Bazmi
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Elizabeth A Profozich
- Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kenneth N Fish
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
35
|
Datta D, Enwright JF, Arion D, Paspalas CD, Morozov YM, Lewis DA, Arnsten AFT. Mapping Phosphodiesterase 4D (PDE4D) in Macaque Dorsolateral Prefrontal Cortex: Postsynaptic Compartmentalization in Layer III Pyramidal Cell Circuits. Front Neuroanat 2020; 14:578483. [PMID: 33328902 PMCID: PMC7714912 DOI: 10.3389/fnana.2020.578483] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
cAMP signaling has powerful, negative effects on cognitive functions of the primate dorsolateral prefrontal cortex (dlPFC), opening potassium channels to reduce firing and impair working memory, and increasing tau phosphorylation in aging neurons. This contrasts with cAMP actions in classic circuits, where it enhances plasticity and transmitter release. PDE4 isozymes regulate cAMP actions, and thus have been a focus of research and drug discovery. Previous work has focused on the localization of PDE4A and PDE4B in dlPFC, but PDE4D is also of great interest, as it is the predominant PDE4 isoform in primate association cortex, and PDE4D expression decreases with aging in human dlPFC. Here we used laser-capture microdissection transcriptomics and found that PDE4D message is enriched in pyramidal cells compared to GABAergic PV-interneurons in layer III of the human dlPFC. A parallel study in rhesus macaques using high-spatial resolution immunoelectron microscopy revealed the ultrastructural locations of PDE4D in primate dlPFC with clarity not possible in human post-mortem tissue. PDE4D was especially prominent in dendrites associated with microtubules, mitochondria, and likely smooth endoplasmic reticulum (SER). There was substantial postsynaptic labeling in dendritic spines, associated with the SER spine-apparatus near glutamatergic-like axospinous synapses, but sparse labeling in axon terminals. We also observed dense PDE4D labeling perisynaptically in astroglial leaflets ensheathing glutamatergic connections. These data suggest that PDE4D is strategically positioned to regulate cAMP signaling in dlPFC glutamatergic synapses and circuits, especially in postsynaptic compartments where it is localized to influence cAMP actions on intracellular trafficking, mitochondrial physiology, and internal calcium release.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - John F. Enwright
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dominique Arion
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Constantinos D. Paspalas
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Yury M. Morozov
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - David A. Lewis
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Amy F. T. Arnsten
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
36
|
Schoonover KE, Dienel SJ, Lewis DA. Prefrontal cortical alterations of glutamate and GABA neurotransmission in schizophrenia: Insights for rational biomarker development. Biomark Neuropsychiatry 2020; 3. [PMID: 32656540 PMCID: PMC7351254 DOI: 10.1016/j.bionps.2020.100015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Certain cognitive deficits in schizophrenia, such as impaired working memory, are thought to reflect alterations in the neural circuitry of the dorsolateral prefrontal cortex (DLPFC). Gamma oscillations in the DLPFC appear to be a neural corollary of working memory function, and the power of these oscillations during working memory tasks is lower in individuals with schizophrenia. Thus, gamma oscillations represent a potentially useful biomarker to index dysfunction in the DLPFC circuitry responsible for working memory in schizophrenia. Postmortem studies, by identifying the cellular basis of DLPFC dysfunction, can help inform the utility of biomarker measures obtained in vivo. Given that gamma oscillations reflect network activity of excitatory pyramidal neurons and inhibitory GABA neurons, we review postmortem findings of alterations to both cell types in the DLPFC and discuss how these findings might inform future biomarker development and use.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States
| | - Samuel J Dienel
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States.,Medical Scientist Training Program, University of Pittsburgh, United States.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, United States
| |
Collapse
|
37
|
Parker EM, Kindja NL, Cheetham CEJ, Sweet RA. Sex differences in dendritic spine density and morphology in auditory and visual cortices in adolescence and adulthood. Sci Rep 2020; 10:9442. [PMID: 32523006 PMCID: PMC7287134 DOI: 10.1038/s41598-020-65942-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/24/2020] [Indexed: 11/24/2022] Open
Abstract
Dendritic spines are small protrusions on dendrites that endow neurons with the ability to receive and transform synaptic input. Dendritic spine number and morphology are altered as a consequence of synaptic plasticity and circuit refinement during adolescence. Dendritic spine density (DSD) is significantly different based on sex in subcortical brain regions associated with the generation of sex-specific behaviors. It is largely unknown if sex differences in DSD exist in auditory and visual brain regions and if there are sex-specific changes in DSD in these regions that occur during adolescent development. We analyzed dendritic spines in 4-week-old (P28) and 12-week-old (P84) male and female mice and found that DSD is lower in female mice due in part to fewer short stubby, long stubby and short mushroom spines. We found striking layer-specific patterns including a significant age by layer interaction and significantly decreased DSD in layer 4 from P28 to P84. Together these data support the possibility of developmental sex differences in DSD in visual and auditory regions and provide evidence of layer-specific refinement of DSD over adolescent brain development.
Collapse
Affiliation(s)
- Emily M Parker
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - Nathan L Kindja
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - Claire E J Cheetham
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, USA
- Center for the Neural Basis of Cognition, Pittsburgh, USA
| | - Robert A Sweet
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, USA.
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
38
|
Sherwood CC, Miller SB, Karl M, Stimpson CD, Phillips KA, Jacobs B, Hof PR, Raghanti MA, Smaers JB. Invariant Synapse Density and Neuronal Connectivity Scaling in Primate Neocortical Evolution. Cereb Cortex 2020; 30:5604-5615. [PMID: 32488266 DOI: 10.1093/cercor/bhaa149] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Synapses are involved in the communication of information from one neuron to another. However, a systematic analysis of synapse density in the neocortex from a diversity of species is lacking, limiting what can be understood about the evolution of this fundamental aspect of brain structure. To address this, we quantified synapse density in supragranular layers II-III and infragranular layers V-VI from primary visual cortex and inferior temporal cortex in a sample of 25 species of primates, including humans. We found that synapse densities were relatively constant across these levels of the cortical visual processing hierarchy and did not significantly differ with brain mass, varying by only 1.9-fold across species. We also found that neuron densities decreased in relation to brain enlargement. Consequently, these data show that the number of synapses per neuron significantly rises as a function of brain expansion in these neocortical areas of primates. Humans displayed the highest number of synapses per neuron, but these values were generally within expectations based on brain size. The metabolic and biophysical constraints that regulate uniformity of synapse density, therefore, likely underlie a key principle of neuronal connectivity scaling in primate neocortical evolution.
Collapse
Affiliation(s)
- Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Sarah B Miller
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Molly Karl
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Cheryl D Stimpson
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | | | - Bob Jacobs
- Department of Psychology, Laboratory of Quantitative Neuromorphology, Colorado College, Colorado Springs, CO 80946, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA.,Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA
| |
Collapse
|
39
|
Vanni S, Hokkanen H, Werner F, Angelucci A. Anatomy and Physiology of Macaque Visual Cortical Areas V1, V2, and V5/MT: Bases for Biologically Realistic Models. Cereb Cortex 2020; 30:3483-3517. [PMID: 31897474 PMCID: PMC7233004 DOI: 10.1093/cercor/bhz322] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
The cerebral cortex of primates encompasses multiple anatomically and physiologically distinct areas processing visual information. Areas V1, V2, and V5/MT are conserved across mammals and are central for visual behavior. To facilitate the generation of biologically accurate computational models of primate early visual processing, here we provide an overview of over 350 published studies of these three areas in the genus Macaca, whose visual system provides the closest model for human vision. The literature reports 14 anatomical connection types from the lateral geniculate nucleus of the thalamus to V1 having distinct layers of origin or termination, and 194 connection types between V1, V2, and V5, forming multiple parallel and interacting visual processing streams. Moreover, within V1, there are reports of 286 and 120 types of intrinsic excitatory and inhibitory connections, respectively. Physiologically, tuning of neuronal responses to 11 types of visual stimulus parameters has been consistently reported. Overall, the optimal spatial frequency (SF) of constituent neurons decreases with cortical hierarchy. Moreover, V5 neurons are distinct from neurons in other areas for their higher direction selectivity, higher contrast sensitivity, higher temporal frequency tuning, and wider SF bandwidth. We also discuss currently unavailable data that could be useful for biologically accurate models.
Collapse
Affiliation(s)
- Simo Vanni
- HUS Neurocenter, Department of Neurology, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neurosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Henri Hokkanen
- HUS Neurocenter, Department of Neurology, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neurosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Francesca Werner
- HUS Neurocenter, Department of Neurology, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neurosciences, University of Helsinki, 00100 Helsinki, Finland
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alessandra Angelucci
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
40
|
Guillamon-Vivancos T, Tyler WA, Medalla M, Chang WWE, Okamoto M, Haydar TF, Luebke JI. Distinct Neocortical Progenitor Lineages Fine-tune Neuronal Diversity in a Layer-specific Manner. Cereb Cortex 2020; 29:1121-1138. [PMID: 29415216 DOI: 10.1093/cercor/bhy019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 01/03/2023] Open
Abstract
How the variety of neurons that organize into neocortical layers and functional areas arises is a central question in the study of cortical development. While both intrinsic and extrinsic cues are known to influence this process, whether distinct neuronal progenitor groups contribute to neuron diversity and allocation is poorly understood. Using in vivo genetic fate-mapping combined with whole-cell patch clamp recording, we show that the firing pattern and apical dendritic morphology of excitatory neurons in layer 4 of the barrel cortex are specified in part by their neural precursor lineage. Further, we show that separate precursors contribute to unique features of barrel cortex topography including the intralaminar position and thalamic innervation of the neurons they generate. Importantly, many of these lineage-specified characteristics are different from those previously measured for pyramidal neurons in layers 2-3 of the frontal cortex. Collectively, our data elucidate a dynamic temporal program in neuronal precursors that fine-tunes the properties of their progeny according to the lamina of destination.
Collapse
Affiliation(s)
| | - William A Tyler
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Wayne Wei-En Chang
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Mayumi Okamoto
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Jennifer I Luebke
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
41
|
Treatment with Mesenchymal-Derived Extracellular Vesicles Reduces Injury-Related Pathology in Pyramidal Neurons of Monkey Perilesional Ventral Premotor Cortex. J Neurosci 2020; 40:3385-3407. [PMID: 32241837 DOI: 10.1523/jneurosci.2226-19.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Functional recovery after cortical injury, such as stroke, is associated with neural circuit reorganization, but the underlying mechanisms and efficacy of therapeutic interventions promoting neural plasticity in primates are not well understood. Bone marrow mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), which mediate cell-to-cell inflammatory and trophic signaling, are thought be viable therapeutic targets. We recently showed, in aged female rhesus monkeys, that systemic administration of MSC-EVs enhances recovery of function after injury of the primary motor cortex, likely through enhancing plasticity in perilesional motor and premotor cortices. Here, using in vitro whole-cell patch-clamp recording and intracellular filling in acute slices of ventral premotor cortex (vPMC) from rhesus monkeys (Macaca mulatta) of either sex, we demonstrate that MSC-EVs reduce injury-related physiological and morphologic changes in perilesional layer 3 pyramidal neurons. At 14-16 weeks after injury, vPMC neurons from both vehicle- and EV-treated lesioned monkeys exhibited significant hyperexcitability and predominance of inhibitory synaptic currents, compared with neurons from nonlesioned control brains. However, compared with vehicle-treated monkeys, neurons from EV-treated monkeys showed lower firing rates, greater spike frequency adaptation, and excitatory:inhibitory ratio. Further, EV treatment was associated with greater apical dendritic branching complexity, spine density, and inhibition, indicative of enhanced dendritic plasticity and filtering of signals integrated at the soma. Importantly, the degree of EV-mediated reduction of injury-related pathology in vPMC was significantly correlated with measures of behavioral recovery. These data show that EV treatment dampens injury-related hyperexcitability and restores excitatory:inhibitory balance in vPMC, thereby normalizing activity within cortical networks for motor function.SIGNIFICANCE STATEMENT Neuronal plasticity can facilitate recovery of function after cortical injury, but the underlying mechanisms and efficacy of therapeutic interventions promoting this plasticity in primates are not well understood. Our recent work has shown that intravenous infusions of mesenchymal-derived extracellular vesicles (EVs) that are involved in cell-to-cell inflammatory and trophic signaling can enhance recovery of motor function after injury in monkey primary motor cortex. This study shows that this EV-mediated enhancement of recovery is associated with amelioration of injury-related hyperexcitability and restoration of excitatory-inhibitory balance in perilesional ventral premotor cortex. These findings demonstrate the efficacy of mesenchymal EVs as a therapeutic to reduce injury-related pathologic changes in the physiology and structure of premotor pyramidal neurons and support recovery of function.
Collapse
|
42
|
Torres-Gomez S, Blonde JD, Mendoza-Halliday D, Kuebler E, Everest M, Wang XJ, Inoue W, Poulter MO, Martinez-Trujillo J. Changes in the Proportion of Inhibitory Interneuron Types from Sensory to Executive Areas of the Primate Neocortex: Implications for the Origins of Working Memory Representations. Cereb Cortex 2020; 30:4544-4562. [PMID: 32227119 DOI: 10.1093/cercor/bhaa056] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neuronal spiking activity encoding working memory (WM) is robust in primate association cortices but weak or absent in early sensory cortices. This may be linked to changes in the proportion of neuronal types across areas that influence circuits' ability to generate recurrent excitation. We recorded neuronal activity from areas middle temporal (MT), medial superior temporal (MST), and the lateral prefrontal cortex (LPFC) of monkeys performing a WM task and classified neurons as narrow (NS) and broad spiking (BS). The ratio NS/BS decreased from MT > MST > LPFC. We analyzed the Allen Institute database of ex vivo mice/human intracellular recordings to interpret our data. Our analysis suggests that NS neurons correspond to parvalbumin (PV) or somatostatin (SST) interneurons while BS neurons are pyramidal (P) cells or vasoactive intestinal peptide (VIP) interneurons. We labeled neurons in monkey tissue sections of MT/MST and LPFC and found that the proportion of PV in cortical layers 2/3 decreased, while the proportion of CR cells increased from MT/MST to LPFC. Assuming that primate CR/CB/PV cells perform similar computations as mice VIP/SST/PV cells, our results suggest that changes in the proportion of CR and PV neurons in layers 2/3 cells may favor the emergence of activity encoding WM in association areas.
Collapse
Affiliation(s)
- Santiago Torres-Gomez
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Jackson D Blonde
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Diego Mendoza-Halliday
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric Kuebler
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Michelle Everest
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Xiao Jing Wang
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Wataru Inoue
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Michael O Poulter
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Julio Martinez-Trujillo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and the Brain and Mind Institute, Western University, London, Ontario, N6A 5B7, Canada.,Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A5B7, Canada
| |
Collapse
|
43
|
Ibañez S, Luebke JI, Chang W, Draguljić D, Weaver CM. Network Models Predict That Pyramidal Neuron Hyperexcitability and Synapse Loss in the dlPFC Lead to Age-Related Spatial Working Memory Impairment in Rhesus Monkeys. Front Comput Neurosci 2020; 13:89. [PMID: 32009920 PMCID: PMC6979278 DOI: 10.3389/fncom.2019.00089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/18/2019] [Indexed: 01/04/2023] Open
Abstract
Behavioral studies have shown spatial working memory impairment with aging in several animal species, including humans. Persistent activity of layer 3 pyramidal dorsolateral prefrontal cortex (dlPFC) neurons during delay periods of working memory tasks is important for encoding memory of the stimulus. In vitro studies have shown that these neurons undergo significant age-related structural and functional changes, but the extent to which these changes affect neural mechanisms underlying spatial working memory is not understood fully. Here, we confirm previous studies showing impairment on the Delayed Recognition Span Task in the spatial condition (DRSTsp), and increased in vitro action potential firing rates (hyperexcitability), across the adult life span of the rhesus monkey. We use a bump attractor model to predict how empirically observed changes in the aging dlPFC affect performance on the Delayed Response Task (DRT), and introduce a model of memory retention in the DRSTsp. Persistent activity-and, in turn, cognitive performance-in both models was affected much more by hyperexcitability of pyramidal neurons than by a loss of synapses. Our DRT simulations predict that additional changes to the network, such as increased firing of inhibitory interneurons, are needed to account for lower firing rates during the DRT with aging reported in vivo. Synaptic facilitation was an essential feature of the DRSTsp model, but it did not compensate fully for the effects of the other age-related changes on DRT performance. Modeling pyramidal neuron hyperexcitability and synapse loss simultaneously led to a partial recovery of function in both tasks, with the simulated level of DRSTsp impairment similar to that observed in aging monkeys. This modeling work integrates empirical data across multiple scales, from synapse counts to cognitive testing, to further our understanding of aging in non-human primates.
Collapse
Affiliation(s)
- Sara Ibañez
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Jennifer I. Luebke
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Wayne Chang
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Danel Draguljić
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, United States
| | - Christina M. Weaver
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, United States
| |
Collapse
|
44
|
Parra A, Baker CA, Bolton MM. Regional Specialization of Pyramidal Neuron Morphology and Physiology in the Tree Shrew Neocortex. Cereb Cortex 2019; 29:4488-4505. [PMID: 30715235 DOI: 10.1093/cercor/bhy326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/12/2018] [Accepted: 12/07/2018] [Indexed: 01/08/2023] Open
Abstract
The mammalian cerebral cortex is divided into different areas according to their function and pattern of connections. Studies comparing primary visual (V1) and prefrontal cortex (PFC) of primates have demonstrated striking pyramidal neuron (PN) specialization not present in comparable areas of the mouse neocortex. To better understand PFC evolution and regional PN specialization, we studied the tree shrew, a species with a close phylogenetic relationship to primates. We defined the tree shrew PFC based on cytoarchitectonic borders, thalamic connectivity and characterized the morphology and electrophysiology of layer II/III PNs in V1 and PFC. Similar to primates, the PFC PNs in the tree shrew fire with a regular spiking pattern and have larger dendritic tree and spines than those in V1. However, V1 PNs showed strikingly large basal dendritic arbors with high spine density, firing at higher rates and in a more varied pattern than PFC PNs. Yet, unlike in the mouse and unreported in the primate, medial prefrontal PN are more easily recruited than either the dorsolateral or V1 neurons. This specialization of PN morphology and physiology is likely to be a significant factor in the evolution of cortex, contributing to differences in the computational capacities of individual cortical areas.
Collapse
Affiliation(s)
- Andres Parra
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, USA.,Functional Architecture of the Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, USA.,Cellular and Systems Neurobiology, Instituto de Neurociencias de Alicante, Alicante, Spain
| | - Christopher A Baker
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, USA
| | - M McLean Bolton
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, USA
| |
Collapse
|
45
|
Distinct Properties of Layer 3 Pyramidal Neurons from Prefrontal and Parietal Areas of the Monkey Neocortex. J Neurosci 2019; 39:7277-7290. [PMID: 31341029 DOI: 10.1523/jneurosci.1210-19.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
In primates, working memory function depends on activity in a distributed network of cortical areas that display different patterns of delay task-related activity. These differences are correlated with, and might depend on, distinctive properties of the neurons located in each area. For example, layer 3 pyramidal neurons (L3PNs) differ significantly between primary visual and dorsolateral prefrontal (DLPFC) cortices. However, to what extent L3PNs differ between DLPFC and other association cortical areas is less clear. Hence, we compared the properties of L3PNs in monkey DLPFC versus posterior parietal cortex (PPC), a key node in the cortical working memory network. Using patch-clamp recordings and biocytin cell filling in acute brain slices, we assessed the physiology and morphology of L3PNs from monkey DLPFC and PPC. The L3PN transcriptome was studied using laser microdissection combined with DNA microarray or quantitative PCR. We found that in both DLPFC and PPC, L3PNs were divided into regular spiking (RS-L3PNs) and bursting (B-L3PNs) physiological subtypes. Whereas regional differences in single-cell excitability were modest, B-L3PNs were rare in PPC (RS-L3PN:B-L3PN, 94:6), but were abundant in DLPFC (50:50), showing greater physiological diversity. Moreover, DLPFC L3PNs display larger and more complex basal dendrites with higher dendritic spine density. Additionally, we found differential expression of hundreds of genes, suggesting a transcriptional basis for the differences in L3PN phenotype between DLPFC and PPC. These data show that the previously observed differences between DLPFC and PPC neuron activity during working memory tasks are associated with diversity in the cellular/molecular properties of L3PNs.SIGNIFICANCE STATEMENT In the human and nonhuman primate neocortex, layer 3 pyramidal neurons (L3PNs) differ significantly between dorsolateral prefrontal (DLPFC) and sensory areas. Hence, L3PN properties reflect, and may contribute to, a greater complexity of computations performed in DLPFC. However, across association cortical areas, L3PN properties are largely unexplored. We studied the physiology, dendrite morphology and transcriptome of L3PNs from macaque monkey DLPFC and posterior parietal cortex (PPC), two key nodes in the cortical working memory network. L3PNs from DLPFC had greater diversity of physiological properties and larger basal dendrites with higher spine density. Moreover, transcriptome analysis suggested a molecular basis for the differences in the physiological and morphological phenotypes of L3PNs from DLPFC and PPC.
Collapse
|
46
|
Šimić G, Španić E, Langer Horvat L, Hof PR. Blood-brain barrier and innate immunity in the pathogenesis of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:99-145. [PMID: 31699331 DOI: 10.1016/bs.pmbts.2019.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) is only partly understood. This is the probable reason why significant efforts to treat or prevent AD have been unsuccessful. In fact, as of April 2019, there have been 2094 studies registered for AD on the clinicaltrials.gov U.S. National Library of Science web page, of which only a few are still ongoing. In AD, abnormal accumulation of amyloid and tau proteins in the brain are thought to begin 10-20 years before the onset of overt symptoms, suggesting that interventions designed to prevent pathological amyloid and tau accumulation may be more effective than attempting to reverse a pathology once it is established. However, to be successful, such early interventions need to be selectively administered to individuals who will likely develop the disease long before the symptoms occur. Therefore, it is critical to identify early biomarkers that are strongly predictive of AD. Currently, patients are diagnosed on the basis of a variety of clinical scales, neuropsychological tests, imaging and laboratory modalities, but definitive diagnosis can be made only by postmortem assessment of underlying neuropathology. People suffering from AD thus may be misdiagnosed clinically with other primary causes of dementia, and vice versa, thereby also reducing the power of clinical trials. The amyloid cascade hypothesis fits well for the familial cases of AD with known mutations, but is not sufficient to explain sporadic, late-onset AD (LOAD) that accounts for over 95% of all cases. Since the earliest descriptions of AD there have been neuropathological features described other than amyloid plaques (AP) and neurofibrillary tangles (NFT), most notably gliosis and neuroinflammation. However, it is only recently that genetic and experimental studies have implicated microglial dysfunction as a causal factor for AD, as opposed to a merely biological response of its accumulation around AP. Additionally, many studies have suggested the importance of changes in blood-brain barrier (BBB) permeability in the pathogenesis of AD. Here we suggest how these less investigated aspects of the disease that have gained increased attention in recent years may contribute mechanistically to the development of lesions and symptoms of AD.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
47
|
Holley ZL, Bland KM, Casey ZO, Handwerk CJ, Vidal GS. Cross-Regional Gradient of Dendritic Morphology in Isochronically-Sourced Mouse Supragranular Pyramidal Neurons. Front Neuroanat 2018; 12:103. [PMID: 30564104 PMCID: PMC6288488 DOI: 10.3389/fnana.2018.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/15/2018] [Indexed: 11/13/2022] Open
Abstract
Architectonic heterogeneity in neurons is thought to be important for equipping the mammalian cerebral cortex with an adaptable network that can organize the manifold totality of information it receives. To this end, the dendritic arbors of supragranular pyramidal neurons, even those of the same class, are known to vary substantially. This diversity of dendritic morphology appears to have a rostrocaudal configuration in some brain regions of various species. For example, in humans and non-human primates, neurons in more rostral visual association areas (e.g., V4) tend to have more complex dendritic arbors than those in the caudal primary visual cortex. A rostrocaudal configuration is not so clear in any region of the mouse, which is increasingly being used as a model for neurodevelopmental disorders that arise from dysfunctional cerebral cortical circuits. Therefore, in this study we investigated the complexity of dendritic arbors of neurons distributed throughout a broad area of the mouse cerebral cortex. We reduced selection bias by labeling neurons restricted to become supragranular pyramidal neurons using in utero electroporation. While we observed that the simple rostrocaudal position, cortical depth, or even functional region of a neuron was not directly related to its dendritic morphology, a model that instead included a caudomedial-to-rostrolateral gradient accounted for a significant amount of the observed dendritic morphological variance. In other words, rostrolateral neurons from our data set were generally more complex when compared to caudomedial neurons. Furthermore, dividing the cortex into a visual area and a non-visual area maintained the power of the relationship between caudomedial-to-rostrolateral position and dendritic complexity. Our observations therefore support the idea that dendritic morphology of mouse supragranular excitatory pyramidal neurons across much of the tangential plane of the cerebral cortex is partly shaped by a developmental gradient spanning several functional regions.
Collapse
Affiliation(s)
- Zachary Logan Holley
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Katherine M Bland
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Zachary O Casey
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | | | - George S Vidal
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| |
Collapse
|
48
|
Datta D, Arnsten AF. Unique Molecular Regulation of Higher-Order Prefrontal Cortical Circuits: Insights into the Neurobiology of Schizophrenia. ACS Chem Neurosci 2018; 9:2127-2145. [PMID: 29470055 DOI: 10.1021/acschemneuro.7b00505] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is associated with core deficits in cognitive abilities and impaired functioning of the newly evolved prefrontal association cortex (PFC). In particular, neuropathological studies of schizophrenia have found selective atrophy of the pyramidal cell microcircuits in deep layer III of the dorsolateral PFC (dlPFC) and compensatory weakening of related GABAergic interneurons. Studies in monkeys have shown that recurrent excitation in these layer III microcircuits generates the precisely patterned, persistent firing needed for working memory and abstract thought. Importantly, excitatory synapses on layer III spines are uniquely regulated at the molecular level in ways that may render them particularly vulnerable to genetic and/or environmental insults. Glutamate actions are remarkably dependent on cholinergic stimulation, and there are inherent mechanisms to rapidly weaken connectivity, e.g. during stress. In particular, feedforward cyclic adenosine monophosphate (cAMP)-calcium signaling rapidly weakens network connectivity and neuronal firing by opening nearby potassium channels. Many mechanisms that regulate this process are altered in schizophrenia and/or associated with genetic insults. Current data suggest that there are "dual hits" to layer III dlPFC circuits: initial insults to connectivity during the perinatal period due to genetic errors and/or inflammatory insults that predispose the cortex to atrophy, followed by a second wave of cortical loss during adolescence, e.g. driven by stress, at the descent into illness. The unique molecular regulation of layer III circuits may provide a nexus where inflammation disinhibits the neuronal response to stress. Understanding these mechanisms may help to illuminate dlPFC susceptibility in schizophrenia and provide insights for novel therapeutic targets.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Amy F.T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| |
Collapse
|
49
|
Galvin VC, Arnsten AFT, Wang M. Evolution in Neuromodulation-The Differential Roles of Acetylcholine in Higher Order Association vs. Primary Visual Cortices. Front Neural Circuits 2018; 12:67. [PMID: 30210306 PMCID: PMC6121028 DOI: 10.3389/fncir.2018.00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/06/2018] [Indexed: 11/29/2022] Open
Abstract
This review contrasts the neuromodulatory influences of acetylcholine (ACh) on the relatively conserved primary visual cortex (V1), compared to the newly evolved dorsolateral prefrontal association cortex (dlPFC). ACh is critical both for proper circuit development and organization, and for optimal functioning of mature systems in both cortical regions. ACh acts through both nicotinic and muscarinic receptors, which show very different expression profiles in V1 vs. dlPFC, and differing effects on neuronal firing. Cholinergic effects mediate attentional influences in V1, enhancing representation of incoming sensory stimuli. In dlPFC ACh plays a permissive role for network communication. ACh receptor expression and ACh actions in higher visual areas have an intermediate profile between V1 and dlPFC. This changing role of ACh modulation across association cortices may help to illuminate the particular susceptibility of PFC in cognitive disorders, and provide therapeutic targets to strengthen cognition.
Collapse
Affiliation(s)
- Veronica C Galvin
- Department of Neuroscience, Yale University, New Haven, CT, United States
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University, New Haven, CT, United States
| | - Min Wang
- Department of Neuroscience, Yale University, New Haven, CT, United States
| |
Collapse
|
50
|
Goodliffe JW, Song H, Rubakovic A, Chang W, Medalla M, Weaver CM, Luebke JI. Differential changes to D1 and D2 medium spiny neurons in the 12-month-old Q175+/- mouse model of Huntington's Disease. PLoS One 2018; 13:e0200626. [PMID: 30118496 PMCID: PMC6097649 DOI: 10.1371/journal.pone.0200626] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/29/2018] [Indexed: 12/04/2022] Open
Abstract
Huntington's Disease (HD) is an autosomal dominant, progressive neurodegenerative disorder caused by deleterious expansion of CAG repeats in the Huntingtin gene and production of neurotoxic mutant Huntingtin protein (mHTT). The key pathological feature of HD is a profound degeneration of the striatum and a loss of cortical volume. The initial loss of indirect pathway (D2) medium spiny neuron (MSN) projections in early stages of HD, followed by a loss of direct pathway (D1) projections in advanced stages has important implications for the trajectory of motor and cognitive dysfunction in HD, but is not yet understood. Mouse models of HD have yielded important information on the effects and mechanisms of mHTT toxicity; however, whether these models recapitulate differential vulnerability of D1 vs. D2 MSNs is unknown. Here, we employed 12-month-old Q175+/- x D2-eGFP mice to examine the detailed structural and functional properties of D1 vs. D2 MSNs. While both D1 and D2 MSNs exhibited increased input resistance, depolarized resting membrane potentials and action potential threshold, only D1 MSNs showed reduced rheobase, action potential amplitude and frequency of spontaneous excitatory postsynaptic currents. Furthermore, D1 but not D2 MSNs showed marked proliferative changes to their dendritic arbors and reductions in spine density. Immunohistochemical assessment showed no loss of glutamatergic afferent inputs from cortical and subcortical sources onto identified D1 and D2 MSNs. Computational models constrained by empirical data predict that the increased dendritic complexity in Q175+/- D1 MSNs likely leads to greater dendritic filtering and attenuation of signals propagating to the soma from the dendrites. Together these findings reveal that, by twelve months, D1 and D2 MSNs exhibit distinctive responses to the presence of mHTT in this important mouse model of HD. This further highlights the need to incorporate findings from D1 and D2 MSNs independently in the context of HD models.
Collapse
Affiliation(s)
- Joseph W. Goodliffe
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Hanbing Song
- Department of Mathematics and Computer Science, Franklin & Marshall College, Lancaster, Pennsylvania
| | - Anastasia Rubakovic
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Wayne Chang
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Christina M. Weaver
- Department of Mathematics and Computer Science, Franklin & Marshall College, Lancaster, Pennsylvania
| | - Jennifer I. Luebke
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|