1
|
Kiral FR, Choe M, Park IH. Diencephalic organoids - A key to unraveling development, connectivity, and pathology of the human diencephalon. Front Cell Neurosci 2023; 17:1308479. [PMID: 38130869 PMCID: PMC10733522 DOI: 10.3389/fncel.2023.1308479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
The diencephalon, an integral component of the forebrain, governs a spectrum of crucial functions, ranging from sensory processing to emotional regulation. Yet, unraveling its unique development, intricate connectivity, and its role in neurodevelopmental disorders has long been hampered by the scarcity of human brain tissue and ethical constraints. Recent advancements in stem cell technology, particularly the emergence of brain organoids, have heralded a new era in neuroscience research. Although most brain organoid methodologies have hitherto concentrated on directing stem cells toward telencephalic fates, novel techniques now permit the generation of region-specific brain organoids that faithfully replicate precise diencephalic identities. These models mirror the complexity of the human diencephalon, providing unprecedented opportunities for investigating diencephalic development, functionality, connectivity, and pathophysiology in vitro. This review summarizes the development, function, and connectivity of diencephalic structures and touches upon developmental brain disorders linked to diencephalic abnormalities. Furthermore, it presents current diencephalic organoid models and their applications in unraveling the intricacies of diencephalic development, function, and pathology in humans. Lastly, it highlights thalamocortical assembloid models, adept at capturing human-specific aspects of thalamocortical connections, along with their relevance in neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | - In-Hyun Park
- Interdepartmental Neuroscience Program, Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Wu Tsai Institute, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
2
|
Huerga-Gómez I, Martini FJ, López-Bendito G. Building thalamic neuronal networks during mouse development. Front Neural Circuits 2023; 17:1098913. [PMID: 36817644 PMCID: PMC9936079 DOI: 10.3389/fncir.2023.1098913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The thalamic nuclear complex contains excitatory projection neurons and inhibitory local neurons, the two cell types driving the main circuits in sensory nuclei. While excitatory neurons are born from progenitors that reside in the proliferative zone of the developing thalamus, inhibitory local neurons are born outside the thalamus and they migrate there during development. In addition to these cell types, which occupy most of the thalamus, there are two small thalamic regions where inhibitory neurons target extra-thalamic regions rather than neighboring neurons, the intergeniculate leaflet and the parahabenular nucleus. Like excitatory thalamic neurons, these inhibitory neurons are derived from progenitors residing in the developing thalamus. The assembly of these circuits follows fine-tuned genetic programs and it is coordinated by extrinsic factors that help the cells find their location, associate with thalamic partners, and establish connections with their corresponding extra-thalamic inputs and outputs. In this review, we bring together what is currently known about the development of the excitatory and inhibitory components of the thalamocortical sensory system, in particular focusing on the visual pathway and thalamic interneurons in mice.
Collapse
Affiliation(s)
- Irene Huerga-Gómez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | | | | |
Collapse
|
3
|
Govek KW, Chen S, Sgourdou P, Yao Y, Woodhouse S, Chen T, Fuccillo MV, Epstein DJ, Camara PG. Developmental trajectories of thalamic progenitors revealed by single-cell transcriptome profiling and Shh perturbation. Cell Rep 2022; 41:111768. [PMID: 36476860 PMCID: PMC9880597 DOI: 10.1016/j.celrep.2022.111768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2022] [Revised: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
The thalamus is the principal information hub of the vertebrate brain, with essential roles in sensory and motor information processing, attention, and memory. The complex array of thalamic nuclei develops from a restricted pool of neural progenitors. We apply longitudinal single-cell RNA sequencing and regional abrogation of Sonic hedgehog (Shh) to map the developmental trajectories of thalamic progenitors, intermediate progenitors, and post-mitotic neurons as they coalesce into distinct thalamic nuclei. These data reveal that the complex architecture of the thalamus is established early during embryonic brain development through the coordinated action of four cell differentiation lineages derived from Shh-dependent and -independent progenitors. We systematically characterize the gene expression programs that define these thalamic lineages across time and demonstrate how their disruption upon Shh depletion causes pronounced locomotor impairment resembling infantile Parkinson's disease. These results reveal key principles of thalamic development and provide mechanistic insights into neurodevelopmental disorders resulting from thalamic dysfunction.
Collapse
Affiliation(s)
- Kiya W. Govek
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Sixing Chen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Paraskevi Sgourdou
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Yao Yao
- Department of Animal and Dairy Science, Regenerative Bioscience Center, University of Georgia, 425 River Road, Athens, GA 30602, USA
| | - Steven Woodhouse
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Tingfang Chen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Marc V. Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas J. Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Correspondence: (D.J.E.), (P.G.C.)
| | - Pablo G. Camara
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA,Lead contact,Correspondence: (D.J.E.), (P.G.C.)
| |
Collapse
|
4
|
Medina-Cano D, Corrigan EK, Glenn RA, Islam MT, Lin Y, Kim J, Cho H, Vierbuchen T. Rapid and robust directed differentiation of mouse epiblast stem cells into definitive endoderm and forebrain organoids. Development 2022; 149:dev200561. [PMID: 35899604 PMCID: PMC10655922 DOI: 10.1242/dev.200561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022]
Abstract
Directed differentiation of pluripotent stem cells (PSCs) is a powerful model system for deconstructing embryonic development. Although mice are the most advanced mammalian model system for genetic studies of embryonic development, state-of-the-art protocols for directed differentiation of mouse PSCs into defined lineages require additional steps and generates target cell types with lower purity than analogous protocols for human PSCs, limiting their application as models for mechanistic studies of development. Here, we examine the potential of mouse epiblast stem cells cultured in media containing Wnt pathway inhibitors as a starting point for directed differentiation. As a proof of concept, we focused our efforts on two specific cell/tissue types that have proven difficult to generate efficiently and reproducibly from mouse embryonic stem cells: definitive endoderm and neural organoids. We present new protocols for rapid generation of nearly pure definitive endoderm and forebrain-patterned neural organoids that model the development of prethalamic and hippocampal neurons. These differentiation models present new possibilities for combining mouse genetic tools with in vitro differentiation to characterize molecular and cellular mechanisms of embryonic development.
Collapse
Affiliation(s)
- Daniel Medina-Cano
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Emily K. Corrigan
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Rachel A. Glenn
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Mohammed T. Islam
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Yuan Lin
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Juliet Kim
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Hyunwoo Cho
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Thomas Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| |
Collapse
|
5
|
Guy B, Zhang JS, Duncan LH, Johnston RJ. Human neural organoids: Models for developmental neurobiology and disease. Dev Biol 2021; 478:102-121. [PMID: 34181916 PMCID: PMC8364509 DOI: 10.1016/j.ydbio.2021.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Human organoids stand at the forefront of basic and translational research, providing experimentally tractable systems to study human development and disease. These stem cell-derived, in vitro cultures can generate a multitude of tissue and organ types, including distinct brain regions and sensory systems. Neural organoid systems have provided fundamental insights into molecular mechanisms governing cell fate specification and neural circuit assembly and serve as promising tools for drug discovery and understanding disease pathogenesis. In this review, we discuss several human neural organoid systems, how they are generated, advances in 3D imaging and bioengineering, and the impact of organoid studies on our understanding of the human nervous system.
Collapse
Affiliation(s)
- Brian Guy
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Jingliang Simon Zhang
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Leighton H Duncan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
6
|
Nakagawa Y. Development of the thalamus: From early patterning to regulation of cortical functions. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e345. [PMID: 31034163 DOI: 10.1002/wdev.345] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/31/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
The thalamus is a brain structure of the vertebrate diencephalon that plays a central role in regulating diverse functions of the cerebral cortex. In traditional view of vertebrate neuroanatomy, the thalamus includes three regions, dorsal thalamus, ventral thalamus, and epithalamus. Recent molecular embryological studies have redefined the thalamus and the associated axial nomenclature of the diencephalon in the context of forebrain patterning. This new view has provided a useful conceptual framework for studies on molecular mechanisms of patterning, neurogenesis and fate specification in the thalamus as well as the guidance mechanisms for thalamocortical axons. Additionally, the availability of genetic tools in mice has led to important findings on how thalamic development is linked to the development of other brain regions, particularly the cerebral cortex. This article will give an overview of the organization of the embryonic thalamus and how progenitor cells in the thalamus generate neurons that are organized into discrete nuclei. I will then discuss how thalamic development is orchestrated with the development of the cerebral cortex and other brain regions. This article is categorized under: Nervous System Development > Vertebrates: Regional Development Nervous System Development > Vertebrates: General Principles.
Collapse
Affiliation(s)
- Yasushi Nakagawa
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
7
|
Guo Q, Li JYH. Defining developmental diversification of diencephalon neurons through single cell gene expression profiling. Development 2019; 146:dev174284. [PMID: 30872278 PMCID: PMC6602344 DOI: 10.1242/dev.174284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022]
Abstract
The embryonic diencephalon forms integration centers and relay stations in the forebrain. Anecdotal expression studies suggest that the diencephalon contains multiple developmental compartments and subdivisions. Here, we utilized single cell RNA sequencing to profile transcriptomes of dissociated cells from the diencephalon of E12.5 mouse embryos. We identified the divergence of different progenitors, intermediate progenitors, and emerging neurons. By mapping the identified cell groups to their spatial origins, we characterized the molecular features of cell types and cell states arising from various diencephalic domains. Furthermore, we reconstructed the developmental trajectory of distinct cell lineages, and thereby identified the genetic cascades and gene regulatory networks underlying the progression of the cell cycle, neurogenesis and cellular diversification. The analysis provides new insights into the molecular mechanisms underlying the amplification of intermediate progenitor cells in the thalamus. The single cell-resolved trajectories not only confirm a close relationship between the rostral thalamus and prethalamus, but also uncover an unexpected close relationship between the caudal thalamus, epithalamus and rostral pretectum. Our data provide a useful resource for systematic studies of cell heterogeneity and differentiation kinetics within the diencephalon.
Collapse
Affiliation(s)
- Qiuxia Guo
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - James Y H Li
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
- Institute for Systems Genomics, University of Connecticut, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| |
Collapse
|
8
|
Radial glia fibers translate Fgf8 morphogenetic signals to generate a thalamic nuclear complex protomap in the mantle layer. Brain Struct Funct 2018; 224:661-679. [PMID: 30470893 PMCID: PMC6420463 DOI: 10.1007/s00429-018-1794-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2017] [Accepted: 11/09/2018] [Indexed: 01/25/2023]
Abstract
Thalamic neurons are distributed between different nuclear groups of the thalamic multinuclear complex; they develop topologically ordered specific projections that convey information on voluntary motor programs and sensory modalities to functional areas in the cerebral cortex. Since thalamic neurons present a homogeneous morphology, their functional specificity is derived from their afferent and efferent connectivity. Adequate development of thalamic afferent and efferent connections depends on guide signals that bind receptors in nuclear neuropils and axonal growth cones, respectively. These are finally regulated by regionalization processes in the thalamic neurons, codifying topological information. In this work, we studied the role of Fgf8 morphogenetic signaling in establishing the molecular thalamic protomap, which was revealed by Igsf21, Pde10a and Btbd3 gene expression in the thalamic mantle layer. Fgf8 signaling activity was evidenced by pERK expression in radial glia cells and fibers, which may represent a scaffold that translates neuroepithelial positional information to the mantle layer. In this work, we describe the fact that Fgf8-hypomorphic mice did not express pERK in radial glia cells and fibers and presented disorganized thalamic regionalization, increasing neuronal death in the ventro-lateral thalamus and strong disruption of thalamocortical projections. In conclusion, Fgf8 encodes the positional information required for thalamic nuclear regionalization and the development of thalamocortical projections.
Collapse
|
9
|
Liu B, Zhou K, Wu X, Zhao C. Foxg1 deletion impairs the development of the epithalamus. Mol Brain 2018; 11:5. [PMID: 29394901 PMCID: PMC5797387 DOI: 10.1186/s13041-018-0350-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2017] [Accepted: 01/24/2018] [Indexed: 12/14/2022] Open
Abstract
The epithalamus, which is dorsal to the thalamus, consists of the habenula, pineal gland and third ventricle choroid plexus and plays important roles in the stress response and sleep-wake cycle in vertebrates. During development, the epithalamus arises from the most dorsal part of prosomere 2. However, the mechanism underlying epithalamic development remains largely unknown. Foxg1 is critical for the development of the telencephalon, but its role in diencephalic development has been under-investigated. Patients suffering from FOXG1-related disorders exhibit severe anxiety, sleep disturbance and choroid plexus cysts, indicating that Foxg1 likely plays a role in epithalamic development. In this study, we identified the specific expression of Foxg1 in the developing epithalamus. Using a "self-deletion" approach, we found that the habenula significantly expanded and included an increased number of habenular subtype neurons. The innervations, particularly the habenular commissure, were severely impaired. Meanwhile, the Foxg1 mutants exhibited a reduced pineal gland and more branched choroid plexus. After ablation of Foxg1 no obvious changes in Shh and Fgf signalling were observed, suggesting that Foxg1 regulates the development of the epithalamus without the involvement of Shh and Fgfs. Our findings provide new insights into the regulation of the development of the epithalamus.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Kaixing Zhou
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xiaojing Wu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China. .,Depression Center, Institute for Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
10
|
Roberson S, Halpern ME. Development and connectivity of the habenular nuclei. Semin Cell Dev Biol 2017; 78:107-115. [PMID: 29107475 PMCID: PMC5920772 DOI: 10.1016/j.semcdb.2017.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2017] [Accepted: 10/09/2017] [Indexed: 10/17/2022]
Abstract
Accumulating evidence has reinforced that the habenular region of the vertebrate dorsal forebrain is an essential integrating center, and a region strongly implicated in neurological disorders and addiction. Despite the important and diverse neuromodulatory roles the habenular nuclei play, their development has been understudied. The emphasis of this review is on the dorsal habenular nuclei of zebrafish, homologous to the medial nuclei of mammals, as recent work has revealed new information about the signaling pathways that regulate their formation. Additionally, the zebrafish dorsal habenulae have become a valuable model for probing how left-right differences are established in a vertebrate brain. Sonic hedgehog, fibroblast growth factors and Wingless-INT proteins are all involved in the generation of progenitor cells and ultimately, along with Notch signaling, influence habenular neurogenesis and left-right asymmetry. Intriguingly, a genetic network has emerged that leads to the differentiation of dorsal habenular neurons and, through localized chemokine signaling, directs the posterior outgrowth of their newly emerging axons towards their postsynaptic target, the midbrain interpeduncular nucleus.
Collapse
Affiliation(s)
- Sara Roberson
- Carnegie Institution for Science, Department of Embryology, 3520 San Martin Drive Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Marnie E Halpern
- Carnegie Institution for Science, Department of Embryology, 3520 San Martin Drive Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
11
|
Boutet A. The evolution of asymmetric photosensitive structures in metazoans and the Nodal connection. Mech Dev 2017; 147:49-60. [PMID: 28986126 DOI: 10.1016/j.mod.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2016] [Revised: 07/26/2017] [Accepted: 09/25/2017] [Indexed: 01/12/2023]
Abstract
Asymmetries are observed in a great number of taxa in metazoans. More particularly, functional lateralization and neuroanatomical asymmetries within the central nervous system have been a matter of intense research for at least two hundred years. While asymmetries of some paired structures/organs (e.g. eyes, ears, kidneys, legs, arms) constitute random deviations from a pure bilateral symmetry, brain asymmetries such as those observed in the cortex and epithalamus are directional. This means that molecular and anatomical features located on one side of a given structure are observed in most individuals. For instance, in humans, the neuronal tract connecting the language areas is enlarged in the left hemisphere. When asymmetries are fixed, their molecular mechanisms can be studied using mutants displaying different phenotypes: left or right isomerism of the structure, reversed asymmetry or random asymmetry. Our understanding of asymmetry in the nervous system has been widely enriched thanks to the characterization of mutants affecting epithalamus asymmetry. Furthermore, two decades ago, pioneering studies revealed that a specific morphogen, Nodal, active only on one side of the embryo during development is an important molecule in asymmetry patterning. In this review, I have gathered important data bringing insight into the origin and evolution of epithalamus asymmetry and the role of Nodal in metazoans. After a short introduction on brain asymmetries (chapter I), I secondly focus on the molecular and anatomical characteristics of the epithalamus in vertebrates and explore some functional aspects such as its photosensitive ability related to the pineal complex (chapter II). Third, I discuss homology relationship of the parapineal organ among vertebrates (chapter III). Fourth, I discuss the possible origin of the epithalamus, presenting cells displaying photosensitive properties and/or asymmetry in the anterior part of the body in non-vertebrates (chapter IV). Finally, I report Nodal signaling expression data and functional experiments performed in different metazoan groups (chapter V).
Collapse
Affiliation(s)
- Agnès Boutet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8227, Laboratoire de Biologie Intégrative des Modèles Marins, Station Biologique, F-29688 Roscoff, France.
| |
Collapse
|
12
|
The molecular mechanisms controlling morphogenesis and wiring of the habenula. Pharmacol Biochem Behav 2017; 162:29-37. [PMID: 28843424 DOI: 10.1016/j.pbb.2017.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/01/2017] [Revised: 07/07/2017] [Accepted: 08/21/2017] [Indexed: 11/22/2022]
Abstract
The habenula is an evolutionarily conserved brain region comprising bilaterally paired nuclei that plays a key role in processing reward information and mediating aversive responses to negative stimuli. An important aspect underlying habenula function is relaying information between forebrain and mid- and hindbrain areas. This is mediated by its complex organization into multiple subdomains and corresponding complexity in circuit organization. Additionally, in many species habenular nuclei display left-right differences at the anatomical and functional level. In order to ensure proper functional organization of habenular circuitry, sophisticated molecular programs control the morphogenesis and wiring of the habenula during development. Knowledge of how these mechanisms shape the habenula is crucial for obtaining a complete understanding of this brain region and can provide invaluable tools to study habenula evolution and function. In this review we will discuss how these molecular mechanisms pattern the early embryonic nervous system and control the formation of the habenula, how they shape its asymmetric organization, and how these mechanisms ensure proper wiring of the habenular circuit. Finally, we will address unexplored aspects of habenula development and how these may direct future research.
Collapse
|
13
|
Gezelius H, López-Bendito G. Thalamic neuronal specification and early circuit formation. Dev Neurobiol 2016; 77:830-843. [PMID: 27739248 DOI: 10.1002/dneu.22460] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2016] [Revised: 09/16/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022]
Abstract
The thalamus is a central structure of the brain, primarily recognized for the relay of incoming sensory and motor information to the cerebral cortex but also key in high order intracortical communication. It consists of glutamatergic projection neurons organized in several distinct nuclei, each having a stereotype connectivity pattern and functional roles. In the adult, these nuclei can be appreciated by architectural boundaries, although their developmental origin and specification is only recently beginning to be revealed. Here, we summarize the current knowledge on the specification of the distinct thalamic neurons and nuclei, starting from early embryonic patterning until the postnatal days when active sensory experience is initiated and the overall system connectivity is already established. We also include an overview of the guidance processes important for establishing thalamocortical connections, with emphasis on the early topographical specification. The extensively studied thalamocortical axon branching in the cortex is briefly mentioned; however, the maturation and plasticity of this connection are beyond the scope of this review. In separate chapters, additional mechanisms and/or features that influence the specification and development of thalamic neurons and their circuits are also discussed. Finally, an outlook of future directions is given. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 830-843, 2017.
Collapse
Affiliation(s)
- Henrik Gezelius
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Spain
| |
Collapse
|
14
|
Halluin C, Madelaine R, Naye F, Peers B, Roussigné M, Blader P. Habenular Neurogenesis in Zebrafish Is Regulated by a Hedgehog, Pax6 Proneural Gene Cascade. PLoS One 2016; 11:e0158210. [PMID: 27387288 PMCID: PMC4936704 DOI: 10.1371/journal.pone.0158210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2015] [Accepted: 06/13/2016] [Indexed: 11/19/2022] Open
Abstract
The habenulae are highly conserved nuclei in the dorsal diencephalon that connect the forebrain to the midbrain and hindbrain. These nuclei have been implicated in a broad variety of behaviours in humans, primates, rodents and zebrafish. Despite this, the molecular mechanisms that control the genesis and differentiation of neural progenitors in the habenulae remain relatively unknown. We have previously shown that, in zebrafish, the timing of habenular neurogenesis is left-right asymmetric and that in the absence of Nodal signalling this asymmetry is lost. Here, we show that habenular neurogenesis requires the homeobox transcription factor Pax6a and the redundant action of two proneural bHLH factors, Neurog1 and Neurod4. We present evidence that Hedgehog signalling is required for the expression of pax6a, which is in turn necessary for the expression of neurog1 and neurod4. Finally, we demonstrate by pharmacological inhibition that Hedgehog signalling is required continuously during habenular neurogenesis and by cell transplantation experiments that pathway activation is required cell autonomously. Our data sheds light on the mechanism underlying habenular development that may provide insights into how Nodal signalling imposes asymmetry on the timing of habenular neurogenesis.
Collapse
Affiliation(s)
- Caroline Halluin
- Université de Toulouse III, UPS, Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), 118 route de Narbonne, F-31062 Toulouse, France
- CNRS, CBD UMR 5547, F-31062 Toulouse, France
- Stanford University, School of Medicine, 269–279 Campus Drive, Stanford, CA 94305, United States of America
| | - Romain Madelaine
- Université de Toulouse III, UPS, Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), 118 route de Narbonne, F-31062 Toulouse, France
- CNRS, CBD UMR 5547, F-31062 Toulouse, France
- Stanford University, School of Medicine, 269–279 Campus Drive, Stanford, CA 94305, United States of America
| | - François Naye
- Unit of Molecular Biology and Genetic Engineering, University of Liège, GIGA-R, B34, Avenue de l'Hôpital 1, B-4000 Liège, Belgium
| | - Bernard Peers
- Unit of Molecular Biology and Genetic Engineering, University of Liège, GIGA-R, B34, Avenue de l'Hôpital 1, B-4000 Liège, Belgium
| | - Myriam Roussigné
- Université de Toulouse III, UPS, Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), 118 route de Narbonne, F-31062 Toulouse, France
- CNRS, CBD UMR 5547, F-31062 Toulouse, France
- * E-mail: (MR); (PB)
| | - Patrick Blader
- Université de Toulouse III, UPS, Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), 118 route de Narbonne, F-31062 Toulouse, France
- CNRS, CBD UMR 5547, F-31062 Toulouse, France
- * E-mail: (MR); (PB)
| |
Collapse
|
15
|
Wnt1 signal determines the patterning of the diencephalic dorso-ventral axis. Brain Struct Funct 2015; 221:3693-708. [PMID: 26452989 DOI: 10.1007/s00429-015-1126-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022]
Abstract
The diencephalon is a complex brain area that derives from the caudal region of the prosencephalon. This structure is divided into four longitudinal neuroepithelial zones: roof, alar, basal and floor plates, which constitute its dorso-ventral (DV) columnar domains. Morphogenetic differences between alar and basal plates in the prosencephalon and mesencephalon contribute to the characteristic expansion of alar plate derivatives in the brain and the formation of the cephalic flexure. Although differential histogenesis among DV regions seems to be relevant in understanding structural and functional complexity of the brain, most of our knowledge about DV regionalization comes from the spinal cord development. Therefore, it seems of interest to study the molecular mechanisms that govern DV patterning in the diencephalon, the brain region where strong differences in size and complexity between alar and basal derivatives are evident in all vertebrates. Different morphogenetic signals, which induce specific progenitors fate to the neighboring epithelium, are involved in the spinal cord DV patterning. To study if Wnt1, one of these signaling molecules, has a role for the establishment of the diencephalic longitudinal domains, we carried out gain- and loss-of-function experiments, using mice and chick embryos. Our results demonstrated functional differences in the molecular mechanisms downstream of Wnt1 function in the diencephalon, in relation to the spinal cord. We further demonstrated that Bmp4 signal induces Wnt1 expression in the diencephalon, unraveling a new molecular regulatory code downstream of primary dorsalizing signals to control ventral regionalization in the diencephalon.
Collapse
|
16
|
Abstract
Although the left and right hemispheres of our brains develop with a high degree of symmetry at both the anatomical and functional levels, it has become clear that subtle structural differences exist between the two sides and that each is dominant in processing specific cognitive tasks. As the result of evolutionary conservation or convergence, lateralization of the brain is found in both vertebrates and invertebrates, suggesting that it provides significant fitness for animal life. This widespread feature of hemispheric specialization has allowed the emergence of model systems to study its development and, in some cases, to link anatomical asymmetries to brain function and behavior. Here, we present some of what is known about brain asymmetry in humans and model organisms as well as what is known about the impact of environmental and genetic factors on brain asymmetry development. We specifically highlight the progress made in understanding the development of epithalamic asymmetries in zebrafish and how this model provides an exciting opportunity to address brain asymmetry at different levels of complexity.
Collapse
Affiliation(s)
- Véronique Duboc
- Université de Toulouse, UPS, Center de Biologie du Développement (CBD), F-31062 Toulouse, France; .,CNRS, CBD UMR 5547, F-31062 Toulouse, France
| | - Pascale Dufourcq
- Université de Toulouse, UPS, Center de Biologie du Développement (CBD), F-31062 Toulouse, France; .,CNRS, CBD UMR 5547, F-31062 Toulouse, France
| | - Patrick Blader
- Université de Toulouse, UPS, Center de Biologie du Développement (CBD), F-31062 Toulouse, France; .,CNRS, CBD UMR 5547, F-31062 Toulouse, France
| | - Myriam Roussigné
- Université de Toulouse, UPS, Center de Biologie du Développement (CBD), F-31062 Toulouse, France; .,CNRS, CBD UMR 5547, F-31062 Toulouse, France
| |
Collapse
|
17
|
Martinez-Ferre A, Lloret-Quesada C, Prakash N, Wurst W, Rubenstein JLR, Martinez S. Fgf15 regulates thalamic development by controlling the expression of proneural genes. Brain Struct Funct 2015; 221:3095-109. [PMID: 26311466 DOI: 10.1007/s00429-015-1089-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2015] [Accepted: 07/21/2015] [Indexed: 01/01/2023]
Abstract
The establishment of the brain structural complexity requires a precisely orchestrated interplay between extrinsic and intrinsic signals modulating cellular mechanisms to guide neuronal differentiation. However, little is known about the nature of these signals in the diencephalon, a complex brain region that processes and relays sensory and motor information to and from the cerebral cortex and subcortical structures. Morphogenetic signals from brain organizers regulate histogenetic processes such as cellular proliferation, migration, and differentiation. Sonic hedgehog (Shh) in the key signal of the ZLI, identified as the diencephalic organizer. Fgf15, the mouse gene orthologous of human, chick, and zebrafish Fgf19, is induced by Shh signal and expressed in the diencephalic alar plate progenitors during histogenetic developmental stages. This work investigates the role of Fgf15 signal in diencephalic development. In the absence of Fgf15, the complementary expression pattern of proneural genes: Ascl1 and Nng2, is disrupted and the GABAergic thalamic cells do not differentiate; in addition dorsal thalamic progenitors failed to exit from the mitotic cycle and to differentiate into neurons. Therefore, our findings indicate that Fgf15 is the Shh downstream signal to control thalamic regionalization, neurogenesis, and neuronal differentiation by regulating the expression and mutual segregation of neurogenic and proneural regulatory genes.
Collapse
Affiliation(s)
- Almudena Martinez-Ferre
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), University of Murcia, 30120, El Palmar, Murcia, Spain
| | - Cosme Lloret-Quesada
- Institute of Neurosciences, Miguel Hernández University, Spanish National Research Council, San Juan Campus, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Nilima Prakash
- Institute of Developmental Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health (GmbH), Technical University Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health (GmbH), Technical University Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - John L R Rubenstein
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - Salvador Martinez
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), University of Murcia, 30120, El Palmar, Murcia, Spain. .,Institute of Neurosciences, Miguel Hernández University, Spanish National Research Council, San Juan Campus, 03550, Sant Joan d'Alacant, Alicante, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Valencia, Spain.
| |
Collapse
|
18
|
Mallika C, Guo Q, Li JYH. Gbx2 is essential for maintaining thalamic neuron identity and repressing habenular characters in the developing thalamus. Dev Biol 2015; 407:26-39. [PMID: 26297811 DOI: 10.1016/j.ydbio.2015.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/30/2022]
Abstract
The thalamus and habenula, two important nodes of the forebrain circuitry, are derived from a single developmental compartment, called prosomere 2, in the diencephalon. Habenular and thalamic neurons display distinct molecular identity, neurochemistry, and connectivity. Furthermore, their progenitors exhibit distinctive neurogenic patterns with a marked delay in the onset of neurogenesis in the thalamus. However, the progenitors in prosomere 2 express many common developmental regulators and the mechanism underlying the specification and differentiation of these two populations of neurons remains unknown. Gbx2, coding for a homeodomain transcription factor, is initially expressed in thalamic neuronal precursors that have just exited the cell cycle, and its expression is maintained in many mature thalamic neurons in adults. Deletion of Gbx2 severely disrupts histogenesis of the thalamus and abolishes thalamocortical projections in mice. Here, by using genome-wide transcriptional profiling, we show that Gbx2 promotes thalamic but inhibits habenular molecular characters. Remarkably, although Gbx2 is expressed in postmitotic neuronal precursors, deletion of Gbx2 changes gene expression and cell proliferation in dividing progenitors in the developing thalamus. These defects are partially rescued by the mosaic presence of wild-type cells, demonstrating a cell non-autonomous role of Gbx2 in regulating the development of thalamic progenitors. Our results suggest that Gbx2 is essential for the acquisition of the thalamic neuronal identity by repressing habenular identity through a feedback signaling from postmitotic neurons to progenitors.
Collapse
Affiliation(s)
- Chatterjee Mallika
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT 06030-6403, United States
| | - Qiuxia Guo
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT 06030-6403, United States
| | - James Y H Li
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT 06030-6403, United States.
| |
Collapse
|
19
|
Cruz-Martinez P, Martinez-Ferre A, Jaramillo-Merchán J, Estirado A, Martinez S, Jones J. FGF8 activates proliferation and migration in mouse post-natal oligodendrocyte progenitor cells. PLoS One 2014; 9:e108241. [PMID: 25259688 PMCID: PMC4178127 DOI: 10.1371/journal.pone.0108241] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2014] [Accepted: 08/26/2014] [Indexed: 11/21/2022] Open
Abstract
Fibroblast growth factor 8 (FGF8) is a key molecular signal that is necessary for early embryonic development of the central nervous system, quickly disappearing past this point. It is known to be one of the primary morphogenetic signals required for cell fate and survival processes in structures such as the cerebellum, telencephalic and isthmic organizers, while its absence causes severe abnormalities in the nervous system and the embryo usually dies in early stages of development. In this work, we have observed a new possible therapeutic role for this factor in demyelinating disorders, such as leukodystrophy or multiple sclerosis. In vitro, oligodendrocyte progenitor cells were cultured with differentiating medium and in the presence of FGF8. Differentiation and proliferation studies were performed by immunocytochemistry and PCR. Also, migration studies were performed in matrigel cultures, where oligodendrocyte progenitor cells were placed at a certain distance of a FGF8-soaked heparin bead. The results showed that both migration and proliferation was induced by FGF8. Furthermore, a similar effect was observed in an in vivo demyelinating mouse model, where oligodendrocyte progenitor cells were observed migrating towards the FGF8-soaked heparin beads where they were grafted. In conclusion, the results shown here demonstrate that FGF8 is a novel factor to induce oligodendrocyte progenitor cell activation, migration and proliferation in vitro, which can be extrapolated in vivo in demyelinated animal models.
Collapse
Affiliation(s)
- Pablo Cruz-Martinez
- Neuroscience Institute, University Miguel Hernández (UMH-CSIC), San Juan, Alicante, Spain
| | | | | | - Alicia Estirado
- Neuroscience Institute, University Miguel Hernández (UMH-CSIC), San Juan, Alicante, Spain
| | - Salvador Martinez
- Neuroscience Institute, University Miguel Hernández (UMH-CSIC), San Juan, Alicante, Spain
- IMIB-Hospital Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Jonathan Jones
- Neuroscience Institute, University Miguel Hernández (UMH-CSIC), San Juan, Alicante, Spain
- * E-mail:
| |
Collapse
|
20
|
Lauter G, Söll I, Hauptmann G. Molecular characterization of prosomeric and intraprosomeric subdivisions of the embryonic zebrafish diencephalon. J Comp Neurol 2013; 521:1093-118. [PMID: 22949352 DOI: 10.1002/cne.23221] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2011] [Revised: 03/04/2012] [Accepted: 08/14/2012] [Indexed: 02/05/2023]
Abstract
During development of the early neural tube, positional information provided by signaling gradients is translated into a grid of transverse and longitudinal transcription factor expression domains. Transcription factor specification codes defining distinct histogenetic domains within this grid are evolutionarily conserved across vertebrates and may reflect an underlying common vertebrate bauplan. When compared to the rich body of comparative gene expression studies of tetrapods, there is considerably less comparative data available for teleost fish. We used sensitive multicolor fluorescent in situ hybridization to generate a detailed map of regulatory gene expression domains in the embryonic zebrafish diencephalon. The high resolution of this technique allowed us to resolve abutting and overlapping gene expression of different transcripts. We found that the relative topography of gene expression patterns in zebrafish was highly similar to those of orthologous genes in tetrapods and consistent with a three-prosomere organization of the alar and basal diencephalon. Our analysis further demonstrated a conservation of intraprosomeric subdivisions within prosomeres 1, 2, and 3 (p1, p2, and p3). A tripartition of zebrafish p1 was identified reminiscent of precommissural (PcP), juxtacommissural (JcP), and commissural (CoP) pretectal domains of tetrapods. The constructed detailed diencephalic transcription factor gene expression map further identified molecularly distinct thalamic and prethalamic rostral and caudal domains and a prethalamic eminence histogenetic domain in zebrafish. Our comparative gene expression analysis conformed with the idea of a common bauplan for the diencephalon of anamniote and amniote vertebrates from fish to mammals.
Collapse
Affiliation(s)
- Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | | | | |
Collapse
|
21
|
Wnt signal specifies the intrathalamic limit and its organizer properties by regulating Shh induction in the alar plate. J Neurosci 2013; 33:3967-80. [PMID: 23447606 DOI: 10.1523/jneurosci.0726-12.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022] Open
Abstract
The structural complexity of the brain depends on precise molecular and cellular regulatory mechanisms orchestrated by regional morphogenetic organizers. The thalamic organizer is the zona limitans intrathalamica (ZLI), a transverse linear neuroepithelial domain in the alar plate of the diencephalon. Because of its production of Sonic hedgehog, ZLI acts as a morphogenetic signaling center. Shh is expressed early on in the prosencephalic basal plate and is then gradually activated dorsally within the ZLI. The anteroposterior positioning and the mechanism inducing Shh expression in ZLI cells are still partly unknown, being a subject of controversial interpretations. For instance, separate experimental results have suggested that juxtaposition of prechordal (rostral) and epichordal (caudal) neuroepithelium, anteroposterior encroachment of alar lunatic fringe (L-fng) expression, and/or basal Shh signaling is required for ZLI specification. Here we investigated a key role of Wnt signaling in the molecular regulation of ZLI positioning and Shh expression, using experimental embryology in ovo in the chick. Early Wnt expression in the ZLI regulates Gli3 and L-fng to generate a permissive territory in which Shh is progressively induced by planar signals of the basal plate.
Collapse
|
22
|
Clanton JA, Hope KD, Gamse JT. Fgf signaling governs cell fate in the zebrafish pineal complex. Development 2013; 140:323-32. [PMID: 23250206 DOI: 10.1242/dev.083709] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Left-right (L-R) asymmetries in neuroanatomy exist throughout the animal kingdom, with implications for function and behavior. The molecular mechanisms that control formation of such asymmetries are beginning to be understood. Significant progress has been made by studying the zebrafish parapineal organ, a group of neurons on the left side of the epithalamus. Parapineal cells arise from the medially located pineal complex anlage and migrate to the left side of the brain. We have found that Fgf8a regulates a fate decision among anterior pineal complex progenitors that occurs just prior to the initiation of leftward migration. Cell fate analysis shows that in the absence of Fgf8a a subset of cells in the anterior pineal complex anlage differentiate as cone photoreceptors rather than parapineal neurons. Fgf8a acts permissively to promote parapineal fate in conjunction with the transcription factor Tbx2b, but might also block cone photoreceptor fate. We conclude that this subset of anterior pineal complex precursors, which normally become parapineal cells, are bipotential and require Fgf8a to maintain parapineal identity and/or prevent cone identity.
Collapse
Affiliation(s)
- Joshua A Clanton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37205, USA
| | | | | |
Collapse
|
23
|
Roussigne M, Blader P, Wilson SW. Breaking symmetry: the zebrafish as a model for understanding left-right asymmetry in the developing brain. Dev Neurobiol 2012; 72:269-81. [PMID: 22553774 DOI: 10.1002/dneu.20885] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
How does left-right asymmetry develop in the brain and how does the resultant asymmetric circuitry impact on brain function and lateralized behaviors? By enabling scientists to address these questions at the levels of genes, neurons, circuitry and behavior,the zebrafish model system provides a route to resolve the complexity of brain lateralization. In this review, we present the progress made towards characterizing the nature of the gene networks and the sequence of morphogenetic events involved in the asymmetric development of zebrafish epithalamus. In an attempt to integrate the recent extensive knowledge into a working model and to identify the future challenges,we discuss how insights gained at a cellular/developmental level can be linked to the data obtained at a molecular/genetic level. Finally, we present some evolutionary thoughts and discuss how significant discoveries made in zebrafish should provide entry points to better understand the evolutionary origins of brain lateralization.
Collapse
Affiliation(s)
- Myriam Roussigne
- Universite Paul Sabatier, Centre de Biologie du Developpement,Toulouse, France.
| | | | | |
Collapse
|
24
|
Virolainen SM, Achim K, Peltopuro P, Salminen M, Partanen J. Transcriptional regulatory mechanisms underlying the GABAergic neuron fate in different diencephalic prosomeres. Development 2012; 139:3795-805. [DOI: 10.1242/dev.075192] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
Diverse mechanisms regulate development of GABAergic neurons in different regions of the central nervous system. We have addressed the roles of a proneural gene, Ascl1, and a postmitotic selector gene, Gata2, in the differentiation of GABAergic neuron subpopulations in three diencephalic prosomeres: prethalamus (P3), thalamus (P2) and pretectum (P1). Although the different proliferative progenitor populations of GABAergic neurons commonly express Ascl1, they have distinct requirements for it in promotion of cell-cycle exit and GABAergic neuron identity. Subsequently, Gata2 is activated as postmitotic GABAergic precursors are born. In P1, Gata2 regulates the neurotransmitter identity by promoting GABAergic and inhibiting glutamatergic neuron differentiation. Interestingly, Gata2 defines instead the subtype of GABAergic neurons in the rostral thalamus (pTh-R), which is a subpopulation of P2. Without Gata2, the GABAergic precursors born in the pTh-R fail to activate subtype-specific markers, but start to express genes typical of GABAergic precursors in the neighbouring P3 domain. Thus, our results demonstrate diverse mechanisms regulating differentiation of GABAergic neuron subpopulations and suggest a role for Gata2 as a selector gene of both GABAergic neuron neurotransmitter and prosomere subtype identities in the developing diencephalon. Our results demonstrate for the first time that neuronal identities between distinct prosomeres can still be transformed in postmitotic neuronal precursors.
Collapse
Affiliation(s)
- Sini-Maaria Virolainen
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, PO Box 56, Viikinkaari 5, FIN00014-University of Helsinki, Helsinki, Finland
| | - Kaia Achim
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, PO Box 56, Viikinkaari 5, FIN00014-University of Helsinki, Helsinki, Finland
| | - Paula Peltopuro
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, PO Box 56, Viikinkaari 5, FIN00014-University of Helsinki, Helsinki, Finland
| | - Marjo Salminen
- Department of Veterinary Biosciences, P.O. Box 66, Agnes Sjobergin katu 2, FIN00014-University of Helsinki, Helsinki, Finland
| | - Juha Partanen
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, PO Box 56, Viikinkaari 5, FIN00014-University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
A SINE-derived element constitutes a unique modular enhancer for mammalian diencephalic Fgf8. PLoS One 2012; 7:e43785. [PMID: 22937095 PMCID: PMC3427154 DOI: 10.1371/journal.pone.0043785] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2012] [Accepted: 07/25/2012] [Indexed: 01/04/2023] Open
Abstract
Transposable elements, including short interspersed repetitive elements (SINEs), comprise nearly half the mammalian genome. Moreover, they are a major source of conserved non-coding elements (CNEs), which play important functional roles in regulating development-related genes, such as enhancing and silencing, serving for the diversification of morphological and physiological features among species. We previously reported a novel SINE family, AmnSINE1, as part of mammalian-specific CNEs. One AmnSINE1 locus, named AS071, showed an enhancer property in the developing mouse diencephalon. Indeed, AS071 appears to recapitulate the expression of diencephalic fibroblast growth factor 8 (Fgf8). Here we established three independent lines of AS071-transgenic mice and performed detailed expression profiling of AS071-enhanced lacZ in comparison with that of Fgf8 across embryonic stages. We demonstrate that AS071 is a distal enhancer that directs Fgf8 expression in the developing diencephalon. Furthermore, enhancer assays with constructs encoding partially deleted AS071 sequence revealed a unique modular organization in which AS071 contains at least three functionally distinct sub-elements that cooperatively direct the enhancer activity in three diencephalic domains, namely the dorsal midline and the lateral wall of the diencephalon, and the ventral midline of the hypothalamus. Interestingly, the AmnSINE1-derived sub-element was found to specify the enhancer activity to the ventral midline of the hypothalamus. To our knowledge, this is the first discovery of an enhancer element that could be separated into respective sub-elements that determine regional specificity and/or the core enhancing activity. These results potentiate our understanding of the evolution of retroposon-derived cis-regulatory elements as well as the basis for future studies of the molecular mechanism underlying the determination of domain-specificity of an enhancer.
Collapse
|
26
|
Lu J, Lu K, Li D. Changes in expression and secretion patterns of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway molecules during murine neural stem/progenitor cell differentiation in vitro. Neural Regen Res 2012; 7:1688-94. [PMID: 25624789 PMCID: PMC4302448 DOI: 10.3969/j.issn.1673-5374.2012.22.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2012] [Accepted: 05/03/2012] [Indexed: 12/21/2022] Open
Abstract
In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells.
Collapse
Affiliation(s)
- Jiang Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China ; Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Dongsheng Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| |
Collapse
|
27
|
Hagemann AIH, Scholpp S. The Tale of the Three Brothers - Shh, Wnt, and Fgf during Development of the Thalamus. Front Neurosci 2012; 6:76. [PMID: 22654733 PMCID: PMC3361129 DOI: 10.3389/fnins.2012.00076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2012] [Accepted: 05/04/2012] [Indexed: 12/19/2022] Open
Abstract
The thalamic complex is an essential part of the brain that requires a combination of specialized activities to attain its final complexity. In the following review we will describe the induction process of the mid-diencephalic organizer (MDO) where three different signaling pathways merge: Wnt, Shh, and Fgf. Here, we dissect the function of each signaling pathway in the thalamus in chronological order of their appearance. First we describe the Wnt mediated induction of the MDO and compartition of the caudal forebrain, then the Shh mediated determination of proneural gene expression before discussing recent progress in characterizing Fgf function during thalamus development. Then, we focus on transcription factors, which are regulated by these pathways and which play a pivotal role in neurogenesis in the thalamus. The three signaling pathways act together in a strictly regulated chronology to orchestrate the development of the entire thalamus.
Collapse
Affiliation(s)
- Anja I H Hagemann
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics Karlsruhe, Germany
| | | |
Collapse
|
28
|
Martinez-Ferre A, Martinez S. Molecular regionalization of the diencephalon. Front Neurosci 2012; 6:73. [PMID: 22654731 PMCID: PMC3360461 DOI: 10.3389/fnins.2012.00073] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2012] [Accepted: 05/03/2012] [Indexed: 01/29/2023] Open
Abstract
The anatomic complexity of the diencephalon depends on precise molecular and cellular regulative mechanisms orchestrated by regional morphogenetic organizers at the neural tube stage. In the diencephalon, like in other neural tube regions, dorsal and ventral signals codify positional information to specify ventro-dorsal regionalization. Retinoic acid, Fgf8, BMPs, and Wnts signals are the molecular factors acting upon the diencephalic epithelium to specify dorsal structures, while Shh is the main ventralizing signal. A central diencephalic organizer, the zona limitans intrathalamica (ZLI), appears after neurulation in the central diencephalic alar plate, establishing additional antero-posterior positional information inside diencephalic alar plate. Based on Shh expression, the ZLI acts as a morphogenetic center, which cooperates with other signals in thalamic specification and pattering in the alar plate of diencephalon. Indeed, Shh is expressed first in the basal plate extending dorsally through the ZLI epithelium as the development proceeds. Despite the importance of ZLI in diencephalic morphogenesis the mechanisms that regulate its development remain incompletely understood. Actually, controversial interpretations in different experimental models have been proposed. That is, experimental results have suggested that (i) the juxtaposition of the molecularly heterogeneous neuroepithelial areas, (ii) cell reorganization in the epithelium, and/or (iii) planar and vertical inductions in the neural epithelium, are required for ZLI specification and development. We will review some experimental data to approach the study of the molecular regulation of diencephalic regionalization, with special interest in the cellular mechanisms underlying planar inductions.
Collapse
|
29
|
|
30
|
Chatterjee M, Li JYH. Patterning and compartment formation in the diencephalon. Front Neurosci 2012; 6:66. [PMID: 22593732 PMCID: PMC3349951 DOI: 10.3389/fnins.2012.00066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2012] [Accepted: 04/17/2012] [Indexed: 01/03/2023] Open
Abstract
The diencephalon gives rise to structures that play an important role in connecting the anterior forebrain with the rest of the central nervous system. The thalamus is the major diencephalic derivative that functions as a relay station between the cortex and other lower order sensory systems. Almost two decades ago, neuromeric/prosomeric models were proposed describing the subdivision and potential segmentation of the diencephalon. Unlike the laminar structure of the cortex, the diencephalon is progressively divided into distinct functional compartments consisting principally of thalamus, epithalamus, pretectum, and hypothalamus. Neurons generated within these domains further aggregate to form clusters called nuclei, which form specific structural and functional units. We review the recent advances in understanding the genetic mechanisms that are involved in the patterning and compartment formation of the diencephalon.
Collapse
Affiliation(s)
- Mallika Chatterjee
- Department of Genetics and Developmental Biology, University of Connecticut Health Center Farmington, CT, USA
| | | |
Collapse
|
31
|
Abstract
The thalamus is strategically positioned within the caudal diencephalic area of the forebrain, between the mesencephalon and telencephalon. This location is important for unique aspects of thalamic function, to process and relay sensory and motor information to and from the cerebral cortex. How the thalamus comes to reside within this region of the central nervous system has been the subject of much investigation. Extracellular signals secreted from key locations both extrinsic and intrinsic to the thalamic primordium have recently been identified and shown to play important roles in the growth, regionalization, and specification of thalamic progenitors. One factor in particular, the secreted morphogen Sonic hedgehog (Shh), has been implicated in spatiotemporal and threshold models of thalamic development that differ from other areas of the CNS due, in large part, to its expression within two signaling centers, the basal plate and the zona limitans intrathalamica, a dorsally projecting spike that separates the thalamus from the subthalamic region. Shh signaling from these dual sources exhibit unique and overlapping functions in the control of thalamic progenitor identity and nuclei specification. This review will highlight recent advances in our understanding of Shh function during thalamic development, revealing similarities, and differences that exist between species.
Collapse
Affiliation(s)
- Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
32
|
Mattes B, Weber S, Peres J, Chen Q, Davidson G, Houart C, Scholpp S. Wnt3 and Wnt3a are required for induction of the mid-diencephalic organizer in the caudal forebrain. Neural Dev 2012; 7:12. [PMID: 22475147 PMCID: PMC3349543 DOI: 10.1186/1749-8104-7-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2012] [Accepted: 04/04/2012] [Indexed: 01/05/2023] Open
Abstract
Background A fundamental requirement for development of diverse brain regions is the function of local organizers at morphological boundaries. These organizers are restricted groups of cells that secrete signaling molecules, which in turn regulate the fate of the adjacent neural tissue. The thalamus is located in the caudal diencephalon and is the central relay station between the sense organs and higher brain areas. The mid-diencephalic organizer (MDO) orchestrates the development of the thalamus by releasing secreted signaling molecules such as Shh. Results Here we show that canonical Wnt signaling in the caudal forebrain is required for the formation of the Shh-secreting MD organizer in zebrafish. Wnt signaling induces the MDO in a narrow time window of 4 hours - between 10 and 14 hours post fertilization. Loss of Wnt3 and Wnt3a prevents induction of the MDO, a phenotype also observed upon blockage of canonical Wnt signaling per se. Pharmaceutical activation of the canonical Wnt pathways in Wnt3/Wnt3a compound morphant embryos is able to restore the lack of the MDO. After blockage of Wnt signaling or knock-down of Wnt3/Wnt3a we find an increase of apoptotic cells specifically within the organizer primordium. Consistently, blockage of apoptosis restores the thalamus organizer MDO in Wnt deficient embryos. Conclusion We have identified canonical Wnt signaling as a novel pathway, that is required for proper formation of the MDO and consequently for the development of the major relay station of the brain - the thalamus. We propose that Wnt ligands are necessary to maintain the primordial tissue of the organizer during somitogenesis by suppressing Tp53-mediated apoptosis.
Collapse
Affiliation(s)
- Benjamin Mattes
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Meyza KZ, Blanchard DC, Pearson BL, Pobbe RL, Blanchard RJ. Fractone-associated N-sulfated heparan sulfate shows reduced quantity in BTBR T+tf/J mice: a strong model of autism. Behav Brain Res 2012; 228:247-53. [PMID: 22101175 PMCID: PMC3268836 DOI: 10.1016/j.bbr.2011.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 12/20/2022]
Abstract
BTBR T+tf/J (BTBR) mice show abnormal social, communicatory, and repetitive/stereotyped behaviors paralleling many of the symptoms of autism spectrum disorders. BTBR also show agenesis of the corpus callosum (CC) suggesting major perturbations of growth or guidance factors in the dorsal forebrain [1]. Heparan sulfate (HS) is a polysaccaride found in the brain and other animal tissues. It binds to a wide variety of ligands and through these ligands modulates a number of biological processes, including cell proliferation and differentiation, migration and guidance. It is aggregated on fractal-like structures (fractones) in the subventricular zone (SVZ), that may be visualized by laminin immunoreactivity (LAM-ir), as well as by HS immunoreactivity (HS-ir). We report that the lateral ventricles of BTBR mice were drastically reduced in area compared to C57BL/6J (B6) mice while the BTBR SVZ was significantly shorter than that of B6. In addition to much smaller fractones for BTBR, both HS and LAM-ir associated with fractones were significantly reduced in BTBR, and their anterior-posterior distributions were also altered. Finally, the ratio of HS to LAM in individual fractones was significantly higher in BTBR than in B6 mice. These data, in agreement with other findings linking HS to callosal development, suggest that variations in the quantity and distribution of HS in the SVZ of the lateral ventricles may be important modulators of the brain structural abnormalities of BTBR mice, and, potentially, contribute to the behavioral pathologies of these animals.
Collapse
Affiliation(s)
- Ksenia Z. Meyza
- Pacific Biosciences Research Center, University of Hawaii, 1993 East-West Road, Honolulu, HI 96822, USA
| | - D. Caroline Blanchard
- Pacific Biosciences Research Center, University of Hawaii, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Brandon L. Pearson
- Department of Psychology, University of Hawaii, 2430 Campus Road, Honolulu, HI 96822, USA
| | - Roger L.H. Pobbe
- Pacific Biosciences Research Center, University of Hawaii, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Robert J. Blanchard
- Department of Psychology, University of Hawaii, 2430 Campus Road, Honolulu, HI 96822, USA
| |
Collapse
|
34
|
Haddad-Tóvolli R, Heide M, Zhou X, Blaess S, Alvarez-Bolado G. Mouse thalamic differentiation: gli-dependent pattern and gli-independent prepattern. Front Neurosci 2012; 6:27. [PMID: 22371696 PMCID: PMC3283895 DOI: 10.3389/fnins.2012.00027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2011] [Accepted: 02/08/2012] [Indexed: 12/17/2022] Open
Abstract
Sonic hedgehog (Shh) signaling is essential for thalamic development. The Gli transcription factors act downstream of Shh – while Gli2 is the major activator (GliA), Gli3 acts primarily as a repressor (GliR). The thalamus is remarkable among dorsal structures because of its proximity to the mid-diencephalic organizer, a unique dorsal Shh source. This lends complexity to the interactions between Shh, Gli2, and Gli3, suggesting the presence of a dorsal Gli activator which elsewhere is found only ventrally, and making the dissection of thalamic Gli functions particularly interesting. A current model based on mutant phenotypes in telencephalon and midbrain postulates a degree of reciprocal antagonism of Shh and Gli3 in dorsal brain regions. To approach the role of Gli factors in thalamic specification we first analyzed mice deficient in Gli2 or Gli3. In Gli2 mutants, the thalamus is small and poorly differentiated with the exception of the medial and intralaminar nuclei which, in contrast, are specifically and severely affected by Gli3 inactivation. Gbx2 expression is very reduced in the Gli3 mutant. Most thalamic nuclei are present in both mutants, although incompletely differentiated, as reflected by the loss of specific markers. The ventral posterior group, revealed by novel specific marker Hes1, is present in both mutants and extends axons to the telencephalon. To test the Gli3/Shh interaction we generated a novel mutant deficient in Gli3 and neuroepithelial Shh. The thalamus of the n-Shh/Gli3 double mutants is very large and very poorly differentiated except for a broad domain of Gbx2, Lhx2, and Calb2 expression. In utero electroporation experiments on wild type embryos suggest that a stage-specific factor acting early is responsible for this prepattern. We show that, in the thalamus, GliA acts downstream of Shh to specify pattern and size of the thalamic nuclei to the exception of the medial and intralaminar groups. Gli3A can partially substitute for Gli2A in the Gli2 mutant. GliR is essential for specification and growth of the medial and intralaminar nuclei, contributes to the specification of other thalamic nuclei and reduces thalamic size. GliA (from neuroepithelial Shh signaling) and GliR do not show reciprocal antagonism in the thalamus, and their joint abolition does not rescue the wild type phenotype.
Collapse
Affiliation(s)
- Roberta Haddad-Tóvolli
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Heidelberg Heidelberg, Germany
| | | | | | | | | |
Collapse
|
35
|
Aizawa H, Amo R, Okamoto H. Phylogeny and ontogeny of the habenular structure. Front Neurosci 2011; 5:138. [PMID: 22203792 PMCID: PMC3244072 DOI: 10.3389/fnins.2011.00138] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2011] [Accepted: 12/01/2011] [Indexed: 11/28/2022] Open
Abstract
Habenula is an epithalamic nucleus connecting the forebrain with the ventral midbrain and hindbrain that plays a pivotal role in decision making by regulating dopaminergic and serotonergic activities. Intriguingly, habenula has also attracted interest as a model for brain asymmetry, since many vertebrates show left–right differences in habenula size and neural circuitry. Despite the functional significance of this nucleus, few studies have addressed the molecular mechanisms underlying habenular development. Mammalian habenula consists of the medial and lateral habenulae, which have distinct neural connectivity. The habenula shows phylogenetic conservation from fish to human, and studies using genetically accessible model animals have provided molecular insights into the developmental mechanisms of the habenula. The results suggest that development of the habenular asymmetry is mediated by differential regulation of the neurogenetic period for generating specific neuronal subtypes. Since the orientation and size ratio of the medial and lateral habenulae differ across species, the evolution of those subregions within the habenula may also reflect changes in neurogenesis duration for each habenular subdivision according to the evolutionary process.
Collapse
Affiliation(s)
- Hidenori Aizawa
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University Tokyo, Japan
| | | | | |
Collapse
|
36
|
Peukert D, Weber S, Lumsden A, Scholpp S. Lhx2 and Lhx9 determine neuronal differentiation and compartition in the caudal forebrain by regulating Wnt signaling. PLoS Biol 2011; 9:e1001218. [PMID: 22180728 PMCID: PMC3236734 DOI: 10.1371/journal.pbio.1001218] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2011] [Accepted: 11/02/2011] [Indexed: 11/19/2022] Open
Abstract
Initial axial patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs during gastrulation. After this patterning phase, further diversification within the brain is thought to proceed largely independently in the different primordia. However, mechanisms that maintain the demarcation of brain subdivisions at later stages are poorly understood. In the alar plate of the caudal forebrain there are two principal units, the thalamus and the pretectum, each of which is a developmental compartment. Here we show that proper neuronal differentiation of the thalamus requires Lhx2 and Lhx9 function. In Lhx2/Lhx9-deficient zebrafish embryos the differentiation process is blocked and the dorsally adjacent Wnt positive epithalamus expands into the thalamus. This leads to an upregulation of Wnt signaling in the caudal forebrain. Lack of Lhx2/Lhx9 function as well as increased Wnt signaling alter the expression of the thalamus specific cell adhesion factor pcdh10b and lead subsequently to a striking anterior-posterior disorganization of the caudal forebrain. We therefore suggest that after initial neural tube patterning, neurogenesis within a brain compartment influences the integrity of the neuronal progenitor pool and border formation of a neuromeric compartment.
Collapse
Affiliation(s)
- Daniela Peukert
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Karlsruhe, Germany
- MRC Centre of Developmental Neurobiology, King's College London, United Kingdom
| | - Sabrina Weber
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Karlsruhe, Germany
| | - Andrew Lumsden
- MRC Centre of Developmental Neurobiology, King's College London, United Kingdom
| | - Steffen Scholpp
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
37
|
Blanchard DC, Defensor EB, Meyza KZ, Pobbe RLH, Pearson BL, Bolivar VJ, Blanchard RJ. BTBR T+tf/J mice: autism-relevant behaviors and reduced fractone-associated heparan sulfate. Neurosci Biobehav Rev 2011; 36:285-96. [PMID: 21741402 DOI: 10.1016/j.neubiorev.2011.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
Abstract
BTBR T+tf/J (BTBR) mice have emerged as strong candidates to serve as models of a range of autism-relevant behaviors, showing deficiencies in social behaviors; reduced or unusual ultrasonic vocalizations in conspecific situations; and enhanced, repetitive self-grooming. Recent studies have described their behaviors in a seminatural visible burrow system (VBS); a Social Proximity Test in which avoidance of a conspecific is impossible; and in an object approach and investigation test evaluating attention to specific objects and potential stereotypies in the order of approaching/investigating objects. VBS results confirmed strong BTBR avoidance of conspecifics and in the Social Proximity Test, BTBR showed dramatic differences in several close-in behaviors, including specific avoidance of a nose-to-nose contact that may potentially be related to gaze-avoidance. Diazepam normalized social avoidance by BTBRs in a Three-Chamber Test, and some additional behaviors - but not nose to nose avoidance - in the Social Proximity Test. BTBR also showed higher levels of preference for particular objects, and higher levels of sequences investigating 3- or 4-objects in the same order. Heparan sulfate (HS) associated with fractal structures in the subventricular zone of the lateral ventricles was severely reduced in BTBR. HS may modulate the functions of a range of growth and guidance factors during development, and HS abnormalities are associated with relevant brain (callosal agenesis) and behavioral (reductions in sociality) changes; suggesting the value of examination of the dynamics of the HS system in the context of autism.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Biosciences Research Center, University of Hawaii, 1993 East-West Road, Honolulu, HI 96822, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Sunmonu NA, Li K, Li JYH. Numerous isoforms of Fgf8 reflect its multiple roles in the developing brain. J Cell Physiol 2011; 226:1722-6. [PMID: 21506104 DOI: 10.1002/jcp.22587] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023]
Abstract
Soluble growth factors play an important role in the coordination and integration of cell proliferation, differentiation, fate determination, and morphogenesis during development of multicellular organisms. Fibroblast growth factors (FGFs) are a large family of polypeptide growth factors that are present in organisms ranging from nematodes to humans. RNA alternative splicing of FGFs and their receptors further enhances the complexity of this ligand-receptor system. The mouse Fgf8 gene produces eight splice variants, which encode isoform proteins with different N-termini and distinct receptor-binding affinity and biological activity. In this article, we review the roles of Fgf8 in vertebrate development and summarize the recent findings on the in vivo function of different Fgf8 splice variants. We propose that multiple Fgf8 isoform proteins act in concert to regulate the overall function of Fgf8 and account for the diverse and essential role of Fgf8 during vertebrate development.
Collapse
Affiliation(s)
- N Abimbola Sunmonu
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-6403, USA
| | | | | |
Collapse
|
39
|
Suzuki-Hirano A, Ogawa M, Kataoka A, Yoshida AC, Itoh D, Ueno M, Blackshaw S, Shimogori T. Dynamic spatiotemporal gene expression in embryonic mouse thalamus. J Comp Neurol 2011; 519:528-43. [PMID: 21192082 DOI: 10.1002/cne.22531] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
The anatomy of the mammalian thalamus is characterized by nuclei, which can be readily identified in postnatal animals. However, the molecular mechanisms that guide specification and differentiation of neurons in specific thalamic nuclei are still largely unknown, and few molecular markers are available for most of these thalamic subregions at early stages of development. We therefore searched for patterned gene expression restricted to specific mouse thalamic regions by in situ hybridization during the onset of thalamic neurogenesis (embryonic [E] days E10.5-E12.5). To obtain correct regional information, we used Shh as a landmark and compared spatial relationships with the zona limitans intrathalamica (Zli), the border of the p2 and p3 compartments of the diencephalon. We identified genes that are expressed specifically in the ventricular zone of the thalamic neuroepithelium and also identified a number of genes that already exhibited regional identity at E12.5. Although many genes expressed in the mantle regions of the thalamus at E12.5 showed regionally restricted patterns, none of these clearly corresponded to individual thalamic nuclei. We next examined gene expression at E15.5, when thalamocortical axons (TCAs) project from distinct regions of the thalamus and reach their targets in the cerebral cortex. Regionally restricted patterns of gene expression were again seen for many genes, but some regionally bounded expression patterns in the early postnatal thalamus had shifted substantially by E15.5. These findings reveal that nucleogenesis in the developing thalamus is associated with selective and complex changes in gene expression and provide a list of genes that may actively regulate the development of thalamic nuclei.
Collapse
|
40
|
Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nürnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini MA, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, Garcia-Calero E, Kruse S, Uhr M, Kauck C, Feng G, Milyaev N, Ong CK, Kumar L, Lam M, Semple CA, Gyenesei A, Mundlos S, Radelof U, Lehrach H, Sarmientos P, Reymond A, Davidson DR, Dollé P, Antonarakis SE, Yaspo ML, Martinez S, Baldock RA, Eichele G, Ballabio A. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol 2011; 9:e1000582. [PMID: 21267068 PMCID: PMC3022534 DOI: 10.1371/journal.pbio.1000582] [Citation(s) in RCA: 484] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2010] [Accepted: 12/06/2010] [Indexed: 11/23/2022] Open
Abstract
The manuscript describes the “digital transcriptome atlas” of the developing mouse embryo, a powerful resource to determine co-expression of genes, to identify cell populations and lineages and to identify functional associations between genes relevant to development and disease. Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease. In situ hybridization (ISH) can be used to visualize gene expression in cells and tissues in their native context. High-throughput ISH using nonradioactive RNA probes allowed the Eurexpress consortium to generate a comprehensive, interactive, and freely accessible digital gene expression atlas, the Eurexpress transcriptome atlas (http://www.eurexpress.org), of the E14.5 mouse embryo. Expression data for over 15,000 genes were annotated for hundreds of anatomical structures, thus allowing us to systematically identify tissue-specific and tissue-overlapping gene networks. We illustrate the value of the Eurexpress atlas by finding novel regional subdivisions in the developing brain. We also use the transcriptome atlas to allocate specific components of the complex Wnt signaling pathway to kidney development, and we identify regionally expressed genes in liver that may be markers of hematopoietic stem cell differentiation.
Collapse
Affiliation(s)
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Marc Sultan
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Geffers
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Santosh Anand
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - David Rozado
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alon Magen
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | - Ivana Peluso
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Nathalie Lin-Marq
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Muriel Koch
- Institut Clinique de la Souris, Illkirch, France
| | - Marchesa Bilio
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | | | - Roberta Verde
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | | | | | - Juliette Cicchini
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Elodie Perroud
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Shprese Mehmeti
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Emilie Dagand
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Asja Nürnberger
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Katja Schmidt
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Katja Metz
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Norbert Brieske
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Cindy Springer
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ana Martinez Hernandez
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Sarah Herzog
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Frauke Grabbe
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Cornelia Sieverding
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Barbara Fischer
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Kathrin Schrader
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Maren Brockmeyer
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Sarah Dettmer
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Christin Helbig
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | | | | | - Carole Mura
- Institut Clinique de la Souris, Illkirch, France
| | | | - Raquel Garcia-Lopez
- Experimental Embryology Lab, Instituto de Neurociencias, Universidad Miguel Hernandez, San Juan de Alicante, Spain
| | - Diego Echevarria
- Experimental Embryology Lab, Instituto de Neurociencias, Universidad Miguel Hernandez, San Juan de Alicante, Spain
| | - Eduardo Puelles
- Experimental Embryology Lab, Instituto de Neurociencias, Universidad Miguel Hernandez, San Juan de Alicante, Spain
| | - Elena Garcia-Calero
- Experimental Embryology Lab, Instituto de Neurociencias, Universidad Miguel Hernandez, San Juan de Alicante, Spain
| | | | - Markus Uhr
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Christine Kauck
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Guangjie Feng
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Nestor Milyaev
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Chuang Kee Ong
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Lalit Kumar
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - MeiSze Lam
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Colin A. Semple
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Attila Gyenesei
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Uwe Radelof
- RZPD—Deutsches Ressourcenzentrum für Genomforschung, Berlin, Germany
| | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Duncan R. Davidson
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
- * E-mail: (DRD); (PD); (SEA); (M-LY); (SM); (RAB); (GE); (AB)
| | - Pascal Dollé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Inserm U 964, CNRS UMR 7104, Faculté de Médecine, Université de Strasbourg; Illkirch, France
- * E-mail: (DRD); (PD); (SEA); (M-LY); (SM); (RAB); (GE); (AB)
| | - Stylianos E. Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- University Hospitals of Geneva, Geneva, Switzerland
- * E-mail: (DRD); (PD); (SEA); (M-LY); (SM); (RAB); (GE); (AB)
| | - Marie-Laure Yaspo
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail: (DRD); (PD); (SEA); (M-LY); (SM); (RAB); (GE); (AB)
| | - Salvador Martinez
- Experimental Embryology Lab, Instituto de Neurociencias, Universidad Miguel Hernandez, San Juan de Alicante, Spain
- * E-mail: (DRD); (PD); (SEA); (M-LY); (SM); (RAB); (GE); (AB)
| | - Richard A. Baldock
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
- * E-mail: (DRD); (PD); (SEA); (M-LY); (SM); (RAB); (GE); (AB)
| | - Gregor Eichele
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
- * E-mail: (DRD); (PD); (SEA); (M-LY); (SM); (RAB); (GE); (AB)
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Medical Genetics, Department of Pediatrics, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
- * E-mail: (DRD); (PD); (SEA); (M-LY); (SM); (RAB); (GE); (AB)
| |
Collapse
|
41
|
Scholpp S, Lumsden A. Building a bridal chamber: development of the thalamus. Trends Neurosci 2010; 33:373-80. [PMID: 20541814 PMCID: PMC2954313 DOI: 10.1016/j.tins.2010.05.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 12/26/2022]
Abstract
The thalamus is a central brain region that plays a crucial role in distributing incoming sensory information to appropriate regions of the cortex. The thalamus develops in the posterior part of the embryonic forebrain, where early cell fate decisions are controlled by a local signaling center – the mid-diencephalic organizer – which forms at the boundary between prospective prethalamus and thalamus. In this review we discuss recent observations of early thalamic development in zebrafish, chick, and mouse embryos, that reveal a conserved set of interactions between homeodomain transcription factors. These interactions position the organizer along the neuraxis. The most prominent of the organizer's signals, Sonic hedgehog, is necessary for conferring regional identity on the prethalamus and thalamus and for patterning their differentiation.
Collapse
Affiliation(s)
- Steffen Scholpp
- Karlsruhe Institute of Technology, Institute for Toxicology and Genetics, 76021 Karlsruhe, Germany
| | | |
Collapse
|