1
|
Do AD, Portet C, Goutagny R, Jackson J. The claustrum and synchronized brain states. Trends Neurosci 2024; 47:1028-1040. [PMID: 39488479 DOI: 10.1016/j.tins.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
Cortical activity is constantly fluctuating between distinct spatiotemporal activity patterns denoted by changes in brain state. States of cortical desynchronization arise during motor generation, increased attention, and high cognitive load. Synchronized brain states comprise spatially widespread, coordinated low-frequency neural activity during rest and sleep when disengaged from the external environment or 'offline'. The claustrum is a small subcortical structure with dense reciprocal connections with the cortex suggesting modulation by, or participation in, brain state regulation. Here, we highlight recent work suggesting that neural activity in the claustrum supports cognitive processes associated with synchronized brain states characterized by increased low-frequency network activity. As an example, we outline how claustrum activity could support episodic memory consolidation during sleep.
Collapse
Affiliation(s)
- Alison D Do
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Coline Portet
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Romain Goutagny
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Jesse Jackson
- Department of Physiology, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Zhang Y, Wu J, Zheng Y, Xu Y, Yu Z, Ping Y. Voltage Gated Ion Channels and Sleep. J Membr Biol 2024; 257:269-280. [PMID: 39354150 DOI: 10.1007/s00232-024-00325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Ion channels are integral components of the nervous system, playing a pivotal role in shaping membrane potential, neuronal excitability, synaptic transmission and plasticity. Dysfunction in these channels, such as improper expression or localization, can lead to irregular neuronal excitability and synaptic communication, which may manifest as various behavioral abnormalities, including disrupted rest-activity cycles. Research has highlighted the significant impact of voltage gated ion channels on sleep parameters, influencing sleep latency, duration and waveforms. Furthermore, these ion channels have been implicated in the vulnerability to, and the pathogenesis of, several neurological and psychiatric disorders, including epilepsy, autism, schizophrenia, and Alzheimer's disease (AD). In this comprehensive review, we aim to provide a summary of the regulatory role of three predominant types of voltage-gated ion channels-calcium (Ca2+), sodium (Na+), and potassium (K+)-in sleep across species, from flies to mammals. We will also discuss the association of sleep disorders with various human diseases that may arise from the dysfunction of these ion channels, thereby underscoring the potential therapeutic benefits of targeting specific ion channel subtypes for sleep disturbance treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawen Wu
- Faculty of Brain Sciences, University College London, London, UK
| | - Yuxian Zheng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangkun Xu
- Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Ziqi Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Jacob LPL, Bailes SM, Williams SD, Stringer C, Lewis LD. Brainwide hemodynamics predict neural rhythms across sleep and wakefulness in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577429. [PMID: 38352426 PMCID: PMC10862763 DOI: 10.1101/2024.01.29.577429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The brain exhibits rich oscillatory dynamics that play critical roles in vigilance and cognition, such as the neural rhythms that define sleep. These rhythms continuously fluctuate, signaling major changes in vigilance, but the brainwide dynamics underlying these oscillations are unknown. Using simultaneous EEG and fast fMRI in humans drifting between sleep and wakefulness, we developed a machine learning approach to investigate which brainwide fMRI networks predict alpha (8-12 Hz) and delta (1-4 Hz) fluctuations. We predicted moment-to-moment EEG power variations from fMRI activity in held-out subjects, and found that information about alpha rhythms was highly separable in two networks linked to arousal and visual systems. Conversely, delta rhythms were diffusely represented on a large spatial scale across the cortex. These results identify the large-scale network patterns that underlie alpha and delta rhythms, and establish a novel framework for investigating multimodal, brainwide dynamics.
Collapse
Affiliation(s)
- Leandro P. L. Jacob
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sydney M. Bailes
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Boston University, Boston, MA, USA
| | - Stephanie D. Williams
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Boston University, Boston, MA, USA
| | | | - Laura D. Lewis
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA USA
| |
Collapse
|
4
|
Murphy M, Jiang C, Wang LA, Kozhemiako N, Wang Y, Wang J, Pan JQ, Purcell SM. Electroencephalographic Microstates During Sleep and Wake in Schizophrenia. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100371. [PMID: 39296796 PMCID: PMC11408315 DOI: 10.1016/j.bpsgos.2024.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/21/2024] Open
Abstract
Background Aberrant functional connectivity is a hallmark of schizophrenia. The precise nature and mechanism of dysconnectivity in schizophrenia remains unclear, but evidence suggests that dysconnectivity is different in wake versus sleep. Microstate analysis uses electroencephalography (EEG) to investigate large-scale patterns of coordinated brain activity by clustering EEG data into a small set of recurring spatial patterns, or microstates. We hypothesized that this technique would allow us to probe connectivity between brain networks at a fine temporal resolution and uncover previously unknown sleep-specific dysconnectivity. Methods We studied microstates during sleep in patients with schizophrenia by analyzing high-density EEG sleep data from 114 patients with schizophrenia and 79 control participants. We used a polarity-insensitive k-means analysis to extract a set of 6 microstate topographies. Results These 6 states included 4 widely reported canonical microstates. In patients and control participants, falling asleep was characterized by a shift from microstates A, B, and C to microstates D, E, and F. Microstate F was decreased in patients during wake, and microstate E was decreased in patients during sleep. The complexity of microstate transitions was greater in patients than control participants during wake, but this reversed during sleep. Conclusions Our findings reveal behavioral state-dependent patterns of cortical dysconnectivity in schizophrenia. Furthermore, these findings are largely unrelated to previous sleep-related EEG markers of schizophrenia such as decreased sleep spindles. Therefore, these findings are driven by previously undescribed sleep-related pathology in schizophrenia.
Collapse
Affiliation(s)
- Michael Murphy
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Chenguang Jiang
- Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Lei A. Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nataliia Kozhemiako
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yining Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jun Wang
- Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Jen Q. Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Shaun M. Purcell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Griffith EY, ElSayed M, Dura-Bernal S, Neymotin SA, Uhlrich DJ, Lytton WW, Zhu JJ. Mechanism of an Intrinsic Oscillation in Rat Geniculate Interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597830. [PMID: 38895250 PMCID: PMC11185623 DOI: 10.1101/2024.06.06.597830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Depolarizing current injections produced a rhythmic bursting of action potentials - a bursting oscillation - in a set of local interneurons in the lateral geniculate nucleus (LGN) of rats. The current dynamics underlying this firing pattern have not been determined, though this cell type constitutes an important cellular component of thalamocortical circuitry, and contributes to both pathologic and non-pathologic brain states. We thus investigated the source of the bursting oscillation using pharmacological manipulations in LGN slices in vitro and in silico. 1. Selective blockade of calcium channel subtypes revealed that high-threshold calcium currentsI L andI P contributed strongly to the oscillation. 2. Increased extracellular K+ concentration (decreased K+currents) eliminated the oscillation. 3. Selective blockade of K+ channel subtypes demonstrated that the calcium-sensitive potassium current (I A H P ) was of primary importance. A morphologically simplified, multicompartment model of the thalamic interneuron characterized the oscillation as follows: 1. The low-threshold calcium currentI T provided the strong initial burst characteristic of the oscillation. 2. Alternating fluxes through high-threshold calcium channels andI A H P then provided the continuing oscillation's burst and interburst periods respectively. This interplay betweenI L andI A H P contrasts with the current dynamics underlying oscillations in thalamocortical and reticularis neurons, which primarily involveI T andI H , orI T andI A H P respectively. These findings thus point to a novel electrophysiological mechanism for generating intrinsic oscillations in a major thalamic cell type. Because local interneurons can sculpt the behavior of thalamocortical circuits, these results suggest new targets for the manipulation of ascending thalamocortical network activity.
Collapse
Affiliation(s)
- Erica Y Griffith
- Department of Neural and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
| | - Mohamed ElSayed
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, NH
- Department of Biomedical Engineering, SUNY Downstate School of Graduate Studies, Brooklyn, NY
- Department of Psychiatry, New Hampshire Hospital, Concord, NH
| | - Salvador Dura-Bernal
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Samuel A Neymotin
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
- Department of Psychiatry, New York University School of Medicine, New York, NY
| | - Daniel J Uhlrich
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - William W Lytton
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY
- Department of Neurology, Kings County Hospital, Brooklyn, NY
| | - J Julius Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
6
|
Whyte CJ, Redinbaugh MJ, Shine JM, Saalmann YB. Thalamic contributions to the state and contents of consciousness. Neuron 2024; 112:1611-1625. [PMID: 38754373 PMCID: PMC11537458 DOI: 10.1016/j.neuron.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Consciousness can be conceptualized as varying along at least two dimensions: the global state of consciousness and the content of conscious experience. Here, we highlight the cellular and systems-level contributions of the thalamus to conscious state and then argue for thalamic contributions to conscious content, including the integrated, segregated, and continuous nature of our experience. We underscore vital, yet distinct roles for core- and matrix-type thalamic neurons. Through reciprocal interactions with deep-layer cortical neurons, matrix neurons support wakefulness and determine perceptual thresholds, whereas the cortical interactions of core neurons maintain content and enable perceptual constancy. We further propose that conscious integration, segregation, and continuity depend on the convergent nature of corticothalamic projections enabling dimensionality reduction, a thalamic reticular nucleus-mediated divisive normalization-like process, and sustained coherent activity in thalamocortical loops, respectively. Overall, we conclude that the thalamus plays a central topological role in brain structures controlling conscious experience.
Collapse
Affiliation(s)
- Christopher J Whyte
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | | | - James M Shine
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin National Primate Research Center, Madison, WI, USA
| |
Collapse
|
7
|
Tononi G, Boly M, Cirelli C. Consciousness and sleep. Neuron 2024; 112:1568-1594. [PMID: 38697113 PMCID: PMC11105109 DOI: 10.1016/j.neuron.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Sleep is a universal, essential biological process. It is also an invaluable window on consciousness. It tells us that consciousness can be lost but also that it can be regained, in all its richness, when we are disconnected from the environment and unable to reflect. By considering the neurophysiological differences between dreaming and dreamless sleep, we can learn about the substrate of consciousness and understand why it vanishes. We also learn that the ongoing state of the substrate of consciousness determines the way each experience feels regardless of how it is triggered-endogenously or exogenously. Dreaming consciousness is also a window on sleep and its functions. Dreams tell us that the sleeping brain is remarkably lively, recombining intrinsic activation patterns from a vast repertoire, freed from the requirements of ongoing behavior and cognitive control.
Collapse
Affiliation(s)
- Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| | - Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA
| |
Collapse
|
8
|
Su CH, Ko LW, Jung TP, Onton J, Tzou SC, Juang JC, Hsu CY. Extracting Stress-Related EEG Patterns From Pre-Sleep EEG for Forecasting Slow-Wave Sleep Deficiency. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1817-1827. [PMID: 38683718 DOI: 10.1109/tnsre.2024.3394471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Sleep is vital to our daily activity. Lack of proper sleep can impair functionality and overall health. While stress is known for its detrimental impact on sleep quality, the precise effect of pre-sleep stress on subsequent sleep structure remains unknown. This study introduced a novel approach to study the pre-sleep stress effect on sleep structure, specifically slow-wave sleep (SWS) deficiency. To achieve this, we selected forehead resting EEG immediately before and upon sleep onset to extract stress-related neurological markers through power spectra and entropy analysis. These markers include beta/delta correlation, alpha asymmetry, fuzzy entropy (FuzzEn) and spectral entropy (SpEn). Fifteen subjects were included in this study. Our results showed that subjects lacking SWS often exhibited signs of stress in EEG, such as an increased beta/delta correlation, higher alpha asymmetry, and increased FuzzEn in frontal EEG. Conversely, individuals with ample SWS displayed a weak beta/delta correlation and reduced FuzzEn. Finally, we employed several supervised learning models and found that the selected neurological markers can predict subsequent SWS deficiency. Our investigation demonstrated that the classifiers could effectively predict varying levels of slow-wave sleep (SWS) from pre-sleep EEG segments, achieving a mean balanced accuracy surpassing 0.75. The SMOTE-Tomek resampling method could improve the performance to 0.77. This study suggests that stress-related neurological markers derived from pre-sleep EEG can effectively predict SWS deficiency. Such information can be integrated with existing sleep-improving techniques to provide a personalized sleep forecasting and improvement solution.
Collapse
|
9
|
Castelnovo A, Casetta C, Cavallotti S, Marcatili M, Del Fabro L, Canevini MP, Sarasso S, D'Agostino A. Proof-of-concept evidence for high-density EEG investigation of sleep slow wave traveling in First-Episode Psychosis. Sci Rep 2024; 14:6826. [PMID: 38514761 PMCID: PMC10958040 DOI: 10.1038/s41598-024-57476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Schizophrenia is thought to reflect aberrant connectivity within cortico-cortical and reentrant thalamo-cortical loops, which physiologically integrate and coordinate the function of multiple cortical and subcortical structures. Despite extensive research, reliable biomarkers of such "dys-connectivity" remain to be identified at the onset of psychosis, and before exposure to antipsychotic drugs. Because slow waves travel across the brain during sleep, they represent an ideal paradigm to study pathological conditions affecting brain connectivity. Here, we provide proof-of-concept evidence for a novel approach to investigate slow wave traveling properties in First-Episode Psychosis (FEP) with high-density electroencephalography (EEG). Whole-night sleep recordings of 5 drug-naïve FEP and 5 age- and gender-matched healthy control subjects were obtained with a 256-channel EEG system. One patient was re-recorded after 6 months and 3 years of continuous clozapine treatment. Slow wave detection and traveling properties were obtained with an open-source toolbox. Slow wave density and slow wave traveled distance (measured as the line of longest displacement) were significantly lower in patients (p < 0.05). In the patient who was tested longitudinally during effective clozapine treatment, slow wave density normalized, while traveling distance only partially recovered. These preliminary findings suggest that slow wave traveling could be employed in larger samples to detect cortical "dys-connectivity" at psychosis onset.
Collapse
Affiliation(s)
- Anna Castelnovo
- Sleep Medicine Unit, Neurocenter of Italian Switzerland, Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, 6900, Lugano, Switzerland.
- Faculty of Biomedical Sciences, University of Italian Switzerland, Lugano, Switzerland.
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Cecilia Casetta
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Simone Cavallotti
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy
| | - Matteo Marcatili
- Psychiatric Department, ASST Monza, San Gerardo Hospital, Monza, Italy
| | - Lorenzo Del Fabro
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Maria Paola Canevini
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Via G.B. Grassi 74, 20157, Milan, Italy.
| | - Armando D'Agostino
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy.
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
10
|
Dervinis M, Crunelli V. Sleep waves in a large-scale corticothalamic model constrained by activities intrinsic to neocortical networks and single thalamic neurons. CNS Neurosci Ther 2024; 30:e14206. [PMID: 37072918 PMCID: PMC10915987 DOI: 10.1111/cns.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/20/2023] Open
Abstract
AIM Many biophysical and non-biophysical models have been able to reproduce the corticothalamic activities underlying different EEG sleep rhythms but none of them included the known ability of neocortical networks and single thalamic neurons to generate some of these waves intrinsically. METHODS We built a large-scale corticothalamic model with a high fidelity in anatomical connectivity consisting of a single cortical column and first- and higher-order thalamic nuclei. The model is constrained by different neocortical excitatory and inhibitory neuronal populations eliciting slow (<1 Hz) oscillations and by thalamic neurons generating sleep waves when isolated from the neocortex. RESULTS Our model faithfully reproduces all EEG sleep waves and the transition from a desynchronized EEG to spindles, slow (<1 Hz) oscillations, and delta waves by progressively increasing neuronal membrane hyperpolarization as it occurs in the intact brain. Moreover, our model shows that slow (<1 Hz) waves most often start in a small assembly of thalamocortical neurons though they can also originate in cortical layer 5. Moreover, the input of thalamocortical neurons increases the frequency of EEG slow (<1 Hz) waves compared to those generated by isolated cortical networks. CONCLUSION Our simulations challenge current mechanistic understanding of the temporal dynamics of sleep wave generation and suggest testable predictions.
Collapse
Affiliation(s)
- Martynas Dervinis
- Neuroscience Division, School of BioscienceCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
- Present address:
School of Physiology, Pharmacology and NeuroscienceBiomedical BuildingBristolBS8 1TDUK
| | - Vincenzo Crunelli
- Neuroscience Division, School of BioscienceCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| |
Collapse
|
11
|
Han J, Xie Q, Wu X, Huang Z, Tanabe S, Fogel S, Hudetz AG, Wu H, Northoff G, Mao Y, He S, Qin P. The neural correlates of arousal: Ventral posterolateral nucleus-global transient co-activation. Cell Rep 2024; 43:113633. [PMID: 38159279 DOI: 10.1016/j.celrep.2023.113633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Arousal and awareness are two components of consciousness whose neural mechanisms remain unclear. Spontaneous peaks of global (brain-wide) blood-oxygenation-level-dependent (BOLD) signal have been found to be sensitive to changes in arousal. By contrasting BOLD signals at different arousal levels, we find decreased activation of the ventral posterolateral nucleus (VPL) during transient peaks in the global signal in low arousal and awareness states (non-rapid eye movement sleep and anesthesia) compared to wakefulness and in eyes-closed compared to eyes-open conditions in healthy awake individuals. Intriguingly, VPL-global co-activation remains high in patients with unresponsive wakefulness syndrome (UWS), who exhibit high arousal without awareness, while it reduces in rapid eye movement sleep, a state characterized by low arousal but high awareness. Furthermore, lower co-activation is found in individuals during N3 sleep compared to patients with UWS. These results demonstrate that co-activation of VPL and global activity is critical to arousal but not to awareness.
Collapse
Affiliation(s)
- Junrong Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Qiuyou Xie
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China; Joint Research Centre for Disorders of Consciousness, Guangzhou, Guangdong, China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zirui Huang
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA
| | - Sean Tanabe
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA
| | - Stuart Fogel
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Anthony G Hudetz
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA
| | - Hang Wu
- Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Pengmin Qin
- Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, Guangdong, China; Pazhou Lab, Guangzhou 510335, China.
| |
Collapse
|
12
|
Xie M, Huang Y, Cai W, Zhang B, Huang H, Li Q, Qin P, Han J. Neurobiological Underpinnings of Hyperarousal in Depression: A Comprehensive Review. Brain Sci 2024; 14:50. [PMID: 38248265 PMCID: PMC10813043 DOI: 10.3390/brainsci14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Patients with major depressive disorder (MDD) exhibit an abnormal physiological arousal pattern known as hyperarousal, which may contribute to their depressive symptoms. However, the neurobiological mechanisms linking this abnormal arousal to depressive symptoms are not yet fully understood. In this review, we summarize the physiological and neural features of arousal, and review the literature indicating abnormal arousal in depressed patients. Evidence suggests that a hyperarousal state in depression is characterized by abnormalities in sleep behavior, physiological (e.g., heart rate, skin conductance, pupil diameter) and electroencephalography (EEG) features, and altered activity in subcortical (e.g., hypothalamus and locus coeruleus) and cortical regions. While recent studies highlight the importance of subcortical-cortical interactions in arousal, few have explored the relationship between subcortical-cortical interactions and hyperarousal in depressed patients. This gap limits our understanding of the neural mechanism through which hyperarousal affects depressive symptoms, which involves various cognitive processes and the cerebral cortex. Based on the current literature, we propose that the hyperconnectivity in the thalamocortical circuit may contribute to both the hyperarousal pattern and depressive symptoms. Future research should investigate the relationship between thalamocortical connections and abnormal arousal in depression, and explore its implications for non-invasive treatments for depression.
Collapse
Affiliation(s)
- Musi Xie
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (M.X.); (Y.H.)
| | - Ying Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (M.X.); (Y.H.)
| | - Wendan Cai
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (W.C.); (B.Z.); (H.H.)
| | - Bingqi Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (W.C.); (B.Z.); (H.H.)
| | - Haonan Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (W.C.); (B.Z.); (H.H.)
| | - Qingwei Li
- Department of Psychiatry, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China;
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (M.X.); (Y.H.)
- Pazhou Laboratory, Guangzhou 510330, China
| | - Junrong Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; (W.C.); (B.Z.); (H.H.)
| |
Collapse
|
13
|
Bergamo D, Handjaras G, Petruso F, Talami F, Ricciardi E, Benuzzi F, Vaudano AE, Meletti S, Bernardi G, Betta M. Maturation-dependent changes in cortical and thalamic activity during sleep slow waves: Insights from a combined EEG-fMRI study. Sleep Med 2024; 113:357-369. [PMID: 38113618 DOI: 10.1016/j.sleep.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Studies using scalp EEG have shown that slow waves (0.5-4 Hz), the most prominent hallmark of NREM sleep, undergo relevant changes from childhood to adulthood, mirroring brain structural modifications and the acquisition of cognitive skills. Here we used simultaneous EEG-fMRI to investigate the cortical and subcortical correlates of slow waves in school-age children and determine their relative developmental changes. METHODS We analyzed data from 14 school-age children with self-limited focal epilepsy of childhood who fell asleep during EEG-fMRI recordings. Brain regions associated with slow-wave occurrence were identified using a voxel-wise regression that also modelled interictal epileptic discharges and sleep spindles. At the group level, a mixed-effects linear model was used. The results were qualitatively compared with those obtained from 2 adolescents with epilepsy and 17 healthy adults. RESULTS Slow waves were associated with hemodynamic-signal decreases in bilateral somatomotor areas. Such changes extended more posteriorly relative to those in adults. Moreover, the involvement of areas belonging to the default mode network changes as a function of age. No significant hemodynamic responses were observed in subcortical structures. However, we identified a significant correlation between age and thalamic hemodynamic changes. CONCLUSIONS Present findings indicate that the somatomotor cortex may have a key role in slow-wave expression throughout the lifespan. At the same time, they are consistent with a posterior-to-anterior shift in slow-wave distribution mirroring brain maturational changes. Finally, our results suggest that slow-wave changes may not reflect only neocortical modifications but also the maturation of subcortical structures, including the thalamus.
Collapse
Affiliation(s)
- Damiana Bergamo
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | | | - Flavia Petruso
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy; Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Francesca Talami
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Neurology Dept., Azienda Ospedaliera Universitaria di Modena, Italy
| | | | - Francesca Benuzzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Neurology Dept., Azienda Ospedaliera Universitaria di Modena, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Neurology Dept., Azienda Ospedaliera Universitaria di Modena, Italy
| | - Giulio Bernardi
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Monica Betta
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy.
| |
Collapse
|
14
|
Horváth C, Ulbert I, Fiáth R. Propagating population activity patterns during spontaneous slow waves in the thalamus of rodents. Neuroimage 2024; 285:120484. [PMID: 38061688 DOI: 10.1016/j.neuroimage.2023.120484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Slow waves (SWs) represent the most prominent electrophysiological events in the thalamocortical system under anesthesia and during deep sleep. Recent studies have revealed that SWs have complex spatiotemporal dynamics and propagate across neocortical regions. However, it is still unclear whether neuronal activity in the thalamus exhibits similar propagation properties during SWs. Here, we report propagating population activity in the thalamus of ketamine/xylazine-anesthetized rats and mice visualized by high-density silicon probe recordings. In both rodent species, propagation of spontaneous thalamic activity during up-states was most frequently observed in dorsal thalamic nuclei such as the higher order posterior (Po), lateral posterior (LP) or laterodorsal (LD) nuclei. The preferred direction of thalamic activity spreading was along the dorsoventral axis, with over half of the up-states exhibiting a gradual propagation in the ventral-to-dorsal direction. Furthermore, simultaneous neocortical and thalamic recordings collected under anesthesia demonstrated that there is a weak but noticeable interrelation between propagation patterns observed during cortical up-states and those displayed by thalamic population activity. In addition, using chronically implanted silicon probes, we detected propagating activity patterns in the thalamus of naturally sleeping rats during slow-wave sleep. However, in comparison to propagating up-states observed under anesthesia, these propagating patterns were characterized by a reduced rate of occurrence and a faster propagation speed. Our findings suggest that the propagation of spontaneous population activity is an intrinsic property of the thalamocortical network during synchronized brain states such as deep sleep or anesthesia. Additionally, our data implies that the neocortex may have partial control over the formation of propagation patterns within the dorsal thalamus under anesthesia.
Collapse
Affiliation(s)
- Csaba Horváth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| | - Richárd Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
15
|
Nasretdinov A, Vinokurova D, Lemale CL, Burkhanova-Zakirova G, Chernova K, Makarova J, Herreras O, Dreier JP, Khazipov R. Diversity of cortical activity changes beyond depression during Spreading Depolarizations. Nat Commun 2023; 14:7729. [PMID: 38007508 PMCID: PMC10676372 DOI: 10.1038/s41467-023-43509-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023] Open
Abstract
Spreading depolarizations (SDs) are classically thought to be associated with spreading depression of cortical activity. Here, we found that SDs in patients with subarachnoid hemorrhage produce variable, ranging from depression to booming, changes in electrocorticographic activity, especially in the delta frequency band. In rats, depression of activity was characteristic of high-potassium-induced full SDs, whereas partial superficial SDs caused either little change or a boom of activity at the cortical vertex, supported by volume conduction of signals from spared delta generators in the deep cortical layers. Partial SDs also caused moderate neuronal depolarization and sustained excitation, organized in gamma oscillations in a narrow sub-SD zone. Thus, our study challenges the concept of homology between spreading depolarization and spreading depression by showing that SDs produce variable, from depression to booming, changes in activity at the cortical surface and in different cortical layers depending on the depth of SD penetration.
Collapse
Affiliation(s)
- Azat Nasretdinov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, 420008, Russia
| | - Daria Vinokurova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, 420008, Russia
- INMED-INSERM, Aix-Marseille University, Marseille, 13273, France
| | - Coline L Lemale
- Centre for Stroke Research Berlin, Department of Experimental Neurology and Department of Neurology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-10117, Berlin, Germany
| | | | - Ksenia Chernova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, 420008, Russia
| | - Julia Makarova
- Department of Translational Neuroscience, Cajal Institute-CSIC, Madrid, Spain
| | - Oscar Herreras
- Department of Translational Neuroscience, Cajal Institute-CSIC, Madrid, Spain
| | - Jens P Dreier
- Centre for Stroke Research Berlin, Department of Experimental Neurology and Department of Neurology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-10117, Berlin, Germany
- Bernstein Centre for Computational Neuroscience Berlin, D-10115, Berlin, Germany
- Einstein Centre for Neurosciences Berlin, D-10117, Berlin, Germany
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, 420008, Russia.
- INMED-INSERM, Aix-Marseille University, Marseille, 13273, France.
| |
Collapse
|
16
|
Liaw YS, Augustine GJ. The claustrum and consciousness: An update. Int J Clin Health Psychol 2023; 23:100405. [PMID: 37701759 PMCID: PMC10493512 DOI: 10.1016/j.ijchp.2023.100405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
The seminal paper of Crick and Koch (2005) proposed that the claustrum, an enigmatic and thin grey matter structure that lies beside the insular cortex, may be involved in the processing of consciousness. As a result, this otherwise obscure structure has received ever-increasing interest in the search for neural correlates of consciousness. Here we review theories of consciousness and discuss the possible relationship between the claustrum and consciousness. We review relevant experimental evidence collected since the Crick and Koch (2005) paper and consider whether these findings support or contradict their hypothesis. We also explore how future experimental work can be designed to clarify how consciousness emerges from neural activity and to understand the role of the claustrum in consciousness.
Collapse
Affiliation(s)
- Yin Siang Liaw
- Neuroscience & Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - George J. Augustine
- Neuroscience & Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
17
|
Gilloteaux J, De Swert K, Suain V, Brion JP, Nicaise C. Loss of Ephaptic Contacts in the Murine Thalamus during Osmotic Demyelination Syndrome. Ultrastruct Pathol 2023; 47:398-423. [PMID: 37477534 DOI: 10.1080/01913123.2023.2232452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/10/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND AND AIM A murine model mimicking osmotic demyelination syndrome (ODS) revealed with histology in the relay posterolateral (VPL) and ventral posteromedial (VPM) thalamic nuclei adjoined nerve cell bodies in chronic hyponatremia, amongst the damaged 12 h and 48 h after reinstatement of osmolality. This report aims to verify and complement with ultrastructure other neurophysiology, immunohistochemistry, and molecular biochemistry data to assess the connexin-36 protein, as part of those hinted close contacts.This ODS investigation included four groups of mice: Sham (NN; n = 13), hyponatremic (HN; n = 11), those sacrificed 12 h after a fast restoration of normal natremia (ODS12h; n = 6) and mice sacrificed 48 h afterward, or ODS48 h (n = 9). Out of these, thalamic zones samples included NN (n = 2), HN (n = 2), ODS12h (n = 3) and ODS48h (n = 3). RESULTS Ultrastructure illustrated junctions between nerve cell bodies that were immunolabeled with connexin36 (Cx36) with light microscopy and Western blots. These cell's junctions were reminiscent of low resistance junctions characterized in other regions of the CNS with electrophysiology. Contiguous neurons showed neurolemma contacts in intact and damaged tissues according to their location in the ODS zones, at 12 h and 48 h post correction along with other demyelinating alterations. Neurons and ephaptic contact measurements indicated the highest alterations, including nerve cell necrosis in the ODS epicenter and damages decreased toward the outskirts of the demyelinated zone. CONCLUSION Ephapses contained C × 36between intact or ODS injured neurons in the thalamus appeared to be resilient beyond the core degraded tissue injuries. These could maintain intercellular ionic and metabolite exchanges between these lesser injured regions and, thus, would partake to some brain plasticity repairs.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Medicine, URPHyM, NARILIS, Université de Namur, Namur, Belgium
- Department of Anatomical Sciences, St George's University School of Medicine, Newcastle Upon Tyne, UK
| | - Kathleen De Swert
- Department of Medicine, URPHyM, NARILIS, Université de Namur, Namur, Belgium
| | - Valérie Suain
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Charles Nicaise
- Department of Medicine, URPHyM, NARILIS, Université de Namur, Namur, Belgium
| |
Collapse
|
18
|
Shine JM, Lewis LD, Garrett DD, Hwang K. The impact of the human thalamus on brain-wide information processing. Nat Rev Neurosci 2023; 24:416-430. [PMID: 37237103 DOI: 10.1038/s41583-023-00701-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/28/2023]
Abstract
The thalamus is a small, bilateral structure in the diencephalon that integrates signals from many areas of the CNS. This critical anatomical position allows the thalamus to influence whole-brain activity and adaptive behaviour. However, traditional research paradigms have struggled to attribute specific functions to the thalamus, and it has remained understudied in the human neuroimaging literature. Recent advances in analytical techniques and increased accessibility to large, high-quality data sets have brought forth a series of studies and findings that (re-)establish the thalamus as a core region of interest in human cognitive neuroscience, a field that otherwise remains cortico-centric. In this Perspective, we argue that using whole-brain neuroimaging approaches to investigate the thalamus and its interaction with the rest of the brain is key for understanding systems-level control of information processing. To this end, we highlight the role of the thalamus in shaping a range of functional signatures, including evoked activity, interregional connectivity, network topology and neuronal variability, both at rest and during the performance of cognitive tasks.
Collapse
Affiliation(s)
- James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Kai Hwang
- Cognitive Control Collaborative, Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA.
- Department of Psychiatry, The University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
19
|
Baron M, Devor M. From molecule to oblivion: dedicated brain circuitry underlies anesthetic loss of consciousness permitting pain-free surgery. Front Mol Neurosci 2023; 16:1197304. [PMID: 37305550 PMCID: PMC10248014 DOI: 10.3389/fnmol.2023.1197304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
The canonical view of how general anesthetics induce loss-of-consciousness (LOC) permitting pain-free surgery posits that anesthetic molecules, distributed throughout the CNS, suppress neural activity globally to levels at which the cerebral cortex can no longer sustain conscious experience. We support an alternative view that LOC, in the context of GABAergic anesthesia at least, results from anesthetic exposure of a small number of neurons in a focal brainstem nucleus, the mesopontine tegmental anesthesia area (MPTA). The various sub-components of anesthesia, in turn, are effected in distant locations, driven by dedicated axonal pathways. This proposal is based on the observations that microinjection of infinitesimal amounts of GABAergic agents into the MPTA, and only there, rapidly induces LOC, and that lesioning the MPTA renders animals relatively insensitive to these agents delivered systemically. Recently, using chemogenetics, we identified a subpopulation of MPTA "effector-neurons" which, when excited (not inhibited), induce anesthesia. These neurons contribute to well-defined ascending and descending axonal pathways each of which accesses a target region associated with a key anesthetic endpoint: atonia, anti-nociception, amnesia and LOC (by electroencephalographic criteria). Interestingly, the effector-neurons do not themselves express GABAA-receptors. Rather, the target receptors reside on a separate sub-population of presumed inhibitory interneurons. These are thought to excite the effectors by disinhibition, thus triggering anesthetic LOC.
Collapse
Affiliation(s)
- Mark Baron
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marshall Devor
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
20
|
Brady ES, Griffiths J, Andrianova L, Bielska M, Saito T, Saido TC, Randall AD, Tamagnini F, Witton J, Craig MT. Alterations to parvalbumin-expressing interneuron function and associated network oscillations in the hippocampal - medial prefrontal cortex circuit during natural sleep in App NL-G-F/NL-G-F mice. Neurobiol Dis 2023; 182:106151. [PMID: 37172910 DOI: 10.1016/j.nbd.2023.106151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
In the early stages of Alzheimer's disease (AD), the accumulation of the peptide amyloid-β (Aβ) damages synapses and disrupts neuronal activity, leading to the disruption of neuronal oscillations associated with cognition. This is thought to be largely due to impairments in CNS synaptic inhibition, particularly via parvalbumin (PV)-expressing interneurons that are essential for generating several key oscillations. Research in this field has largely been conducted in mouse models that over-express humanised, mutated forms of AD-associated genes that produce exaggerated pathology. This has prompted the development and use of knock-in mouse lines that express these genes at an endogenous level, such as the AppNL-G-F/NL-G-F mouse model used in the present study. These mice appear to model the early stages of Aβ-induced network impairments, yet an in-depth characterisation of these impairments in currently lacking. Therefore, using 16 month-old AppNL-G-F/NL-G-F mice, we analysed neuronal oscillations found in the hippocampus and medial prefrontal cortex (mPFC) during awake behaviour, rapid eye movement (REM) and non-REM (NREM) sleep to assess the extent of network dysfunction. No alterations to gamma oscillations were found to occur in the hippocampus or mPFC during either awake behaviour, REM or NREM sleep. However, during NREM sleep an increase in the power of mPFC spindles and decrease in the power of hippocampal sharp-wave ripples was identified. The latter was accompanied by an increase in the synchronisation of PV-expressing interneuron activity, as measured using two-photon Ca2+ imaging, as well as a decrease in PV-expressing interneuron density. Furthermore, although changes were detected in local network function of mPFC and hippocampus, long-range communication between these regions appeared intact. Altogether, our results suggest that these NREM sleep-specific impairments represent the early stages of circuit breakdown in response to amyloidopathy.
Collapse
Affiliation(s)
- Erica S Brady
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; Gladstone Institute for Neurological Disease, 1650 Owens Street, San Francisco, CA 91458, United States of America
| | - Jessica Griffiths
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6LA, UK
| | - Lilya Andrianova
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Monika Bielska
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Andrew D Randall
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Francesco Tamagnini
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6LA, UK
| | - Jonathan Witton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK.
| | - Michael T Craig
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
21
|
Lee YJ, Kim BJ, Lee CS, Cha B, Lee SJ, Choi JW, Lim E, Kang N, Lee D. Application of Transcranial Direct Current Stimulation in Sleep Disturbances. CHRONOBIOLOGY IN MEDICINE 2022; 4:141-151. [DOI: 10.33069/cim.2022.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2025]
Abstract
Sleep disturbances are common across all age groups, and they encompass a broad range of impairments of daytime functioning and comorbid various clinical conditions. However, current treatment methods for sleep disturbances have several limitations. As the ‘top-down’ pathway is known to play an important role in sleep-wake regulation, and as neuronal activity abnormalities have been reported as a potential pathological mechanism of sleep disturbances, the use of non-invasive brain stimulation—such as transcranial direct current stimulation (tDCS) in treating sleep disturbances—has emerged. In the present review, we first explain the mechanism of tDCS, and we also introduce recent studies that have applied tDCS to sleep disorders, along with other sleep-related tDCS studies. In conclusion, many studies have achieved improvements in sleep state, although some of these studies have reported inconsistent effects of tDCS according to the protocol and the conditions used. Further studies are needed to explore the optimal protocols to use when applying tDCS in each sleep disturbance and to enhance the evidence on the clinical efficacy of tDCS.
Collapse
|
22
|
Ikeda T, Amorim E, Miyazaki Y, Kato R, Marutani E, Silverman MG, Malhotra R, Solt K, Ichinose F. Post-cardiac arrest Sedation Promotes Electroencephalographic Slow-wave Activity and Improves Survival in a Mouse Model of Cardiac Arrest. Anesthesiology 2022; 137:716-732. [PMID: 36170545 PMCID: PMC11079777 DOI: 10.1097/aln.0000000000004390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Patients resuscitated from cardiac arrest are routinely sedated during targeted temperature management, while the effects of sedation on cerebral physiology and outcomes after cardiac arrest remain to be determined. The authors hypothesized that sedation would improve survival and neurologic outcomes in mice after cardiac arrest. METHODS Adult C57BL/6J mice of both sexes were subjected to potassium chloride-induced cardiac arrest and cardiopulmonary resuscitation. Starting at the return of spontaneous circulation or at 60 min after return of spontaneous circulation, mice received intravenous infusion of propofol at 40 mg · kg-1 · h-1, dexmedetomidine at 1 µg · kg-1 · h-1, or normal saline for 2 h. Body temperature was lowered and maintained at 33°C during sedation. Cerebral blood flow was measured for 4 h postresuscitation. Telemetric electroencephalogram (EEG) was recorded in freely moving mice from 3 days before up to 7 days after cardiac arrest. RESULTS Sedation with propofol or dexmedetomidine starting at return of spontaneous circulation improved survival in hypothermia-treated mice (propofol [13 of 16, 81%] vs. no sedation [4 of 16, 25%], P = 0.008; dexmedetomidine [14 of 16, 88%] vs. no sedation [4 of 16, 25%], P = 0.002). Mice receiving no sedation exhibited cerebral hyperemia immediately after resuscitation and EEG power remained less than 30% of the baseline in the first 6 h postresuscitation. Administration of propofol or dexmedetomidine starting at return of spontaneous circulation attenuated cerebral hyperemia and increased EEG slow oscillation power during and early after sedation (40 to 80% of the baseline). In contrast, delayed sedation failed to improve outcomes, without attenuating cerebral hyperemia and inducing slow-wave activity. CONCLUSIONS Early administration of sedation with propofol or dexmedetomidine improved survival and neurologic outcomes in mice resuscitated from cardiac arrest and treated with hypothermia. The beneficial effects of sedation were accompanied by attenuation of the cerebral hyperemic response and enhancement of electroencephalographic slow-wave activity. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Takamitsu Ikeda
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Edilberto Amorim
- Department of Neurology, University of California San Francisco, San Francisco, California
- Neurology Service, Zuckerberg San Francisco Hospital, San Francisco, California
| | - Yusuke Miyazaki
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Risako Kato
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Physiology and Oral Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Eizo Marutani
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Rajeev Malhotra
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Ken Solt
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
23
|
Setzer B, Fultz NE, Gomez DEP, Williams SD, Bonmassar G, Polimeni JR, Lewis LD. A temporal sequence of thalamic activity unfolds at transitions in behavioral arousal state. Nat Commun 2022; 13:5442. [PMID: 36114170 PMCID: PMC9481532 DOI: 10.1038/s41467-022-33010-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Awakening from sleep reflects a profound transformation in neural activity and behavior. The thalamus is a key controller of arousal state, but whether its diverse nuclei exhibit coordinated or distinct activity at transitions in behavioral arousal state is unknown. Using fast fMRI at ultra-high field (7 Tesla), we measured sub-second activity across thalamocortical networks and within nine thalamic nuclei to delineate these dynamics during spontaneous transitions in behavioral arousal state. We discovered a stereotyped sequence of activity across thalamic nuclei and cingulate cortex that preceded behavioral arousal after a period of inactivity, followed by widespread deactivation. These thalamic dynamics were linked to whether participants subsequently fell back into unresponsiveness, with unified thalamic activation reflecting maintenance of behavior. These results provide an outline of the complex interactions across thalamocortical circuits that orchestrate behavioral arousal state transitions, and additionally, demonstrate that fast fMRI can resolve sub-second subcortical dynamics in the human brain.
Collapse
Affiliation(s)
- Beverly Setzer
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Nina E Fultz
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Daniel E P Gomez
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
| |
Collapse
|
24
|
The human thalamus orchestrates neocortical oscillations during NREM sleep. Nat Commun 2022; 13:5231. [PMID: 36064855 PMCID: PMC9445182 DOI: 10.1038/s41467-022-32840-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/18/2022] [Indexed: 01/14/2023] Open
Abstract
A hallmark of non-rapid eye movement sleep is the coordinated interplay of slow oscillations (SOs) and sleep spindles. Traditionally, a cortico-thalamo-cortical loop is suggested to coordinate these rhythms: neocortically-generated SOs trigger spindles in the thalamus that are projected back to neocortex. Here, we used intrathalamic recordings from human epilepsy patients to test this canonical interplay. We show that SOs in the anterior thalamus precede neocortical SOs (peak −50 ms), whereas concurrently-recorded SOs in the mediodorsal thalamus are led by neocortical SOs (peak +50 ms). Sleep spindles, detected in both thalamic nuclei, preceded their neocortical counterparts (peak −100 ms) and were initiated during early phases of thalamic SOs. Our findings indicate an active role of the anterior thalamus in organizing sleep rhythms in the neocortex and highlight the functional diversity of thalamic nuclei in humans. The thalamic coordination of sleep oscillations could have broad implications for the mechanisms underlying memory consolidation. Slow oscillations, which are instrumental to memory consolidation, have been assumed to be solely generated in neocortex. Here, the authors show that the anterior thalamus might play a fundamental role in organizing slow oscillations in human sleep.
Collapse
|
25
|
Khalilzad Sharghi V, Maltbie EA, Pan WJ, Keilholz SD, Gopinath KS. Selective blockade of rat brain T-type calcium channels provides insights on neurophysiological basis of arousal dependent resting state functional magnetic resonance imaging signals. Front Neurosci 2022; 16:909999. [PMID: 36003960 PMCID: PMC9393715 DOI: 10.3389/fnins.2022.909999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
A number of studies point to slow (0.1–2 Hz) brain rhythms as the basis for the resting-state functional magnetic resonance imaging (rsfMRI) signal. Slow waves exist in the absence of stimulation, propagate across the cortex, and are strongly modulated by vigilance similar to large portions of the rsfMRI signal. However, it is not clear if slow rhythms serve as the basis of all neural activity reflected in rsfMRI signals, or just the vigilance-dependent components. The rsfMRI data exhibit quasi-periodic patterns (QPPs) that appear to increase in strength with decreasing vigilance and propagate across the brain similar to slow rhythms. These QPPs can complicate the estimation of functional connectivity (FC) via rsfMRI, either by existing as unmodeled signal or by inducing additional wide-spread correlation between voxel-time courses of functionally connected brain regions. In this study, we examined the relationship between cortical slow rhythms and the rsfMRI signal, using a well-established pharmacological model of slow wave suppression. Suppression of cortical slow rhythms led to significant reduction in the amplitude of QPPs but increased rsfMRI measures of intrinsic FC in rats. The results suggest that cortical slow rhythms serve as the basis of only the vigilance-dependent components (e.g., QPPs) of rsfMRI signals. Further attenuation of these non-specific signals enhances delineation of brain functional networks.
Collapse
Affiliation(s)
- Vahid Khalilzad Sharghi
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Eric A. Maltbie
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Wen-Ju Pan
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Shella D. Keilholz
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Kaundinya S. Gopinath
- Department of Radiology & Imaging Sciences, Emory University, Atlanta, GA, United States
- *Correspondence: Kaundinya S. Gopinath,
| |
Collapse
|
26
|
Blum Moyse L, Berry H. Modelling the modulation of cortical Up-Down state switching by astrocytes. PLoS Comput Biol 2022; 18:e1010296. [PMID: 35862433 PMCID: PMC9345492 DOI: 10.1371/journal.pcbi.1010296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/02/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022] Open
Abstract
Up-Down synchronization in neuronal networks refers to spontaneous switches between periods of high collective firing activity (Up state) and periods of silence (Down state). Recent experimental reports have shown that astrocytes can control the emergence of such Up-Down regimes in neural networks, although the molecular or cellular mechanisms that are involved are still uncertain. Here we propose neural network models made of three populations of cells: excitatory neurons, inhibitory neurons and astrocytes, interconnected by synaptic and gliotransmission events, to explore how astrocytes can control this phenomenon. The presence of astrocytes in the models is indeed observed to promote the emergence of Up-Down regimes with realistic characteristics. Our models show that the difference of signalling timescales between astrocytes and neurons (seconds versus milliseconds) can induce a regime where the frequency of gliotransmission events released by the astrocytes does not synchronize with the Up and Down phases of the neurons, but remains essentially stable. However, these gliotransmission events are found to change the localization of the bifurcations in the parameter space so that with the addition of astrocytes, the network enters a bistability region of the dynamics that corresponds to Up-Down synchronization. Taken together, our work provides a theoretical framework to test scenarios and hypotheses on the modulation of Up-Down dynamics by gliotransmission from astrocytes. Neural networks in many brain regions can display synchronized activities. During the so-called “Up-Down” synchronization regimes for instance, the whole local population of neurons switches in a spontaneous and synchronized fashion between phases of high activity (Up states) and phases of low activity (Down states). The mechanisms responsible for this behaviour are still not well understood, but recent experimental reports have suggested that another type of brain cells, the astrocytes, at least partly control these oscillations. Astrocytes are increasingly believed to play a role in the propagation of signals between neurons, via their connections to neuronal synapses, but how this mechanism could control Up-Down regimes is not understood. To address this issue we present here simple mathematical models of neuronal networks that incorporate astrocytes in addition to neurons according to various levels of description. Using bifurcation analysis and numerical simulations we explore how astrocytes control Up-Down synchronization of the neuronal networks. In particular, astrocytes in the model are found to change the localization of the bifurcation points in the parameter space, so that the neurons enter the region of Up-Down regime when astrocytes are present. We also give some theoretical predictions that can be tested experimentally to test the validity of our models.
Collapse
Affiliation(s)
- Lisa Blum Moyse
- Inria, Villeurbanne, France
- LIRIS UMR5205, University of Lyon, Villeurbanne, France
| | - Hugues Berry
- Inria, Villeurbanne, France
- LIRIS UMR5205, University of Lyon, Villeurbanne, France
- * E-mail:
| |
Collapse
|
27
|
Katsuki F, Gerashchenko D, Brown RE. Alterations of sleep oscillations in Alzheimer's disease: A potential role for GABAergic neurons in the cortex, hippocampus, and thalamus. Brain Res Bull 2022; 187:181-198. [PMID: 35850189 DOI: 10.1016/j.brainresbull.2022.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Sleep abnormalities are widely reported in patients with Alzheimer's disease (AD) and are linked to cognitive impairments. Sleep abnormalities could be potential biomarkers to detect AD since they are often observed at the preclinical stage. Moreover, sleep could be a target for early intervention to prevent or slow AD progression. Thus, here we review changes in brain oscillations observed during sleep, their connection to AD pathophysiology and the role of specific brain circuits. Slow oscillations (0.1-1 Hz), sleep spindles (8-15 Hz) and their coupling during non-REM sleep are consistently reduced in studies of patients and in AD mouse models although the timing and magnitude of these alterations depends on the pathophysiological changes and the animal model studied. Changes in delta (1-4 Hz) activity are more variable. Animal studies suggest that hippocampal sharp-wave ripples (100-250 Hz) are also affected. Reductions in REM sleep amount and slower oscillations during REM are seen in patients but less consistently in animal models. Thus, changes in a variety of sleep oscillations could impact sleep-dependent memory consolidation or restorative functions of sleep. Recent mechanistic studies suggest that alterations in the activity of GABAergic neurons in the cortex, hippocampus and thalamic reticular nucleus mediate sleep oscillatory changes in AD and represent a potential target for intervention. Longitudinal studies of the timing of AD-related sleep abnormalities with respect to pathology and dysfunction of specific neural networks are needed to identify translationally relevant biomarkers and guide early intervention strategies to prevent or delay AD progression.
Collapse
Affiliation(s)
- Fumi Katsuki
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA 02132, USA.
| | - Dmitry Gerashchenko
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA 02132, USA
| | - Ritchie E Brown
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA 02132, USA
| |
Collapse
|
28
|
van der Lande GJM, Blume C, Annen J. Sleep and circadian disturbance in disorders of consciousness: current methods and the way towards clinical implementation. Semin Neurol 2022; 42:283-298. [PMID: 35793707 DOI: 10.1055/a-1893-2785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
29
|
Uygun DS, Basheer R. Circuits and components of delta wave regulation. Brain Res Bull 2022; 188:223-232. [PMID: 35738502 DOI: 10.1016/j.brainresbull.2022.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Sleep is vital and the deepest stages of sleep occur within Non-rapid-eye-movement sleep (NREM), defined by high electroencephalographic power in the delta (~0.5-4Hz) wave frequency range. Delta waves are thought to facilitate a myriad of physical and mental health functions. This review aims to comprehensively cover the historical and recent advances in the understanding of the mechanisms orchestrating NREM delta waves. We discuss a complete neurocircuit - focusing on one leg of the circuit at a time - and delve deeply into the molecular mechanistic components that contribute to NREM delta wave regulation. We also discuss the relatively localized nature in which these mechanisms have been defined, and how likely they might generalize across distinct sensory and higher order modalities in the brain.
Collapse
Affiliation(s)
- David S Uygun
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA; 02132.
| | - Radhika Basheer
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA; 02132.
| |
Collapse
|
30
|
Ujma PP, Szalárdy O, Fabó D, Erőss L, Bódizs R. Thalamic activity during scalp slow waves in humans. Neuroimage 2022; 257:119325. [PMID: 35605767 DOI: 10.1016/j.neuroimage.2022.119325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022] Open
Abstract
Slow waves are major pacemakers of NREM sleep oscillations. While slow waves themselves are mainly generated by cortical neurons, it is not clear what role thalamic activity plays in the generation of some oscillations grouped by slow waves, and to what extent thalamic activity during slow waves is itself driven by corticothalamic inputs. To address this question, we simultaneously recorded both scalp EEG and local field potentials from six thalamic nuclei (bilateral anterior, mediodorsal and ventral anterior) in fifteen epileptic patients (age-range: 17-64 years, 7 females) undergoing Deep Brain Stimulation Protocol and assessed the temporal evolution of thalamic activity relative to scalp slow waves using time-frequency analysis. We found that thalamic activity in all six nuclei during scalp slow waves is highly similar to what is observed on the scalp itself. Slow wave downstates are characterized by delta, theta and alpha activity and followed by beta, high sigma and low sigma activity during subsequent upstates. Gamma activity in the thalamus is not significantly grouped by slow waves. Theta and alpha activity appeared first on the scalp, but sigma activity appeared first in the thalamus. These effects were largely independent from the scalp region in which SWs were detected and the precise identity of thalamic nuclei. Our results suggest that while small thalamocortical neuron assemblies may initiate cortical oscillations, especially in the sleep spindle range, the large-scale neuronal activity in the thalamus which is detected by field potentials is principally driven by global cortical activity, and thus it is highly similar to what is observed on the scalp.
Collapse
Affiliation(s)
- Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary; National Institute of Clinical Neuroscience, Budapest, Hungary.
| | - Orsolya Szalárdy
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Dániel Fabó
- National Institute of Clinical Neuroscience, Budapest, Hungary
| | - Loránd Erőss
- National Institute of Clinical Neuroscience, Budapest, Hungary
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary; National Institute of Clinical Neuroscience, Budapest, Hungary
| |
Collapse
|
31
|
Rocchi F, Canella C, Noei S, Gutierrez-Barragan D, Coletta L, Galbusera A, Stuefer A, Vassanelli S, Pasqualetti M, Iurilli G, Panzeri S, Gozzi A. Increased fMRI connectivity upon chemogenetic inhibition of the mouse prefrontal cortex. Nat Commun 2022; 13:1056. [PMID: 35217677 PMCID: PMC8881459 DOI: 10.1038/s41467-022-28591-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
While shaped and constrained by axonal connections, fMRI-based functional connectivity reorganizes in response to varying interareal input or pathological perturbations. However, the causal contribution of regional brain activity to whole-brain fMRI network organization remains unclear. Here we combine neural manipulations, resting-state fMRI and in vivo electrophysiology to probe how inactivation of a cortical node causally affects brain-wide fMRI coupling in the mouse. We find that chronic inhibition of the medial prefrontal cortex (PFC) via overexpression of a potassium channel increases fMRI connectivity between the inhibited area and its direct thalamo-cortical targets. Acute chemogenetic inhibition of the PFC produces analogous patterns of fMRI overconnectivity. Using in vivo electrophysiology, we find that chemogenetic inhibition of the PFC enhances low frequency (0.1–4 Hz) oscillatory power via suppression of neural firing not phase-locked to slow rhythms, resulting in increased slow and δ band coherence between areas that exhibit fMRI overconnectivity. These results provide causal evidence that cortical inactivation can counterintuitively increase fMRI connectivity via enhanced, less-localized slow oscillatory processes. Pathological perturbation affects whole brain network activity. Here the authors show in mice that cortical inactivation unexpectedly results in increased fMRI connectivity between the manipulated regions and its direct axonal targets.
Collapse
Affiliation(s)
- Federico Rocchi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.,Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Carola Canella
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.,Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Shahryar Noei
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy.,Neural Computational Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ludovico Coletta
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.,Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alexia Stuefer
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.,Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Stefano Vassanelli
- Dept. of Biomedical Sciences and Padua Neuroscience Center, University of Padova, Padova, Italy
| | - Massimo Pasqualetti
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.,Biology Department, University of Pisa, Pisa, Italy
| | - Giuliano Iurilli
- Systems Neurobiology Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Stefano Panzeri
- Neural Computational Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy. .,Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
| |
Collapse
|
32
|
Thalamic T-Type Calcium Channels as Targets for Hypnotics and General Anesthetics. Int J Mol Sci 2022; 23:ijms23042349. [PMID: 35216466 PMCID: PMC8876360 DOI: 10.3390/ijms23042349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
General anesthetics mainly act by modulating synaptic inhibition on the one hand (the potentiation of GABA transmission) or synaptic excitation on the other (the inhibition of NMDA receptors), but they can also have effects on numerous other proteins, receptors, and channels. The effects of general anesthetics on ion channels have been the subject of research since the publication of reports of direct actions of these drugs on ion channel proteins. In particular, there is considerable interest in T-type voltage-gated calcium channels that are abundantly expressed in the thalamus, where they control patterns of cellular excitability and thalamocortical oscillations during awake and sleep states. Here, we summarized and discussed our recent studies focused on the CaV3.1 isoform of T-channels in the nonspecific thalamus (intralaminar and midline nuclei), which acts as a key hub through which natural sleep and general anesthesia are initiated. We used mouse genetics and in vivo and ex vivo electrophysiology to study the role of thalamic T-channels in hypnosis induced by a standard general anesthetic, isoflurane, as well as novel neuroactive steroids. From the results of this study, we conclude that CaV3.1 channels contribute to thalamocortical oscillations during anesthetic-induced hypnosis, particularly the slow-frequency range of δ oscillations (0.5–4 Hz), by generating “window current” that contributes to the resting membrane potential. We posit that the role of the thalamic CaV3.1 isoform of T-channels in the effects of various classes of general anesthetics warrants consideration.
Collapse
|
33
|
Covering the Gap Between Sleep and Cognition – Mechanisms and Clinical Examples. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1384:17-29. [PMID: 36217076 DOI: 10.1007/978-3-031-06413-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A growing number of studies have shown the strong relationship between sleep and different cognitive processes, especially those that involve memory consolidation. Traditionally, these processes were attributed to mechanisms related to the macroarchitecture of sleep, as sleep cycles or the duration of specific stages, such as the REM stage. More recently, the relationship between different cognitive traits and specific waves (sleep spindles or slow oscillations) has been studied. We here present the most important physiological processes induced by sleep, with particular focus on brain electrophysiology. In addition, recent and classical literature were reviewed to cover the gap between sleep and cognition, while illustrating this relationship by means of clinical examples. Finally, we propose that future studies may focus not only on analyzing specific waves, but also on the relationship between their characteristics as potential biomarkers for multiple diseases.
Collapse
|
34
|
Jiang Y, Patton MH, Zakharenko SS. A Case for Thalamic Mechanisms of Schizophrenia: Perspective From Modeling 22q11.2 Deletion Syndrome. Front Neural Circuits 2021; 15:769969. [PMID: 34955759 PMCID: PMC8693383 DOI: 10.3389/fncir.2021.769969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a severe, chronic psychiatric disorder that devastates the lives of millions of people worldwide. The disease is characterized by a constellation of symptoms, ranging from cognitive deficits, to social withdrawal, to hallucinations. Despite decades of research, our understanding of the neurobiology of the disease, specifically the neural circuits underlying schizophrenia symptoms, is still in the early stages. Consequently, the development of therapies continues to be stagnant, and overall prognosis is poor. The main obstacle to improving the treatment of schizophrenia is its multicausal, polygenic etiology, which is difficult to model. Clinical observations and the emergence of preclinical models of rare but well-defined genomic lesions that confer substantial risk of schizophrenia (e.g., 22q11.2 microdeletion) have highlighted the role of the thalamus in the disease. Here we review the literature on the molecular, cellular, and circuitry findings in schizophrenia and discuss the leading theories in the field, which point to abnormalities within the thalamus as potential pathogenic mechanisms of schizophrenia. We posit that synaptic dysfunction and oscillatory abnormalities in neural circuits involving projections from and within the thalamus, with a focus on the thalamocortical circuits, may underlie the psychotic (and possibly other) symptoms of schizophrenia.
Collapse
Affiliation(s)
| | | | - Stanislav S. Zakharenko
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
35
|
Gutiérrez-Tobal GC, Gomez-Pilar J, Kheirandish-Gozal L, Martín-Montero A, Poza J, Álvarez D, del Campo F, Gozal D, Hornero R. Pediatric Sleep Apnea: The Overnight Electroencephalogram as a Phenotypic Biomarker. Front Neurosci 2021; 15:644697. [PMID: 34803578 PMCID: PMC8595944 DOI: 10.3389/fnins.2021.644697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 10/07/2021] [Indexed: 12/02/2022] Open
Abstract
Pediatric obstructive sleep apnea (OSA) is a prevalent disorder that disrupts sleep and is associated with neurocognitive and behavioral negative consequences, potentially hampering the development of children for years. However, its relationships with sleep electroencephalogram (EEG) have been scarcely investigated. Here, our main objective was to characterize the overnight EEG of OSA-affected children and its putative relationships with polysomnographic measures and cognitive functions. A two-step analysis involving 294 children (176 controls, 57% males, age range: 5-9 years) was conducted for this purpose. First, the activity and irregularity of overnight EEG spectrum were characterized in the typical frequency bands by means of relative spectral power and spectral entropy, respectively: δ1 (0.1-2 Hz), δ2 (2-4 Hz), θ (4-8 Hz), α (8-13 Hz), σ (10-16 Hz), β1 (13-19 Hz), β2 (19-30 Hz), and γ (30-70 Hz). Then, a correlation network analysis was conducted to evaluate relationships between them, six polysomnography variables (apnea-hypopnea index, respiratory arousal index, spontaneous arousal index, overnight minimum blood oxygen saturation, wake time after sleep onset, and sleep efficiency), and six cognitive scores (differential ability scales, Peabody picture vocabulary test, expressive vocabulary test, design copying, phonological processing, and tower test). We found that as the severity of the disease increases, OSA broadly affects sleep EEG to the point that the information from the different frequency bands becomes more similar, regardless of activity or irregularity. EEG activity and irregularity information from the most severely affected children were significantly associated with polysomnographic variables, which were coherent with both micro and macro sleep disruptions. We hypothesize that the EEG changes caused by OSA could be related to the occurrence of respiratory-related arousals, as well as thalamic inhibition in the slow oscillation generation due to increases in arousal levels aimed at recovery from respiratory events. Furthermore, relationships between sleep EEG and cognitive scores emerged regarding language, visual-spatial processing, and executive function with pronounced associations found with EEG irregularity in δ1 (Peabody picture vocabulary test and expressive vocabulary test maximum absolute correlations 0.61 and 0.54) and β2 (phonological processing, 0.74; design copying, 0.65; and Tow 0.52). Our results show that overnight EEG informs both sleep alterations and cognitive effects of pediatric OSA. Moreover, EEG irregularity provides new information that complements and expands the classic EEG activity analysis. These findings lay the foundation for the use of sleep EEG to assess cognitive changes in pediatric OSA.
Collapse
Affiliation(s)
- Gonzalo C. Gutiérrez-Tobal
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain
| | - Leila Kheirandish-Gozal
- Department of Child Health, Child Health Research Institute, The University of Missouri School of Medicine, Columbia, MO, United States
| | | | - Jesús Poza
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain
| | - Daniel Álvarez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain
- Pneumology Service, Río Hortega University Hospital, Valladolid, Spain
| | - Félix del Campo
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain
- Pneumology Service, Río Hortega University Hospital, Valladolid, Spain
| | - David Gozal
- Department of Child Health, Child Health Research Institute, The University of Missouri School of Medicine, Columbia, MO, United States
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain
| |
Collapse
|
36
|
Burton SD, Urban NN. Cell and circuit origins of fast network oscillations in the mammalian main olfactory bulb. eLife 2021; 10:74213. [PMID: 34658333 PMCID: PMC8553344 DOI: 10.7554/elife.74213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/09/2021] [Indexed: 11/13/2022] Open
Abstract
Neural synchrony generates fast network oscillations throughout the brain, including the main olfactory bulb (MOB), the first processing station of the olfactory system. Identifying the mechanisms synchronizing neurons in the MOB will be key to understanding how network oscillations support the coding of a high-dimensional sensory space. Here, using paired recordings and optogenetic activation of glomerular sensory inputs in MOB slices, we uncovered profound differences in principal mitral cell (MC) vs. tufted cell (TC) spike-time synchrony: TCs robustly synchronized across fast- and slow-gamma frequencies, while MC synchrony was weaker and concentrated in slow-gamma frequencies. Synchrony among both cell types was enhanced by shared glomerular input but was independent of intraglomerular lateral excitation. Cell-type differences in synchrony could also not be traced to any difference in the synchronization of synaptic inhibition. Instead, greater TC than MC synchrony paralleled the more periodic firing among resonant TCs than MCs and emerged in patterns consistent with densely synchronous network oscillations. Collectively, our results thus reveal a mechanism for parallel processing of sensory information in the MOB via differential TC vs. MC synchrony, and further contrast mechanisms driving fast network oscillations in the MOB from those driving the sparse synchronization of irregularly firing principal cells throughout cortex.
Collapse
Affiliation(s)
- Shawn D Burton
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, Pittsburgh, United States
| | - Nathaniel N Urban
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, Pittsburgh, United States
| |
Collapse
|
37
|
Progress in modelling of brain dynamics during anaesthesia and the role of sleep-wake circuitry. Biochem Pharmacol 2021; 191:114388. [DOI: 10.1016/j.bcp.2020.114388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/28/2022]
|
38
|
Lee CH, Le JT, Swann JW. Brain state-dependent high-frequency activity as a biomarker for abnormal neocortical networks in an epileptic spasms animal model. Epilepsia 2021; 62:2263-2273. [PMID: 34258765 DOI: 10.1111/epi.17008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Epileptic spasms are a hallmark of a severe epileptic state. A previous study showed neocortical up and down states defined by unit activity play a role in the generation of spasms. However, recording unit activity is challenging in clinical settings, and more accessible neurophysiological signals are needed for the analysis of these brain states. METHODS In the tetrodotoxin model, we used 16-channel microarrays to record electrophysiological activity in the neocortex during interictal periods and spasms. High-frequency activity (HFA) in the frequency range of fast ripples (200-500 Hz) was analyzed, as were slow wave oscillations (1-8 Hz), and correlated with the neocortical up and down states defined by multiunit activity (MUA). RESULTS HFA and MUA had high temporal correlation during interictal and ictal periods. Both increased strikingly during interictal up states and ictal events but were silenced during interictal down states and preictal pauses, and their distributions were clustered at the peak of slow oscillations in local field potential recordings. In addition, both HFA power and MUA firing rates were increased to a greater extent during spasms than interictal up states. During non-rapid eye movement sleep, the HFA rhythmicity faithfully followed the MUA up and down states, but during rapid eye movement sleep when MUA up and down states disappeared the HFA rhythmicity was largely absent. We also observed an increase in the number of HFA down state minutes prior to ictal onset, consistent with the results from analyses of MUA down states. SIGNIFICANCE This study provides evidence that HFA may serve as a biomarker for the pathological up states of epileptic spasms. The availability of HFA recordings makes this a clinically practical technique. These findings will likely provide a novel approach for localizing and studying epileptogenic neocortical networks not only in spasms patients but also in other types of epilepsy.
Collapse
Affiliation(s)
- Chih-Hong Lee
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - John T Le
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - John W Swann
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
39
|
Hay YA, Deperrois N, Fuchsberger T, Quarrell TM, Koerling AL, Paulsen O. Thalamus mediates neocortical Down state transition via GABA B-receptor-targeting interneurons. Neuron 2021; 109:2682-2690.e5. [PMID: 34314698 DOI: 10.1016/j.neuron.2021.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 02/24/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022]
Abstract
Slow-wave sleep is characterized by near-synchronous alternation of active Up states and quiescent Down states in the neocortex. Although the cortex itself can maintain these oscillations, the full expression of Up-Down states requires intact thalamocortical circuits. Sensory thalamic input can drive the cortex into an Up state. Here we show that midline thalamic neurons terminate Up states synchronously across cortical areas. Combining local field potential, single-unit, and patch-clamp recordings in conjunction with optogenetic stimulation and silencing in mice in vivo, we report that thalamic input mediates Down transition via activation of layer 1 neurogliaform inhibitory neurons acting on GABAB receptors. These results strengthen the evidence that thalamocortical interactions are essential for the full expression of slow-wave sleep, show that Down transition is an active process mediated by cortical GABAB receptors, and demonstrate that thalamus synchronizes Down transitions across cortical areas during natural slow-wave sleep.
Collapse
Affiliation(s)
- Y Audrey Hay
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK.
| | - Nicolas Deperrois
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK
| | - Tanja Fuchsberger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK
| | - Thomas Matthew Quarrell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK
| | - Anna-Lucia Koerling
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK.
| |
Collapse
|
40
|
Byron N, Semenova A, Sakata S. Mutual Interactions between Brain States and Alzheimer's Disease Pathology: A Focus on Gamma and Slow Oscillations. BIOLOGY 2021; 10:707. [PMID: 34439940 PMCID: PMC8389330 DOI: 10.3390/biology10080707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022]
Abstract
Brain state varies from moment to moment. While brain state can be defined by ongoing neuronal population activity, such as neuronal oscillations, this is tightly coupled with certain behavioural or vigilant states. In recent decades, abnormalities in brain state have been recognised as biomarkers of various brain diseases and disorders. Intriguingly, accumulating evidence also demonstrates mutual interactions between brain states and disease pathologies: while abnormalities in brain state arise during disease progression, manipulations of brain state can modify disease pathology, suggesting a therapeutic potential. In this review, by focusing on Alzheimer's disease (AD), the most common form of dementia, we provide an overview of how brain states change in AD patients and mouse models, and how controlling brain states can modify AD pathology. Specifically, we summarise the relationship between AD and changes in gamma and slow oscillations. As pathological changes in these oscillations correlate with AD pathology, manipulations of either gamma or slow oscillations can modify AD pathology in mouse models. We argue that neuromodulation approaches to target brain states are a promising non-pharmacological intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicole Byron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Anna Semenova
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
41
|
Iacone Y, Morais TP, David F, Delicata F, Sandle J, Raffai T, Parri HR, Weisser JJ, Bundgaard C, Klewe IV, Tamás G, Thomsen MS, Crunelli V, Lőrincz ML. Systemic administration of ivabradine, a hyperpolarization-activated cyclic nucleotide-gated channel inhibitor, blocks spontaneous absence seizures. Epilepsia 2021; 62:1729-1743. [PMID: 34018186 PMCID: PMC9543052 DOI: 10.1111/epi.16926] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are known to be involved in the generation of absence seizures (ASs), and there is evidence that cortical and thalamic HCN channel dysfunctions may have a proabsence role. Many HCN channel blockers are available, but their role in ASs has been investigated only by localized brain injection or in in vitro model systems due to their limited brain availability. Here, we investigated the effect on ASs of orally administered ivabradine (an HCN channel blocker approved for the treatment of heart failure in humans) following injection of the P-glycoprotein inhibitor elacridar, which is known to increase penetration into the brain of drug substrates for this efflux transporter. The action of ivabradine was also tested following in vivo microinjection into the cortical initiation network (CIN) of the somatosensory cortex and in the thalamic ventrobasal nucleus (VB) as well as on cortical and thalamocortical neurons in brain slices. METHODS We used electroencephalographic recordings in freely moving Genetic Absence Epilepsy Rats From Strasbourg (GAERSs) to assess the action of oral administration of ivabradine, with and without elacridar, on ASs. Ivabradine was also microinjected into the CIN and VB of GAERSs in vivo and applied to Wistar CIN and GAERS VB slices while recording patch-clamped cortical Layer 5/6 and thalamocortical neurons, respectively. RESULTS Oral administration of ivabradine markedly and dose-dependently reduced ASs. Ivabradine injection into CIN abolished ASs and elicited small-amplitude 4-7-Hz waves (without spikes), whereas in the VB it was less potent. Moreover, ivabradine applied to GAERS VB and Wistar CIN slices selectively decreased HCN channel-dependent properties of cortical Layer 5/6 pyramidal and thalamocortical neurons, respectively. SIGNIFICANCE These results provide the first demonstration of the antiabsence action of a systemically administered HCN channel blocker, indicating the potential of this class of drugs as a novel therapeutic avenue for ASs.
Collapse
Affiliation(s)
- Yasmine Iacone
- Neuroscience ResearchH. Lundbeck A/S, ValbyCopenhagenDenmark
- Biomedical SciencesFaculty of Health and Medical SciencesCopenhagen UniversityCopenhagenDenmark
| | - Tatiana P. Morais
- Neuroscience DivisionSchool of BiosciencesCardiff UniversityCardiffUK
| | - François David
- Integrative Neuroscience and Cognition CenterUniversity of ParisParisFrance
| | | | - Joanna Sandle
- Department of Anatomy, Physiology, and NeuroscienceMTA‐SZTE Research Group for Cortical MicrocircuitsUniversity of SzegedSzegedHungary
| | - Timea Raffai
- Department of Physiology, Anatomy, and NeuroscienceFaculty of SciencesUniversity of SzegedSzegedHungary
- Department of PhysiologyFaculty of MedicineUniversity of SzegedSzegedHungary
| | | | | | | | | | - Gábor Tamás
- Department of Anatomy, Physiology, and NeuroscienceMTA‐SZTE Research Group for Cortical MicrocircuitsUniversity of SzegedSzegedHungary
| | | | - Vincenzo Crunelli
- Neuroscience DivisionSchool of BiosciencesCardiff UniversityCardiffUK
- Department of Physiology and BiochemistryFaculty of Medicine and SurgeryUniversity of MaltaMsidaMalta
| | - Magor L. Lőrincz
- Neuroscience DivisionSchool of BiosciencesCardiff UniversityCardiffUK
- Department of Physiology, Anatomy, and NeuroscienceFaculty of SciencesUniversity of SzegedSzegedHungary
- Department of PhysiologyFaculty of MedicineUniversity of SzegedSzegedHungary
| |
Collapse
|
42
|
Tort-Colet N, Capone C, Sanchez-Vives MV, Mattia M. Attractor competition enriches cortical dynamics during awakening from anesthesia. Cell Rep 2021; 35:109270. [PMID: 34161772 DOI: 10.1016/j.celrep.2021.109270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 02/19/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022] Open
Abstract
Slow oscillations (≲ 1 Hz), a hallmark of slow-wave sleep and deep anesthesia across species, arise from spatiotemporal patterns of activity whose complexity increases as wakefulness is approached and cognitive functions emerge. The arousal process constitutes an open window to the unknown mechanisms underlying the emergence of such dynamical richness in awake cortical networks. Here, we investigate the changes in network dynamics as anesthesia fades out in the rat visual cortex. Starting from deep anesthesia, slow oscillations gradually increase their frequency, eventually expressing maximum regularity. This stage is followed by the abrupt onset of an infra-slow (~0.2 Hz) alternation between sleep-like oscillations and activated states. A population rate model reproduces this transition driven by an increased excitability that brings it to periodically cross a critical point. Based on our model, dynamical richness emerges as a competition between two metastable attractor states, a conclusion strongly supported by the data.
Collapse
Affiliation(s)
- Núria Tort-Colet
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Department of Integrative and Computational Neuroscience, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.
| | - Cristiano Capone
- Physics Department, Sapienza University, Rome, Italy; Natl. Center for Radioprotection and Computational Physics, Istituto Superiore di Sanità, Rome, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome, Italy
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Maurizio Mattia
- Natl. Center for Radioprotection and Computational Physics, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
43
|
Durán E, Yang M, Neves R, Logothetis NK, Eschenko O. Modulation of Prefrontal Cortex Slow Oscillations by Phasic Activation of the Locus Coeruleus. Neuroscience 2021; 453:268-279. [PMID: 33419514 DOI: 10.1016/j.neuroscience.2020.11.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 12/13/2022]
Abstract
Cortical slow rhythmic activity, a hallmark of deep sleep, is observed under urethane anesthesia. Synchronized fluctuations of the membrane excitability of a large neuronal population are reflected in the extracellular Local Field Potential (LFP), as high-amplitude slow (∼1 Hz) oscillations (SO). The SO-phase indicates the presence (Up) or absence (Down) of neuronal spiking. The cortical state is controlled by the input from thalamic and neuromodulatory centers, including the brainstem noradrenergic nucleus Locus Coeruleus (LC). The bidirectional modulation of neuronal excitability by noradrenaline (NA) is well known. We have previously shown that LC phasic activation caused transient excitability increase in the medial prefrontal cortex (mPFC). In the present study, we characterized the effect of LC phasic activation on the prefrontal population dynamics at a temporal scale of a single SO cycle. We applied short (0.2 s) trains of electric pulses (0.02-0.05 mA at 20-50 Hz) to the LC cell bodies and monitored a broadband (0.1 Hz-8 kHz) mPFC LFP in urethane-anesthetized rats. The direct electrical stimulation of LC (LC-DES), applied during the Up-phase, enhanced the firing probability in the mPFC by ∼20% and substantially prolonged Up-states in 56% of trials. The LC-DES applied during Down-phase caused a rapid Down-to-Up transition in 81.5% of trials. The LC-DES was more effective at a higher frequency, but not at a higher current. Our results suggest that transient NA release, coupled to SO, may promote synaptic plasticity and memory consolidation by sustaining a depolarized state in the mPFC neurons.
Collapse
Affiliation(s)
- Ernesto Durán
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Mingyu Yang
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Ricardo Neves
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Division of Imaging Science and Biomedical Engineering, University of Manchester, M13 9PT Manchester, UK
| | - Oxana Eschenko
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.
| |
Collapse
|
44
|
Betta M, Handjaras G, Leo A, Federici A, Farinelli V, Ricciardi E, Siclari F, Meletti S, Ballotta D, Benuzzi F, Bernardi G. Cortical and subcortical hemodynamic changes during sleep slow waves in human light sleep. Neuroimage 2021; 236:118117. [PMID: 33940148 DOI: 10.1016/j.neuroimage.2021.118117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022] Open
Abstract
EEG slow waves, the hallmarks of NREM sleep are thought to be crucial for the regulation of several important processes, including learning, sensory disconnection and the removal of brain metabolic wastes. Animal research indicates that slow waves may involve complex interactions within and between cortical and subcortical structures. Conventional EEG in humans, however, has a low spatial resolution and is unable to accurately describe changes in the activity of subcortical and deep cortical structures. To overcome these limitations, here we took advantage of simultaneous EEG-fMRI recordings to map cortical and subcortical hemodynamic (BOLD) fluctuations time-locked to slow waves of light sleep. Recordings were performed in twenty healthy adults during an afternoon nap. Slow waves were associated with BOLD-signal increases in the posterior brainstem and in portions of thalamus and cerebellum characterized by preferential functional connectivity with limbic and somatomotor areas, respectively. At the cortical level, significant BOLD-signal decreases were instead found in several areas, including insula and somatomotor cortex. Specifically, a slow signal increase preceded slow-wave onset and was followed by a delayed, stronger signal decrease. Similar hemodynamic changes were found to occur at different delays across most cortical brain areas, mirroring the propagation of electrophysiological slow waves, from centro-frontal to inferior temporo-occipital cortices. Finally, we found that the amplitude of electrophysiological slow waves was positively related to the magnitude and inversely related to the delay of cortical and subcortical BOLD-signal changes. These regional patterns of brain activity are consistent with theoretical accounts of the functions of sleep slow waves.
Collapse
Affiliation(s)
- Monica Betta
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Giacomo Handjaras
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Andrea Leo
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Alessandra Federici
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Valentina Farinelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Emiliano Ricciardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Neurology Dept., Azienda Ospedaliera Universitaria di Modena, Modena, Italy
| | - Daniela Ballotta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Benuzzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy.
| |
Collapse
|
45
|
Cell-Type-Specific Dynamics of Calcium Activity in Cortical Circuits over the Course of Slow-Wave Sleep and Rapid Eye Movement Sleep. J Neurosci 2021; 41:4212-4222. [PMID: 33833082 PMCID: PMC8143210 DOI: 10.1523/jneurosci.1957-20.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
Sleep shapes cortical network activity, fostering global homeostatic downregulation of excitability while maintaining or even upregulating excitability in selected networks in a manner that supports memory consolidation. Here, we used two-photon calcium imaging of cortical layer 2/3 neurons in sleeping male mice to examine how these seemingly opposing dynamics are balanced in cortical networks. During slow-wave sleep (SWS) episodes, mean calcium activity of excitatory pyramidal (Pyr) cells decreased. Simultaneously, however, variance in Pyr population calcium activity increased, contradicting the notion of a homogenous downregulation of network activity. Indeed, we identified a subpopulation of Pyr cells distinctly upregulating calcium activity during SWS, which were highly active during sleep spindles known to support mnemonic processing. Rapid eye movement (REM) episodes following SWS were associated with a general downregulation of Pyr cells, including the subpopulation of Pyr cells active during spindles, which persisted into following stages of sleep and wakefulness. Parvalbumin-positive inhibitory interneurons (PV-In) showed an increase in calcium activity during SWS episodes, while activity remained unchanged during REM sleep episodes. This supports the view that downregulation of Pyr calcium activity during SWS results from increased somatic inhibition via PV-In, whereas downregulation during REM sleep is achieved independently of such inhibitory activity. Overall, our findings show that SWS enables upregulation of select cortical circuits (likely those which were involved in mnemonic processing) through a spindle-related process, whereas REM sleep mediates general downregulation, possibly through synaptic re-normalization.SIGNIFICANCE STATEMENT Sleep is thought to globally downregulate cortical excitability and, concurrently, to upregulate synaptic connections in neuron ensembles with newly encoded memory, with upregulation representing a function of sleep spindles. Using in vivo two-photon calcium imaging in combination with surface EEG recordings, we classified cells based on their calcium activity during sleep spindles. Spindle-active pyramidal (Pyr) cells persistently increased calcium activity during slow-wave sleep (SWS) episodes while spindle-inactive cells decreased calcium activity. Subsequent rapid eye movement (REM) sleep episodes profoundly reduced calcium activity in both cell clusters. Results indicate that SWS allows for a spindle-related differential upregulation of ensembles whereas REM sleep functions to globally downregulate networks.
Collapse
|
46
|
Desai NV, Varela C. Distinct burst properties contribute to the functional diversity of thalamic nuclei. J Comp Neurol 2021; 529:3726-3750. [PMID: 33723858 PMCID: PMC8440663 DOI: 10.1002/cne.25141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022]
Abstract
Thalamic neurons fire spikes in two modes, burst and tonic. The function of burst firing is unclear, but the evidence suggests that bursts are more effective at activating cortical cells, and that postinhibition rebound bursting contributes to thalamocortical oscillations during sleep. Bursts are considered stereotyped signals; however, there is limited evidence regarding how burst properties compare across thalamic nuclei of different functional or anatomical organization. Here, we used whole-cell patch clamp recordings and compartmental modeling to investigate the properties of bursts in six sensory thalamic nuclei, to study the mechanisms that can lead to different burst properties, and to assess the implications of different burst properties for thalamocortical transmission and oscillatory functions. We found that bursts in higher-order cells on average had higher number of spikes and longer latency to the first spike. Additionally, burst features in first-order neurons were determined by sensory modality. Shifting the voltage-dependence and density of the T-channel conductance in a compartmental model replicates the burst properties from the intracellular recordings, pointing to molecular mechanisms that can generate burst diversity. Furthermore, the model predicts that bursts with higher number of spikes will drastically reduce the effectiveness of thalamocortical transmission. In addition, the latency to burst limited the rebound oscillatory frequency in modeled cells. These results demonstrate that burst properties vary according to the thalamocortical hierarchy and with sensory modality. The findings imply that, while in burst mode, thalamocortical transmission and firing frequency will be determined by the number of spikes and latency to burst.
Collapse
Affiliation(s)
- Nidhi Vasant Desai
- Psychology Department, Jupiter Life Sciences Initiative, Florida Atlantic University, Boca Raton, Florida, USA
| | - Carmen Varela
- Psychology Department, Jupiter Life Sciences Initiative, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
47
|
Rosenthal ZP, Raut RV, Bowen RM, Snyder AZ, Culver JP, Raichle ME, Lee JM. Peripheral sensory stimulation elicits global slow waves by recruiting somatosensory cortex bilaterally. Proc Natl Acad Sci U S A 2021; 118:e2021252118. [PMID: 33597303 PMCID: PMC7923673 DOI: 10.1073/pnas.2021252118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Slow waves (SWs) are globally propagating, low-frequency (0.5- to 4-Hz) oscillations that are prominent during sleep and anesthesia. SWs are essential to neural plasticity and memory. However, much remains unknown about the mechanisms coordinating SW propagation at the macroscale. To assess SWs in the context of macroscale networks, we recorded cortical activity in awake and ketamine/xylazine-anesthetized mice using widefield optical imaging with fluorescent calcium indicator GCaMP6f. We demonstrate that unilateral somatosensory stimulation evokes bilateral waves that travel across the cortex with state-dependent trajectories. Under anesthesia, we observe that rhythmic stimuli elicit globally resonant, front-to-back propagating SWs. Finally, photothrombotic lesions of S1 show that somatosensory-evoked global SWs depend on bilateral recruitment of homotopic primary somatosensory cortices. Specifically, unilateral lesions of S1 disrupt somatosensory-evoked global SW initiation from either hemisphere, while spontaneous SWs are largely unchanged. These results show that evoked SWs may be triggered by bilateral activation of specific, homotopically connected cortical networks.
Collapse
Affiliation(s)
- Zachary P Rosenthal
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110;
- Graduate Program of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ryan V Raut
- Graduate Program of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ryan M Bowen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joseph P Culver
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110
- Department of Physics, Washington University School of Medicine, St. Louis, MO 63110
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
48
|
Lee CH, Le JT, Ballester-Rosado CJ, Anderson AE, Swann JW. Neocortical Slow Oscillations Implicated in the Generation of Epileptic Spasms. Ann Neurol 2021; 89:226-241. [PMID: 33068018 PMCID: PMC7855630 DOI: 10.1002/ana.25935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Epileptic spasms are a hallmark of severe seizure disorders. The neurophysiological mechanisms and the neuronal circuit(s) that generate these seizures are unresolved and are the focus of studies reported here. METHODS In the tetrodotoxin model, we used 16-channel microarrays and microwires to record electrophysiological activity in neocortex and thalamus during spasms. Chemogenetic activation was used to examine the role of neocortical pyramidal cells in generating spasms. Comparisons were made to recordings from infantile spasm patients. RESULTS Current source density and simultaneous multiunit activity analyses indicate that the ictal events of spasms are initiated in infragranular cortical layers. A dramatic pause of neuronal activity was recorded immediately prior to the onset of spasms. This preictal pause is shown to share many features with the down states of slow wave sleep. In addition, the ensuing interictal up states of slow wave rhythms are more intense in epileptic than control animals and occasionally appear sufficient to initiate spasms. Chemogenetic activation of neocortical pyramidal cells supported these observations, as it increased slow oscillations and spasm numbers and clustering. Recordings also revealed a ramp-up in the number of neocortical slow oscillations preceding spasms, which was also observed in infantile spasm patients. INTERPRETATION Our findings provide evidence that epileptic spasms can arise from the neocortex and reveal a previously unappreciated interplay between brain state physiology and spasm generation. The identification of neocortical up states as a mechanism capable of initiating epileptic spasms will likely provide new targets for interventional therapies. ANN NEUROL 2021;89:226-241.
Collapse
Affiliation(s)
- Chih-hong Lee
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - John T. Le
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Carlos J. Ballester-Rosado
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Anne E. Anderson
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - John W. Swann
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
49
|
The effects of non-invasive brain stimulation on sleep disturbances among different neurological and neuropsychiatric conditions: A systematic review. Sleep Med Rev 2021; 55:101381. [PMID: 32992227 DOI: 10.1016/j.smrv.2020.101381] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/17/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
|
50
|
Global genetic deletion of Ca V3.3 channels facilitates anaesthetic induction and enhances isoflurane-sparing effects of T-type calcium channel blockers. Sci Rep 2020; 10:21510. [PMID: 33299036 PMCID: PMC7725806 DOI: 10.1038/s41598-020-78488-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/13/2020] [Indexed: 01/02/2023] Open
Abstract
We previously documented that the CaV3.3 isoform of T-type calcium channels (T-channels) is inhibited by clinically relevant concentrations of volatile anaesthetics, including isoflurane. However, little is understood about the functional role of CaV3.3 channels in anaesthetic-induced hypnosis and underlying neuronal oscillations. To address this issue, we used CaV3.3 knock-out (KO) mice and a panselective T-channel blocker 3,5-dichloro-N-[1-(2,2-dimethyltetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide (TTA-P2). We found that mutant mice injected with the vehicle showed faster induction of hypnosis than wild-type (WT) mice, while the percent isoflurane at which hypnosis and immobility occurred was not different between two genotypes. Furthermore, we found that TTA-P2 facilitated isoflurane induction of hypnosis in the CaV3.3 KO mice more robustly than in the WT mice. Isoflurane-induced hypnosis following injections of TTA-P2 was accompanied with more prominent delta and theta EEG oscillations in the mutant mice, and reached burst-suppression pattern earlier when compared to the WT mice. Our findings point to a relatively specific value of CaV3.3 channels in anaesthetic induced hypnosis. Furthermore, we propose that T-channel blockers may be further explored as a valuable adjunct to reducing the usage of potent volatile anaesthetics, thereby improving their safety.
Collapse
|