1
|
Kim JI, Miura Y, Li MY, Revah O, Selvaraj S, Birey F, Meng X, Thete MV, Pavlov SD, Andersen J, Pașca AM, Porteus MH, Huguenard JR, Pașca SP. Human assembloids reveal the consequences of CACNA1G gene variants in the thalamocortical pathway. Neuron 2024:S0896-6273(24)00692-5. [PMID: 39419023 DOI: 10.1016/j.neuron.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Abnormalities in thalamocortical crosstalk can lead to neuropsychiatric disorders. Variants in CACNA1G, which encodes the α1G subunit of the thalamus-enriched T-type calcium channel, are associated with absence seizures, intellectual disability, and schizophrenia, but the cellular and circuit consequences of these genetic variants in humans remain unknown. Here, we developed a human assembloid model of the thalamocortical pathway to dissect the contribution of genetic variants in T-type calcium channels. We discovered that the M1531V CACNA1G variant associated with seizures led to changes in T-type currents in thalamic neurons, as well as correlated hyperactivity of thalamic and cortical neurons in assembloids. By contrast, CACNA1G loss, which has been associated with risk of schizophrenia, resulted in abnormal thalamocortical connectivity that was related to both increased spontaneous thalamic activity and aberrant axonal projections. These results illustrate the utility of multi-cellular systems for interrogating human genetic disease risk variants at both cellular and circuit level.
Collapse
Affiliation(s)
- Ji-Il Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Yuki Miura
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Min-Yin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Omer Revah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sridhar Selvaraj
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Fikri Birey
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Xiangling Meng
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Mayuri Vijay Thete
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Sergey D Pavlov
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Jimena Andersen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Anca M Pașca
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Schwerk C, Schroten H. In vitro models of the choroid plexus and the blood-cerebrospinal fluid barrier: advances, applications, and perspectives. Hum Cell 2024; 37:1235-1242. [PMID: 39103559 PMCID: PMC11341628 DOI: 10.1007/s13577-024-01115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The choroid plexus (CP), a highly vascularized endothelial-epithelial convolute, is placed in the ventricular system of the brain and produces a large part of the cerebrospinal fluid (CSF). Additionally, the CP is the location of a blood-CSF barrier (BCSFB) that separates the CSF from the blood stream in the CP endothelium. In vitro models of the CP and the BCSFB are of high importance to investigate the biological functions of the CP and the BCSFB. Since the CP is involved in several serious diseases, these in vitro models promise help in researching the processes contributing to the diseases and during the development of treatment options. In this review, we provide an overview on the available models and the advances that have been made toward more sophisticated and "in vivo near" systems as organoids and microfluidic lab-on-a-chip approaches. We go into the applications and research objectives for which the various modeling systems can be used and discuss the possible future prospects and perspectives.
Collapse
Affiliation(s)
- Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| |
Collapse
|
3
|
Masters H, Wang S, Tu C, Nguyen Q, Sha Y, Karikomi MK, Fung PSR, Tran B, Martel C, Kwang N, Neel M, Jaime OG, Espericueta V, Johnson BA, Kessenbrock K, Nie Q, Monuki ES. Sequential emergence and contraction of epithelial subtypes in the prenatal human choroid plexus revealed by a stem cell model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598747. [PMID: 38948782 PMCID: PMC11212933 DOI: 10.1101/2024.06.12.598747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Despite the major roles of choroid plexus epithelial cells (CPECs) in brain homeostasis and repair, their developmental lineage and diversity remain undefined. In simplified differentiations from human pluripotent stem cells, derived CPECs (dCPECs) displayed canonical properties and dynamic multiciliated phenotypes that interacted with Aβ uptake. Single dCPEC transcriptomes over time correlated well with human organoid and fetal CPECs, while pseudotemporal and cell cycle analyses highlighted the direct CPEC origin from neuroepithelial cells. In addition, time series analyses defined metabolic (type 1) and ciliogenic dCPECs (type 2) at early timepoints, followed by type 1 diversification into anabolic-secretory (type 1a) and catabolic-absorptive subtypes (type 1b) as type 2 cells contracted. These temporal patterns were then confirmed in independent derivations and mapped to prenatal stages using human tissues. In addition to defining the prenatal lineage of human CPECs, these findings suggest new dynamic models of ChP support for the developing human brain.
Collapse
|
4
|
Shaker MR, Slonchak A, Al-Mhanawi B, Morrison SD, Sng JDJ, Cooper-White J, Khromykh AA, Wolvetang EJ. Choroid plexus defects in Down syndrome brain organoids enhance neurotropism of SARS-CoV-2. SCIENCE ADVANCES 2024; 10:eadj4735. [PMID: 38838150 DOI: 10.1126/sciadv.adj4735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Why individuals with Down syndrome (DS) are more susceptible to SARS-CoV-2-induced neuropathology remains elusive. Choroid plexus (ChP) plays critical roles in barrier function and immune response modulation and expresses the ACE2 receptor and the chromosome 21-encoded TMPRSS2 protease, suggesting its substantial role in establishing SARS-CoV-2 infection in the brain. To explore this, we established brain organoids from DS and isogenic euploid iPSC that consist of a core of functional cortical neurons surrounded by a functional ChP-like epithelium (ChPCOs). DS-ChPCOs recapitulated abnormal DS cortical development and revealed defects in ciliogenesis and epithelial cell polarity in ChP-like epithelium. We then demonstrated that the ChP-like epithelium facilitates infection and replication of SARS-CoV-2 in cortical neurons and that this is increased in DS. Inhibiting TMPRSS2 and furin activity reduced viral replication in DS-ChPCOs to euploid levels. This model enables dissection of the role of ChP in neurotropic virus infection and euploid forebrain development and permits screening of therapeutics for SARS-CoV-2-induced neuropathogenesis.
Collapse
Affiliation(s)
- Mohammed R Shaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- UQ Centre in Stem Cell Engineering and Regenerative Engineering (UQ StemCARE), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Bahaa Al-Mhanawi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sean D Morrison
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Justin Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- UQ Centre in Stem Cell Engineering and Regenerative Engineering (UQ StemCARE), The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
- GVN Centre of Excellence, Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- UQ Centre in Stem Cell Engineering and Regenerative Engineering (UQ StemCARE), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
5
|
Wu Y, Cheng J, Qi J, Hang C, Dong R, Low BC, Yu H, Jiang X. Three-dimensional liquid metal-based neuro-interfaces for human hippocampal organoids. Nat Commun 2024; 15:4047. [PMID: 38744873 PMCID: PMC11094048 DOI: 10.1038/s41467-024-48452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
Human hippocampal organoids (hHOs) derived from human induced pluripotent stem cells (hiPSCs) have emerged as promising models for investigating neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. However, obtaining the electrical information of these free-floating organoids in a noninvasive manner remains a challenge using commercial multi-electrode arrays (MEAs). The three-dimensional (3D) MEAs developed recently acquired only a few neural signals due to limited channel numbers. Here, we report a hippocampal cyborg organoid (cyb-organoid) platform coupling a liquid metal-polymer conductor (MPC)-based mesh neuro-interface with hHOs. The mesh MPC (mMPC) integrates 128-channel multielectrode arrays distributed on a small surface area (~2*2 mm). Stretchability (up to 500%) and flexibility of the mMPC enable its attachment to hHOs. Furthermore, we show that under Wnt3a and SHH activator induction, hHOs produce HOPX+ and PAX6+ progenitors and ZBTB20+PROX1+ dentate gyrus (DG) granule neurons. The transcriptomic signatures of hHOs reveal high similarity to the developing human hippocampus. We successfully detect neural activities from hHOs via the mMPC from this cyb-organoid. Compared with traditional planar devices, our non-invasive coupling offers an adaptor for recording neural signals from 3D models.
Collapse
Affiliation(s)
- Yan Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Jinhao Cheng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jie Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chen Hang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ruihua Dong
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Hanry Yu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
6
|
Chew LH, Mercier E, Rogalski JC, Pippard S, Knock E. Methods to extract and analyze fluid from human pluripotent stem cell-derived choroid plexus organoids. Front Mol Neurosci 2024; 16:1243499. [PMID: 38348236 PMCID: PMC10859488 DOI: 10.3389/fnmol.2023.1243499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024] Open
Abstract
The choroid plexus (ChP) is a highly vascularized tissue lining the ventricular space of the brain. The ChP generates cerebrospinal fluid (CSF) and forms a protective barrier in the central nervous system (CNS). Recently, a three-dimensional human pluripotent stem cell (hPSC)-derived ChP organoid model has been developed. This model generates cystic structures that are filled with a fluid resembling CSF and are surrounded by an epithelial layer expressing ependymal choroid plexus-specific markers. Here we describe a method to generate these choroid plexus organoids using a commercial kit and methods to extract the CSF-like fluid for use in downstream analysis.
Collapse
Affiliation(s)
| | | | - Jason C. Rogalski
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | | | - Erin Knock
- STEMCELL Technologies, Vancouver, BC, Canada
| |
Collapse
|
7
|
Estridge RC, O’Neill JE, Keung AJ. Matrigel Tunes H9 Stem Cell-Derived Human Cerebral Organoid Development. ORGANOIDS 2023; 2:165-176. [PMID: 38196836 PMCID: PMC10776236 DOI: 10.3390/organoids2040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Human cerebral organoids are readily generated from human embryonic stem cells and human induced pluripotent stem cells and are useful in studying human neurodevelopment. Recent work with human cerebral organoids have explored the creation of different brain regions and the impacts of soluble and mechanical cues. Matrigel is a gelatinous, heterogenous mixture of extracellular matrix proteins, morphogens, and growth factors secreted by Engelbreth-Holm-Swarm mouse sarcoma cells. It is a core component of almost all cerebral organoid protocols, generally supporting neuroepithelial budding and tissue polarization; yet, its roles and effects beyond its general requirement in organoid protocols are not well understood, and its mode of delivery is variable, including the embedding of organoids within it or its delivery in soluble form. Given its widespread usage, we asked how H9 stem cell-derived hCO development and composition are affected by Matrigel dosage and delivery method. We found Matrigel exposure influences organoid size, morphology, and cell type composition. We also showed that greater amounts of Matrigel promote an increase in the number of choroid plexus (ChP) cells, and this increase is regulated by the BMP4 pathway. These results illuminate the effects of Matrigel on human cerebral organoid development and the importance of delivery mode and amount on organoid phenotype and composition.
Collapse
Affiliation(s)
- R. Chris Estridge
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Jennifer E. O’Neill
- Genetics Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA;
| | - Albert J. Keung
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
8
|
Iskusnykh IY, Fattakhov N, Li Y, Bihannic L, Kirchner MK, Steshina EY, Northcott PA, Chizhikov VV. Lmx1a is a master regulator of the cortical hem. eLife 2023; 12:e84095. [PMID: 37725078 PMCID: PMC10508884 DOI: 10.7554/elife.84095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/05/2023] [Indexed: 09/21/2023] Open
Abstract
Development of the nervous system depends on signaling centers - specialized cellular populations that produce secreted molecules to regulate neurogenesis in the neighboring neuroepithelium. In some cases, signaling center cells also differentiate to produce key types of neurons. The formation of a signaling center involves its induction, the maintenance of expression of its secreted molecules, and cell differentiation and migration events. How these distinct processes are coordinated during signaling center development remains unknown. By performing studies in mice, we show that Lmx1a acts as a master regulator to orchestrate the formation and function of the cortical hem (CH), a critical signaling center that controls hippocampus development. Lmx1a co-regulates CH induction, its Wnt signaling, and the differentiation and migration of CH-derived Cajal-Retzius neurons. Combining RNAseq, genetic, and rescue experiments, we identified major downstream genes that mediate distinct Lmx1a-dependent processes. Our work revealed that signaling centers in the mammalian brain employ master regulatory genes and established a framework for analyzing signaling center development.
Collapse
Affiliation(s)
- Igor Y Iskusnykh
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Nikolai Fattakhov
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Yiran Li
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Laure Bihannic
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Matthew K Kirchner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Ekaterina Y Steshina
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| |
Collapse
|
9
|
Ortenlöf N, Vallius S, Karlsson H, Ekström C, Kristiansson A, Holmqvist B, Göransson O, Vaváková M, Rydén M, Carey G, Barton N, Ley D, Gram M. Characterization of choroid plexus in the preterm rabbit pup following subcutaneous administration of recombinant human IGF-1/IGFBP-3. Fluids Barriers CNS 2023; 20:59. [PMID: 37582792 PMCID: PMC10426218 DOI: 10.1186/s12987-023-00460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is essential for normal brain development and regulates essential processes of vascular maturation and stabilization. Importantly, preterm birth is associated with reduced serum levels of IGF-1 as compared to in utero levels. Using a preterm rabbit pup model, we investigated the uptake of systemic recombinant human (rh) IGF-1 in complex with its main binding protein IGF-binding protein 3 (BP-3) to the brain parenchyma via the choroid plexus. Five hours after subcutaneous administration, labeled rhIGF-1/rhIGFBP-3 displayed a widespread presence in the choroid plexus of the lateral and third ventricle, however, to a less degree in the fourth, as well as in the perivascular and subarachnoid space. We found a time-dependent uptake of IGF-1 in cerebrospinal fluid, decreasing with postnatal age, and a translocation of IGF-1 through the choroid plexus. The impact of systemic rhIGF-1/rhIGFBP-3 on IGF-1 receptor activation in the choroid plexus decreased with postnatal age, correlating with IGF-1 uptake in cerebrospinal fluid. In addition, choroid plexus gene expression was observed to increase with postnatal age. Moreover, using choroid plexus in vitro cell cultures, gene expression and protein synthesis were further investigated upon rhIGF-1/rhIGFBP-3 stimulation as compared to rhIGF-1 alone, and found not to be differently altered. Here, we characterize the uptake of systemic rhIGF-1/rhIGFBP-3 to the preterm brain, and show that the interaction between systemic rhIGF-1/rhIGFBP-3 and choroid plexus varies over time.
Collapse
Affiliation(s)
- Niklas Ortenlöf
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Suvi Vallius
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Helena Karlsson
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Claes Ekström
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Amanda Kristiansson
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | | | - Olga Göransson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Magdaléna Vaváková
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Martin Rydén
- Orthopaedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Norman Barton
- Oak Hill Bio, Scientific Advisory Board, Boston, MA, USA
| | - David Ley
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Magnus Gram
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
10
|
Arioka Y, Okumura H, Sakaguchi H, Ozaki N. Shedding light on latent pathogenesis and pathophysiology of mental disorders: The potential of iPS cell technology. Psychiatry Clin Neurosci 2023; 77:308-314. [PMID: 36929185 PMCID: PMC11488641 DOI: 10.1111/pcn.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Mental disorders are considered as one of the major healthcare issues worldwide owing to their significant impact on the quality of life of patients, causing serious social burdens. However, it is hard to examine the living brain-a source of psychiatric symptoms-at the cellular, subcellular, and molecular levels, which poses difficulty in determining the pathogenesis and pathophysiology of mental disorders. Recently, induced pluripotent stem cell (iPSC) technology has been used as a novel tool for research on mental disorders. We believe that the iPSC-based studies will address the limitations of other research approaches, such as human genome, postmortem brain study, brain imaging, and animal model analysis. Notably, studies using integrated iPSC technology with genetic information have provided significant novel findings to date. This review aimed to discuss the history, current trends, potential, and future of iPSC technology in the field of mental disorders. Although iPSC technology has several limitations, this technology can be used in combination with the other approaches to facilitate studies on mental disorders.
Collapse
Affiliation(s)
- Yuko Arioka
- Pathophysiology of Mental DisordersNagoya University Graduate School of MedicineNagoyaJapan
- Center for Advanced Medicine and Clinical ResearchNagoya University HospitalNagoyaJapan
| | - Hiroki Okumura
- Pathophysiology of Mental DisordersNagoya University Graduate School of MedicineNagoyaJapan
- Hospital PharmacyNagoya University HospitalNagoyaJapan
| | - Hideya Sakaguchi
- BDR‐Otsuka Pharmaceutical Collaboration Center, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Norio Ozaki
- Pathophysiology of Mental DisordersNagoya University Graduate School of MedicineNagoyaJapan
- Institute for Glyco‐core Research (iGCORE)Nagoya UniversityNagoyaJapan
| |
Collapse
|
11
|
Amin ND, Kelley KW, Hao J, Miura Y, Narazaki G, Li T, McQueen P, Kulkarni S, Pavlov S, Paşca SP. Generating human neural diversity with a multiplexed morphogen screen in organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.541819. [PMID: 37398073 PMCID: PMC10312596 DOI: 10.1101/2023.05.31.541819] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Morphogens choreograph the generation of remarkable cellular diversity in the developing nervous system. Differentiation of stem cells toward particular neural cell fates in vitro often relies upon combinatorial modulation of these signaling pathways. However, the lack of a systematic approach to understand morphogen-directed differentiation has precluded the generation of many neural cell populations, and knowledge of the general principles of regional specification remain in-complete. Here, we developed an arrayed screen of 14 morphogen modulators in human neural organoids cultured for over 70 days. Leveraging advances in multiplexed RNA sequencing technology and annotated single cell references of the human fetal brain we discovered that this screening approach generated considerable regional and cell type diversity across the neural axis. By deconvoluting morphogen-cell type relationships, we extracted design principles of brain region specification, including critical morphogen timing windows and combinatorics yielding an array of neurons with distinct neuro-transmitter identities. Tuning GABAergic neural subtype diversity unexpectedly led to the derivation of primate-specific interneurons. Taken together, this serves as a platform towards an in vitro morphogen atlas of human neural cell differentiation that will bring insights into human development, evolution, and disease.
Collapse
|
12
|
Muok L, Liu C, Chen X, Esmonde C, Arthur P, Wang X, Singh M, Driscoll T, Li Y. Inflammatory Response and Exosome Biogenesis of Choroid Plexus Organoids Derived from Human Pluripotent Stem Cells. Int J Mol Sci 2023; 24:7660. [PMID: 37108817 PMCID: PMC10146825 DOI: 10.3390/ijms24087660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The choroid plexus (ChP) is a complex structure in the human brain that is responsible for the secretion of cerebrospinal fluid (CSF) and forming the blood-CSF barrier (B-CSF-B). Human-induced pluripotent stem cells (hiPSCs) have shown promising results in the formation of brain organoids in vitro; however, very few studies to date have generated ChP organoids. In particular, no study has assessed the inflammatory response and the extracellular vesicle (EV) biogenesis of hiPSC-derived ChP organoids. In this study, the impacts of Wnt signaling on the inflammatory response and EV biogenesis of ChP organoids derived from hiPSCs was investigated. During days 10-15, bone morphogenetic protein 4 was added along with (+/-) CHIR99021 (CHIR, a small molecule GSK-3β inhibitor that acts as a Wnt agonist). At day 30, the ChP organoids were characterized by immunocytochemistry and flow cytometry for TTR (~72%) and CLIC6 (~20%) expression. Compared to the -CHIR group, the +CHIR group showed an upregulation of 6 out of 10 tested ChP genes, including CLIC6 (2-fold), PLEC (4-fold), PLTP (2-4-fold), DCN (~7-fold), DLK1 (2-4-fold), and AQP1 (1.4-fold), and a downregulation of TTR (0.1-fold), IGFBP7 (0.8-fold), MSX1 (0.4-fold), and LUM (0.2-0.4-fold). When exposed to amyloid beta 42 oligomers, the +CHIR group had a more sensitive response as evidenced by the upregulation of inflammation-related genes such as TNFα, IL-6, and MMP2/9 when compared to the -CHIR group. Developmentally, the EV biogenesis markers of ChP organoids showed an increase over time from day 19 to day 38. This study is significant in that it provides a model of the human B-CSF-B and ChP tissue for the purpose of drug screening and designing drug delivery systems to treat neurological disorders such as Alzheimer's disease and ischemic stroke.
Collapse
Affiliation(s)
- Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Colin Esmonde
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Xueju Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06268, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Tristan Driscoll
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
13
|
Verkhratsky A, Pivoriūnas A. Astroglia support, regulate and reinforce brain barriers. Neurobiol Dis 2023; 179:106054. [PMID: 36842485 DOI: 10.1016/j.nbd.2023.106054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023] Open
Abstract
Nervous system is segregated from the body by the complex system of barriers. The CNS is protected by (i) the blood-brain and blood-spinal cord barrier between the intracerebral and intraspinal blood vessels and the brain parenchyma; (ii) the arachnoid blood-cerebrospinal fluid barrier; (iii) the blood-cerebrospinal barrier of circumventricular organs made by tanycytes and (iv) the choroid plexus blood-CSF barrier formed by choroid ependymocytes. In the peripheral nervous system the nerve-blood barrier is secured by tight junctions between specialised glial cells known as perineural cells. In the CNS astroglia contribute to all barriers through the glia limitans, which represent the parenchymal portion of the barrier system. Astroglia through secretion of various paracrine factors regulate the permeability of endothelial vascular barrier; in pathology damage or asthenia of astrocytes may compromise brain barriers integrity.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania.
| |
Collapse
|
14
|
Karimy JK, Newville JC, Sadegh C, Morris JA, Monuki ES, Limbrick DD, McAllister Ii JP, Koschnitzky JE, Lehtinen MK, Jantzie LL. Outcomes of the 2019 hydrocephalus association workshop, "Driving common pathways: extending insights from posthemorrhagic hydrocephalus". Fluids Barriers CNS 2023; 20:4. [PMID: 36639792 PMCID: PMC9838022 DOI: 10.1186/s12987-023-00406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The Hydrocephalus Association (HA) workshop, Driving Common Pathways: Extending Insights from Posthemorrhagic Hydrocephalus, was held on November 4 and 5, 2019 at Washington University in St. Louis. The workshop brought together a diverse group of basic, translational, and clinical scientists conducting research on multiple hydrocephalus etiologies with select outside researchers. The main goals of the workshop were to explore areas of potential overlap between hydrocephalus etiologies and identify drug targets that could positively impact various forms of hydrocephalus. This report details the major themes of the workshop and the research presented on three cell types that are targets for new hydrocephalus interventions: choroid plexus epithelial cells, ventricular ependymal cells, and immune cells (macrophages and microglia).
Collapse
Affiliation(s)
- Jason K Karimy
- Department of Family Medicine, Mountain Area Health Education Center - Boone, North Carolina, 28607, USA
| | - Jessie C Newville
- Department of Pediatrics and Neurosurgery, Johns Hopkins Children's Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Cameron Sadegh
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, MA, Boston, 02114, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jill A Morris
- National Institute of Neurological Disorders and Stroke, Neuroscience Center, National Institutes of Health, 6001 Executive Blvd, NSC Rm 2112, Bethesda, MD, 20892, USA
| | - Edwin S Monuki
- Departments of Pathology & Laboratory Medicine and Developmental & Cell Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - David D Limbrick
- Departments of Neurosurgery and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - James P McAllister Ii
- Departments of Neurosurgery and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | | | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA.
| | - Lauren L Jantzie
- Department of Pediatrics and Neurosurgery, Johns Hopkins Children's Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
- Kennedy Krieger Institute, Baltimore, MD, 21287, USA.
| |
Collapse
|
15
|
Bitanihirwe BKY, Lizano P, Woo TUW. Deconstructing the functional neuroanatomy of the choroid plexus: an ontogenetic perspective for studying neurodevelopmental and neuropsychiatric disorders. Mol Psychiatry 2022; 27:3573-3582. [PMID: 35618887 PMCID: PMC9133821 DOI: 10.1038/s41380-022-01623-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
The choroid plexus (CP) is a delicate and highly vascularized structure in the brain comprised of a dense network of fenestrated capillary loops that help in the synthesis, secretion and circulation of cerebrospinal fluid (CSF). This unique neuroanatomical structure is comprised of arachnoid villi stemming from frond-like surface projections-that protrude into the lumen of the four cerebral ventricles-providing a key source of nutrients to the brain parenchyma in addition to serving as a 'sink' for central nervous system metabolic waste. In fact, the functions of the CP are often described as being analogous to those of the liver and kidney. Beyond forming a barrier/interface between the blood and CSF compartments, the CP has been identified as a modulator of leukocyte trafficking, inflammation, cognition, circadian rhythm and the gut brain-axis. In recent years, advances in molecular biology techniques and neuroimaging along with the use of sophisticated animal models have played an integral role in shaping our understanding of how the CP-CSF system changes in relation to the maturation of neural circuits during critical periods of brain development. In this article we provide an ontogenetic perspective of the CP and review the experimental evidence implicating this structure in the pathophysiology of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Byron K Y Bitanihirwe
- Humanitarian and Conflict Response Institute, University of Manchester, Manchester, UK.
| | - Paulo Lizano
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Translational Neuroscience Division, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tsung-Ung W Woo
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Program in Molecular Neuropathology, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
16
|
Jang A, Lehtinen MK. Experimental approaches for manipulating choroid plexus epithelial cells. Fluids Barriers CNS 2022; 19:36. [PMID: 35619113 PMCID: PMC9134666 DOI: 10.1186/s12987-022-00330-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/14/2022] [Indexed: 12/26/2022] Open
Abstract
Choroid plexus (ChP) epithelial cells are crucial for the function of the blood-cerebrospinal fluid barrier (BCSFB) in the developing and mature brain. The ChP is considered the primary source and regulator of CSF, secreting many important factors that nourish the brain. It also performs CSF clearance functions including removing Amyloid beta and potassium. As such, the ChP is a promising target for gene and drug therapy for neurodevelopmental and neurological disorders in the central nervous system (CNS). This review describes the current successful and emerging experimental approaches for targeting ChP epithelial cells. We highlight methodological strategies to specifically target these cells for gain or loss of function in vivo. We cover both genetic models and viral gene delivery systems. Additionally, several lines of reporters to access the ChP epithelia are reviewed. Finally, we discuss exciting new approaches, such as chemical activation and transplantation of engineered ChP epithelial cells. We elaborate on fundamental functions of the ChP in secretion and clearance and outline experimental approaches paving the way to clinical applications.
Collapse
Affiliation(s)
- Ahram Jang
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
Kompaníková P, Bryja V. Regulation of choroid plexus development and its functions. Cell Mol Life Sci 2022; 79:304. [PMID: 35589983 PMCID: PMC9119385 DOI: 10.1007/s00018-022-04314-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/28/2022] [Accepted: 04/17/2022] [Indexed: 11/03/2022]
Abstract
The choroid plexus (ChP) is an extensively vascularized tissue that protrudes into the brain ventricular system of all vertebrates. This highly specialized structure, consisting of the polarized epithelial sheet and underlying stroma, serves a spectrum of functions within the central nervous system (CNS), most notably the production of cerebrospinal fluid (CSF). The epithelial cells of the ChP have the competence to tightly modulate the biomolecule composition of CSF, which acts as a milieu functionally connecting ChP with other brain structures. This review aims to eloquently summarize the current knowledge about the development of ChP. We describe the mechanisms that control its early specification from roof plate followed by the formation of proliferative regions-cortical hem and rhombic lips-feeding later development of ChP. Next, we summarized the current knowledge on the maturation of ChP and mechanisms that control its morphological and cellular diversity. Furthermore, we attempted to review the currently available battery of molecular markers and mouse strains available for the research of ChP, and identified some technological shortcomings that must be overcome to accelerate the ChP research field. Overall, the central principle of this review is to highlight ChP as an intriguing and surprisingly poorly known structure that is vital for the development and function of the whole CNS. We believe that our summary will increase the interest in further studies of ChP that aim to describe the molecular and cellular principles guiding the development and function of this tissue.
Collapse
Affiliation(s)
- Petra Kompaníková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265, Brno, Czech Republic.
| |
Collapse
|
18
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
19
|
NGLY1 Deficiency, a Congenital Disorder of Deglycosylation: From Disease Gene Function to Pathophysiology. Cells 2022; 11:cells11071155. [PMID: 35406718 PMCID: PMC8997433 DOI: 10.3390/cells11071155] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
N-Glycanase 1 (NGLY1) is a cytosolic enzyme involved in removing N-linked glycans of misfolded N-glycoproteins and is considered to be a component of endoplasmic reticulum-associated degradation (ERAD). The 2012 identification of recessive NGLY1 mutations in a rare multisystem disorder has led to intense research efforts on the roles of NGLY1 in animal development and physiology, as well as the pathophysiology of NGLY1 deficiency. Here, we present a review of the NGLY1-deficient patient phenotypes, along with insights into the function of this gene from studies in rodent and invertebrate animal models, as well as cell culture and biochemical experiments. We will discuss critical processes affected by the loss of NGLY1, including proteasome bounce-back response, mitochondrial function and homeostasis, and bone morphogenetic protein (BMP) signaling. We will also cover the biologically relevant targets of NGLY1 and the genetic modifiers of NGLY1 deficiency phenotypes in animal models. Together, these discoveries and disease models have provided a number of avenues for preclinical testing of potential therapeutic approaches for this disease.
Collapse
|
20
|
Constitutive activation of canonical Wnt signaling disrupts choroid plexus epithelial fate. Nat Commun 2022; 13:633. [PMID: 35110543 PMCID: PMC8810795 DOI: 10.1038/s41467-021-27602-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
The choroid plexus secretes cerebrospinal fluid and is critical for the development and function of the brain. In the telencephalon, the choroid plexus epithelium arises from the Wnt- expressing cortical hem. Canonical Wnt signaling pathway molecules such as nuclear β-CATENIN are expressed in the mouse and human embryonic choroid plexus epithelium indicating that this pathway is active. Point mutations in human β-CATENIN are known to result in the constitutive activation of canonical Wnt signaling. In a mouse model that recapitulates this perturbation, we report a loss of choroid plexus epithelial identity and an apparent transformation of this tissue to a neuronal identity. Aspects of this phenomenon are recapitulated in human embryonic stem cell derived organoids. The choroid plexus is also disrupted when β-Catenin is conditionally inactivated. Together, our results indicate that canonical Wnt signaling is required in a precise and regulated manner for normal choroid plexus development in the mammalian brain.
Collapse
|
21
|
Breaking the barrier: In vitro models to study choroid plexus development. Curr Opin Cell Biol 2021; 73:41-49. [PMID: 34182208 DOI: 10.1016/j.ceb.2021.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022]
Abstract
The choroid plexus is central to normal brain function by secreting cerebrospinal fluid and dynamically regulating its composition throughout development and homoeostasis. Much of our current understanding of this region of the brain comes from studies in animal models. These fundamental studies have shed light on choroid plexus mechanisms of secretion, barrier function and homoeostatic regulation. However, how these specific mechanisms are regulated in the human choroid plexus is much less understood, due to ethical and technical limitations. A number of recent breakthroughs have enabled a new range of techniques and tools for functional characterisation of choroid plexus development and physiology. With the advance of new technologies such as in vivo imaging, single-cell transcriptomics and in vitro three-dimensional cultures we are now able to address a number of outstanding questions in choroid plexus biology. Here, we discuss some of these recent breakthroughs and we focus in particular on how in vitro models can be a powerful tool to study human cerebrospinal fluid secretion and barrier function.
Collapse
|
22
|
Moore SA, Iulianella A. Development of the mammalian cortical hem and its derivatives: the choroid plexus, Cajal-Retzius cells and hippocampus. Open Biol 2021; 11:210042. [PMID: 33947245 PMCID: PMC8097212 DOI: 10.1098/rsob.210042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
The dorsal medial region of the developing mammalian telencephalon plays a central role in the patterning of the adjacent brain regions. This review describes the development of this specialized region of the vertebrate brain, called the cortical hem, and the formation of the various cells and structures it gives rise to, including the choroid plexus, Cajal-Retzius cells and the hippocampus. We highlight the ontogenic processes that create these different forebrain derivatives from their shared embryonic origin and discuss the key signalling pathways and molecules that influence the patterning of the cortical hem. These include BMP, Wnt, FGF and Shh signalling pathways acting with Homeobox factors to carve the medial telencephalon into district progenitor regions, which in turn give rise to the choroid plexus, dentate gyrus and hippocampus. We then link the formation of the lateral ventricle choroid plexus with embryonic and postnatal neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Samantha A. Moore
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia, Canada, B3H4R2
| | - Angelo Iulianella
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia, Canada, B3H4R2
| |
Collapse
|
23
|
Nasu M, Esumi S, Hatakeyama J, Tamamaki N, Shimamura K. Two-Phase Lineage Specification of Telencephalon Progenitors Generated From Mouse Embryonic Stem Cells. Front Cell Dev Biol 2021; 9:632381. [PMID: 33937233 PMCID: PMC8086603 DOI: 10.3389/fcell.2021.632381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Proper brain development requires precisely controlled phases of stem cell proliferation, lineage specification, differentiation, and migration. Lineage specification depends partly on concentration gradients of chemical cues called morphogens. However, the rostral brain (telencephalon) expands prominently during embryonic development, dynamically altering local morphogen concentrations, and telencephalic subregional properties develop with a time lag. Here, we investigated how progenitor specification occurs under these spatiotemporally changing conditions using a three-dimensional in vitro differentiation model. We verified the critical contributions of three signaling factors for the lineage specification of subregional tissues in the telencephalon, ventralizing sonic hedgehog (Shh) and dorsalizing bone morphogenetic proteins (BMPs) and WNT proteins (WNTs). We observed that a short-lasting signal is sufficient to induce subregional progenitors and that the timing of signal exposure for efficient induction is specific to each lineage. Furthermore, early and late progenitors possess different Shh signal response capacities. This study reveals a novel developmental mechanism for telencephalon patterning that relies on the interplay of dose- and time-dependent signaling, including a time lag for specification and a temporal shift in cellular Shh sensitivity. This delayed fate choice through two-phase specification allows tissues with marked size expansion, such as the telencephalon, to compensate for the changing dynamics of morphogen signals.
Collapse
Affiliation(s)
- Makoto Nasu
- Department of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeyuki Esumi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Hatakeyama
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Nobuaki Tamamaki
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
24
|
Sawai T, Hayashi Y, Niikawa T, Shepherd J, Thomas E, Lee TL, Erler A, Watanabe M, Sakaguchi H. Mapping the Ethical Issues of Brain Organoid Research and Application. AJOB Neurosci 2021; 13:81-94. [PMID: 33769221 DOI: 10.1080/21507740.2021.1896603] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In 2008, researchers created human three-dimensional neural tissue - known as the pioneering work of "brain organoids." In recent years, some researchers have transplanted human brain organoids into animal brains for applicational purposes. With these experiments have come many ethical concerns. It is thus an urgent task to clarify what is ethically permissible and impermissible in brain organoid research. This paper seeks (1) to sort out the ethical issues related to brain organoid research and application and (2) to propose future directions for additional ethical consideration and policy debates in the field. Toward (1), this paper first outlines the current state of brain organoid research, and then briefly responds to previously raised related ethical concerns. Looking next at anticipated scientific developments in brain organoid research, we will discuss (i) ethical issues related to in vitro brain organoids, (ii) ethical issues raised when brain organoids form complexes or have relationships with other entities, and (iii) ethical issues of research ethics and governance. Finally, in pursuit of (2), we propose research policies that are mindful of the ethics of brain organoid research and application and also suggest the need for an international framework for research and application of brain organoids.
Collapse
Affiliation(s)
- Tsutomu Sawai
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), KUIAS Kyoto University.,Center for iPS Cell Research and Application, Kyoto University
| | | | | | | | | | - Tsung-Ling Lee
- Institute of Health and Biotechnology of Law, Taipei Medical University
| | | | - Momoko Watanabe
- University of California Irvine, School of Medicine.,Sue & Bill Gross Stem Cell Research Center
| | - Hideya Sakaguchi
- RIKEN Center for Biosystems Dynamics Research, BDR-Otsuka Pharmaceutical Collaboration Center
| |
Collapse
|
25
|
Abstract
Barrier properties of the choroid plexus (ChP) help protect the brain from the external world. In Science, Pellegrini et al. (2020) report the successful creation of human ChP organoids, which produce a cerebrospinal fluid-like secretion and recapitulate barrier functions, thereby inspiring new advances for targeted brain therapeutics.
Collapse
|
26
|
Jacob F, Schnoll JG, Song H, Ming GL. Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Curr Top Dev Biol 2021; 142:477-530. [PMID: 33706925 PMCID: PMC8363060 DOI: 10.1016/bs.ctdb.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human brain development is an intricate process that involves precisely timed coordination of cell proliferation, fate specification, neuronal differentiation, migration, and integration of diverse cell types. Understanding of these fundamental processes, however, has been largely constrained by limited access to fetal brain tissue and the inability to prospectively study neurodevelopment in humans at the molecular, cellular and system levels. Although non-human model organisms have provided important insights into mechanisms underlying brain development, these systems do not fully recapitulate many human-specific features that often relate to disease. To address these challenges, human brain organoids, self-assembled three-dimensional neural aggregates, have been engineered from human pluripotent stem cells to model the architecture and cellular diversity of the developing human brain. Recent advancements in neural induction and regional patterning using small molecules and growth factors have yielded protocols for generating brain organoids that recapitulate the structure and neuronal composition of distinct brain regions. Here, we first provide an overview of early mammalian brain development with an emphasis on molecular cues that guide region specification. We then focus on recent efforts in generating human brain organoids that model the development of specific brain regions and highlight endeavors to enhance the cellular complexity to better mimic the in vivo developing human brain. We also provide examples of how organoid models have enhanced our understanding of human neurological diseases and conclude by discussing limitations of brain organoids with our perspectives on future advancements to maximize their potential.
Collapse
Affiliation(s)
- Fadi Jacob
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jordan G Schnoll
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
27
|
Jacob F, Pather SR, Huang WK, Zhang F, Wong SZH, Zhou H, Cubitt B, Fan W, Chen CZ, Xu M, Pradhan M, Zhang DY, Zheng W, Bang AG, Song H, Carlos de la Torre J, Ming GL. Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism Predominates in Choroid Plexus Epithelium. Cell Stem Cell 2020; 27:937-950.e9. [PMID: 33010822 PMCID: PMC7505550 DOI: 10.1016/j.stem.2020.09.016] [Citation(s) in RCA: 289] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022]
Abstract
Neurological complications are common in patients with COVID-19. Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal pathogen of COVID-19, has been detected in some patient brains, its ability to infect brain cells and impact their function is not well understood. Here, we investigated the susceptibility of human induced pluripotent stem cell (hiPSC)-derived monolayer brain cells and region-specific brain organoids to SARS-CoV-2 infection. We found that neurons and astrocytes were sparsely infected, but choroid plexus epithelial cells underwent robust infection. We optimized a protocol to generate choroid plexus organoids from hiPSCs and showed that productive SARS-CoV-2 infection of these organoids is associated with increased cell death and transcriptional dysregulation indicative of an inflammatory response and cellular function deficits. Together, our findings provide evidence for selective SARS-CoV-2 neurotropism and support the use of hiPSC-derived brain organoids as a platform to investigate SARS-CoV-2 infection susceptibility of brain cells, mechanisms of virus-induced brain dysfunction, and treatment strategies.
Collapse
Affiliation(s)
- Fadi Jacob
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarshan R Pather
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei-Kai Huang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel Zheng Hao Wong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Beatrice Cubitt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenqiang Fan
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Manisha Pradhan
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Daniel Y Zhang
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Casoni F, Croci L, Vincenti F, Podini P, Riba M, Massimino L, Cremona O, Consalez GG. ZFP423 regulates early patterning and multiciliogenesis in the hindbrain choroid plexus. Development 2020; 147:dev.190173. [PMID: 33046507 DOI: 10.1242/dev.190173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/05/2020] [Indexed: 12/28/2022]
Abstract
The choroid plexus (ChP) is a secretory tissue that produces cerebrospinal fluid (CSF) secreted into the ventricular system. It is a monolayer of secretory, multiciliated epithelial cells derived from neuroepithelial progenitors and overlying a stroma of mesenchymal cells of mesodermal origin. Zfp423, which encodes a Kruppel-type zinc-finger transcription factor essential for cerebellar development and mutated in rare cases of cerebellar vermis hypoplasia/Joubert syndrome and other ciliopathies, is expressed in the hindbrain roof plate, from which the IV ventricle ChP arises, and, later, in mesenchymal cells, which give rise to the stroma and leptomeninges. Mouse Zfp423 mutants display a marked reduction of the hindbrain ChP (hChP), which: (1) fails to express established markers of its secretory function and genes implicated in its development and maintenance (Lmx1a and Otx2); (2) shows a perturbed expression of signaling pathways previously unexplored in hChP patterning (Wnt3); and (3) displays a lack of multiciliated epithelial cells and a profound dysregulation of master genes of multiciliogenesis (Gmnc). Our results propose that Zfp423 is a master gene and one of the earliest known determinants of hChP development.
Collapse
Affiliation(s)
- Filippo Casoni
- Università Vita-Salute San Raffaele, Milan, Italy .,Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Laura Croci
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | | | - Paola Podini
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Michela Riba
- Center for Omics Sciences, IRCCS, San Raffaele Hospital, Milan 20132, Italy
| | - Luca Massimino
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Ottavio Cremona
- Università Vita-Salute San Raffaele, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - G Giacomo Consalez
- Università Vita-Salute San Raffaele, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
29
|
Shipley FB, Dani N, Xu H, Deister C, Cui J, Head JP, Sadegh C, Fame RM, Shannon ML, Flores VI, Kishkovich T, Jang E, Klein EM, Goldey GJ, He K, Zhang Y, Holtzman MJ, Kirchhausen T, Wyart C, Moore CI, Andermann ML, Lehtinen MK. Tracking Calcium Dynamics and Immune Surveillance at the Choroid Plexus Blood-Cerebrospinal Fluid Interface. Neuron 2020; 108:623-639.e10. [PMID: 32961128 PMCID: PMC7847245 DOI: 10.1016/j.neuron.2020.08.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/18/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022]
Abstract
The choroid plexus (ChP) epithelium is a source of secreted signaling factors in cerebrospinal fluid (CSF) and a key barrier between blood and brain. Here, we develop imaging tools to interrogate these functions in adult lateral ventricle ChP in whole-mount explants and in awake mice. By imaging epithelial cells in intact ChP explants, we observed calcium activity and secretory events that increased in frequency following delivery of serotonergic agonists. Using chronic two-photon imaging in awake mice, we observed spontaneous subcellular calcium events as well as strong agonist-evoked calcium activation and cytoplasmic secretion into CSF. Three-dimensional imaging of motility and mobility of multiple types of ChP immune cells at baseline and following immune challenge or focal injury revealed a range of surveillance and defensive behaviors. Together, these tools should help illuminate the diverse functions of this understudied body-brain interface.
Collapse
Affiliation(s)
- Frederick B Shipley
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Neil Dani
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Huixin Xu
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Christopher Deister
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Jin Cui
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Joshua P Head
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Cameron Sadegh
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Morgan L Shannon
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Vanessa I Flores
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Thomas Kishkovich
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Emily Jang
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Eric M Klein
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Glenn J Goldey
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Kangmin He
- Department of Cell Biology and Department of Pediatrics, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Tomas Kirchhausen
- Department of Cell Biology and Department of Pediatrics, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Claire Wyart
- Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U1127, CNRS UMR 7225, 75013 Paris, France
| | - Christopher I Moore
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Mark L Andermann
- Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
30
|
Hart CG, Karimi-Abdolrezaee S. Bone morphogenetic proteins: New insights into their roles and mechanisms in CNS development, pathology and repair. Exp Neurol 2020; 334:113455. [PMID: 32877654 DOI: 10.1016/j.expneurol.2020.113455] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are a highly conserved and diverse family of proteins that play essential roles in various stages of development including the formation and patterning of the central nervous system (CNS). Bioavailability and function of BMPs are regulated by input from a plethora of transcription factors and signaling pathways. Intriguingly, recent literature has uncovered novel roles for BMPs in regulating homeostatic and pathological responses in the adult CNS. Basal levels of BMP ligands and receptors are widely expressed in the adult brain and spinal cord with differential expression patterns across CNS regions, cell types and subcellular locations. Recent evidence indicates that several BMP isoforms are transiently or chronically upregulated in the aged or pathological CNS. Genetic knockout and pharmacological studies have elucidated that BMPs regulate several aspects of CNS injury and repair including cell survival and differentiation, reactive astrogliosis and glial scar formation, axon regeneration, and myelin preservation and repair. Several BMP isoforms can be upregulated in the injured or diseased CNS simultaneously yet exert complementary or opposing effects on the endogenous cell responses after injury. Emerging studies also show that dysregulation of BMPs is associated with various CNS pathologies. Interestingly, modulation of BMPs can lead to beneficial or detrimental effects on CNS injury and repair mechanisms in a ligand, temporally or spatially specific manner, which reflect the complexity of BMP signaling. Given the significance of BMPs in neurodevelopment, a better understanding of their role in the context of injury may provide new therapeutic targets for the pathologic CNS. This review will provide a timely overview on the foundation and recent advancements in knowledge regarding the role and mechanisms of BMP signaling in the developing and adult CNS, and their implications in pathological responses and repair processes after injury or diseases.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
31
|
Fame RM, Lehtinen MK. Emergence and Developmental Roles of the Cerebrospinal Fluid System. Dev Cell 2020; 52:261-275. [PMID: 32049038 DOI: 10.1016/j.devcel.2020.01.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
We summarize recent work illuminating how cerebrospinal fluid (CSF) regulates brain function. More than a protective fluid cushion and sink for waste, the CSF is an integral CNS component with dynamic and diverse roles emerging in parallel with the developing CNS. This review examines the current understanding about early CSF and its maturation and roles during CNS development and discusses open questions in the field. We focus on developmental changes in the ventricular system and CSF sources (including neural progenitors and choroid plexus). We also discuss concepts related to the development of fluid dynamics including flow, perivascular transport, drainage, and barriers.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Yadav A, Seth B, Chaturvedi RK. Brain Organoids: Tiny Mirrors of Human Neurodevelopment and Neurological Disorders. Neuroscientist 2020; 27:388-426. [PMID: 32723210 DOI: 10.1177/1073858420943192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Unravelling the complexity of the human brain is a challenging task. Nowadays, modern neurobiologists have developed 3D model systems called "brain organoids" to overcome the technical challenges in understanding human brain development and the limitations of animal models to study neurological diseases. Certainly like most model systems in neuroscience, brain organoids too have limitations, as these minuscule brains lack the complex neuronal circuitry required to begin the operational tasks of human brain. However, researchers are hopeful that future endeavors with these 3D brain tissues could provide mechanistic insights into the generation of circuit complexity as well as reproducible creation of different regions of the human brain. Herein, we have presented the contemporary state of brain organoids with special emphasis on their mode of generation and their utility in modelling neurological disorders, drug discovery, and clinical trials.
Collapse
Affiliation(s)
- Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
33
|
Jacob F, Pather SR, Huang WK, Wong SZH, Zhou H, Zhang F, Cubitt B, Chen CZ, Xu M, Pradhan M, Zhang DY, Zheng W, Bang AG, Song H, de A Torre JC, Ming GL. Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.28.225151. [PMID: 32766575 PMCID: PMC7402032 DOI: 10.1101/2020.07.28.225151] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Neurological complications are common in patients with COVID-19. While SARS-CoV-2, the causal pathogen of COVID-19, has been detected in some patient brains, its ability to infect brain cells and impact their function are not well understood, and experimental models using human brain cells are urgently needed. Here we investigated the susceptibility of human induced pluripotent stem cell (hiPSC)-derived monolayer brain cells and region-specific brain organoids to SARS-CoV-2 infection. We found modest numbers of infected neurons and astrocytes, but greater infection of choroid plexus epithelial cells. We optimized a protocol to generate choroid plexus organoids from hiPSCs, which revealed productive SARS-CoV-2 infection that leads to increased cell death and transcriptional dysregulation indicative of an inflammatory response and cellular function deficits. Together, our results provide evidence for SARS-CoV-2 neurotropism and support use of hiPSC-derived brain organoids as a platform to investigate the cellular susceptibility, disease mechanisms, and treatment strategies for SARS-CoV-2 infection.
Collapse
|
34
|
Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster MA. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science 2020; 369:eaaz5626. [PMID: 32527923 PMCID: PMC7116154 DOI: 10.1126/science.aaz5626] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
Cerebrospinal fluid (CSF) is a vital liquid, providing nutrients and signaling molecules and clearing out toxic by-products from the brain. The CSF is produced by the choroid plexus (ChP), a protective epithelial barrier that also prevents free entry of toxic molecules or drugs from the blood. Here, we establish human ChP organoids with a selective barrier and CSF-like fluid secretion in self-contained compartments. We show that this in vitro barrier exhibits the same selectivity to small molecules as the ChP in vivo and that ChP-CSF organoids can predict central nervous system (CNS) permeability of new compounds. The transcriptomic and proteomic signatures of ChP-CSF organoids reveal a high degree of similarity to the ChP in vivo. Finally, the intersection of single-cell transcriptomics and proteomic analysis uncovers key human CSF components produced by previously unidentified specialized epithelial subtypes.
Collapse
Affiliation(s)
- Laura Pellegrini
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Claudia Bonfio
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jessica Chadwick
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Farida Begum
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
35
|
Langford MB, O'Leary CJ, Veeraval L, White A, Lanoue V, Cooper HM. WNT5a Regulates Epithelial Morphogenesis in the Developing Choroid Plexus. Cereb Cortex 2020; 30:3617-3631. [PMID: 31912879 DOI: 10.1093/cercor/bhz330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022] Open
Abstract
The choroid plexus (CP) is the predominant supplier of cerebral spinal fluid (CSF) and the site of the blood-CSF barrier and is thus essential for brain development and central nervous system homeostasis. Despite these crucial roles, our understanding of the molecular and cellular processes giving rise to the CPs within the ventricles of the mammalian brain is very rudimentary. Here, we identify WNT5a as an important regulator of CP development, where it acts as a pivotal factor driving CP epithelial morphogenesis in all ventricles. We show that WNT5a is essential for the establishment of a cohesive epithelium in the developing CP. We find that in its absence all CPs are substantially reduced in size and complexity and fail to expand into the ventricles. Severe defects were observed in the epithelial cytoarchitecture of all Wnt5a-/- CPs, exemplified by loss of apicobasally polarized morphology and detachment from the ventricular surface and/or basement membrane. We also present evidence that the WNT5a receptor, RYK, and the RHOA kinase, ROCK, are required for normal CP epithelial morphogenesis. Our study, therefore, reveals important insights into the molecular and cellular mechanisms governing CP development.
Collapse
Affiliation(s)
- Michael B Langford
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia and
| | - Conor J O'Leary
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia and
| | - Lenin Veeraval
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia and
| | - Amanda White
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia and
| | - Vanessa Lanoue
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia and.,Victor Chang Cardiac Research Institute, Darlinghurst 2010, Australia
| | - Helen M Cooper
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia and
| |
Collapse
|
36
|
Song J, Lee SS, Lim S, Yeo S. Mechanism of the neuroprotective effect of injecting brain cells on ST36 in an animal model of Parkinson's disease. Neurosci Lett 2019; 717:134698. [PMID: 31857129 DOI: 10.1016/j.neulet.2019.134698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022]
Abstract
In Parkinson's disease, the dopaminergic neurons of the brain are destroyed. Dopamine is an important neurotransmitter that acts on the basal ganglia of the brain, allowing precise body movement. In the early stages of Parkinson's disease, levodopa appears to alleviate clinical symptoms; however, during long-term use, motor complications occur. There is no clear treatment or remedy for Parkinson's disease; therefore, the development of novel therapies is urgently required. In the present study, mouse choroid plexus cells were transplanted into ST36 in a mouse model of Parkinson's disease to determine whether the motor function could be restored. Pole tests showed changes in motor dysfunction in the mice. The athletic ability of the mice was significantly lowered after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injection and significantly increased after choroidal neuron cell treatment. Injection of di-alkyl indocarbocyanine (DiI) (as a trace substance) confirmed that the choroid plexus cells injected into acupuncture point ST36 were transferred to the brain. In the Parkinson's disease model, choroid plexus cell injection into ST36 inhibited the decrease in tyrosine hydroxylase (TH) expression and decreased the activation of inflammatory factors mitochondrial cytochrome C oxidase (COX2) and inducible NO synthase (iNOS). Apoptosis factors Cytochrome C and BCL2 associated X, apoptosis regulator (BAX) levels were decreased and B-Cell CLL/Lymphoma 2 (BCL2) levels were increased. Taken together, these results suggest that the injection of choroid plexus cell at ST36 had neuroprotective effects in the Parkinson's disease mouse model. The results suggest new possibilities for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Jongbeom Song
- College of Korean Medicine, Sang Ji University, Wonju 26339, Republic of Korea
| | - Sang-Suk Lee
- Department of Oriental Biomedical Engineering, College of Health Sciences, Sang Ji University, Wonju 26339, Republic of Korea
| | - Sabina Lim
- Department of Meridian & Acupoint, College of Korean Medicine, WHO Collaborating Center for Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Sujung Yeo
- College of Korean Medicine, Sang Ji University, Wonju 26339, Republic of Korea.
| |
Collapse
|
37
|
Early dorsomedial tissue interactions regulate gyrification of distal neocortex. Nat Commun 2019; 10:5192. [PMID: 31729356 PMCID: PMC6858446 DOI: 10.1038/s41467-019-12913-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
The extent of neocortical gyrification is an important determinant of a species’ cognitive abilities, yet the mechanisms regulating cortical gyrification are poorly understood. We uncover long-range regulation of this process originating at the telencephalic dorsal midline, where levels of secreted Bmps are maintained by factors in both the neuroepithelium and the overlying mesenchyme. In the mouse, the combined loss of transcription factors Lmx1a and Lmx1b, selectively expressed in the midline neuroepithelium and the mesenchyme respectively, causes dorsal midline Bmp signaling to drop at early neural tube stages. This alters the spatial and temporal Wnt signaling profile of the dorsal midline cortical hem, which in turn causes gyrification of the distal neocortex. Our study uncovers early mesenchymal-neuroepithelial interactions that have long-range effects on neocortical gyrification and shows that lissencephaly in mice is actively maintained via redundant genetic regulation of dorsal midline development and signaling. The contribution of long-range signaling to cortical gyrification remains poorly understood. In this study, authors demonstrate that the combined genetic loss of transcription factors Lmx1a and Lmx1b, expressed in the telencephalic dorsal midline neuroepithelium and head mesenchyme, respectively, induces gyrification in the mouse neocortex
Collapse
|
38
|
Seto Y, Eiraku M. Human brain development and its in vitro recapitulation. Neurosci Res 2018; 138:33-42. [PMID: 30326251 DOI: 10.1016/j.neures.2018.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 06/29/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022]
Abstract
Humans have a large and gyrencephalic brain. The higher intellectual ability of humans is dependent on the proper development of the brain. Brain malformation is often associated with cognitive dysfunction. It is thus important to know how our brain grows during development. Several animal species have been used as models to understand the mechanisms of brain development, and have provided us with basic information in this regard. It has been revealed that mammalian brain development basically proceeds through a similar process by common mechanisms, including neural stem cell proliferation and neurogenesis. However, humans also display species-specific features in these processes. These differences seem to be important for building the proper human brain structure. Analysis of these human-specific features requires human brain samples, which are difficult to obtain due to both ethical and practical reasons. Nevertheless, brain organoids derived from human pluripotent stem cells can be used as models to study human brain development and pathology because such organoids can partly recapitulate human fetal developmental processes. In this review, we will review some human-specific features during brain development and discuss brain organoid technology as a model system. We will especially focusing on neocortical development.
Collapse
Affiliation(s)
- Yusuke Seto
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Japan.
| |
Collapse
|
39
|
Johnson BA, Coutts M, Vo HM, Hao X, Fatima N, Rivera MJ, Sims RJ, Neel MJ, Kang YJ, Monuki ES. Accurate, strong, and stable reporting of choroid plexus epithelial cells in transgenic mice using a human transthyretin BAC. Fluids Barriers CNS 2018; 15:22. [PMID: 30111340 PMCID: PMC6094443 DOI: 10.1186/s12987-018-0107-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Choroid plexus epithelial cells express high levels of transthyretin, produce cerebrospinal fluid and many of its proteins, and make up the blood-cerebrospinal fluid barrier. Choroid plexus epithelial cells are vital to brain health and may be involved in neurological diseases. Transgenic mice containing fluorescent and luminescent reporters of these cells would facilitate their study in health and disease, but prior transgenic reporters lost expression over the early postnatal period. METHODS Human bacterial artificial chromosomes in which the transthyretin coding sequence was replaced with DNA for tdTomato or luciferase 2 were used in pronuclear injections to produce transgenic mice. These mice were characterized by visualizing red fluorescence, immunostaining, real-time reverse transcription polymerase chain reaction, and luciferase enzyme assay. RESULTS Reporters were faithfully expressed in cells that express transthyretin constitutively, including choroid plexus epithelial cells, retinal pigment epithelium, pancreatic islets, and liver. Expression of tdTomato in choroid plexus began at the appropriate embryonic age, being detectable by E11.5. Relative levels of tdTomato transcript in the liver and choroid plexus paralleled relative levels of transcripts for transthyretin. Expression remained robust over the first postnatal year, although choroid plexus transcripts of tdTomato declined slightly with age whereas transthyretin remained constant. TdTomato expression patterns were consistent across three founder lines, displayed no sex differences, and were stable across several generations. Two of the tdTomato lines were bred to homozygosity, and homozygous mice are healthy and fertile. The usefulness of tdTomato reporters in visualizing and analyzing live Transwell cultures was demonstrated. Luciferase activity was very high in homogenates of choroid plexus and continued to be expressed through adulthood. Luciferase also was detectable in eye and pancreas. CONCLUSIONS Transgenic mice bearing fluorescent and luminescent reporters of transthyretin should prove useful for tracking transplanted choroid plexus epithelial cells, for purifying the cells, and for reporting their derivation from stem cells. They also should prove useful for studying transthyretin synthesis by other cell types, as transthyretin has been implicated in many functions and conditions, including clearance of β-amyloid peptides associated with Alzheimer's disease, heat shock in neurons, processing of neuropeptides, nerve regeneration, astrocyte metabolism, and transthyretin amyloidosis.
Collapse
Affiliation(s)
- Brett A Johnson
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Margaret Coutts
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Hillary M Vo
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Xinya Hao
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Nida Fatima
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Maria J Rivera
- Department of Biological Sciences, California State University, Long Beach, USA
| | - Robert J Sims
- Department of Biological Sciences, California State University, Long Beach, USA
| | - Michael J Neel
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Young-Jin Kang
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA.,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA
| | - Edwin S Monuki
- Department of Pathology and Laboratory Medicine, UC Irvine, Irvine, USA. .,Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, USA. .,Department of Developmental and Cell Biology, UC Irvine, Irvine, USA.
| |
Collapse
|
40
|
Strazielle N, Ghersi-Egea JF. Potential Pathways for CNS Drug Delivery Across the Blood-Cerebrospinal Fluid Barrier. Curr Pharm Des 2017; 22:5463-5476. [PMID: 27464721 PMCID: PMC5421134 DOI: 10.2174/1381612822666160726112115] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/27/2016] [Indexed: 12/24/2022]
Abstract
The blood-brain interfaces restrict the cerebral bioavailability of pharmacological compounds. Various drug delivery strategies have been developed to improve drug penetration into the brain. Most strategies target the microvascular endothelium forming the blood-brain barrier proper. Targeting the blood-cerebrospinal fluid (CSF) barrier formed by the epithelium of the choroid plexuses in addition to the blood-brain barrier may offer added-value for the treatment of central nervous system diseases. For instance, targeting the CSF spaces, adjacent tissue, or the choroid plexuses themselves is of interest for the treatment of neuroinflammatory and infectious diseases, cerebral amyloid angiopathy, selected brain tumors, hydrocephalus or neurohumoral dysregulation. Selected CSF-borne materials seem to reach deep cerebral structures by mechanisms that need to be understood in the context of chronic CSF delivery. Drug delivery through both barriers can reduce CSF sink action towards parenchymal drugs. Finally, targeting the choroid plexus-CSF system can be especially relevant in the context of neonatal and pediatric diseases of the central nervous system. Transcytosis appears the most promising mechanism to target in order to improve drug delivery through brain barriers. The choroid plexus epithelium displays strong vesicular trafficking and secretory activities that deserve to be explored in the context of cerebral drug delivery. Folate transport and exosome release into the CSF, plasma protein transport, and various receptor-mediated endocytosis pathways may prove useful mechanisms to exploit for efficient drug delivery into the CSF. This calls for a clear evaluation of transcytosis mechanisms at the blood-CSF barrier, and a thorough evaluation of CSF drug delivery rates.
Collapse
Affiliation(s)
- Nathalie Strazielle
- Blood-Brain Interfaces Exploratory Platform BIP, Lyon Neurosciences Research Center, Faculty of medicine Laennec, Rue G Paradin, 69008, Lyon, France.
| | | |
Collapse
|
41
|
Kadoshima T, Sakaguchi H, Eiraku M. Generation of Various Telencephalic Regions from Human Embryonic Stem Cells in Three-Dimensional Culture. Methods Mol Biol 2017; 1597:1-16. [PMID: 28361306 DOI: 10.1007/978-1-4939-6949-4_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the developing embryo, telencephalon arises from the rostral portion of the neural tube. The telencephalon further subdivides into distinct brain regions along the dorsal-ventral (DV) axis by exogenous patterning signals. Here, we describe a protocol for in vitro generation of various telencephalic regions from human embryonic stem cells (ESCs). Dissociated human ESCs are reaggregated in a low-cell-adhesion 96-well plate and cultured as floating aggregates. Telencephalic neural progenitors are efficiently generated when ESC aggregates are cultured in serum-free medium containing TGFβ inhibitor and Wnt inhibitor. In long-term culture, the telencephalic neural progenitors acquire cortical identities and self-organize a stratified cortical structure as seen in human fetal cortex. By treatment with Shh signal, the telencephalic progenitors acquire ventral (subpallial) identities and generate lateral ganglionic eminence (LGE) and medial ganglionic eminence (MGE). In contrast, by treatment with Wnt and BMP signals, their regional identities shift to more dorsal side that generates choroid plexus and medial palllium (hippocampal primordium).
Collapse
Affiliation(s)
- Taisuke Kadoshima
- Cell Asymmetry team, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
- Asubio Pharma Co., Ltd., Kobe, Hyogo, Japan
| | - Hideya Sakaguchi
- In Vitro Histogenesis team, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Mototsugu Eiraku
- In Vitro Histogenesis team, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| |
Collapse
|
42
|
Watanabe M, Fung ES, Chan FB, Wong JS, Coutts M, Monuki ES. BMP4 acts as a dorsal telencephalic morphogen in a mouse embryonic stem cell culture system. Biol Open 2016; 5:1834-1843. [PMID: 27815243 PMCID: PMC5200901 DOI: 10.1242/bio.012021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/28/2016] [Indexed: 12/25/2022] Open
Abstract
The concept of a morphogen - a molecule that specifies two or more cell fates in a concentration-dependent manner - is paradigmatic in developmental biology. Much remains unknown, however, about the existence of morphogens in the developing vertebrate central nervous system (CNS), including the mouse dorsal telencephalic midline (DTM). Bone morphogenetic proteins (BMPs) are candidate DTM morphogens, and our previous work demonstrated BMP4 sufficiency to induce one DTM cell fate - that of choroid plexus epithelial cells (CPECs) - in a mouse embryonic stem cell (mESC) culture system. Here we used BMP4 in a modified mESC culture system to derive a second DTM fate, the cortical hem (CH). CH and CPEC markers were induced by BMP4 in a concentration-dependent manner consistent with in vivo development. BMP4 concentrations that led to CH fate also promoted markers for Cajal-Retzius neurons, which are known CH derivatives. Interestingly, single BMP4 administrations also sufficed for appropriate temporal regulation of CH, CPEC, and cortical genes, with initially broad and overlapping dose-response profiles that sharpened over time. BMP4 concentrations that yielded CH- or CPEC-enriched populations also had different steady-state levels of phospho-SMAD1/5/8, suggesting that differences in BMP signaling intensity underlie DTM fate choice. Surprisingly, inactivation of the cortical selector gene Lhx2 did not affect DTM expression levels, dose-response profiles, or timing in response to BMP4, although neural progenitor genes were downregulated. These data indicate that BMP4 can act as a classic morphogen to orchestrate both spatial and temporal aspects of DTM fate acquisition, and can do so in the absence of Lhx2.
Collapse
Affiliation(s)
- Momoko Watanabe
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA 92697-2300, USA
| | - Ernest S Fung
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697-4800, USA
| | - Felicia B Chan
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697-4800, USA
| | - Jessica S Wong
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697-4800, USA
| | - Margaret Coutts
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697-4800, USA
| | - Edwin S Monuki
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA 92697-2300, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697-4800, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697-1705, USA
| |
Collapse
|
43
|
Regulation of neural stem cells by choroid plexus cells population. Neurosci Lett 2016; 626:35-41. [DOI: 10.1016/j.neulet.2016.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/03/2023]
|
44
|
Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun 2015; 6:8896. [PMID: 26573335 PMCID: PMC4660208 DOI: 10.1038/ncomms9896] [Citation(s) in RCA: 346] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 10/14/2015] [Indexed: 12/20/2022] Open
Abstract
The developing dorsomedial telencephalon includes the medial pallium, which goes on to form the hippocampus. Generating a reliable source of human hippocampal tissue is an important step for cell-based research into hippocampus-related diseases. Here we show the generation of functional hippocampal granule- and pyramidal-like neurons from self-organizing dorsomedial telencephalic tissue using human embryonic stem cells (hESCs). First, we develop a hESC culture method that utilizes bone morphogenetic protein (BMP) and Wnt signalling to induce choroid plexus, the most dorsomedial portion of the telencephalon. Then, we find that titrating BMP and Wnt exposure allowed the self-organization of medial pallium tissues. Following long-term dissociation culture, these dorsomedial telencephalic tissues give rise to Zbtb20+/Prox1+ granule neurons and Zbtb20+/KA1+ pyramidal neurons, both of which were electrically functional with network formation. Thus, we have developed an in vitro model that recapitulates human hippocampus development, allowing the generation of functional hippocampal granule- and pyramidal-like neurons. In vitro differentiation of human pluripotent stem cells (hPSCs) has enabled the generation of neuroectodermal tissues. Here, Sakaguchi et al. use a modified neocortical induction method to generate functional hippocampal granule and pyramidal-like neurons, as well as dorsomedial telencephalic tissues from hPSCs.
Collapse
|
45
|
Development and functions of the choroid plexus-cerebrospinal fluid system. Nat Rev Neurosci 2015; 16:445-57. [PMID: 26174708 DOI: 10.1038/nrn3921] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The choroid plexus (ChP) is the principal source of cerebrospinal fluid (CSF), which has accepted roles as a fluid cushion and a sink for nervous system waste in vertebrates. Various animal models have provided insights into how the ChP-CSF system develops and matures. In addition, recent studies have uncovered new, active roles for this dynamic system in the regulation of neural stem cells, critical periods and the overall health of the nervous system. Together, these findings have brought about a paradigm shift in our understanding of brain development and health, and have stimulated new initiatives for the treatment of neurological disease.
Collapse
|
46
|
Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional CSF production. J Neurosci 2015; 35:4903-16. [PMID: 25810521 DOI: 10.1523/jneurosci.3081-14.2015] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A sheet of choroid plexus epithelial cells extends into each cerebral ventricle and secretes signaling factors into the CSF. To evaluate whether differences in the CSF proteome across ventricles arise, in part, from regional differences in choroid plexus gene expression, we defined the transcriptome of lateral ventricle (telencephalic) versus fourth ventricle (hindbrain) choroid plexus. We find that positional identities of mouse, macaque, and human choroid plexi derive from gene expression domains that parallel their axial tissues of origin. We then show that molecular heterogeneity between telencephalic and hindbrain choroid plexi contributes to region-specific, age-dependent protein secretion in vitro. Transcriptome analysis of FACS-purified choroid plexus epithelial cells also predicts their cell-type-specific secretome. Spatial domains with distinct protein expression profiles were observed within each choroid plexus. We propose that regional differences between choroid plexi contribute to dynamic signaling gradients across the mammalian cerebroventricular system.
Collapse
|
47
|
Demeestere D, Libert C, Vandenbroucke RE. Clinical implications of leukocyte infiltration at the choroid plexus in (neuro)inflammatory disorders. Drug Discov Today 2015; 20:928-41. [PMID: 25979470 DOI: 10.1016/j.drudis.2015.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/29/2022]
Abstract
The choroid plexus (CP) is a highly vascularized organ located in the brain ventricles and contains a single epithelial cell layer forming the blood-cerebrospinal fluid barrier (BCSFB). This barrier is crucial for immune surveillance in health and is an underestimated gate for entry of immune cells during numerous inflammatory disorders. Several of these disorders are accompanied by disturbance of the BCSFB and increased leukocyte infiltration, which affects neuroinflammation. Understanding the mechanism of immune cell entry at the CP might lead to identification of new therapeutic targets. Here, we focus on current knowledge of leukocyte infiltration at the CP in inflammatory conditions and its therapeutic implications.
Collapse
Affiliation(s)
- Delphine Demeestere
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
48
|
Barkho BZ, Monuki ES. Proliferation of cultured mouse choroid plexus epithelial cells. PLoS One 2015; 10:e0121738. [PMID: 25815836 PMCID: PMC4376882 DOI: 10.1371/journal.pone.0121738] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/14/2015] [Indexed: 11/18/2022] Open
Abstract
The choroid plexus (ChP) epithelium is a multifunctional tissue found in the ventricles of the brain. The major function of the ChP epithelium is to produce cerebrospinal fluid (CSF) that bathes and nourishes the central nervous system (CNS). In addition to the CSF, ChP epithelial cells (CPECs) produce and secrete numerous neurotrophic factors that support brain homeostasis, such as adult hippocampal neurogenesis. Accordingly, damage and dysfunction to CPECs are thought to accelerate and intensify multiple disease phenotypes, and CPEC regeneration would represent a potential therapeutic approach for these diseases. However, previous reports suggest that CPECs rarely divide, although this has not been extensively studied in response to extrinsic factors. Utilizing a cell-cycle reporter mouse line and live cell imaging, we identified scratch injury and the growth factors insulin-like growth factor 1 (IGF-1) and epidermal growth factor (EGF) as extrinsic cues that promote increased CPEC expansion in vitro. Furthermore, we found that IGF-1 and EGF treatment enhances scratch injury-induced proliferation. Finally, we established whole tissue explant cultures and observed that IGF-1 and EGF promote CPEC division within the intact ChP epithelium. We conclude that although CPECs normally have a slow turnover rate, they expand in response to external stimuli such as injury and/or growth factors, which provides a potential avenue for enhancing ChP function after brain injury or neurodegeneration.
Collapse
Affiliation(s)
- Basam Z. Barkho
- Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, Irvine, CA 92697, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, 92697, United States of America
| | - Edwin S. Monuki
- Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, Irvine, CA 92697, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, 92697, United States of America
- Department of Developmental and Cell Biology, University of California Irvine School of Biological Sciences, Irvine, CA 92697, United States of America
- * E-mail:
| |
Collapse
|
49
|
Schwerk C, Tenenbaum T, Kim KS, Schroten H. The choroid plexus-a multi-role player during infectious diseases of the CNS. Front Cell Neurosci 2015; 9:80. [PMID: 25814932 PMCID: PMC4357259 DOI: 10.3389/fncel.2015.00080] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/23/2015] [Indexed: 12/22/2022] Open
Abstract
The choroid plexus (CP) is the source of cerebrospinal fluid (CSF) production and location of the blood-CSF barrier (BCSFB), which is constituted by the epithelial cells of the CP. Several infectious pathogens including viruses, bacteria, fungi and parasites cross the BCSFB to enter the central nervous system (CNS), ultimately leading to inflammatory infectious diseases like meningitis and meningoencephalitis. The CP responds to this challenge by the production of chemokines and cytokines as well as alterations of the barrier function of the BCSFB. During the course of CNS infectious disease host immune cells enter the CNS, eventually contributing to the cellular damage caused by the disease. Additional complications, which are in certain cases caused by choroid plexitis, can arise due to the response of the CP to the pathogens. In this review we will give an overview on the multiple functions of the CP during brain infections highlighting the CP as a multi-role player during infectious diseases of the CNS. In this context the importance of tools for investigation of these CP functions and a possible suitability of the CP as therapeutic target will be discussed.
Collapse
Affiliation(s)
- Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | - Tobias Tenenbaum
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| |
Collapse
|
50
|
Sternberg H, Jiang J, Sim P, Kidd J, Janus J, Rinon A, Edgar R, Shitrit A, Larocca D, Chapman KB, Binette F, West MD. Human embryonic stem cell-derived neural crest cells capable of expressing markers of osteochondral or meningeal-choroid plexus differentiation. Regen Med 2014; 9:53-66. [PMID: 24351006 DOI: 10.2217/rme.13.86] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIMS The transcriptome and fate potential of three diverse human embryonic stem cell-derived clonal embryonic progenitor cell lines with markers of cephalic neural crest are compared when differentiated in the presence of combinations of TGFβ3, BMP4, SCF and HyStem-C matrices. MATERIALS & METHODS The cell lines E69 and T42 were compared with MEL2, using gene expression microarrays, immunocytochemistry and ELISA. RESULTS In the undifferentiated progenitor state, each line displayed unique markers of cranial neural crest including TFAP2A and CD24; however, none expressed distal HOX genes including HOXA2 or HOXB2, or the mesenchymal stem cell marker CD74. The lines also showed diverse responses when differentiated in the presence of exogenous BMP4, BMP4 and TGFβ3, SCF, and SCF and TGFβ3. The clones E69 and T42 showed a profound capacity for expression of endochondral ossification markers when differentiated in the presence of BMP4 and TGFβ3, choroid plexus markers in the presence of BMP4 alone, and leptomeningeal markers when differentiated in SCF without TGFβ3. CONCLUSION The clones E69 and T42 may represent a scalable source of primitive cranial neural crest cells useful in the study of cranial embryology, and potentially cell-based therapy.
Collapse
Affiliation(s)
- Hal Sternberg
- BioTime, Inc., 1301 Harbor Bay, Parkway, Alameda, CA 94502, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|