1
|
Chen LJ, Tseng GF. The effects of estrogen depletion in female rats: differential influences on somato-motor and sensory cortices. Biogerontology 2025; 26:41. [PMID: 39832048 DOI: 10.1007/s10522-025-10186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Aging women experience a significant decline of ovarian hormones, particularly estrogen, following menopause, and become susceptible to cognitive and psychomotor deficits. Although the effects of estrogen depletion had been documented in the prefrontal and somatosensory cortices, its impact on somatomotor cortex, a region crucial for motor and cognitive functions, remains unclear. To explore this, we ovariectomized young adult female rats and fed subsequently with phytoestrogen-free diet and studied the effects of estrogen depletion on the somato-sensory and motor cortices. Low serum estrogen was confirmed prior to biochemical and morphological analyses. Results revealed that estrogen depletion differentially affected the two cortical areas: all three estrogen receptors were downregulated in the somatosensory cortex, whereas in the somatomotor cortex, G-protein-coupled estrogen receptor 30 was upregulated, estrogen receptor α decreased, and estrogen receptor β remained unaffected. Intracellular dye injections revealed decreased dendritic spines on layer III and V pyramidal neurons of the somato-sensory cortex but increased in those of the motor cortex. These were accompanied by decrease and increase of excitatory postsynaptic density protein 95 respectively. Since dendritic spines receive excitatory inputs, these findings suggest that estrogen depletion changes the excitatory connectivity of the somato-sensory and motor cortices in opposite directions. Notably, estradiol replenishment reversed the dendritic spine increase in the somatomotor cortex, confirming the estrogen dependency of this effect. The differential influence of estrogen depletion on these two cortices could have contributed to the cognitive and psychomotor abnormalities in postmenopausal females.
Collapse
Affiliation(s)
- Li-Jin Chen
- Department of Anatomy, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhongyang Rd., Hualien, 970374, Taiwan
| | - Guo-Fang Tseng
- Department of Anatomy, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhongyang Rd., Hualien, 970374, Taiwan.
| |
Collapse
|
2
|
González-Flores O, Garcia-Juárez M, Tecamachaltzi-Silvarán MB, Lucio RA, Ordoñez RD, Pfaus JG. Cellular and molecular mechanisms of action of ovarian steroid hormones. I: Regulation of central nervous system function. Neurosci Biobehav Rev 2024; 167:105937. [PMID: 39510217 DOI: 10.1016/j.neubiorev.2024.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
The conventional way steroid hormones work through receptors inside cells is widely acknowledged. There are unanswered questions about what happens to the hormone in the end and why there isn't always a strong connection between how much tissue takes up and its biological effects through receptor binding. Steroid hormones can also have non-traditional effects that happen quickly but don't involve entering the cell. Several possible mechanisms for these non-traditional actions include (a) changes in membrane fluidity, (b) steroid hormones acting on receptors on the outer surface of cells, (c) steroid hormones regulating GABAA receptors on cell membranes, and (d) activation of steroid receptors by factors like EGF, IGF-1, and dopamine. Data also suggests that steroid hormones may be inserted into DNA through receptors, acting as transcription factors. These proposed new mechanisms of action should not be seen as challenging the conventional mechanism. Instead, they contribute to a more comprehensive understanding of how hormones work, allowing for rapid, short-term, and prolonged effects to meet the body's physiological needs.
Collapse
Affiliation(s)
- Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico.
| | - Marcos Garcia-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico
| | | | - Rosa Angélica Lucio
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Raymundo Domínguez Ordoñez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico; Licenciatura en Ingeniería Agronómica y Zootecnia, Complejo Regional Centro, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - James G Pfaus
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany, Czech Republic; Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Majumder P, Hsu TI, Hu CJ, Huang JK, Lee YC, Hsieh YC, Ahsan A, Huang CC. Potential role of solid lipid curcumin particle (SLCP) as estrogen replacement therapy in mitigating TDP-43-related neuropathy in the mouse model of ALS disease. Exp Neurol 2024; 383:114999. [PMID: 39419433 DOI: 10.1016/j.expneurol.2024.114999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) was first identified in 1869, but it wasn't until the 2014 Ice Bucket Challenge that widespread attention was drawn to the disease. Since then, substantial research has been dedicated to developing treatments for ALS. Despite this, only three drugs - riluzole, edaravone and AMX0035, have been approved for clinical use, and they can only temporarily alleviate mild symptoms without significant disease modification or cure. Therefore, there remains a critical unmet need to identify disease modifying or curative therapies for ALS. The higher incidence and more severe progression of ALS and FTLD (frontotemporal lobar degeneration) observed in men and postmenopausal woman compared to young women suggests that sex hormones may significantly influence disease onset and progression. In both animal models and human clinical studies, 17β estradiol (E2) has been shown to delay and improve the outcomes of many neurodegenerative diseases. Here, we examined the role of TDP-43 in the regulation of estrogen-related enzymes, CYP19A1 and CYP3A4. In addition, we examined the impact of curcumin on the regulation of estrogen E2 levels and TDP-43-associated neuropathy as a potential therapeutic strategy for the treatment of FTLD and ALS. METHODS Prp-TDP-43A315T mice was used as a model of ALS/FTLD to examine the expression patterns of E2 and its biosynthesis and degradation enzymes, CYP19A1 and CYP3A4. Moreover, the molecular mechanisms and the potency of solid lipid curcumin particles (SLCP) as an E2 replacement therapy for TDP-43 associated neuropathy was analyzed. We further examined the survival rates and the pathological TDP43 patterns in female and male Prp-TDP-43A315T mice administrated with or without SLCP. In addition, the changed expression levels of enzymes corresponding to E2 biosynthesis and degradation in the spinal cord of female and male Prp-TDP-43A315T mice with or without SLCP were determined. RESULTS We found that in addition to E2, the expression patterns of CYP19A1 and CYP3A4 proteins differed between Prp-TDP-43A315T mice compared to wild-type control, suggesting that toxic phosphorylated TDP43 oligomers may disrupt the balance between CYP19A1 and CYP3A4 expression, leading to reduced estrogen biosynthesis and accelerated degradation. In addition, we found that oral administration of SLCP prolonged the survival rates in female Prp-TDP-43A315T mice and significantly reduced the pathological insoluble phosphorylated TDP-43 species. Furthermore, SLCP attenuated disease progression associated with TDP-43-related neuropathies through modulating estrogen biosynthesis and the activity of CYP450 enzymes. CONCLUSIONS Our results showed that Prp-TDP-43A315T mice exhibit altered estradiol levels. Moreover, we demonstrated the efficacy of SLCP as an estrogen replacement therapy in mitigating TDP-43-associated disease progression and pathogenesis. These findings suggest that SLCP could be a promising strategy to induce E2 expression for the treatment of ALS and FTLD.
Collapse
Affiliation(s)
- Pritha Majumder
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Chaur-Joug Hu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan; Neurology Department, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Yi-Chao Lee
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Chen Hsieh
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Asmar Ahsan
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan
| | - Chi-Chen Huang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
4
|
Swanson KA, Nguyen KL, Gupta S, Ricard J, Bethea JR. TNFR1/p38αMAPK signaling in Nex + supraspinal neurons regulates estrogen-dependent chronic neuropathic pain. Brain Behav Immun 2024; 119:261-271. [PMID: 38570102 PMCID: PMC11162907 DOI: 10.1016/j.bbi.2024.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024] Open
Abstract
Upregulation of soluble tumor necrosis factor (sTNF) cytokine signaling through TNF receptor 1 (TNFR1) and subsequent neuronal hyperexcitability are observed in both animal models and human chronic neuropathic pain (CNP). Previously, we have shown that estrogen modulates sTNF/TNFR1 signaling in CNP, which may contribute to female prevalence of CNP. The estrogen-dependent role of TNFR1-mediated supraspinal neuronal circuitry in CNP remains unknown. In this study, we interrogated the intersect between supraspinal TNFR1 mediated neuronal signaling and sex specificity by selectively removing TNFR1 in Nex + neurons in adult mice (NexCreERT2::TNFR1f/f). We determined that mechanical hypersensitivity induced by chronic constriction injury (CCI) decreases over time in males, but not in females. Subsequently, we investigated two downstream pathways, p38MAPK and NF-κB, important in TNFR1 signaling and injury response. We detected p38MAPK and NF-κB activation in male cortical tissue; however, p38MAPK phosphorylation was reduced in NexCreERT2::TNFR1f/f males. We observed a similar recovery from acute pain in male mice following CCI when p38αMAPK was knocked out of supraspinal Nex + neurons (NexCreERT2::p38αMAPKf/f), while chronic pain developed in female mice. To explore the intersection between estrogen and inflammation in CNP we used a combination therapy of an estrogen receptor β (ER β) inhibitor with a sTNF/TNFR1 or general p38MAPK inhibitor. We determined both combination therapies lends therapeutic relief to females following CCI comparable to the response evaluated in male mice. These data suggest that TNFR1/p38αMAPK signaling in Nex + neurons in CNP is male-specific and lack of therapeutic efficacy following sTNF inhibition in females is due to ER β interference. These studies highlight sex-specific differences in pathways important to pain chronification and elucidate potential therapeutic strategies that would be effective in both sexes.
Collapse
Affiliation(s)
- Kathryn A Swanson
- Department of Biology, Drexel University, Papadakis Integrated Science Building, Philadelphia, PA 19104, USA
| | - Kayla L Nguyen
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Ross Hall, 2300 I (Eye) St NW, Rm.530A, Washington, D.C 20052, USA.
| | - Shruti Gupta
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Ross Hall, 2300 I (Eye) St NW, Rm.530A, Washington, D.C 20052, USA
| | - Jerome Ricard
- Department of Biology, Drexel University, Papadakis Integrated Science Building, Philadelphia, PA 19104, USA
| | - John R Bethea
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Ross Hall, 2300 I (Eye) St NW, Rm.530A, Washington, D.C 20052, USA.
| |
Collapse
|
5
|
Vega-Rivera NM, González-Trujano ME, Luna-Angula A, Sánchez-Chapul L, Estrada-Camarena E. Antidepressant-like effects of the Punica granatum and citalopram combination are associated with structural changes in dendritic spines of granule cells in the dentate gyrus of rats. Front Pharmacol 2023; 14:1211663. [PMID: 37900157 PMCID: PMC10613096 DOI: 10.3389/fphar.2023.1211663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/31/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: Natural products such as phytoestrogens-enriched foods or supplements have been considered as an alternative therapy to reduce depressive symptoms associated with menopause. It is known that the aqueous extract of Punica granatum (AE-PG) exerts antidepressant-like effects by activating β-estrogen receptors and facilitates the antidepressant response of the clinical drug citalopram (CIT). However, the effects on neuroplasticity are unknown. Objectvie investigated the antidepressant-like response of combining AE-PG and CIT at sub-optimal doses, analyzing their effects on the formation and maturation of dendrite spines in granule cells as well as on the dendrite complexity. Methods: Ovariectomized Wistar rats (3-month-old) were randomly assigned to one of the following groups: A) control (saline solution as vehicle of CIT and AE-PG, B) AE-PG at a sub-threshold dose (vehicle of CIT plus AE-PG at 0.125 mg/kg), C) CIT at a sub-threshold dose (0.77 mg/kg plus vehicle of AE-PG), and D) a combination of CIT plus AE-PG (0.125 mg/kg and 0.77 mg/kg, respectively). All rats were treated intraperitoneally for 14 days. Antidepressant-like effects were evaluated using the force swimming test test (FST). The complexity of dendrites and the number and morphology of dendrite spines of neurons were assessed in the dentate gyrus after Golgi-Cox impregnation. The expressions of the mature brain-derived neurotrophic factor (mBDNF) in plasma and of mBDNF and synaptophysin in the hippocampus, as markers of synaptogenesis, were also determined. Results: Administration of CIT combined with AE-PG, but not alone, induced a significant antidepressant-like effect in the FST with an increase in the dendritic complexity and the number of dendritic spines in the dentate gyrus (DG) of the hippocampus, revealed by the thin and stubby categories of neurons at the granular cell layer. At the same time, an increase of mBDNF and synaptophysin expression was observed in the hippocampus of rats that received the combination of AE-PG and CIT.
Collapse
Affiliation(s)
- Nelly-Maritza Vega-Rivera
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Alexandra Luna-Angula
- Laboratorio de Enfermedades Neuromusculares, División de Neurociencias Clínicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Laura Sánchez-Chapul
- Laboratorio de Enfermedades Neuromusculares, División de Neurociencias Clínicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City, Mexico
| | - Erika Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| |
Collapse
|
6
|
Swanson KA, Nguyen KL, Gupta S, Ricard J, Bethea JR. TNFR1/p38αMAPK signaling in Nex+ supraspinal neurons regulates sex-specific chronic neuropathic pain. RESEARCH SQUARE 2023:rs.3.rs-3273237. [PMID: 37674712 PMCID: PMC10479400 DOI: 10.21203/rs.3.rs-3273237/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Upregulation of soluble tumor necrosis factor (sTNF) cytokine signaling through TNF receptor 1 (TNFR1) and subsequent neuronal hyperexcitability are observed in both animal models and human chronic neuropathic pain (CNP) [1-4]. To test the hypothesis that supraspinal circuitry is critical to pain chronification, we studied the intersect between supraspinal TNFR1 mediated neuronal signaling and sex specificity by selectively removing TNFR1 in Nex + neurons in adult mice (NexCreERT2::TNFR1f/f). We determined that following chronic constriction injury (CCI), pain resolves in males; however, female acute pain transitions to chronic. Subsequently, we investigated two downstream pathways, p38MAPK and NF-κB, important in TNFR1 signaling and injury response. We detected p38αMAPK and NF-κB activation in male cortical tissue; however, p38αMAPK phosphorylation was reduced in NexCreERT2::TNFR1f/f males. We observed similar behavioral results following CCI in NexCreERT2::p38αMAPKf/f mice. Previously, we established estrogen's ability to modulate sTNF/TNFR1 signaling in CNP, which may contribute to female prevalence of CNP [5-9]. To explore the intersection between estrogen and inflammation in CNP we used a combination therapy of an estrogen receptor β (ER β) inhibitor with a sTNF/TNFR1 or general p38MAPK inhibitor. We determined both combination therapies lend "male-like" therapeutic relief to females following CCI. These data suggest that TNFR1/p38αMAPK signaling in Nex + neurons in CNP is male-specific and lack of therapeutic efficacy following sTNF inhibition in females is due to ER β interference. These studies highlight sex-specific differences in pathways important to pain chronification and elucidate potential therapeutic strategies that would be effective in both sexes.
Collapse
|
7
|
Hernández-Vivanco A, Cano-Adamuz N, Sánchez-Aguilera A, González-Alonso A, Rodríguez-Fernández A, Azcoitia Í, de la Prida LM, Méndez P. Sex-specific regulation of inhibition and network activity by local aromatase in the mouse hippocampus. Nat Commun 2022; 13:3913. [PMID: 35798748 PMCID: PMC9262915 DOI: 10.1038/s41467-022-31635-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Cognitive function relies on a balanced interplay between excitatory and inhibitory neurons (INs), but the impact of estradiol on IN function is not fully understood. Here, we characterize the regulation of hippocampal INs by aromatase, the enzyme responsible for estradiol synthesis, using a combination of molecular, genetic, functional and behavioral tools. The results show that CA1 parvalbumin-expressing INs (PV-INs) contribute to brain estradiol synthesis. Brain aromatase regulates synaptic inhibition through a mechanism that involves modification of perineuronal nets enwrapping PV-INs. In the female brain, aromatase modulates PV-INs activity, the dynamics of network oscillations and hippocampal-dependent memory. Aromatase regulation of PV-INs and inhibitory synapses is determined by the gonads and independent of sex chromosomes. These results suggest PV-INs are mediators of estrogenic regulation of behaviorally-relevant activity. Using a combination of molecular, genetic, functional and behavioural tools, this study describes the impact of brain synthesized estrogen in inhibitory neuronal function, network oscillations and hippocampal dependent memory.
Collapse
Affiliation(s)
| | | | - Alberto Sánchez-Aguilera
- Instituto Cajal (CSIC), Av Dr. Arce 37, 28002, Madrid, Spain.,Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid IdISSC, Avda Complutense s/n, 28040, Madrid, Spain
| | | | | | - Íñigo Azcoitia
- Department of Cell Biology, Universidad Complutense de Madrid, C José Antonio Nováis 12, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Pablo Méndez
- Instituto Cajal (CSIC), Av Dr. Arce 37, 28002, Madrid, Spain.
| |
Collapse
|
8
|
Perez-Rando M, Guirado R, Tellez-Merlo G, Carceller H, Nacher J. Estradiol Regulates Polysialylated Form of the Neural Cell Adhesion Molecule Expression and Connectivity of O-LM Interneurons in the Hippocampus of Adult Female Mice. Neuroendocrinology 2022; 112:51-67. [PMID: 33550289 DOI: 10.1159/000515052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022]
Abstract
The estrous cycle is caused by the changing concentration of ovarian hormones, particularly 17β-estradiol, a hormone whose effect on excitatory circuits has been extensively reported. However, fewer studies have tried to elucidate how this cycle, or this hormone, affects the plasticity of inhibitory networks and the structure of interneurons. Among these cells, somatostatin-expressing O-LM neurons of the hippocampus are especially interesting. They have a role in the modulation of theta oscillations, and they receive direct input from the entorhinal cortex, which place them in the center of hippocampal function. In this study, we report that the expression of polysialylated form of the neural cell adhesion molecule (PSA-NCAM) in the hippocampus, a molecule involved in the plasticity of somatostatin-expressing interneurons in the adult brain, fluctuated through the different stages of the estrous cycle. Likewise, these stages and the expression of PSA-NCAM affected the density of dendritic spines of O-LM cells. We also describe that 17β-estradiol replacement of adult ovariectomized female mice caused an increase in the perisomatic inhibitory puncta in O-LM interneurons as well as an increase in their axonal bouton density. Interestingly, this treatment also induced a decrease in their dendritic spine density, specifically in O-LM interneurons lacking PSA-NCAM expression. Finally, using an ex vivo real-time assay with entorhinal-hippocampal organotypic cultures, we show that this hormone decreased the dynamics in spinogenesis, altogether highlighting the modulatory effect that 17β-estradiol has on inhibitory circuits.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Ramon Guirado
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
- Dirección General de Universidades, Gobierno de Aragón, Zaragoza, Spain
| | - Guillermina Tellez-Merlo
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Hector Carceller
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
- CIBERSAM: Spanish National Network for Research in Mental Health, Valencia, Spain
| |
Collapse
|
9
|
Feng Y, Shi R, Hu J, Lou S. Effects of neural-derived estradiol on actin polymerization and synaptic plasticity-related proteins in prefrontal and hippocampal cells of mice. Steroids 2022; 177:108935. [PMID: 34715132 DOI: 10.1016/j.steroids.2021.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Neural-derived 17β-estradiol (E2) plays an important role in the synaptic plasticity of the hippocampus and prefrontal cortex, but the mechanism is not well defined. This study was designed to explore the effect and mechanism of neural-derived E2 on synaptic plasticity of the hippocampus and prefrontal cortex. Primary cultured hippocampal and prefrontal cells in mice were randomly divided into the DMSO (D), aromatase (Rate-limiting enzymes for E2 synthesizes) inhibitor letrozole (L), and ERs antagonist (MPG) treated groups. After intervention for 48 h, the cell was collected, and then, the expressions of AMPA-receptor subunit GluR1 (GluR1), synaptophysin (SYN), p-21-Activated kinase (PAK) phosphorylation, Rho kinase (ROCK), p-Cofilin, F-actin, and G-actin proteins were detected. Letrozole or ER antagonists inhibited the expression of GluR1, F-actin/G-actin, p-PAK and p-Cofilin proteins in prefrontal cells significantly. And the expressions of GluR1 and F-actin/G-actin proteins were declined in hippocampal cells markedly after adding letrozole or ERs antagonists. In conclusion, neural-derived E2 and ERs regulated the synaptic plasticity, possibly due to promoting actin polymerization in prefrontal and hippocampal cells. The regional specificity in the effect of neural-derived E2 and ERs on the actin polymerization-related pathway may provide a theoretical basis for the functional differences between the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Yu Feng
- Shanghai University of Sport, Kinesiology, Shanghai, China
| | - Rengfei Shi
- Shanghai University of Sport, Kinesiology, Shanghai, China
| | - Jingyun Hu
- Shanghai University of Sport, Kinesiology, Shanghai, China
| | - Shujie Lou
- Shanghai University of Sport, Kinesiology, Shanghai, China.
| |
Collapse
|
10
|
Andrade TA, Fahel JS, de Souza JM, Terra AC, Souza DG, Costa VV, Teixeira MM, Bloise E, Ribeiro FM. In Utero Exposure to Zika Virus Results in sex-Specific Memory Deficits and Neurological Alterations in Adult Mice. ASN Neuro 2022; 14:17590914221121257. [PMID: 36017573 PMCID: PMC9421007 DOI: 10.1177/17590914221121257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
SUMMARY STATEMENT In utero exposure to ZIKV leads to decreased number of neurons in adult mice. Female mice exposed to ZIKV in utero exhibit lower levels of BDNF, a decrease in synaptic markers, memory deficits, and risk-taking behavior during adulthood.
Collapse
Affiliation(s)
- Thiago A. Andrade
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Julia S. Fahel
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Jessica M. de Souza
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana C. Terra
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Danielle G. Souza
- Department of Microbiology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Vivian V. Costa
- Department of Morphology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Mauro M. Teixeira
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Enrrico Bloise
- Department of Morphology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Fabiola M. Ribeiro
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
11
|
Brann DW, Lu Y, Wang J, Sareddy GR, Pratap UP, Zhang Q, Tekmal RR, Vadlamudi RK. Neuron-Derived Estrogen-A Key Neuromodulator in Synaptic Function and Memory. Int J Mol Sci 2021; 22:ijms222413242. [PMID: 34948039 PMCID: PMC8706511 DOI: 10.3390/ijms222413242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 01/31/2023] Open
Abstract
In addition to being a steroid hormone, 17β-estradiol (E2) is also a neurosteroid produced in neurons in various regions of the brain of many species, including humans. Neuron-derived E2 (NDE2) is synthesized from androgen precursors via the action of the biosynthetic enzyme aromatase, which is located at synapses and in presynaptic terminals in neurons in both the male and female brain. In this review, we discuss evidence supporting a key role for NDE2 as a neuromodulator that regulates synaptic plasticity and memory. Evidence supporting an important neuromodulatory role of NDE2 in the brain has come from studies using aromatase inhibitors, aromatase overexpression in neurons, global aromatase knockout mice, and the recent development of conditional forebrain neuron-specific knockout mice. Collectively, these studies demonstrate a key role of NDE2 in the regulation of synapse and spine density, efficacy of excitatory synaptic transmission and long-term potentiation, and regulation of hippocampal-dependent recognition memory, spatial reference memory, and contextual fear memory. NDE2 is suggested to achieve these effects through estrogen receptor-mediated regulation of rapid kinase signaling and CREB-BDNF signaling pathways, which regulate actin remodeling, as well as transcription, translation, and transport of synaptic proteins critical for synaptic plasticity and function.
Collapse
Affiliation(s)
- Darrell W. Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Correspondence:
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Gangadhara R. Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX 78229, USA; (G.R.S.); (U.P.P.); (R.R.T.); (R.K.V.)
| | - Uday P. Pratap
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX 78229, USA; (G.R.S.); (U.P.P.); (R.R.T.); (R.K.V.)
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA;
| | - Rajeshwar R. Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX 78229, USA; (G.R.S.); (U.P.P.); (R.R.T.); (R.K.V.)
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX 78229, USA; (G.R.S.); (U.P.P.); (R.R.T.); (R.K.V.)
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| |
Collapse
|
12
|
Brann DW, Lu Y, Wang J, Zhang Q, Thakkar R, Sareddy GR, Pratap UP, Tekmal RR, Vadlamudi RK. Brain-derived estrogen and neural function. Neurosci Biobehav Rev 2021; 132:793-817. [PMID: 34823913 PMCID: PMC8816863 DOI: 10.1016/j.neubiorev.2021.11.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Although classically known as an endocrine signal produced by the ovary, 17β-estradiol (E2) is also a neurosteroid produced in neurons and astrocytes in the brain of many different species. In this review, we provide a comprehensive overview of the localization, regulation, sex differences, and physiological/pathological roles of brain-derived E2 (BDE2). Much of what we know regarding the functional roles of BDE2 has come from studies using specific inhibitors of the E2 synthesis enzyme, aromatase, as well as the recent development of conditional forebrain neuron-specific and astrocyte-specific aromatase knockout mouse models. The evidence from these studies support a critical role for neuron-derived E2 (NDE2) in the regulation of synaptic plasticity, memory, socio-sexual behavior, sexual differentiation, reproduction, injury-induced reactive gliosis, and neuroprotection. Furthermore, we review evidence that astrocyte-derived E2 (ADE2) is induced following brain injury/ischemia, and plays a key role in reactive gliosis, neuroprotection, and cognitive preservation. Finally, we conclude by discussing the key controversies and challenges in this area, as well as potential future directions for the field.
Collapse
Affiliation(s)
- Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Roshni Thakkar
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA; Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
13
|
Drzewiecki CM, Sellinger EP, Juraska JM. Impact of pubertal onset on region-specific Esr2 expression. J Neuroendocrinol 2021; 33:e13029. [PMID: 34463394 PMCID: PMC8448167 DOI: 10.1111/jne.13029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 08/08/2021] [Indexed: 11/28/2022]
Abstract
In female rats, pubertal onset is associated with maturation of the medial prefrontal cortex (mPFC) and mPFC-mediated behaviours. These behavioural and anatomical changes are likely a result of the effects of oestrogens at the nuclear oestrogen receptor (ER)β, which is expressed at higher levels than the ERα isoform in the adult mPFC. Researchers have previously quantified ERβ protein and Esr2 RNA in rodents during early postnatal development and adulthood, although an adolescent-specific trajectory of this receptor in the mPFC has not been documented. Given that Esr2 expression can fluctuate in the presence or absence of oestrogens, puberty and the subsequent rise in gonadal hormones could influence levels of ERβ in the adolescent brain. To further explore this, we used RNAscope® technology to quantify the amount of Esr2 mRNA in pre-pubertal adolescent, recently post-pubertal adolescent and adult female rats. We show that Esr2 expression decreases significantly in the mPFC, striatum and motor cortex between pre-pubertal adolescence and adulthood. In the mPFC, this decrease occurs rapidly at pubertal onset, with no significant decrease in Esr2 levels between the recently post-pubertal and adult cohort. By contrast, the striatum and motor cortex had no significant differences in the amount of Esr2 mRNA between pre- and post-pubertal females. Insofar as the amount of Esr2 expression is proportional to functional ERβ, these results suggest ERβ decreases in a region-specific pattern in response to pubertal onset and highlight a role for this receptor in the maturational events that occur in the female rat mPFC at puberty.
Collapse
Affiliation(s)
- Carly M. Drzewiecki
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820
- Currently at California National Primate Research Center, University of California-Davis, Davis, CA, 95616
| | - Elli P. Sellinger
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820
| | - Janice M. Juraska
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, 61820
| |
Collapse
|
14
|
Neural basis for estrous cycle-dependent control of female behaviors. Neurosci Res 2021; 176:1-8. [PMID: 34331974 DOI: 10.1016/j.neures.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 01/30/2023]
Abstract
Females display changes in distinct behaviors along the estrous cycle. Levels of circulating ovarian sex steroid hormones peak around ovulation, which occur around estrus phase of the cycle. This increase of sex hormones is thought to be important for changes in behaviors, however, neural circuit mechanisms of periodic behavioral changes in females are not understood well. Different lines of research indicate sex hormonal effects on several forms of neuronal plasticity. This review provides an overview of behavioral and plastic changes that occur in an estrous cycle-dependent manner and explores the current research linking these changes to understand neural circuit mechanisms that control female behaviors.
Collapse
|
15
|
Zaręba-Kozioł M, Bartkowiak-Kaczmarek A, Roszkowska M, Bijata K, Figiel I, Halder AK, Kamińska P, Müller FE, Basu S, Zhang W, Ponimaskin E, Włodarczyk J. S-Palmitoylation of Synaptic Proteins as a Novel Mechanism Underlying Sex-Dependent Differences in Neuronal Plasticity. Int J Mol Sci 2021; 22:ijms22126253. [PMID: 34200797 PMCID: PMC8230572 DOI: 10.3390/ijms22126253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Although sex differences in the brain are prevalent, the knowledge about mechanisms underlying sex-related effects on normal and pathological brain functioning is rather poor. It is known that female and male brains differ in size and connectivity. Moreover, those differences are related to neuronal morphology, synaptic plasticity, and molecular signaling pathways. Among different processes assuring proper synapse functions are posttranslational modifications, and among them, S-palmitoylation (S-PALM) emerges as a crucial mechanism regulating synaptic integrity. Protein S-PALM is governed by a family of palmitoyl acyltransferases, also known as DHHC proteins. Here we focused on the sex-related functional importance of DHHC7 acyltransferase because of its S-PALM action over different synaptic proteins as well as sex steroid receptors. Using the mass spectrometry-based PANIMoni method, we identified sex-dependent differences in the S-PALM of synaptic proteins potentially involved in the regulation of membrane excitability and synaptic transmission as well as in the signaling of proteins involved in the structural plasticity of dendritic spines. To determine a mechanistic source for obtained sex-dependent changes in protein S-PALM, we analyzed synaptoneurosomes isolated from DHHC7-/- (DHHC7KO) female and male mice. Our data showed sex-dependent action of DHHC7 acyltransferase. Furthermore, we revealed that different S-PALM proteins control the same biological processes in male and female synapses.
Collapse
Affiliation(s)
- Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
- Correspondence: (M.Z.-K.); (J.W.)
| | - Anna Bartkowiak-Kaczmarek
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Matylda Roszkowska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Krystian Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Anup Kumar Halder
- Department of Computer Science and Engineering, Jadvapur University, Kolkata 700032, India; (A.K.H.); (S.B.)
| | - Paulina Kamińska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Franziska E. Müller
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany; (F.E.M.); (E.P.)
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadvapur University, Kolkata 700032, India; (A.K.H.); (S.B.)
| | - Weiqi Zhang
- Department of Mental Health, University of Münster, Albert-Schweitzer-Campus 1/A9, 48149 Munster, Germany;
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany; (F.E.M.); (E.P.)
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
- Correspondence: (M.Z.-K.); (J.W.)
| |
Collapse
|
16
|
Fels JA, Casalena GA, Manfredi G. Sex and oestrogen receptor β have modest effects on gene expression in the mouse brain posterior cortex. Endocrinol Diabetes Metab 2021; 4:e00191. [PMID: 33532622 PMCID: PMC7831211 DOI: 10.1002/edm2.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Sex differences in brain cortical function affect cognition, behaviour and susceptibility to neural diseases, but the molecular basis of sexual dimorphism in cortical function is still largely unknown. Oestrogen and oestrogen receptors (ERs), specifically ERβ, the most abundant ER in the cortex, may play a role in determining sex differences in gene expression, which could underlie functional sex differences. However, further investigation is needed to address brain region specificity of the effects of sex and ERβ on gene expression. The goal of this study was to investigate sex differences in gene expression in the mouse posterior cortex, where sex differences in transcription have never been examined, and to determine how genetic ablation of ERβ affects transcription. Methods In this study, we performed unbiased transcriptomics on RNA from the posterior cortex of adult wild-type and ERβ knockout mice (n = 4/sex/genotype). We used unbiased clustering to analyse whole-transcriptome changes between the groups. We also performed differential expression analysis on the data using DESeq2 to identify specific changes in gene expression. Results We found only 27 significantly differentially expressed genes (DEGs) in wild-type (WT) males vs females, of which 17 were autosomal genes. Interestingly, in ERβKO males vs females all the autosomal DEGs were lost. Gene Ontology analysis of the subset of DEGs with sex differences only in the WT cortex revealed a significant enrichment of genes annotated with the function 'cation channel activity'. Moreover, within each sex we found only a few DEGs in ERβKO vs WT mice (8 and 5 in males and females, respectively). Conclusions Overall, our results suggest that in the adult mouse posterior cortex there are surprisingly few sex differences in gene expression, and those that exist are mainly related to cation channel activity. Additionally, they indicate that brain region-specific functional effects of ERβ may be largely post-transcriptional.
Collapse
Affiliation(s)
- Jasmine A. Fels
- Feil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | | | - Giovanni Manfredi
- Feil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
17
|
Hwang WJ, Lee TY, Kim NS, Kwon JS. The Role of Estrogen Receptors and Their Signaling across Psychiatric Disorders. Int J Mol Sci 2020; 22:ijms22010373. [PMID: 33396472 PMCID: PMC7794990 DOI: 10.3390/ijms22010373] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests estrogen and estrogen signaling pathway disturbances across psychiatric disorders. Estrogens are not only crucial in sexual maturation and reproduction but are also highly involved in a wide range of brain functions, such as cognition, memory, neurodevelopment, and neuroplasticity. To add more, the recent findings of its neuroprotective and anti-inflammatory effects have grown interested in investigating its potential therapeutic use to psychiatric disorders. In this review, we analyze the emerging literature on estrogen receptors and psychiatric disorders in cellular, preclinical, and clinical studies. Specifically, we discuss the contribution of estrogen receptor and estrogen signaling to cognition and neuroprotection via mediating multiple neural systems, such as dopaminergic, serotonergic, and glutamatergic systems. Then, we assess their disruptions and their potential implications for pathophysiologies in psychiatric disorders. Further, in this review, current treatment strategies involving estrogen and estrogen signaling are evaluated to suggest a future direction in identifying novel treatment strategies in psychiatric disorders.
Collapse
Affiliation(s)
- Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; (W.J.H.); (J.S.K.)
| | - Tae Young Lee
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
- Correspondence: ; Tel.: +82-55-360-2468
| | - Nahrie Suk Kim
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; (W.J.H.); (J.S.K.)
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
18
|
Sellers KJ, Denley MCS, Saito A, Foster EM, Salgarella I, Delogu A, Kamiya A, Srivastava DP. Brain-synthesized oestrogens regulate cortical migration in a sexually divergent manner. Eur J Neurosci 2020; 52:2646-2663. [PMID: 32314480 DOI: 10.1111/ejn.14755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 01/11/2023]
Abstract
Oestrogens play an important role in brain development where they have been implicated in controlling various cellular processes. Several lines of evidence have been presented showing that oestrogens can be synthesized locally within the brain. Studies have demonstrated that aromatase, the enzyme responsible for the conversion of androgens to oestrogens, is expressed during early development in both male and female cortices. Furthermore, 17β-oestradiol has been measured in foetal brain tissue from multiple species. 17β-oestradiol regulates neural progenitor proliferation as well as the development of early neuronal morphology. However, what role locally derived oestrogens play in regulating cortical migration and, moreover, whether these effects are the same in males and females are unknown. Here, we investigated the impact of knockdown expression of Cyp19a1, which encodes aromatase, between embryonic day (E) 14.5 and postnatal day 0 (P0) had on neural migration within the cortex. Aromatase was expressed in the developing cortex of both sexes, but at significantly higher levels in male than female mice. Under basal conditions, no obvious differences in cortical migration between male and female mice were observed. However, knockdown of Cyp19a1 resulted in an increase in cells within the cortical plate, and a concurrent decrease in the subventricular zone/ventricular zone in P0 male mice. Interestingly, the opposite effect was observed in females, who displayed a significant reduction in cells migrating to the cortical plate. Together, these findings indicate that brain-derived oestrogens regulate radial migration through distinct mechanisms in males and females.
Collapse
Affiliation(s)
- Katherine J Sellers
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Matthew C S Denley
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Atsushi Saito
- The Department of Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evangeline M Foster
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Irene Salgarella
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Atsushi Kamiya
- The Department of Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
19
|
Clements L, Harvey J. Activation of oestrogen receptor α induces a novel form of LTP at hippocampal temporoammonic-CA1 synapses. Br J Pharmacol 2020; 177:642-655. [PMID: 31637699 PMCID: PMC7012968 DOI: 10.1111/bph.14880] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/30/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE 17β estradiol (E2) rapidly regulates excitatory synaptic transmission at the classical Schaffer collateral (SC) input to hippocampal CA1 neurons. However, the impact of E2 on excitatory synaptic transmission at the distinct temporoammonic (TA) input to CA1 neurons and the oestrogen receptors involved is less clear. EXPERIMENTAL APPROACH Extracellular recordings were used to monitor excitatory synaptic transmission in hippocampal slices from juvenile male (P11-24) Sprague Dawley rats. Immunocytochemistry combined with confocal microscopy was used to monitor the surface expression of the AMPA receptor (AMPAR) subunit, GluA1 in hippocampal neurons cultured from neonatal (P0-3) rats. KEY RESULTS Here, we show that E2 induces a novel form of LTP at TA-CA1 synapses, an effect mirrored by the ERα agonist, PPT, and blocked by an ERα antagonist. ERα-induced LTP is NMDA receptor (NMDAR)-dependent and involves a postsynaptic expression mechanism that requires PI 3-kinase signalling and synaptic insertion of GluA2-lacking AMPARs. ERα-induced LTP has overlapping expression mechanisms with classical Hebbian LTP, as HFS-induced LTP occluded PPT-induced LTP and vice versa. In addition, activity-dependent LTP was blocked by the ERα antagonist, suggesting that ERα activation is involved in NMDA-LTP at TA-CA1 synapses. CONCLUSION AND IMPLICATIONS ERα induces a novel form of LTP at juvenile male hippocampal TA-CA1 synapses. As TA-CA1 synapses are implicated in episodic memory processes and are an early target for neurodegeneration, these findings have important implications for the role of oestrogens in CNS health and neurodegenerative disease.
Collapse
Affiliation(s)
- Leigh Clements
- Division of Systems Medicine, Ninewells Hospital and Medical SchoolUniversity of DundeeDundeeUK
| | - Jenni Harvey
- Division of Systems Medicine, Ninewells Hospital and Medical SchoolUniversity of DundeeDundeeUK
| |
Collapse
|
20
|
Abstract
Estrogen (E2) modulates a wide range of neural functions such as spine formation, synaptic plasticity, and neurotransmission in the hippocampus. Dendritic spines and synapse numbers in hippocampal neurons of female rats cyclically fluctuate across the estrous cycle, but the key genes responsible for these fluctuations are still unknown. In order to address this question, we explore the hippocampal transcriptome via RNA-sequencing (RNA-seq) at the proestrus (PE) and estrus (ES) stages in female rats. At standard fold-change selection criteria, 37 differentially expressed genes (DEGs) were found in PE vs. ES groups (FDR adjusted p-value (q)<0.05). The transcriptional changes identified by RNA-seq were confirmed by quantitative real-time PCR. To gain insight into the function of the DEGs, the E2-regulated genes were annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes database (KEGG). Based on GO and KEGG pathways, the identified DEGs of PE vs. ES stages are involved in extracellular matrix formation, regulation of actin cytoskeleton, oxidative stress, neuroprotection, immune system, oligodendrocyte maturation and myelination, signal transduction pathways, growth factor signaling, retinoid signaling, aging, cellular process, metabolism and transport. The profiles of the gene expression in the hippocampus identified at the PE vs. ES stages were compared with the gene expression profiles in ovariectomized (OVX) rats receiving E2 replacement via RNA-seq and qPCR. The profiles of gene expression between the OVX+E2 and the estrous cycle were different and the possible causes were discussed.
Collapse
Affiliation(s)
- Javed Iqbal
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhi-Nei Tan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Min-Xing Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hui-Bin Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Boyu Ma
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Xin Zhou
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Xin-Ming Ma
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
21
|
Abstract
Elevated latent prenatal steroidogenic activity has been found in the amniotic fluid of autistic boys, based on measuring prenatal androgens and other steroid hormones. To date, it is unclear if other prenatal steroids also contribute to autism likelihood. Prenatal oestrogens need to be investigated, as they play a key role in synaptogenesis and corticogenesis during prenatal development, in both males and females. Here we test whether levels of prenatal oestriol, oestradiol, oestrone and oestrone sulphate in amniotic fluid are associated with autism, in the same Danish Historic Birth Cohort, in which prenatal androgens were measured, using univariate logistic regression (n = 98 cases, n = 177 controls). We also make a like-to-like comparison between the prenatal oestrogens and androgens. Oestradiol, oestrone, oestriol and progesterone each related to autism in univariate analyses after correction with false discovery rate. A comparison of standardised odds ratios showed that oestradiol, oestrone and progesterone had the largest effects on autism likelihood. These results for the first time show that prenatal oestrogens contribute to autism likelihood, extending the finding of elevated prenatal steroidogenic activity in autism. This likely affects sexual differentiation, brain development and function.
Collapse
|
22
|
Pottoo FH, Javed MN, Barkat MA, Alam MS, Nowshehri JA, Alshayban DM, Ansari MA. Estrogen and Serotonin: Complexity of Interactions and Implications for Epileptic Seizures and Epileptogenesis. Curr Neuropharmacol 2019; 17:214-231. [PMID: 29956631 PMCID: PMC6425080 DOI: 10.2174/1570159x16666180628164432] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/01/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
A burgeoning literature documents the confluence of ovarian steroids and central serotonergic systems in the in-junction of epileptic seizures and epileptogenesis. Estrogen administration in animals reduces neuronal death from seizures by up-regulation of the prosurvival molecule i.e. Bcl-2, anti-oxidant potential and protection of NPY interneurons. Serotonin modulates epileptiform activity in either direction i.e administration of 5-HT agonists or reuptake inhibitors leads to the acti-vation of 5-HT3 and 5-HT1A receptors tending to impede focal and generalized seizures, while depletion of brain 5-HT along with the destruction of serotonergic terminals leads to expanded neuronal excitability hence abatement of seizure threshold in experimental animal models. Serotonergic neurotransmission is influenced by the organizational activity of ster-oid hormones in the growing brain and the actuation effects of steroids which come in adulthood. It is further established that ovarian steroids bring induction of dendritic spine proliferation on serotonin neurons thus thawing a profound effect on sero-tonergic transmission. This review features 5-HT1A and 5-HT3 receptors as potential targets for ameliorating seizure-induced neurodegeneration and recurrent hypersynchronous neuronal activity. Indeed 5-HT3 receptors mediate cross-talk be-tween estrogenic and serotonergic pathways, and could be well exploited for combinatorial drug therapy against epileptogen-esis.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam 31441, Saudi Arabia
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New-Delhi, India
| | - Md Abul Barkat
- Department of Pharmacy, School of Medical and Allied Sciences, K.R.Mangalam University, Gurgaon, India
| | - Md Sabir Alam
- Department of Pharmacy, School of Medical and Allied Sciences, K.R.Mangalam University, Gurgaon, India
| | - Javaid Ashraf Nowshehri
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech., University of Kashmir, Srinagar, India
| | - Dhafer Mahdi Alshayban
- Department of Clinical Pharmacy, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam 31441, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
23
|
Estrogenic Regulation of Neuroprotective and Neuroinflammatory Mechanisms: Implications for Depression and Cognition. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-11355-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Sellers KJ, Watson IA, Gresz RE, Raval P, Srivastava DP. Cyto-nuclear shuttling of afadin is required for rapid estradiol-mediated modifications of histone H3. Neuropharmacology 2018; 143:153-162. [PMID: 30268521 PMCID: PMC6277849 DOI: 10.1016/j.neuropharm.2018.09.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
Estrogens have been shown to rapidly regulate local signalling at synapses and within the nucleus. The result of these signalling events is to rapidly modulate synapse structure and function, as well as epigenetic mechanisms including histone modifications. Ultimately these mechanisms are thought to contribute to long-lasting changes in neural circuitry, and thus influence cognitive functions such as learning and memory. However, the mechanisms by which estrogen-mediated local synaptic and nuclear signalling events are coordinated are not well understood. In this study we have found that the scaffold protein afadin, (also known as AF-6), undergoes a bi-directional trafficking to both synaptic and nuclear compartment in response to acute 17β-estradiol (estradiol) treatment, in mixed sex neuronal cultures derived from fetal cortex. Interestingly, nuclear accumulation of afadin was coincidental with an increase in the phosphorylation of histone H3 at serine 10 (H3S10p). This epigenetic modification is associated with the remodeling of chromatin into an open euchromatin state, allowing for transcriptional activation and related learning and memory processes. Critically, the cyto-nuclear trafficking of afadin was required for estradiol-dependent H3S10p. We further determined that nuclear accumulation of afadin is sufficient to induce phosphorylation of the mitogentic kinases ERK1/2 (pERK1/2) within the nucleus. Moreover, nuclear pERK1/2 was required for estradiol-dependent H3S10p. Taken together, we propose a model whereby estradiol induces the bi-directional trafficking of afadin to synaptic and nuclear sub-compartments. Within the nucleus, afadin is required for increased pERK1/2 which in turn is required for H3S10p. Therefore this represents a mechanism through which estrogens may be able to coordinate both synaptic and nucleosomal events within the same neuronal population. 17β-estradiol targets afadin to membrane and nuclear subcompartments. Histone H3 is rapidly phosphorylated by 17β-estradiol. Histone H3 phosphorylation by 17β-estradiol requires afadin nuclear accumulation. 17β-estradiol-mediated ERK1/2 activation is required for histone H3 phosphorylation.
Collapse
Affiliation(s)
- Katherine J Sellers
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK
| | - Iain A Watson
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK
| | - Rahel E Gresz
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 9RT, UK.
| |
Collapse
|
25
|
Paletta P, Sheppard PAS, Matta R, Ervin KSJ, Choleris E. Rapid effects of estrogens on short-term memory: Possible mechanisms. Horm Behav 2018; 104:88-99. [PMID: 29847771 DOI: 10.1016/j.yhbeh.2018.05.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 01/11/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. Estrogens affect learning and memory through rapid and delayed mechanisms. Here we review studies on rapid effects on short-term memory. Estradiol rapidly improves social and object recognition memory, spatial memory, and social learning when administered systemically. The dorsal hippocampus mediates estrogen rapid facilitation of object, social and spatial short-term memory. The medial amygdala mediates rapid facilitation of social recognition. The three estrogen receptors, α (ERα), β (ERβ) and the G-protein coupled estrogen receptor (GPER) appear to play different roles depending on the task and brain region. Both ERα and GPER agonists rapidly facilitate short-term social and object recognition and spatial memory when administered systemically or into the dorsal hippocampus and facilitate social recognition in the medial amygdala. Conversely, only GPER can facilitate social learning after systemic treatment and an ERβ agonist only rapidly improved short-term spatial memory when given systemically or into the hippocampus, but also facilitates social recognition in the medial amygdala. Investigations into the mechanisms behind estrogens' rapid effects on short term memory showed an involvement of the extracellular signal-regulated kinase (ERK) and the phosphoinositide 3-kinase (PI3K) kinase pathways. Recent evidence also showed that estrogens interact with the neuropeptide oxytocin in rapidly facilitating social recognition. Estrogens can increase the production and/or release of oxytocin and other neurotransmitters, such as dopamine and acetylcholine. Therefore, it is possible that estrogens' rapid effects on short-term memory may occur through the regulation of various neurotransmitters, although more research is need on these interactions as well as the mechanisms of estrogens' actions on short-term memory.
Collapse
Affiliation(s)
- Pietro Paletta
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Paul A S Sheppard
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Richard Matta
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kelsy S J Ervin
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
26
|
Denley MCS, Gatford NJF, Sellers KJ, Srivastava DP. Estradiol and the Development of the Cerebral Cortex: An Unexpected Role? Front Neurosci 2018; 12:245. [PMID: 29887794 PMCID: PMC5981095 DOI: 10.3389/fnins.2018.00245] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
The cerebral cortex undergoes rapid folding in an "inside-outside" manner during embryonic development resulting in the establishment of six discrete cortical layers. This unique cytoarchitecture occurs via the coordinated processes of neurogenesis and cell migration. In addition, these processes are fine-tuned by a number of extracellular cues, which exert their effects by regulating intracellular signaling pathways. Interestingly, multiple brain regions have been shown to develop in a sexually dimorphic manner. In many cases, estrogens have been demonstrated to play an integral role in mediating these sexual dimorphisms in both males and females. Indeed, 17β-estradiol, the main biologically active estrogen, plays a critical organizational role during early brain development and has been shown to be pivotal in the sexually dimorphic development and regulation of the neural circuitry underlying sex-typical and socio-aggressive behaviors in males and females. However, whether and how estrogens, and 17β-estradiol in particular, regulate the development of the cerebral cortex is less well understood. In this review, we outline the evidence that estrogens are not only present but are engaged and regulate molecular machinery required for the fine-tuning of processes central to the cortex. We discuss how estrogens are thought to regulate the function of key molecular players and signaling pathways involved in corticogenesis, and where possible, highlight if these processes are sexually dimorphic. Collectively, we hope this review highlights the need to consider how estrogens may influence the development of brain regions directly involved in the sex-typical and socio-aggressive behaviors as well as development of sexually dimorphic regions such as the cerebral cortex.
Collapse
Affiliation(s)
- Matthew C. S. Denley
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Nicholas J. F. Gatford
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Katherine J. Sellers
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
27
|
Akinola OB, Gabriel MO. Neuroanatomical and molecular correlates of cognitive and behavioural outcomes in hypogonadal males. Metab Brain Dis 2018; 33:491-505. [PMID: 29230619 DOI: 10.1007/s11011-017-0163-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Robust epidemiological, clinical and laboratory evidence supports emerging roles for the sex steroids in such domains as neurodevelopment, behaviour, learning and cognition. Regions of the mammalian brain that are involved in cognitive development and memory do not only express the classical nuclear androgen receptor, but also the non-genomic membrane receptor, which is a G protein-coupled receptor that mediates some rapid effects of the androgens on neurogenesis and synaptic plasticity. Under physiological conditions, hippocampal neurons do express the enzyme aromatase, and therefore actively aromatize testosterone to oestradiol. Although glial expression of the aromatase enzyme is minimal, increased expression following injury suggests a role for sex steroids in neuroprotection. It is therefore plausible to deduce that low levels of circulating androgens in males would perturb neuronal functions in relation to cognition and memory, as well as neural repair following injury. The present review is an overview of some roles of the sex steroids on cognitive function in males, and the neuroanatomical and molecular underpinnings of some behavioural and cognitive deficits characteristic of such genetic disorders noted for low androgen levels, including Klinefelter syndrome, Bardet-Biedl syndrome, Kallman syndrome and Prader-Willi syndrome. Recent literature in relation to some behavioural and cognitive changes secondary to surgical and pharmacological castration are also appraised.
Collapse
Affiliation(s)
- O B Akinola
- Division of Endocrinology, Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.
| | - M O Gabriel
- Division of Endocrinology, Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
28
|
Balthazart J, Choleris E, Remage-Healey L. Steroids and the brain: 50years of research, conceptual shifts and the ascent of non-classical and membrane-initiated actions. Horm Behav 2018; 99:1-8. [PMID: 29305886 PMCID: PMC5880709 DOI: 10.1016/j.yhbeh.2018.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 11/22/2022]
Abstract
This brief commentary reviews key steps in the history of steroid endocrinology that have resulted in important conceptual shifts. Our understanding of the "Fast Effects of Steroids" now reflect substantial progress, including the major concept that steroids act rapidly on a variety of physiological and behavioral responses, via mechanisms that are too fast to be fully accounted for by classical receptor-dependent regulation of gene transcription. Several so-called 'non-classical' mechanisms have been identified and include binding to membrane receptors and regulating non genomic signaling cascades. We survey the discovery of steroids, the initial characterization of their intracellular receptors, key progress in the understanding of the genomic effects of steroids and then the progressive discovery of the rapid non-classical and membrane-initiated actions of steroids. Foundational discoveries about brain steroid synthesis in neural processes and terminals has converged with emerging evidence for the rapid actions of steroids on brain and behavior. Had the rapid effects of steroids in the central nervous system been discovered first, these molecules would likely now be considered as a class of neurotransmitter.
Collapse
Affiliation(s)
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Luke Remage-Healey
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
29
|
Murakami G, Hojo Y, Kato A, Komatsuzaki Y, Horie S, Soma M, Kim J, Kawato S. Rapid nongenomic modulation by neurosteroids of dendritic spines in the hippocampus: Androgen, oestrogen and corticosteroid. J Neuroendocrinol 2018; 30. [PMID: 29194818 DOI: 10.1111/jne.12561] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022]
Abstract
Memories are stored in synapses that consist of axon terminals and dendritic spines. Dendritic spines are postsynaptic structures of synapses and are essential for synaptic plasticity and cognition. Therefore, extensive investigations concerning the functions and structures of spines have been performed. Sex steroids and stress steroids have been shown to modulate hippocampal synapses. Although the rapid modulatory action of sex steroids on synapses has been studied in hippocampal neurones over several decades, the essential molecular mechanisms have not been fully understood. Here, a description of kinase-dependent signalling mechanisms is provided that can explain the rapid nongenomic modulation of dendritic spinogenesis in rat and mouse hippocampal slices by the application of sex steroids, including dihydrotestosterone, testosterone, oestradiol and progesterone. We also indicate the role of synaptic (classic) sex steroid receptors that trigger these rapid synaptic modulations. Moreover, we describe rapid nongenomic spine modulation by applying corticosterone, which is an acute stress model of the hippocampus. The explanations for the results obtained are mainly based on the optical imaging of dendritic spines. Comparisons are also performed with results obtained from other types of imaging, including electron microscopic imaging. Relationships between spine modulation and modulation of cognition are discussed. We recognise that most of rapid effects of exogenously applied oestrogen and androgen were observed in steroid-depleted conditions, including acute slices of the hippocampus, castrated male animals and ovariectomised female animals. Therefore, the previously observed effects can be considered as a type of recovery event, which may be essentially similar to hormone replacement therapy under hormone-decreased conditions. On the other hand, in gonadally intact young animals with high levels of endogenous sex hormones, further supplementation of sex hormones might not be effective, whereas the infusion of blockers for steroid receptors or kinases may be effective, with respect to suppressing sex hormone functions, thus providing useful information regarding molecular mechanisms.
Collapse
Affiliation(s)
- G Murakami
- Department of Liberal Arts, Faculty of Medicine, Saitama Medical University, Iruma, Saitama, Japan
| | - Y Hojo
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Iruma, Saitama, Japan
| | - A Kato
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo, Japan
| | - Y Komatsuzaki
- Department of Physics, College of Science and Technology, Nihon University, Chiyoda, Tokyo, Japan
| | - S Horie
- Department of Urology, Graduate School of Medicine, Juntendo University, Hongo, Tokyo, Japan
| | - M Soma
- Department of Cognitive Neuroscience, Faculty of Pharma-Science, Teikyo University, Itabashi, Tokyo, Japan
| | - J Kim
- Department of Cognitive Neuroscience, Faculty of Pharma-Science, Teikyo University, Itabashi, Tokyo, Japan
| | - S Kawato
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo, Japan
- Department of Urology, Graduate School of Medicine, Juntendo University, Hongo, Tokyo, Japan
- Department of Cognitive Neuroscience, Faculty of Pharma-Science, Teikyo University, Itabashi, Tokyo, Japan
| |
Collapse
|
30
|
Wang S, Zhu J, Xu T. 17β-estradiol (E2) promotes growth and stability of new dendritic spines via estrogen receptor β pathway in intact mouse cortex. Brain Res Bull 2017; 137:241-248. [PMID: 29288734 DOI: 10.1016/j.brainresbull.2017.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/01/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022]
Abstract
The steroid hormone 17β-estradiol (E2) remodels neural circuits at the synaptic level in the mammalian hippocampus and cortex. However, the underlying mechanism of synapse dynamics remains unclear. To elucidate the mechanism, we traced individual dendritic spines on layer V pyramidal neurons of the primary sensory cortex in adult female mice under E2 intervention using two-photon in vivo imaging microscopy. We confirmed the increase of the spine density upon E2 treatment in the intact mouse cortex. Furthermore, we found that this increase is due to the promotion of spine formation and the stability of newly formed spines. E2 treatment doesn't alter the elimination rate of pre-existing spines. Our results also indicate that the activation of the estrogen receptor β (ERβ) mimics the effects of E2 administration on spine dynamics. Taken together, our findings suggest that estrogen promotes growth and stability of new dendritic spines via the ERβ pathway in the intact cortex of female mice.
Collapse
Affiliation(s)
- Shaofang Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jun Zhu
- Chengdu Military General Hospital, Chengdu, China
| | - Tonghui Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
31
|
Crider A, Pillai A. Estrogen Signaling as a Therapeutic Target in Neurodevelopmental Disorders. J Pharmacol Exp Ther 2017; 360:48-58. [PMID: 27789681 PMCID: PMC5193073 DOI: 10.1124/jpet.116.237412] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022] Open
Abstract
Estrogens, the primary female sex hormones, were originally characterized through their important role in sexual maturation and reproduction. However, recent studies have shown that estrogens play critical roles in a number of brain functions, including cognition, learning and memory, neurodevelopment, and adult neuroplasticity. A number of studies from both clinical as well as preclinical research suggest a protective role of estrogen in neurodevelopmental disorders including autism spectrum disorder (ASD) and schizophrenia. Alterations in the levels of estrogen receptors have been found in subjects with ASD or schizophrenia, and adjunctive estrogen therapy has been shown to be effective in enhancing the treatment of schizophrenia. This review summarizes the findings on the role of estrogen in the pathophysiology of neurodevelopmental disorders with a focus on ASD and schizophrenia. We also discuss the potential of estrogen as a therapeutic target in the above disorders.
Collapse
Affiliation(s)
- Amanda Crider
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
32
|
Lai YJ, Yu D, Zhang JH, Chen GJ. Cooperation of Genomic and Rapid Nongenomic Actions of Estrogens in Synaptic Plasticity. Mol Neurobiol 2016; 54:4113-4126. [PMID: 27324789 PMCID: PMC5509832 DOI: 10.1007/s12035-016-9979-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/14/2016] [Indexed: 12/23/2022]
Abstract
Neuroplasticity refers to the changes in the molecular and cellular processes of neural circuits that occur in response to environmental experiences. Clinical and experimental studies have increasingly shown that estrogens participate in the neuroplasticity involved in cognition, behavior, and memory. It is generally accepted that estrogens exert their effects through genomic actions that occur over a period of hours to days. However, emerging evidence indicates that estrogens also rapidly influence the neural circuitry through nongenomic actions. In this review, we provide an overview of the genomic and nongenomic actions of estrogens and discuss how these actions may cooperate in synaptic plasticity. We then summarize the role of epigenetic modifications, synaptic protein synthesis, and posttranslational modifications, and the splice variants of estrogen receptors in the complicated network of estrogens. The combination of genomic and nongenomic mechanisms endows estrogens with considerable diversity in modulating neural functions including synaptic plasticity.
Collapse
Affiliation(s)
- Yu-Jie Lai
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Haikou Municipal Hospital, Haikou, Hainan, 570208, China
| | - Dan Yu
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Haikou Municipal Hospital, Haikou, Hainan, 570208, China
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Guo-Jun Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
33
|
Khalaj AJ, Hasselmann J, Augello C, Moore S, Tiwari-Woodruff SK. Nudging oligodendrocyte intrinsic signaling to remyelinate and repair: Estrogen receptor ligand effects. J Steroid Biochem Mol Biol 2016; 160:43-52. [PMID: 26776441 PMCID: PMC5233753 DOI: 10.1016/j.jsbmb.2016.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 01/06/2023]
Abstract
Demyelination in multiple sclerosis (MS) leads to significant, progressive axonal and neuronal degeneration. Currently existing immunosuppressive and immunomodulatory therapies alleviate MS symptoms and slow, but fail to prevent or reverse, disease progression. Restoration of damaged myelin sheath by replenishment of mature oligodendrocytes (OLs) should not only restore saltatory axon conduction, but also provide a major boost to axon survival. Our previous work has shown that therapeutic treatment with the modestly selective generic estrogen receptor (ER) β agonist diarylpropionitrile (DPN) confers functional neuroprotection in a chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS by stimulating endogenous remyelination. Recently, we found that the more potent, selective ERβ agonist indazole-chloride (Ind-Cl) improves clinical disease and motor performance. Importantly, electrophysiological measures revealed improved corpus callosal conduction and reduced axon refractoriness. This Ind-Cl treatment-induced functional remyelination was attributable to increased OL progenitor cell (OPC) and mature OL numbers. At the intracellular signaling level, transition of early to late OPCs requires ERK1/2 signaling, and transition of immature to mature OLs requires mTOR signaling; thus, the PI3K/Akt/mTOR pathway plays a major role in the late stages of OL differentiation and myelination. Indeed, therapeutic treatment of EAE mice with various ERβ agonists results in increased brain-derived neurotrophic factor (BDNF) and phosphorylated (p) Akt and p-mTOR levels. It is notable that while DPN's neuroprotective effects occur in the presence of peripheral and central inflammation, Ind-Cl is directly neuroprotective, as demonstrated by remyelination effects in the cuprizone-induced demyelination model, as well as immunomodulatory. Elucidating the mechanisms by which ER agonists and other directly remyelinating agents modulate endogenous OPC and OL regulatory signaling is critical to the development of effective remyelinating drugs. The discovery of signaling targets to induce functional remyelination will valuably contribute to the treatment of demyelinating neurological diseases, including MS, stroke, and traumatic brain and spinal cord injury.
Collapse
Affiliation(s)
- Anna J Khalaj
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Jonathan Hasselmann
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Catherine Augello
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Spencer Moore
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States; Neuroscience Graduate Program, University of California, Riverside, United States.
| |
Collapse
|
34
|
Control of Dendritic Spine Morphological and Functional Plasticity by Small GTPases. Neural Plast 2016; 2016:3025948. [PMID: 26989514 PMCID: PMC4775798 DOI: 10.1155/2016/3025948] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/06/2016] [Accepted: 01/19/2016] [Indexed: 11/18/2022] Open
Abstract
Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity, and behaviour. Abnormal development or regulation of excitatory synapses has also been strongly implicated in many neurodevelopmental, psychiatric, and neurodegenerative disorders. In the mammalian forebrain, the majority of excitatory synapses are located on dendritic spines, specialized dendritic protrusions that are enriched in actin. Research over recent years has begun to unravel the complexities involved in the regulation of dendritic spine structure. The small GTPase family of proteins have emerged as key regulators of structural plasticity, linking extracellular signals with the modulation of dendritic spines, which potentially underlies their ability to influence cognition. Here we review a number of studies that examine how small GTPases are activated and regulated in neurons and furthermore how they can impact actin dynamics, and thus dendritic spine morphology. Elucidating this signalling process is critical for furthering our understanding of the basic mechanisms by which information is encoded in neural circuits but may also provide insight into novel targets for the development of effective therapies to treat cognitive dysfunction seen in a range of neurological disorders.
Collapse
|
35
|
Akther S, Huang Z, Liang M, Zhong J, Fakhrul AAKM, Yuhi T, Lopatina O, Salmina AB, Yokoyama S, Higashida C, Tsuji T, Matsuo M, Higashida H. Paternal Retrieval Behavior Regulated by Brain Estrogen Synthetase (Aromatase) in Mouse Sires that Engage in Communicative Interactions with Pairmates. Front Neurosci 2015; 9:450. [PMID: 26696812 PMCID: PMC4678232 DOI: 10.3389/fnins.2015.00450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 11/13/2015] [Indexed: 12/03/2022] Open
Abstract
Parental behaviors involve complex social recognition and memory processes and interactive behavior with children that can greatly facilitate healthy human family life. Fathers play a substantial role in child care in a small but significant number of mammals, including humans. However, the brain mechanism that controls male parental behavior is much less understood than that controlling female parental behavior. Fathers of non-monogamous laboratory ICR mice are an interesting model for examining the factors that influence paternal responsiveness because sires can exhibit maternal-like parental care (retrieval of pups) when separated from their pups along with their pairmates because of olfactory and auditory signals from the dams. Here we tested whether paternal behavior is related to femininity by the aromatization of testosterone. For this purpose, we measured the immunoreactivity of aromatase [cytochrome P450 family 19 (CYP19)], which synthesizes estrogen from androgen, in nine brain regions of the sire. We observed higher levels of aromatase expression in these areas of the sire brain when they engaged in communicative interactions with dams in separate cages. Interestingly, the number of nuclei with aromatase immunoreactivity in sires left together with maternal mates in the home cage after pup-removing was significantly larger than that in sires housed with a whole family. The capacity of sires to retrieve pups was increased following a period of 5 days spent with the pups as a whole family after parturition, whereas the acquisition of this ability was suppressed in sires treated daily with an aromatase inhibitor. The results demonstrate that the dam significantly stimulates aromatase in the male brain and that the presence of the pups has an inhibitory effect on this increase. These results also suggest that brain aromatization regulates the initiation, development, and maintenance of paternal behavior in the ICR male mice.
Collapse
Affiliation(s)
- Shirin Akther
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Zhiqi Huang
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Mingkun Liang
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Jing Zhong
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Azam A K M Fakhrul
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Olga Lopatina
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan ; Department of Biochemistry, Medical Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University Krasnoyarsk, Russia
| | - Alla B Salmina
- Department of Biochemistry, Medical Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University Krasnoyarsk, Russia
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Chiharu Higashida
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Takahiro Tsuji
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Mie Matsuo
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition, Kanazawa University Research Center for Child Mental Development Kanazawa, Japan
| |
Collapse
|
36
|
Rapid increases in immature synapses parallel estrogen-induced hippocampal learning enhancements. Proc Natl Acad Sci U S A 2015; 112:16018-23. [PMID: 26655342 DOI: 10.1073/pnas.1522150112] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dramatic increases in hippocampal spine synapse density are known to occur within minutes of estrogen exposure. Until now, it has been assumed that enhanced spinogenesis increased excitatory input received by the CA1 pyramidal neurons, but how this facilitated learning and memory was unclear. Delivery of 17β-estradiol or an estrogen receptor (ER)-α (but not ER-β) agonist into the dorsal hippocampus rapidly improved general discrimination learning in female mice. The same treatments increased CA1 dendritic spines in hippocampal sections over a time course consistent with the learning acquisition phase. Surprisingly, estrogen-activated spinogenesis was associated with a decrease in CA1 hippocampal excitatory input, rapidly and transiently reducing CA1 AMPA activity via a mechanism likely reflecting AMPA receptor internalization and creation of silent or immature synapses. We propose that estrogens promote hippocampally mediated learning via a mechanism resembling some of the broad features of normal development, an initial overproduction of functionally immature connections being subsequently "pruned" by experience.
Collapse
|
37
|
Fitting S, Booze RM, Mactutus CF. HIV-1 proteins, Tat and gp120, target the developing dopamine system. Curr HIV Res 2015; 13:21-42. [PMID: 25613135 DOI: 10.2174/1570162x13666150121110731] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 11/17/2014] [Accepted: 12/23/2014] [Indexed: 11/22/2022]
Abstract
In 2014, 3.2 million children (< 15 years of age) were estimated to be living with HIV and AIDS worldwide, with the 240,000 newly infected children in the past year, i.e., another child infected approximately every two minutes [1]. The primary mode of HIV infection is through mother-to-child transmission (MTCT), occurring either in utero, intrapartum, or during breastfeeding. The effects of HIV-1 on the central nervous system (CNS) are putatively accepted to be mediated, in part, via viral proteins, such as Tat and gp120. The current review focuses on the targets of HIV-1 proteins during the development of the dopamine (DA) system, which appears to be specifically susceptible in HIV-1-infected children. Collectively, the data suggest that the DA system is a clinically relevant target in chronic HIV-1 infection, is one of the major targets in pediatric HIV-1 CNS infection, and may be specifically susceptible during development. The present review discusses the development of the DA system, follows the possible targets of the HIV-1 proteins during the development of the DA system, and suggests potential therapeutic approaches. By coupling our growing understanding of the development of the CNS with the pronounced age-related differences in disease progression, new light may be shed on the neurological and neurocognitive deficits that follow HIV-1 infection.
Collapse
Affiliation(s)
| | - Rosemarie M Booze
- Department of Psychology, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, USA.
| | | |
Collapse
|
38
|
Liu M, Huangfu X, Zhao Y, Zhang D, Zhang J. Steroid receptor coactivator-1 mediates letrozole induced downregulation of postsynaptic protein PSD-95 in the hippocampus of adult female rats. J Steroid Biochem Mol Biol 2015. [PMID: 26223010 DOI: 10.1016/j.jsbmb.2015.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hippocampus local estrogen which is converted from androgen that catalyzed by aromatase has been shown to play important roles in the regulation of learning and memory as well as cognition through action on synaptic plasticity, but the underlying mechanisms are poorly understood. Steroid receptor coactivator-1 (SRC-1) is one of the coactivators of steroid nuclear receptors; it is widely distributed in brain areas that related to learning and memory, reproductive regulation, sensory and motor information integration. Previous studies have revealed high levels of SRC-1 immunoreactivities in the hippocampus; it is closely related to the levels of synaptic proteins such as PSD-95 under normal development or gonadectomy, but its exact roles in the regulation of these proteins remains unclear. In this study, we used aromatase inhibitor letrozole in vivo and SRC-1 RNA interference in vitro to investigate whether SRC-1 mediated endogenous estrogen regulation of hippocampal PSD-95. The results revealed that letrozole injection synchronously decreased hippocampal SRC-1 and PSD-95 in a dose-dependant manner. Furthermore, when SRC-1 specific shRNA pool was applied to block the expression of SRC-1 in the primary hippocampal neuron culture, both immunocytochemistry and Western blot revealed that levels of PSD-95 were also decreased significantly. Taking together, these results provided the first evidence that SRC-1 mediated endogenous estrogen regulation of hippocampal synaptic plasticity by targeting the expression of synaptic protein PSD-95. Additionally, since letrozole is frequently used to treat estrogen-sensitive breast cancer, the above results also indicate its potential side effects in clinical administration.
Collapse
Affiliation(s)
- Mengying Liu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China; Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | - Xuhong Huangfu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China; Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | - Yangang Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Dongmei Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China; Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
39
|
Arevalo MA, Azcoitia I, Gonzalez-Burgos I, Garcia-Segura LM. Signaling mechanisms mediating the regulation of synaptic plasticity and memory by estradiol. Horm Behav 2015; 74:19-27. [PMID: 25921586 DOI: 10.1016/j.yhbeh.2015.04.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/02/2015] [Accepted: 04/20/2015] [Indexed: 01/29/2023]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". Estradiol participates in the regulation of the function and plasticity of synaptic circuits in key cognitive brain regions, such as the prefrontal cortex and the hippocampus. The mechanisms elicited by estradiol are mediated by the regulation of transcriptional activity by nuclear estrogen receptors and by intracellular signaling cascades activated by estrogen receptors associated with the plasma membrane. In addition, the mechanisms include the interaction of estradiol with the signaling of other factors involved in the regulation of cognition, such as brain derived neurotrophic factor, insulin-like growth factor-1 and Wnt. Modifications in these signaling pathways by aging or by a long-lasting ovarian hormone deprivation after menopause may impair the enhancing effects of estradiol on synaptic plasticity and cognition.
Collapse
Affiliation(s)
- Maria-Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenida Doctor Arce 37, E-28002 Madrid, Spain
| | - Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense, Calle José Antonio Novais 12, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Ignacio Gonzalez-Burgos
- Laboratorio de Psicobiología, División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal. Mexico
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenida Doctor Arce 37, E-28002 Madrid, Spain.
| |
Collapse
|
40
|
Frankfurt M, Luine V. The evolving role of dendritic spines and memory: Interaction(s) with estradiol. Horm Behav 2015; 74:28-36. [PMID: 25993604 PMCID: PMC4573337 DOI: 10.1016/j.yhbeh.2015.05.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/21/2015] [Accepted: 05/11/2015] [Indexed: 11/16/2022]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". Memory processing is presumed to depend on synaptic plasticity, which appears to have a role in mediating the acquisition, consolidation, and retention of memory. We have studied the relationship between estrogen, recognition memory, and dendritic spine density in the hippocampus and medial prefrontal cortex, areas critical for memory, across the lifespan in female rodents. The present paper reviews the literature on dendritic spine plasticity in mediating both short and long term memory, as well as the decreased memory that occurs with aging and Alzheimer's disease. It also addresses the role of acute and chronic estrogen treatments in these processes.
Collapse
Affiliation(s)
- Maya Frankfurt
- Department of Science Education, Hofstra-North Shore LIJ School of Medicine, USA.
| | | |
Collapse
|
41
|
Shum C, Macedo SC, Warre-Cornish K, Cocks G, Price J, Srivastava DP. Utilizing induced pluripotent stem cells (iPSCs) to understand the actions of estrogens in human neurons. Horm Behav 2015; 74:228-42. [PMID: 26143621 PMCID: PMC4579404 DOI: 10.1016/j.yhbeh.2015.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/11/2015] [Accepted: 06/25/2015] [Indexed: 01/05/2023]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". Over recent years tremendous progress has been made towards understanding the molecular and cellular mechanism by which estrogens exert enhancing effects on cognition, and how they act as a neuroprotective or neurotrophic agent in disease. Currently, much of this work has been carried out in animal models with only a limited number of studies using native human tissue or cells. Recent advances in stem cell technology now make it possible to reprogram somatic cells from humans into induced pluripotent stem cells (iPSCs), which can subsequently be differentiated into neurons of specific lineages. Importantly, the reprogramming of cells allows for the generation of iPSCs that retain the genetic "makeup" of the donor. Therefore, it is possible to generate iPSC-derived neurons from patients diagnosed with specific diseases, that harbor the complex genetic background associated with the disorder. Here, we review the iPSC technology and how it's currently being used to model neural development and neurological diseases. Furthermore, we explore whether this cellular system could be used to understand the role of estrogens in human neurons, and present preliminary data in support of this. We further suggest that the use of iPSC technology offers a novel system to not only further understand estrogens' effects in human cells, but also to investigate the mechanism by which estrogens are beneficial in disease. Developing a greater understanding of these mechanisms in native human cells will also aid in the development of safer and more effective estrogen-based therapeutics.
Collapse
Affiliation(s)
- Carole Shum
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Sara C Macedo
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK; Faculty of Engineering, Universidade do Porto, 4200-465 Porto, Portugal
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Graham Cocks
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.
| |
Collapse
|
42
|
Sellers KJ, Erli F, Raval P, Watson IA, Chen D, Srivastava DP. Rapid modulation of synaptogenesis and spinogenesis by 17β-estradiol in primary cortical neurons. Front Cell Neurosci 2015; 9:137. [PMID: 25926772 PMCID: PMC4396386 DOI: 10.3389/fncel.2015.00137] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/23/2015] [Indexed: 01/06/2023] Open
Abstract
In the mammalian forebrain, the majority of excitatory synapses occur on dendritic spines. Changes in the number of these structures is important for brain development, plasticity and the refinement of neuronal circuits. The formation of excitatory synapses involves the coordinated formation of dendritic spines and targeting of multi-protein complexes to nascent connections. Recent studies have demonstrated that the estrogen 17β-estradiol (E2) can rapidly increase the number of dendritic spines, an effect consistent with the ability of E2 to rapidly influence cognitive function. However, the molecular composition of E2-induced spines and whether these protrusions form synaptic connections has not been fully elucidated. Moreover, which estrogen receptor(s) (ER) mediate these spine-morphogenic responses are not clear. Here, we report that acute E2 treatment results in the recruitment of postsynaptic density protein 95 (PSD-95) to novel dendritic spines. In addition neuroligin 1 (Nlg-1) and the NMDA receptor subunit GluN1 are recruited to nascent synapses in cortical neurons. The presence of these synaptic proteins at nascent synapses suggests that the machinery to allow pre- and post-synapses to form connections are present in E2-induced spines. We further demonstrate that E2 treatment results in the rapid and transient activation of extracellular signal-regulated kinase 1/2 (ERK1/2), Akt and the mammalian target of rapamycin (mTOR) signaling pathways. However, only ERK1/2 and Akt are required for E2-mediated spinogenesis. Using synthetic receptor modulators, we further demonstrate that activation of the estrogen receptor beta (ERβ) but not alpha (ERα) mimics rapid E2-induced spinogenesis and synaptogenesis. Taken together these findings suggest that in primary cortical neurons, E2 signaling via ERβ, but not through ERα, is capable of remodeling neuronal circuits by increasing the number of excitatory synapses.
Collapse
Affiliation(s)
- Katherine J Sellers
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Filippo Erli
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK ; Department of Biotechnology and Biosciences, Univeristy of Milano-Bicocca Milano, Italy
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Iain A Watson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Ding Chen
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| |
Collapse
|
43
|
Rainville J, Pollard K, Vasudevan N. Membrane-initiated non-genomic signaling by estrogens in the hypothalamus: cross-talk with glucocorticoids with implications for behavior. Front Endocrinol (Lausanne) 2015; 6:18. [PMID: 25762980 PMCID: PMC4329805 DOI: 10.3389/fendo.2015.00018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 01/30/2015] [Indexed: 12/12/2022] Open
Abstract
The estrogen receptor and glucocorticoid receptor are members of the nuclear receptor superfamily that can signal using both non-genomic and genomic transcriptional modes. Though genomic modes of signaling have been well characterized and several behaviors attributed to this signaling mechanism, the physiological significance of non-genomic modes of signaling has not been well understood. This has partly been due to the controversy regarding the identity of the membrane ER (mER) or membrane GR (mGR) that may mediate rapid, non-genomic signaling and the downstream signaling cascades that may result as a consequence of steroid ligands binding the mER or the mGR. Both estrogens and glucocorticoids exert a number of actions on the hypothalamus, including feedback. This review focuses on the various candidates for the mER or mGR in the hypothalamus and the contribution of non-genomic signaling to classical hypothalamically driven behaviors and changes in neuronal morphology. It also attempts to categorize some of the possible functions of non-genomic signaling at both the cellular level and at the organismal level that are relevant for behavior, including some behaviors that are regulated by both estrogens and glucocorticoids in a potentially synergistic manner. Lastly, it attempts to show that steroid signaling via non-genomic modes may provide the organism with rapid behavioral responses to stimuli.
Collapse
Affiliation(s)
- Jennifer Rainville
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Kevin Pollard
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Nandini Vasudevan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
- *Correspondence: Nandini Vasudevan, Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA 70118, USA e-mail:
| |
Collapse
|
44
|
Sellers K, Raval P, Srivastava DP. Molecular signature of rapid estrogen regulation of synaptic connectivity and cognition. Front Neuroendocrinol 2015; 36:72-89. [PMID: 25159586 DOI: 10.1016/j.yfrne.2014.08.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 12/14/2022]
Abstract
There is now a growing appreciation that estrogens are capable of rapidly activating a number of signaling cascades within the central nervous system. In addition, there are an increasing number of studies reporting that 17β-estradiol, the major biologically active estrogen, can modulate cognition within a rapid time frame. Here we review recent studies that have begun to uncover the molecular and cellular framework which contributes to estrogens ability to rapidly modulate cognition. We first describe the mechanisms by which estrogen receptors (ERs) can couple to intracellular signaling cascades, either directly, or via the transactivation of other receptors. Subsequently, we review the evidence that estrogen can rapidly modulate both neuronal function and structure in the hippocampus and the cortex. Finally, we will discuss how estrogens may influence cognitive function through the modulation of neuronal structure, and the implications this may have on the treatment of a range of brain disorders.
Collapse
Affiliation(s)
- Katherine Sellers
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK.
| |
Collapse
|
45
|
Dorris DM, Cao J, Willett JA, Hauser CA, Meitzen J. Intrinsic excitability varies by sex in prepubertal striatal medium spiny neurons. J Neurophysiol 2014; 113:720-9. [PMID: 25376786 DOI: 10.1152/jn.00687.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sex differences in neuron electrophysiological properties were traditionally associated with brain regions directly involved in reproduction in adult, postpubertal animals. There is growing acknowledgement that sex differences can exist in other developmental periods and brain regions as well. This includes the dorsal striatum (caudate/putamen), which shows robust sex differences in gene expression, neuromodulator action (including dopamine and 17β-estradiol), and relevant sensorimotor behaviors and pathologies such as the responsiveness to drugs of abuse. Here we examine whether these sex differences extend to striatal neuron electrophysiology. We test the hypothesis that passive and active medium spiny neuron (MSN) electrophysiological properties in prepubertal rat dorsal striatum differ by sex. We made whole cell recordings from male and females MSNs from acute brain slices. The slope of the evoked firing rate to current injection curve was increased in MSNs recorded from females compared with males. The initial action potential firing rate was increased in MSNs recorded from females compared with males. Action potential after-hyperpolarization peak was decreased, and threshold was hyperpolarized in MSNs recorded from females compared with males. No sex differences in passive electrophysiological properties or miniature excitatory synaptic currents were detected. These findings indicate that MSN excitability is increased in prepubertal females compared with males, providing a new mechanism that potentially contributes to generating sex differences in striatal-mediated processes. Broadly, these findings demonstrate that sex differences in neuron electrophysiological properties can exist prepuberty in brain regions not directly related to reproduction.
Collapse
Affiliation(s)
- David M Dorris
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Jinyan Cao
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina
| | - Jaime A Willett
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina; Graduate Program in Physiology, North Carolina State University, Raleigh, North Carolina
| | - Caitlin A Hauser
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina; Center for Human Health and the Environment, Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina; and Grass Laboratory, Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
46
|
Crider A, Thakkar R, Ahmed AO, Pillai A. Dysregulation of estrogen receptor beta (ERβ), aromatase (CYP19A1), and ER co-activators in the middle frontal gyrus of autism spectrum disorder subjects. Mol Autism 2014; 5:46. [PMID: 25221668 PMCID: PMC4161836 DOI: 10.1186/2040-2392-5-46] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/06/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Autism spectrum disorders (ASD) are much more common in males than in females. Molecular alterations within the estrogen receptor (ER) signaling pathway may contribute to the sex difference in ASD, but the extent of such abnormalities in the brain is not known. METHODS Postmortem middle frontal gyrus tissues (13 ASD and 13 control subjects) were used. The protein levels were examined by western blotting. The gene expression was determined by qRT-PCR. RESULTS Gene expression analysis identified a 35% decrease in ERβ mRNA expression in the middle frontal gyrus of ASD subjects. In addition, a 38% reduction in aromatase (CYP19A1) mRNA expression was observed in ASD subjects. We also found significant decreases in ER co-activators that included a 34% decrease in SRC-1, a 77% decrease in CBP, and a 52% decrease in P/CAF mRNA levels in ASD subjects relative to controls. There were no differences in the mRNA levels of TIF-2, AIB-1 (ER co-activators), ER co-repressors (SMRT and nCoR) and ERα in the middle frontal gyrus of ASD subjects as compared to controls. We observed significant correlations between ERβ, CYP19A1, and co-activators in the study subjects. Immunoblot analysis further confirmed the changes in ERβ and aromatase at the protein level in the control and ASD subjects. CONCLUSIONS These results, for the first time, provide the evidence of the dysregulation of ERβ and co-factors in the brain of subjects with ASD.
Collapse
Affiliation(s)
- Amanda Crider
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, 997 St. Sebastian Way, Augusta, GA 30912 USA
| | - Roshni Thakkar
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, 997 St. Sebastian Way, Augusta, GA 30912 USA
| | - Anthony O Ahmed
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, 997 St. Sebastian Way, Augusta, GA 30912 USA
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, 997 St. Sebastian Way, Augusta, GA 30912 USA
| |
Collapse
|
47
|
Zhou L, Fester L, Haghshenas S, de Vrese X, von Hacht R, Gloger S, Brandt N, Bader M, Vollmer G, Rune GM. Oestradiol-induced synapse formation in the female hippocampus: roles of oestrogen receptor subtypes. J Neuroendocrinol 2014; 26:439-47. [PMID: 24779550 DOI: 10.1111/jne.12162] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 04/22/2014] [Accepted: 04/26/2014] [Indexed: 01/09/2023]
Abstract
During the oestrus cycle, varying spine synapse density correlates positively with varying local synthesis of oestradiol in the hippocampus. In this context, the roles of the oestrogen receptor (ER) subtypes ERα and β are not fully understood. In the present study, we used neonatal hippocampal slice cultures from female rats because these cultures synthesise oestradiol and express both receptor subtypes, and inhibition of oestradiol synthesis in these cultures results in spine synapse loss. Using electron microscopy, we tested the effects on spine synapse density in response to agonists of both ERα and ERβ. Application of agonists to the cultures had no effect. After inhibition of oestradiol synthesis, however, agonists of ERα induced spine synapse formation, whereas ERβ agonists led to a reduction in spine synapse density in the CA1 region of these cultures. Consistently, up-regulation of ERβ in the hippocampus of adult female aromatase-deficient mice is paralleled by hippocampus-specific spine synapse loss in this mutant. Finally, we found an increase in spine synapses in the adult female ERβ knockout mouse, but no effect in the adult female ERα knockout mouse. Our data suggest antagonistic roles of ERβ and ERα in spine synapse formation in the female hippocampus, which may contribute to oestrus cyclicity of spine synapse density in the hippocampus.
Collapse
Affiliation(s)
- L Zhou
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang QG, Wang R, Tang H, Dong Y, Chan A, Sareddy GR, Vadlamudi RK, Brann DW. Brain-derived estrogen exerts anti-inflammatory and neuroprotective actions in the rat hippocampus. Mol Cell Endocrinol 2014; 389:84-91. [PMID: 24508637 PMCID: PMC4040313 DOI: 10.1016/j.mce.2013.12.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 12/30/2013] [Accepted: 12/31/2013] [Indexed: 12/26/2022]
Abstract
17β-estradiol (E2) has been implicated to play a critical role in neuroprotection, synaptic plasticity, and cognitive function. Classically, the role of gonadal-derived E2 in these events is well established, but the role of brain-derived E2 is less clear. To address this issue, we investigated the expression, localization, and modulation of aromatase and local E2 levels in the hippocampus following global cerebral ischemia (GCI) in adult ovariectomized rats. Immunohistochemistry (IHC) revealed that the hippocampal regions CA1, CA3 and dentate gyrus (DG) exhibited high levels of immunoreactive aromatase staining, with aromatase being co-localized primarily in neurons in non-ischemic animals. Following GCI, aromatase became highly expressed in GFAP-positive astrocytes in the hippocampal CA1 region at 2-3 days post GCI reperfusion. An ELISA for E2 and IHC for E2 confirmed the GCI-induced elevation of local E2 in the CA1 region and that the increase in local E2 occurred in astrocytes. Furthermore, central administration of aromatase antisense (AS) oligonucleotides, but not missense (MS) oligonucleotides, blocked the increase in aromatase and local E2 in astrocytes after GCI, and resulted in a significant increase in GCI-induced hippocampal CA1 region neuronal cell death and neuroinflammation. As a whole, these results suggest that brain-derived E2 exerts important neuroprotective and anti-inflammatory actions in the hippocampal CA1 region following GCI.
Collapse
Affiliation(s)
- Quan-Guang Zhang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA.
| | - Ruimin Wang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA; Neurobiology Institute of Medical Research Centre, Hebei United University, Tangshan, Hebei 063000, PR China
| | - Hui Tang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA; Neurobiology Institute of Medical Research Centre, Hebei United University, Tangshan, Hebei 063000, PR China
| | - Yan Dong
- Institute of Molecular Medicine and Genetics, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Alice Chan
- Institute of Molecular Medicine and Genetics, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Gangadhara Reddy Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Darrell W Brann
- Institute of Molecular Medicine and Genetics, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
49
|
Madinier A, Wieloch T, Olsson R, Ruscher K. Impact of estrogen receptor beta activation on functional recovery after experimental stroke. Behav Brain Res 2014; 261:282-8. [DOI: 10.1016/j.bbr.2013.12.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/17/2013] [Accepted: 12/21/2013] [Indexed: 10/25/2022]
|
50
|
Sala C, Segal M. Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 2014; 94:141-88. [PMID: 24382885 DOI: 10.1152/physrev.00012.2013] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The introduction of high-resolution time lapse imaging and molecular biological tools has changed dramatically the rate of progress towards the understanding of the complex structure-function relations in synapses of central spiny neurons. Standing issues, including the sequence of molecular and structural processes leading to formation, morphological change, and longevity of dendritic spines, as well as the functions of dendritic spines in neurological/psychiatric diseases are being addressed in a growing number of recent studies. There are still unsettled issues with respect to spine formation and plasticity: Are spines formed first, followed by synapse formation, or are synapses formed first, followed by emergence of a spine? What are the immediate and long-lasting changes in spine properties following exposure to plasticity-producing stimulation? Is spine volume/shape indicative of its function? These and other issues are addressed in this review, which highlights the complexity of molecular pathways involved in regulation of spine structure and function, and which contributes to the understanding of central synaptic interactions in health and disease.
Collapse
|